1
|
Zheng Y, Wei K, Jiang P, Zhao J, Shan Y, Shi Y, Zhao F, Chang C, Li Y, Zhou M, Lv X, Guo S, He D. Macrophage polarization in rheumatoid arthritis: signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front Immunol 2024; 15:1394108. [PMID: 38799455 PMCID: PMC11116671 DOI: 10.3389/fimmu.2024.1394108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinliang Lv
- Department of Rheumatology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. Front Immunol 2024; 15:1352946. [PMID: 38660308 PMCID: PMC11039887 DOI: 10.3389/fimmu.2024.1352946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages are crucial cells in the human body's innate immunity and are engaged in a variety of non-inflammatory reactions. Macrophages can develop into two kinds when stimulated by distinct internal environments: pro-inflammatory M1-like macrophages and anti-inflammatory M2-type macrophages. During inflammation, the two kinds of macrophages are activated alternatively, and maintaining a reasonably steady ratio is critical for maintaining homeostasis in vivo. M1 macrophages can induce inflammation, but M2 macrophages suppress it. The imbalance between the two kinds of macrophages will have a significant impact on the illness process. As a result, there are an increasing number of research being conducted on relieving or curing illnesses by altering the amount of macrophages. This review summarizes the role of macrophage polarization in various inflammatory diseases, including autoimmune diseases (RA, EAE, MS, AIH, IBD, CD), allergic diseases (allergic rhinitis, allergic dermatitis, allergic asthma), atherosclerosis, obesity and type 2 diabetes, metabolic homeostasis, and the compounds or drugs that have been discovered or applied to the treatment of these diseases by targeting macrophage polarization.
Collapse
Affiliation(s)
| | | | | | | | - Yuanmin Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
4
|
Machado CRL, Dias FF, Resende GG, Oliveira PGD, Xavier RM, Andrade MVMD, Kakehasi AM. Morphofunctional analysis of fibroblast-like synoviocytes in human rheumatoid arthritis and mouse collagen-induced arthritis. Adv Rheumatol 2023; 63:1. [PMID: 36597166 DOI: 10.1186/s42358-022-00281-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) play a prominent role in rheumatoid synovitis and degradation of the extracellular matrix through the production of inflammatory cytokines and metalloproteinases (MMPs). Since animal models are frequently used for elucidating the disease mechanism and therapeutic development, it is relevant to study the ultrastructural characteristics and functional responses in human and mouse FLS. The objective of the study was to analyze ultrastructural characteristics, Interleukin-6 (IL-6) and Metalloproteinase-3 (MMP-3) production and the activation of intracellular pathways in Fibroblast like synoviocytes (FLS) cultures obtained from patients with rheumatoid arthritis (RA) and from mice with collagen-induced arthritis (CIA). METHODS FLSs were obtained from RA patients (RA-FLSs) (n = 8) and mice with CIA (CIA-FLSs) (n = 4). Morphology was assessed by transmission and scanning electron microscopy. IL-6 and MMP-3 production was measured by ELISA, and activation of intracellular signaling pathways (NF-κB and MAPK: p-ERK1/2, p-P38 and p-JNK) was measured by Western blotting in cultures of RA-FLSs and CIA-FLSs stimulated with tumor necrosis factor-alpha (TNF-α) and IL-1β. RESULTS RA-FLS and CIA-FLS cultures exhibited rich cytoplasm, rough endoplasmic reticula and prominent and well-developed Golgi complexes. Transmission electron microscopy demonstrated the presence of lamellar bodies, which are cytoplasmic structures related to surfactant production, in FLSs from both sources. Increased levels of pinocytosis and numbers of pinocytotic vesicles were observed in RA-FLSs (p < 0.05). Basal production of MMP-3 and IL-6 was present in RA-FLSs and CIA-FLSs. Regarding the production of MMP-3 and IL-6 and the activation of signaling pathways, the present study demonstrated a lower response to IL-1β by CIA-FLSs than by RA-FLSs. CONCLUSION This study provides a comprehensive understanding of the biology of RA-FLS and CIA-FLS. The differences and similarities in ultrastructural morphology and important inflammatory cytokines shown, contribute to future in vitro studies using RA-FLS and CIA-FLS, in addition, they indicate that the adoption of CIA-FLS for studies should take careful and be well designed, since they do not completely resemble human diseases.
Collapse
Affiliation(s)
- Camilla Ribeiro Lima Machado
- Laboratory of Scientific Research - Professor Lineu Freire-Maia, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Felipe Ferraz Dias
- Laboratory of Scientific Research, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ricardo Machado Xavier
- Internal Medicine Department, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcus Vinicius Melo de Andrade
- Laboratory of Scientific Research - Professor Lineu Freire-Maia, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriana Maria Kakehasi
- Post Graduate Program in Sciences Applied to Adult Health Care, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Cheng YC, Zhang X, Lin SC, Li S, Chang YK, Chen HH, Lin CC. Echinocystic Acid Ameliorates Arthritis in SKG Mice by Suppressing Th17 Cell Differentiation and Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16176-16187. [PMID: 36516328 DOI: 10.1021/acs.jafc.2c05802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Echinocystic acid (EA), a pentacyclic triterpene, exhibits anti-inflammatory, antioxidant, and analgesic activities to counteract pathological effects in various diseases. Here, we aimed to determine the immunomodulatory effect of EA on zymosan-induced arthritis in SKG mice and how it would influence Th17 differentiation and human rheumatoid arthritis fibroblast-like synoviocytes inflammation. Our results showed that EA (10 and 25 mg/kg) attenuated arthritis symptoms, including high arthritis scores, infiltrating inflammatory cells, synovial hyperplasia, bone erosion, and the high levels of proinflammatory cytokines, such as TNF-α, interleukin (IL)-6, and IL-1β in paw tissues, and reduced the number of splenic Th17 cells. Mechanistically, we found that in vitro treatment of EA inhibited both IL-6- and transforming growth factor-β (TGF-β)-induced Th17 cell differentiation by suppressing the phosphorylation of signal transducers and transcriptional activators, especially STAT3. In line with the in vivo result, EA significantly reduced the protein and mRNA expression of IL-6 and IL-1β in human RA-FLA cells, MH7A cells. Furthermore, the production of both cytokines was confirmed with the downregulation of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways under the stimulation of TNF-α. In conclusion, these findings revealed that EA was capable of amelioration of arthritic disorders in SKG mice through inhibiting Th17 cell differentiation and synovial fibroblast inflammation, supporting that EA is a promising therapeutic candidate for treating RA patients.
Collapse
Affiliation(s)
- Yu-Chieh Cheng
- Department of Orthopaedics, Tungs' Taichung Metro Harbor Hospital, Taichung 433, Taiwan
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung 433, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City 40705, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City 30010, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407224, Taiwan
- Institute of Biomedical Science, the iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| | - Chi-Chien Lin
- Institute of Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung City 402, Taiwan
- Institute of Biomedical Science, the iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol 2022; 13:867260. [PMID: 35663975 PMCID: PMC9161083 DOI: 10.3389/fimmu.2022.867260] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Innate and adaptive immunity represent a harmonic counterbalanced system involved in the induction, progression, and possibly resolution of the inflammatory reaction that characterize autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis (RA). Although the immunopathophysiological mechanisms of the ARDs are not fully clarified, they are often associated with an inappropriate macrophage/T-cell interaction, where classical (M1) or alternative (M2) macrophage activation may influence the occurrence of T-helper (Th)1 or Th2 responses. In RA patients, M1/Th1 activation occurs in an inflammatory environment dominated by Toll-like receptor (TLR) and interferon (IFN) signaling, and it promotes a massive production of pro-inflammatory cytokines [i.e., tumor necrosis factor-α (TNFα), interleukin (IL)-1, IL-12, IL-18, and IFNγ], chemotactic factors, and matrix metalloproteinases resulting in osteoclastogenesis, erosion, and progressive joint destruction. On the other hand, the activation of M2/Th2 response determines the release of growth factors and cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF)-β] involved in the anti-inflammatory process leading to the clinical remission of RA. Several subtypes of macrophages have been described. Five polarization states from M1 to M2 have been confirmed in in vitro studies analyzing morphological characteristics, gene expression of phenotype markers (CD80, CD86, TLR2, TLR4, or CD206, CD204, CD163, MerTK), and functional aspect, including the production of reactive oxygen species (ROS). An M1 and M2 macrophage imbalance may induce pathological consequences and contribute to several diseases, such as asthma or osteoclastogenesis in RA patients. In addition, the macrophage dynamic polarization from M1 to M2 includes the presence of intermediate polarity stages distinguished by the expression of specific surface markers and the production/release of distinct molecules (i.e., nitric oxide, cytokines), which characterize their morphological and functional state. This suggests a “continuum” of macrophage activation states playing an important role during inflammation and its resolution. This review discusses the importance of the delicate M1/M2 imbalance in the different phases of the inflammatory process together with the identification of specific pathways, cytokines, and chemokines involved, and its clinical outcomes in RA. The analysis of these aspects could shed a light on the abnormal inflammatory activation, leading to novel therapeutical approaches which may contribute to restore the M1/M2 balance.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
7
|
Kwon HK, Dussik CM, Kim SH, Kyriakides TR, Oh I, Lee FY. Treating 'Septic' With Enhanced Antibiotics and 'Arthritis' by Mitigation of Excessive Inflammation. Front Cell Infect Microbiol 2022; 12:897291. [PMID: 35755835 PMCID: PMC9218192 DOI: 10.3389/fcimb.2022.897291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial infection within the synovial joint, commonly known as septic arthritis, remains a clinical challenge as it presents two concurrent therapeutic goals of reducing bacterial burden and preservation of articular cartilage from destructive host inflammation. We hypothesized that mitigation of MRSA-induced inflammatory signaling could diminish destruction of articular cartilage in the setting of septic arthritis when used in conjunction with antibiotics. Herein, we provide evidence which supports a new therapeutic notion that concurrent antimicrobial therapy to address the 'septic' component of the disease with inflammation mitigation to manage the destructive 'arthritis' component. We established a murine model to mimic septic knee arthritis, as well as a variety of other inflammatory joint conditions. This murine septic arthritis model, in conjunction with in vitro and ex-vivo models, was utilized to characterize the inflammatory profile seen in active septic arthritis, as well as post-antibiotic treatment, via transcriptomic and histologic studies. Finally, we provided the clinical rationale for a novel therapeutic strategy combining enhanced antibiotic treatment with rifampin and adjuvant immunomodulation to inhibit post-infectious, excess chondrolysis and osteolysis. We identified that septic arthritis secondary to MRSA infection in our murine model led to increased articular cartilage damage compared to various types of inflammatory arthritis. The activation of the pERK1/2 signaling pathway, which is implicated with the mounting of an immune response and generation of inflammation, was increased in intracellular MRSA-infected synovial tissue and persisted despite antibiotic treatment. Trametinib, an inhibitor of ERK signaling through suppression of MEK1/2, alleviated the inflammation produced by the addition of intra-articular, heat-killed MRSA. Further, when combined with vancomycin and rifampin, mitigation of inflammation by pERK1/2 targeting improved outcomes for MRSA septic arthritis by conferring chondroprotection to articular cartilage and diminishing inflammatory osteolysis within bone. Our results support a new therapeutic notion that cell/biofilm-penetrating antibiotics alongside adjuvant mitigation of excessive intra-articular inflammation accomplish distinct therapeutic goals: reduction of bacterial burden and preservation of articular cartilage integrity.
Collapse
Affiliation(s)
- Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Christopher M. Dussik
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Irvin Oh
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Francis Y. Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Chen X, Lin H, Chen J, Wu L, Zhu J, Ye Y, Chen S, Du H, Li J. Paclitaxel Inhibits Synoviocyte Migration and Inflammatory Mediator Production in Rheumatoid Arthritis. Front Pharmacol 2021; 12:714566. [PMID: 34566640 PMCID: PMC8458635 DOI: 10.3389/fphar.2021.714566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haofeng Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinyang Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Department of Drug and Device Center, Huaxin Orthopaedic Hospital, Shantou University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Lee GH, Lekwuttikarn R, Tafoya E, Martin M, Sarin KY, Teng JM. Transcriptomic Repositioning Analysis Identifies mTOR Inhibitor as Potential Therapy for Epidermolysis Bullosa Simplex. J Invest Dermatol 2021; 142:382-389. [PMID: 34536484 DOI: 10.1016/j.jid.2021.07.170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
Expression-based systematic drug repositioning has been explored to predict novel treatments for a number of skin disorders. In this study, we utilize this approach to identify, to our knowledge, previously unreported therapies for epidermolysis bullosa simplex (EBS). RNA sequencing analysis was performed on skin biopsies of acute blisters (<1 week old) (n = 9) and nonblistered epidermis (n = 11) obtained from 11 patients with EBS. Transcriptomic analysis of blistered epidermis in patients with EBS revealed a set of 1,276 genes dysregulated in EBS blisters. The IL-6, IL-8, and IL-10 pathways were upregulated in the epidermis from EBS. Consistent with this, predicted upstream regulators included TNF-α, IL-1β, IL-2, IL-6, phosphatidylinositol 3-kinase, and mTOR. The 1,276 gene EBS blister signature was integrated with molecular signatures from cell lines treated with 2,423 drugs using the Connectivity Map CLUE platform. The mTOR inhibitors and phosphatidylinositol 3-kinase inhibitors most opposed the EBS signature. To determine whether mTOR inhibitors could be used clinically in EBS, we conducted an independent pilot study of two patients with EBS treated with topical sirolimus for painful plantar keratoderma due to chronic blistering. Both individuals experienced marked clinical improvement and a notable reduction of keratoderma. In summary, a computational drug repositioning analysis successfully identified, to our knowledge, previously unreported targets in the treatment of EBS.
Collapse
Affiliation(s)
- Gun Ho Lee
- Harvard Combined Dermatology Residency Training Program, Harvard Medical School, Harvard University, Boston, Massachusetts, USA; Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Ramrada Lekwuttikarn
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA; Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Elidia Tafoya
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Monica Martin
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Joyce M Teng
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA.
| |
Collapse
|
10
|
Quinone-rich fraction of Ardisia crispa (Thunb.) A. DC roots alters angiogenic cascade in collagen-induced arthritis. Inflammopharmacology 2021; 29:771-788. [PMID: 34091811 DOI: 10.1007/s10787-021-00816-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic joint disorder, of which, excessive angiogenesis is the well-established factor contributing to synovitis and joint destruction. Ardisia crispa (Primulaceae) is a medicinal herb with evidenced anti-angiogenic properties, attributed to 2-methoxy-6-undecyl-1,4-benzoquinone (BQ) found in its roots. However, it is still unclear how BQ is able to inhibit angiogenesis in RA. Hence, we investigated the anti-arthritic potential of quinone-rich fraction (QRF) separated from Ardisia crispa roots hexane extract (ACRH) by targeting angiogenesis on collagen-induced arthritis (CIA) in rats. The QRF was priorly identified by quantifying the BQ content in the fraction using GC-MS. Male Sprague-Dawley rats (n = 6) were initially immunised with type II collagen (150 µg) subcutaneously at the base of the tail on day 0. QRF (3, 10, and 30 mg/kg/day) and celecoxib (5 mg/kg/day) were orally administered for 13 consecutive days starting from day 14 post-induction, except for the vehicle and arthritic controls. QRF at all dosages moderately ameliorated the arthritic scores, ankle swelling, and hind paw oedema with no significant (p > 0.05) modulation on the bodyweights and organ weights (i.e., liver, kidney, and spleen). Treatment with QRF at 3, 10, and 30 mg/kg, significantly (p < 0.05) attenuated VEGF-A, PI3K, AKT, NF-κB, p38, STAT3, and STAT5 proteins and markedly restored the increased synovial microvessel densities (MVD) to the normal level in arthritic rats in a dose-independent manner. In conclusion, QRF conferred the anti-arthritic effect via angiogenesis inhibition in vivo, credited to the BQ content and synergism, at least in part, by other phytoconstituents.
Collapse
|
11
|
Protective effects of Clematichinenoside AR against inflammation and cytotoxicity induced by human tumor necrosis factor-α. Int Immunopharmacol 2019; 75:105563. [PMID: 31408840 DOI: 10.1016/j.intimp.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022]
Abstract
Clematichinenoside AR (AR), a major active ingredient extracted from traditional Chinese herb Clematis chinensis Osbeck, has been demonstrated to possess anti-inflammatory and immune-modulatory activities in the treatment of experimental rheumatoid arthritis (RA). The therapeutic potential of AR was supposed to be closely correlated to its ability against tumor necrosis factor-α (TNF-α). Therefore, we aimed to explore the protective effects of Clematichinenoside AR against inflammation and cytotoxicity induced by human TNF-α. AR treatment significantly decreased IL-6 and IL-8 secretion, and attenuated MMP-1 production in human RA-derived fibroblast-like synoviocyte MH7A cells stimulated by recombinant human TNF-α (rhTNF-α). AR might antagonize rhTNF-α-induced responses in MH7A cells through inhibiting p38 and ERK MAPKs signal activation. In TNF-α-sensitive murine fibroblast L929 cells, AR treatment attenuated the proliferation inhibition ratio induced by rhTNF-α/ActD and antagonized rhTNF-α-induced cytotoxicity. The cellular and nuclear morphological alterations in apoptotic characteristics induced by rhTNF-α/ActD in L929 cells were observed to be attenuated by the pretreatment with AR under a phase-contrast and fluorescence microscopy, respectively. The Annexin V-FITC/PI double-staining assay was performed to confirm that AR pretreatment obviously decreased the cell death. The antagonistic effects of AR against rhTNF-α-induced cytotoxicity might be potentially attributed to the degeneration of reactive oxygen species and the increasing of mitochondrial membrane potential, along with the suppression of durative phosphorylation of c-Jun N-terminal kinase (JNK). Collectively, our results indicated that AR antagonizes the inflammatory and cytotoxic activities induced by human TNF-α effectively in vitro, which provided further evidence for a novel mechanism underlying AR for treating RA correlating with excessive TNF-α production.
Collapse
|
12
|
Carvalho AMS, Heimfarth L, Santos KA, Guimarães AG, Picot L, Almeida JRGS, Quintans JSS, Quintans-Júnior LJ. Terpenes as possible drugs for the mitigation of arthritic symptoms - A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:137-147. [PMID: 30668316 DOI: 10.1016/j.phymed.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arthritis is a syndrome associated with exacerbated inflammation, joint destruction and chronic pain and disability. Chronic treatment of arthritis is associated with several side effects and high abandonment. Therefore, there has been an ongoing search for alternative treatments to overcome these problems. PURPOSE Natural products, which are already widely used for their biological, cosmetic and pharmacotechnic properties, are a possible source for new drugs. Terpenes, a large class of organic compounds produced mainly by plants and trees, are a promising natural product and have already been shown to be effective in treating chronic pain, particularly of an inflammatory origin. STUDY DESIGN AND METHODS This review identifies the main terpenes with anti-arthritic activity reported in the last 10 years. A survey was conducted between December 2017 and June 2018 in the PUBMED, SCOPUS and Science Direct databases using combinations of the descriptors terpenes, arthritis and inflammation. RESULTS The results showed that terpenes have promising biological effects in relation to the treatment of arthritis, with the 24 terpenes identified in our survey being effective in the modulation of inflammatory mediators important to the physiopathology of arthritis, such as IL-6, IL-17, TNF-α, NFκB, and COX-2, among others. It is important to note that most of the studies used animal models, which limits, at least in part, the direct translation to humans of the experimental evidence produced by the studies. CONCLUSION Together, our finds suggest that terpenes can modulate the immuno-regulatory and destructive tissue events that underlie the clinical presentation and the progression of arthritis and are worthy of further clinical investigation.
Collapse
Affiliation(s)
- Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Klécia A Santos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Adriana G Guimarães
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France.
| | | | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| |
Collapse
|
13
|
Kaieda A, Takahashi M, Takai T, Goto M, Miyazaki T, Hori Y, Unno S, Kawamoto T, Tanaka T, Itono S, Takagi T, Hamada T, Shirasaki M, Okada K, Snell G, Bragstad K, Sang BC, Uchikawa O, Miwatashi S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg Med Chem 2018; 26:647-660. [PMID: 29291937 DOI: 10.1016/j.bmc.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.
Collapse
Affiliation(s)
- Akira Kaieda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Takai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Goto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuri Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoko Unno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Terufumi Takagi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Teruki Hamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mikio Shirasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kengo Okada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Gyorgy Snell
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Ken Bragstad
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Bi-Ching Sang
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Osamu Uchikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Seiji Miwatashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
14
|
Hu SL, Chang AC, Huang CC, Tsai CH, Lin CC, Tang CH. Myostatin Promotes Interleukin-1β Expression in Rheumatoid Arthritis Synovial Fibroblasts through Inhibition of miR-21-5p. Front Immunol 2017; 8:1747. [PMID: 29276516 PMCID: PMC5727021 DOI: 10.3389/fimmu.2017.01747] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/23/2017] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the infiltration of a number of pro-inflammatory cytokines into synovial fluid and patients with RA often develop joint destruction and deficits in muscle mass. The growth factor myostatin is a key regulator linking muscle mass and bone structure. We sought to determine whether myostatin regulates rheumatoid synovial fibroblast activity and inflammation in RA. We found that levels of myostatin and interleukin (IL)-1β (a key pro-inflammatory cytokine in RA) in synovial fluid from RA patients were overexpressed and positively correlated. In in vitro investigations, we found that myostatin dose-dependently regulated IL-1β expression through the ERK, JNK, and AP-1 signal-transduction pathways. Computational analysis confirmed that miR-21-5p directly targets the expression of the 3′ untranslated region (3′ UTR) of IL-1β. Treatment of cells with myostatin inhibited miR-21-5p expression and miR-21-5p mimic prevented myostatin-induced enhancement of IL-1β expression, showing an inverse correlation between miR-21-5p and IL-1β expression during myostatin treatment. We also found significantly increased paw swelling in an animal model of collagen-induced arthritis (CIA), compared with controls; immunohistochemistry staining revealed substantially higher levels of myostatin and IL-1β expression in CIA tissue. Our evidence indicates that myostatin regulates IL-1β production. Thus, targeting myostatin may represent a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Sung-Lin Hu
- Program for Aging, China Medical University, Taichung, Taiwan.,Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chung Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
TAR DNA-binding protein 43 inhibits inflammatory response and protects chondrocyte function by modulating RACK1 expression in osteoarthritis. Biomed Pharmacother 2017; 85:362-371. [DOI: 10.1016/j.biopha.2016.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/29/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
|
16
|
Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep 2016; 6:28056. [PMID: 27321128 PMCID: PMC4913246 DOI: 10.1038/srep28056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 11/25/2022] Open
Abstract
Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1β, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1β and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1β and TNFα were reduced in PDE3B−/−mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B−/−mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B−/−mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE−/−/PDE3B−/−and LDL-R−/−/PDE3B−/−mice compared to apoE−/−and LDL-R−/−mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B−/−mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue.
Collapse
|
17
|
Seol JY, Mihich E, Berleth ES. TNF Apoptosis Protection Fraction (TAPF) prevents apoptosis induced by TNF, but not by Fas or TRAIL, via NF-κB-induced increase in cFLIP. Cytokine 2015. [PMID: 26198031 DOI: 10.1016/j.cyto.2015.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor Necrosis Factor α (TNFα) induces both the apoptotic pathway and anti-apoptotic factors. Incubation of human dermal fibroblasts with TAPF (TNF Apoptosis Protection Fraction) protects them from apoptosis induced by the subsequent addition of TNF and cycloheximide (CHX). TAPF does not protect against apoptosis induced by CHX in combination with either TRAIL (TNF related apoptosis inducing ligand) or an agonistic Fas antibody, or against apoptosis induced by the chemotherapeutic agent doxorubicin. Incubation with TAPF does not affect the quantity of TNF that binds to the cell. TAPF prevents TNF-induced cleavage of caspases 8, 9, 3 and 7 and the apoptotic substrate PARP (poly-ADP ribose polymerase), but has no effect when these molecules are induced by an agonistic Fas antibody. TAPF induces rapid phosphorylation of the NF-κB/p65 (nuclear factor-κB) transcription factor at serine 536 which is indicative of its activation. TAPF increases the expression of cFLIP (cellular FLICE-inhibitory protein) which is a potent inhibitor of apoptosis that acts by preventing the cleavage of caspase 8. This increase in cFLIP is coincident with protection from TNF-induced apoptosis. Decreasing cFLIP levels using shRNA (short hairpin RNA) decreases protection by TAPF. TAPF also induced the anti-apoptotic A20 protein. These data indicate that TAPF protects human dermal fibroblasts from TNF-induced apoptosis by induction of cFLIP and subsequent inhibition of caspase 8 cleavage.
Collapse
Affiliation(s)
- Ji-Yeon Seol
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Enrico Mihich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Erica S Berleth
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
18
|
Chen JY, Wu H, Li H, Hu SL, Dai MM, Chen J. Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int Immunopharmacol 2015; 24:102-9. [DOI: 10.1016/j.intimp.2014.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
|
19
|
Zhao J, Guo J, Wang L, Zhou W, Zhang Z. The role of a proliferation-inducing ligand (APRIL) in the pathogenesis of rheumatoid arthritis. Scand J Rheumatol 2014; 43:462-9. [DOI: 10.3109/03009742.2014.905630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Xue M, Shen K, McKelvey K, Li J, Chan YKA, Hatzis V, March L, Little CB, Tonkin M, Jackson CJ. Endothelial protein C receptor-associated invasiveness of rheumatoid synovial fibroblasts is likely driven by group V secretory phospholipase A2. Arthritis Res Ther 2014; 16:R44. [PMID: 24495480 PMCID: PMC3979138 DOI: 10.1186/ar4473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/28/2014] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Rheumatoid synovial fibroblasts (RASFs) mediate joint inflammation and destruction in rheumatoid arthritis (RA). Endothelial protein C receptor (EPCR) is a specific receptor for the natural anticoagulant activated protein C (APC). It mediates the cytoprotective properties of APC and is expressed in rheumatoid synovial tissue. A recent report shows that group V secretory phospholipase A2 (sPLA₂V) prevents APC from binding to EPCR in endothelium and inhibits EPCR/APC function. The aim of this study was to investigate the expression and function of EPCR on RASFs. METHODS Human synovial fibroblasts (SFs) were isolated from RA or osteoarthritis (OA) synovial tissues and treated with control, EPCR, or sPLA₂V small interfering RNA (siRNA); recombinant human APC, tumor necrosis factor-alpha (TNF-α), or sPLA₂V. RASF viability and migration/invasion were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and collagen gel migration/invasion assays, respectively, and cartilage degradation by 1,9-dimethylmethylene blue (DMMB) assay in the presence of human OA articular cartilage explants. The expression or activation of cytokines, EPCR, cadherin-11, mitogen-activated protein (MAP) kinases, and nuclear factor-kappa-B (NF-κB) or both were detected by enzyme-linked immunosorbent assay, Western blotting, or immunostaining. RESULTS EPCR was expressed by both OASFs and RASFs but was markedly increased in RASFs. When EPCR was suppressed by siRNA or blocking antibody cell viability, cell invasion and cartilage degradation were reduced by more than 30%. Inflammatory mediators interleukin-1-beta (IL-1β), cadherin-11, and NF-κB were significantly reduced by EPCR suppression under control or TNF-α-stimulated conditions. The expression or activation (or both) of MAP kinases ERK, p38, and JNK were also markedly decreased in cells transfected with EPCR siRNA. Further analysis revealed that sPLA₂V co-localized with EPCR on RASFs. Suppression of sPLA₂V reduced cell viability and cartilage degradation and increased APC binding to RASFs. Conversely, recombinant sPLA₂V increased cartilage degradation, blocked APC binding to RASFs, and could not rescue the effects induced by EPCR suppression. CONCLUSIONS Our results demonstrate that EPCR is overexpressed by RASFs and mediates the aggressive behavior of RASFs. This function of EPCR is contrary to its cytoprotective role in other settings and is likely driven by sPLA₂V.
Collapse
|
21
|
Gallelli L, Galasso O, Falcone D, Southworth S, Greco M, Ventura V, Romualdi P, Corigliano A, Terracciano R, Savino R, Gulletta E, Gasparini G, De Sarro G. The effects of nonsteroidal anti-inflammatory drugs on clinical outcomes, synovial fluid cytokine concentration and signal transduction pathways in knee osteoarthritis. A randomized open label trial. Osteoarthritis Cartilage 2013; 21:1400-8. [PMID: 23973155 DOI: 10.1016/j.joca.2013.06.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the effects of celecoxib, diclofenac, and ibuprofen on the disease-specific quality of life, synovial fluid cytokines and signal transduction pathways in symptomatic knee osteoarthritis (OA). DESIGN Ninety patients scheduled for a total knee arthroplasty (TKA) were randomized to six groups that were treated with low and high dosages of celecoxib, diclofenac or ibuprofen. At the time of the first admission (T0) and at surgery (T1 = 14 days after beginning of the nonsteroidal anti-inflammatory drugs (NSAIDs)), samples of knee synovial fluid were obtained from each patient for analysis. During the surgery the synovial tissue was harvested from the knee of patients. The Western Ontario and McMaster universities (WOMAC) score was used to evaluate the patient disease-specific quality of life at T0 and T1. Microarray tests performed at T0 and T1 were used to evaluate the effects of NSAIDs on Tumor necrosis factor (TNF)-alpha, Interleukin-6 (IL-6), IL8 and Vascular endothelial growth factor (VEGF) concentration in the synovial fluid. Western blot assays evaluated the effects of NSAIDs on MAP kinase (MAPK) signal transduction pathway in the synovial membrane. RESULTS NSAID treatment induced a statistically significant improvement in the WOMAC score and a statistically significant decrease in the IL-6, VEGF and TNF-alpha concentration in the synovial fluid. Higher dosages of NSAIDs provided a greater improvement in the disease-specific quality of life of patients and lower concentrations of pro-inflammatory cytokines in the synovial fluid. Inhibition of MAPKs was noted after NSAID treatment. CONCLUSION Short-term NSAID treatment improves the patient disease-specific quality of life with a parallel decrease in pro-inflammatory synovial fluid cytokine levels in knee OA. Signal transduction pathways may be involved in regulating the anti-inflammatory effects of NSAIDs. ClinicalTrial.gov: NCT01860833.
Collapse
Affiliation(s)
- L Gallelli
- Department of Health Science, School of Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Clark AR, Dean JLE. The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatol J 2012; 6:209-19. [PMID: 23028406 PMCID: PMC3460412 DOI: 10.2174/1874312901206010209] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway has been strongly implicated in many of
the processes that underlie the pathology of rheumatoid arthritis (RA). For many years it has been considered a promising
target for development of new anti-inflammatory drugs with which to treat RA and other chronic immune-mediated
inflammatory diseases. However, several recent clinical trials have concluded in a disappointing manner. Why is this so, if
p38 MAPK clearly contributes to the excessive production of inflammatory mediators, the destruction of bone and
cartilage? We argue that, to explain the apparent failure of p38 inhibitors in the rheumatology clinic, we need to
understand better the complexities of the p38 pathway and its many levels of communication with other cellular signaling
pathways. In this review we look at the p38 MAPK pathway from a slightly different perspective, emphasising its role in
post-transcriptional rather than transcriptional control of gene expression, and its contribution to the off-phase rather than
the on-phase of the inflammatory response.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
23
|
Alanärä T, Aittomäki S, Kuuliala K, Kuuliala A, Siitonen S, Leirisalo-Repo M, Repo H. Signalling profiles of circulating leucocytes in patients recovered from reactive arthritis. Scand J Rheumatol 2012; 41:267-74. [PMID: 22651550 DOI: 10.3109/03009742.2012.664649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Reactive arthritis (ReA) is a sterile joint inflammation triggered by a remote infection and associated with human leucocyte antigen (HLA)-B27. Its pathogenesis is unknown, but abnormal response to microbial structures or endogenous inflammatory mediators may be involved. We studied responses in leucocyte signalling profiles in patients with previous ReA after a full recovery. METHOD The study comprised 10 HLA-B27-positive healthy subjects with a history of Yersinia enterocolitica-triggered ReA (B27+ReA+) and 20 healthy reference subjects, of whom 10 carried HLA-B27 (B27+ReA-) and 10 did not (B27-ReA-). Phosphospecific fluorescent monoclonal antibodies and flow cytometry were used to determine activation of nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STATs) 1, 3, 5, and 6, and two mitogen-activated protein (MAP) kinases, p38 and extracellular signal-regulated kinase (ERK)1/2, in monocytes, lymphocytes, lymphocyte subsets, and neutrophils. B27+ReA+ and B27-ReA- whole-blood samples were incubated with Yersinia with or without infliximab to study the role of tumour necrosis factor (TNF) in lymphocyte subset activation. Samples of the three subject groups were studied using soluble bacterial or endogenous stimuli. Fluorescence levels were determined as relative fluorescence units (RFU) and the proportion of positively fluorescing cells. RESULTS The intracellular activation of circulating leucocytes in response to soluble stimuli was consistently comparable in B27+ReA+, B27+ReA-, and B27-ReA- subjects. Infliximab inhibited Yersinia-induced lymphocyte NF-κB phosphorylation similarly in B27+ReA+ and B27-ReA- groups. CONCLUSIONS ReA susceptibility is not reflected in leucocyte signalling profiles elicited by phlogistic stimuli. However, the possibility remains that aberrations occur in response to combinations of stimuli, such as those associated with leucocyte adhesion.
Collapse
Affiliation(s)
- T Alanärä
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Braem K, Luyten FP, Lories RJU. Blocking p38 signalling inhibits chondrogenesis in vitro but not ankylosis in a model of ankylosing spondylitis in vivo. Ann Rheum Dis 2012; 71:722-8. [PMID: 22121131 DOI: 10.1136/annrheumdis-2011-200377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate p38 mitogen activated protein kinase (MAPK) signalling in an in vitro model of bone morphogenetic protein (BMP) and transforming growth factor β (TGFβ)-induced chondrogenesis and in vivo, with specific attention to its potential role in ankylosing enthesitis. METHODS Human periosteum-derived cells (hPDCs) were cultured in pellets and stimulated with BMP2 or TGFβ1 in the presence or absence of a p38 inhibitor SB203580 or proinflammatory cytokines. Chondrogenic differentiation was evaluated using quantitative PCR. Male DBA/1 mice from different litters were caged together at the age of 8 weeks and treated with SB203580 in both a preventive and therapeutic strategy. The mice were evaluated for prospective signs of arthritis and the toe joints were analysed histologically to assess disease severity. RESULTS p38 inhibition by SB203580 and proinflammatory cytokines downregulated chondrogenic markers in pellet cultures stimulated by BMP2 or TGFβ1. In contrast, the in vivo experiments resulted in an increased clinical incidence of arthritis and pathology severity score, reflecting progression towards ankylosis in mice given SB203580. CONCLUSION Inhibition of p38 inhibited chondrogenic differentiation of progenitor cells, showing that not only the SMAD signalling pathways and also alternative activation of MAPKs including p38 contribute to chondrogenesis. Such an inhibitory effect is not found in an in vivo model of joint ankylosis and spondyloarthritis. Increased incidence and severity of disease in preventive experiments and shifts in disease stages in a therapeutic experimental set-up suggest that specific inhibition of p38 may have deleterious rather than beneficial effects.
Collapse
Affiliation(s)
- Kirsten Braem
- Laboratory for Skeletal Development and Joint Disorders, Division of Rheumatology, KULeuven, Leuven, Belgium
| | | | | |
Collapse
|
25
|
de Launay D, van de Sande MGH, de Hair MJH, Grabiec AM, van de Sande GPM, Lehmann KA, Wijbrandts CA, van Baarsen LGM, Gerlag DM, Tak PP, Reedquist KA. Selective involvement of ERK and JNK mitogen-activated protein kinases in early rheumatoid arthritis (1987 ACR criteria compared to 2010 ACR/EULAR criteria): a prospective study aimed at identification of diagnostic and prognostic biomarkers as well as therapeutic targets. Ann Rheum Dis 2012; 71:415-23. [PMID: 21953337 PMCID: PMC3277721 DOI: 10.1136/ard.2010.143529] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 08/14/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the expression and activation of mitogen-activated protein kinases in patients with early arthritis who are disease-modifying antirheumatic drug (DMARD) naïve. METHODS A total of 50 patients with early arthritis who were DMARD naïve (disease duration <1 year) were prospectively followed and diagnosed at baseline and after 2 years for undifferentiated arthritis (UA), rheumatoid arthritis (RA) (1987 American College of Rheumatology (ACR) and 2010 ACR/European League Against Rheumatism (EULAR) criteria), or spondyloarthritis (SpA). Synovial biopsies obtained at baseline were examined for expression and phosphorylation of p38, extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunohistochemistry and digital analysis. Synovial tissue mRNA expression was measured by quantitative PCR (qPCR). RESULTS ERK and JNK activation was enhanced at inclusion in patients meeting RA criteria compared to other diagnoses. JNK activation was enhanced in patients diagnosed as having UA at baseline who eventually fulfilled 1987 ACR RA criteria compared to those who remained UA, and in patients with RA fulfilling 2010 ACR/EULAR criteria at baseline. ERK and JNK activation was enhanced in patients with RA developing progressive joint destruction. JNK activation in UA predicted 1987 ACR RA classification criteria fulfilment (R(2)=0.59, p=0.02) after follow-up, and disease progression in early arthritis (R(2)=0.16, p<0.05). Enhanced JNK activation in patients with persistent disease was associated with altered synovial expression of extracellular matrix components and CD44. CONCLUSIONS JNK activation is elevated in RA before 1987 ACR RA classification criteria are met and predicts development of erosive disease in early arthritis, suggesting JNK may represent an attractive target in treating RA early in the disease process.
Collapse
Affiliation(s)
- Daphne de Launay
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Prasadam I, Crawford R, Xiao Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes -- possible pathogenic role in osteoarthritis. J Rheumatol 2012; 39:621-34. [PMID: 22247346 DOI: 10.3899/jrheum.110777] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMP), play key roles in development of osteoarthritis (OA). We investigated if crosstalk between subchondral bone osteoblasts (SBO) and articular cartilage chondrocytes (ACC) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13, and also tested the possible involvement of mitogen-activated protein kinase (MAPK) signaling pathway during this process. METHODS ACC and SBO were isolated from normal and OA patients. An in vitro coculture model was developed to study the regulation of ADAMTS and MMP under normal and OA joint crosstalk conditions. The MAPK-ERK inhibitor PD98059 was applied to delineate the involvement of specific pathways during this interaction process. RESULTS Indirect coculture of OA SBO with normal ACC resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3, and MMP-9 in ACC, whereas coculture of OA ACC led to increased MMP-1 and MMP-2 expression in normal SBO. Upregulation of ADAMTS and MMP under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway, and addition of the MAPK-ERK inhibitor PD98059 reversed the overexpression of ADAMTS and MMP in cocultures. CONCLUSION These results add to the evidence that in human OA, altered bidirectional signals between SBO and ACC significantly influence the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMP. We have demonstrated for the first time that this altered crosstalk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Queensland 4059, Australia.
| | | | | |
Collapse
|
27
|
Xue M, Chan YKA, Shen K, Dervish S, March L, Sambrook PN, Jackson CJ. Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis. ACTA ACUST UNITED AC 2011; 64:88-98. [DOI: 10.1002/art.33323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Lin TH, Tang CH, Wu K, Fong YC, Yang RS, Fu WM. 15-deoxy-Δ(12,14) -prostaglandin-J2 and ciglitazone inhibit TNF-α-induced matrix metalloproteinase 13 production via the antagonism of NF-κB activation in human synovial fibroblasts. J Cell Physiol 2011; 226:3242-50. [PMID: 21344384 DOI: 10.1002/jcp.22685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Collagenase-3 (matrix metalloproteinase, MMP-13) plays an important role in the degradation of cartilage in pathologic conditions. MMP-13 is elevated in joint tissues in both rheumatoid arthritis (RA) and osteoarthritis (OA). In addition, inflammation-stimulated synovial fibroblasts are able to release MMP-13 and other cytokines in these diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) ligands are recently considered as new anti-inflammatory compounds and these ligands were reported to ameliorate inflammatory arthritis. The aim of this study is to evaluate the mechanisms how PPARγ ligands inhibit the inflammatory response in synovial fibroblasts. Two PPARγ ligands, cyclopentenone prostaglandin 15-deoxy-Δ(12,14) -prostaglandin-J2 (15d-PGJ2) and synthetic thiazolidinedione compound ciglitazone were examined in this study. Here we found that 15d-PGJ2 and ciglitazone markedly inhibited TNF-α-induced MMP-13 production in human synovial fibroblasts. In addition, activation of nuclear factor κB (NF-κB) is strongly associated with MMP-13 induction by TNF-α and the activation of NF-κB was determined by Western blot, reporter assay, and immunofluorescence. It was found that 15d-PGJ2 markedly attenuated the translocation of NF-κB by direct inhibition of the activation of IKK via a PPARγ-independent manner. Ciglitazone also inhibits TNF-α-induced MMP-13 expression by suppressing NF-κB activation mainly via the modulation of p38-MAPK. Collectively, our data demonstrate that 15d-PGJ2 and ciglitazone attenuated TNF-α-induced MMP-13 expression in synovial fibroblasts primarily through the modulation of NF-κB signaling pathways. These compounds may have therapeutic application in inflammatory arthritis.
Collapse
Affiliation(s)
- Tzu-Hung Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Rasheed Z, Akhtar N, Haqqi TM. Pomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. Arthritis Res Ther 2010; 12:R195. [PMID: 20955562 PMCID: PMC2991031 DOI: 10.1186/ar3166] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/27/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023] Open
Abstract
Introduction Pomegranate has been revered throughout history for its medicinal properties. p38-MAPK is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1β (IL-1β) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA. In this study we determined the effect of a standardized pomegranate extract (PE) on the IL-1β-induced activation of MKK3/6, p38-MAPK isoforms and the activation of transcription factor RUNX-2 in primary human OA chondrocytes. Methods Human chondrocytes were derived from OA cartilage by enzymatic digestion, treated with PE and then stimulated with IL-1β. Gene expression of p38-MAPK isoforms was measured by RT-PCR. Western immunoblotting was used to analyze the activation of MAPKs. Immunoprecipitation was used to determine the activation of p38-MAPK isoforms. DNA binding activity of RUNX-2 was determined using a highly sensitive and specific ELISA. Pharmacological studies to elucidate the involved pathways were executed using transfection with siRNAs. Results Human OA chondrocytes expressed p38-MAPK isoforms p38α, -γ and -δ, but not p38β. IL-1β enhances the phosphorylation of the p38α-MAPK and p38γ-MAPK isoforms but not of p38δ-MAPK isoform in human OA chondrocytes. Activation of p38-MAPK in human OA chondrocytes was preferentially mediated via activation of MKK3. In addition, we also demonstrate that polyphenol rich PE inhibited the IL-1β-induced activation of MKK3, p38α-MAPK isoform and DNA binding activity of the transcription factor RUNX-2. Conclusions Our results provide an important insight into the molecular basis of the reported cartilage protective and arthritis inhibitory effects of pomegranate extract. These novel pharmacological actions of PE on IL-1β stimulated human OA chondrocytes impart a new suggestion that PE or PE-derived compounds may be developed as MKK and p38-MAPK inhibitors for the treatment of OA and other degenerative/inflammatory diseases.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Medicine, Division of Rheumatology, MetroHealth Medical Center/Case Western Reserve University, 2500 Metro Health Drive, Cleveland, OH 44109, USA.
| | | | | |
Collapse
|
30
|
Combined effect of tumor necrosis factor (TNF)-alpha and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study. Neurosci Lett 2010; 483:162-6. [PMID: 20691248 DOI: 10.1016/j.neulet.2010.07.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/13/2010] [Accepted: 07/24/2010] [Indexed: 01/06/2023]
Abstract
Studies have demonstrated neuroprotective effects of either TNF-alpha or HSP-70 in ischemia/reperfusion injury following exercise. However, the protective mechanisms involving combined effect of the two proteins, particularly in neuronal apoptosis, remain unclear. This study aims to elucidate the beneficial role of TNF-alpha and HSP-70 in the regulation of apoptotic proteins and ERK signaling in hypoxic injury. Cortical neurons from 20 Sprague-Dawley rat embryos were isolated and cultured in five groups with or without pretreatment with recombinant TNF-alpha, HSP-70 protein or both prior to hypoxic conditions: (1) control; (2) control/hypoxia; (3) TNF-alpha/hypoxia; (4) HSP-70/hypoxia and (5) TNF-alpha/HSP-70/hypoxia. Western blotting was used to detect pro- and anti-apoptotic proteins, including Bax, AIF, Bcl-xL, Bcl-2, and pERK1/2 protein. TNF-alpha and HSP-70 significantly (p<0.05) reduced the levels of pro-apoptotic proteins, Bax and AIF. Also, pretreatment of hypoxic brain tissue with TNF-alpha and HSP-70 significantly (p<0.05) enhanced the levels of anti-apoptotic protein, Bcl-xL. TNF-alpha and HSP-70 together increased Bcl-2 levels by 70%. Hypoxia caused a significant (p<0.05) increase in ERK1/2 phosphorylation levels by 224%. The most effective inhibition of ERK levels was obtained by the combined administration of TNF-alpha and HSP-70. This study suggested that TNF-alpha and HSP-70 together enhance the decrease in pro-apoptotic protein levels and the increase in anti-apoptotic protein levels in the event of neuronal hypoxia through ERK1/2 signal transduction.
Collapse
|
31
|
Marotte H, Ahmed S, Ruth JH, Koch AE. Blocking ERK-1/2 reduces tumor necrosis factor alpha-induced interleukin-18 bioactivity in rheumatoid arthritis synovial fibroblasts by induction of interleukin-18 binding protein A. ACTA ACUST UNITED AC 2010; 62:722-31. [PMID: 20131228 DOI: 10.1002/art.27269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine the mechanism of regulation of interleukin-18 (IL-18) bioactivity by IL-18 binding protein (IL-18BP) induction. METHODS Levels of IL-18 and IL-18BPa in synovial fluid samples from patients with osteoarthritis (OA) or rheumatoid arthritis (RA) were determined by enzyme-linked immunosorbent assays (ELISAs), followed by calculation of free IL-18. IL-18 and IL-18BPa synthesis in RA synovial fibroblasts that had been treated with proinflammatory and antiinflammatory cytokines were assessed by quantitative real-time polymerase chain reaction and ELISA, respectively, followed by IL-18 bioactivity determination using KG-1 cells. Chemical signaling inhibitors were used for determination of the signal transduction pathways involved in IL-18BPa/IL-18 regulation. Tumor necrosis factor alpha (TNFalpha)-induced caspase 1 activity was determined by a colorimetric assay. RESULTS IL-18BPa was lower in RA synovial fluid than in OA synovial fluid (P < 0.05; n = 8), and free IL-18 was higher in RA synovial fluid than in OA synovial fluid. TNFalpha induced RA synovial fibroblast IL-18BPa and IL-18 in a time-dependent manner (P < 0.05). Evaluation of signaling pathways suggested that TNFalpha induced IL-18 production through the ERK-1/2, protein kinase Cdelta (PKCdelta), and Src pathways, whereas IL-18BPa synthesis was mediated through the NFkappaB, PKC, Src, and JNK pathways. Furthermore, addition of exogenous IL-18BPa-Fc reduced the RA synovial fibroblast phosphorylation of ERK-1/2 induced by TNFalpha. CONCLUSION These results suggest that IL-18BPa reduces IL-18 bioactivity induced by TNFalpha, by regulating the ERK-1/2 pathway in RA synovial fibroblasts. Targeting IL-18 bioactivity by induction or addition of IL-18BPa may provide another therapeutic option in the management of RA.
Collapse
|
32
|
Abstract
SummaryThe MAP kinases (MAPKs), including ERK, JNK and p38 families comprise part of the intracellular signalling network, which is essential for signal transduction from receptors and stimuli to the biological reaction. Activity of MAPKs plays a crucial role in normal functioning of the immune system. By taking part in cytokine production upon signalling from activated TLR receptors, MAPKs are involved in initiation of innate immunity and in responses to binding of cytokines by appropriate receptors. MAPKs activity is also important for T and B lymphocyte differentiation, by the ITAM signalling pathway. Moreover, their involvement in apoptosis supports lymphocyte T cytotoxicity and enables the removal of damaged, infected or transformed cells. Correct functioning of the MAPK signalling is crucial for effective immune response, and therefore MAPKs’ inhibitors constitute a promising therapeutic goal
Collapse
|
33
|
Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, Rogers R, Curry A, Jimenez D, Ding Y. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 2010; 166:1091-100. [PMID: 20083167 DOI: 10.1016/j.neuroscience.2009.12.067] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 01/03/2023]
Abstract
Exercise preconditioning induces neuroprotection after stroke. We investigated the beneficial role of heat shock protein-70 (HSP-70) and phosphorylated extracellular-signal-regulated-kinase 1/2 (pERK 1/2), as they pertain to reducing apoptosis and their influence on Bcl-x(L), Bax, and apoptosis-inducing factor (AIF) in rats subjected to ischemia and reperfusion. Adult male Sprague-Dawley rats were subjected to 30 min of exercise on a treadmill for 1, 2, or 3 weeks. Stroke was induced by a 2-h middle cerebral artery (MCA) occlusion using an intraluminal filament. Protein levels of HSP-70, pERK 1/2, Bcl-x(L), Bax, and AIF were analyzed using Western blot. Neuroprotection was based on levels of apoptosis (TUNEL) and infarct volume (Nissl staining). Immunocytochemistry was used for cellular expression of HSP-70 and pERK 1/2. Significant (P<0.05) up-regulation of HSP-70 and pERK 1/2 after 3 weeks of exercise coincided with significant (P<0.05) reduction in neuronal apoptosis and brain infarct volume. Inhibition of either one of these two factors showed a significant (P<0.05) reversal in the neuroprotection. Bax and AIF were down-regulated, while levels of Bcl-x(L) were up-regulated in response to stroke after exercise. Inhibiting HSP-70 or pERK 1/2 reversed this resultant increase or decrease. Our results indicate that exercise diminishes neuronal injury in stroke by up-regulating HSP-70 and ERK 1/2.
Collapse
Affiliation(s)
- B Liebelt
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Tumor necrosis factor-α (TNFα) was cloned over 2 decades ago and its identification in part led to the discovery of a super family of tumor necrosis factors (TNFs) and their receptors. TNFα signals through two transmembrane receptors, TNFR1 and TNFR2, and regulates a number of critical cell functions including cell proliferation, survival, differentiation, and apoptosis. Macrophages are the major producers of TNFα and interestingly are also highly responsive to TNFα. Aberrant TNFα production and TNF receptor signaling have been associated with the pathogenesis of several diseases, including rheumatoid arthritis, Crohn's disease, atherosclerosis, psoriasis, sepsis, diabetes, and obesity. TNFα has been shown to play a pivotal role in orchestrating the cytokine cascade in many inflammatory diseases and because of this role as a "master-regulator" of inflammatory cytokine production, it has been proposed as a therapeutic target for a number of diseases. Indeed anti-TNFα drugs are now licensed for treating certain inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. In this review we discuss the discovery of TNFα and its actions especially in regulating macrophage biology. Given its importance in several human diseases, we also briefly discuss the role of anti-TNFα therapeutics in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
35
|
Kar S, Ukil A, Das PK. Signaling events leading to the curative effect of cystatin on experimental visceral leishmaniasis: Involvement of ERK1/2, NF-κB and JAK/STAT pathways. Eur J Immunol 2009; 39:741-51. [DOI: 10.1002/eji.200838465] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Guo M, Lin V, Davis W, Huang T, Carranza A, Sprague S, Reyes R, Jimenez D, Ding Y. Preischemic induction of TNF-alpha by physical exercise reduces blood-brain barrier dysfunction in stroke. J Cereb Blood Flow Metab 2008; 28:1422-30. [PMID: 18414498 DOI: 10.1038/jcbfm.2008.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study explores the neuroprotective action of tumor necrosis factor-alpha (TNF-alpha) induced during physical exercise, which, consequently, reduces matrix metalloproteinase-9 (MMP-9) activity and ameliorates blood-brain barrier (BBB) dysfunction in association with extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation. Adult male Sprague-Dawley rats were subjected to exercise on a treadmill for 3 weeks. A 2-h middle cerebral artery occlusion and reperfusion was administered to exercised and nonexercised animals to induce stroke. Exercised ischemic rats were subjected to TNF-alpha inhibition and ERK1/2 by TNF-alpha antibody or UO126. Nissl staining of coronal sections revealed the infarct volume. Evans blue extravasation and water content evaluated BBB function. Western blot was performed to analyze protein expression of TNF-alpha, ERK1/2, phosphorylated ERK1/2, the basal laminar protein collagen IV, and MMP-9. The activity of MMP-9 was determined by gelatin zymography. Tumor necrosis factor-alpha expression and ERK1/2 phosphorylation were upregulated during exercise. Infarct volume, brain edema, and Evans blue extravasation all significantly decreased in exercised ischemic rats. Collagen IV production increased in exercised rats and remained high after stroke, whereas MMP-9 protein level and activity decreased. These results were negated and returned toward nonexercised values once TNF-alpha or ERK1/2 was blocked. We concluded that preischemic, exercise-induced TNF-alpha markedly decreases BBB dysfunction by using the ERK1/2 pathway.
Collapse
Affiliation(s)
- Miao Guo
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schett G, Zwerina J, Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 2008; 67:909-16. [PMID: 17827184 PMCID: PMC2754165 DOI: 10.1136/ard.2007.074278] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory processes are based on a sustained and tightly regulated communication network among different cells types. This network comprises extracellular mediators such as cytokines, chemokines and matrix-degrading proteases, which orchestrate the participation of cells in the chronic inflammatory process. The mirrors of this outside communication world are intracellular transcription factor pathways, which shuttle information about inflammatory stimuli to the cell nucleus. This review examines the function of one key signal transduction pathway of inflammation--the p38 mitogen-activated protein kinases (p38MAPK). The signalling pathway is considered as crucial for the induction and maintenance of chronic inflammation, and its components thus emerge as interesting molecular targets of small molecule inhibitors for controlling inflammation. This review not only summarises the current knowledge of activation, regulation and function of the p38MAPK pathway but also examines the role of this pathway in clinical disease. It gives an overview of current evidence of p38MAPK activation in inflammatory arthritis and elaborates the key molecular determinants which contribute to p38MAPK activation in joint disease.
Collapse
Affiliation(s)
- G Schett
- Department of Internal Medicine III, University of Erlangen, D-91054 Erlangen, Germany.
| | | | | |
Collapse
|
38
|
Malemud CJ, Miller AH. Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets 2008; 12:171-83. [PMID: 18208366 DOI: 10.1517/14728222.12.2.171] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adult rheumatoid arthritis (RA) patients are frequently clinically depressed. Peripheral inflammation in RA may influence neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, as well as growth factor production, which can modify neural circuitry and contribute to depression. OBJECTIVE A convergence between pro-inflammatory cytokine-induced synovial joint inflammation in RA and the effects of pro-inflammatory cytokines on the brain may occur through activation of the stress-activated/mitogen-activated protein kinases (SAPK/MAPK) and/or Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. METHODS The PubMed and Medlines databases were critically evaluated for evidence of SAPK/MAPK and/or JAK/STAT pathway activation in RA and depression. RESULTS/CONCLUSION Some novel anti-depression drugs that were employed in animal models of 'sickness behavior' and in human depression clinical trials suppressed clinical markers of inflammation, as well as SAPK/MAPK and/or JAK/STAT signaling in vitro. Modifying pro-inflammatory cytokine signaling pathways in the brain with antidepressants may also be useful in ameliorating peripheral inflammation in RA.
Collapse
Affiliation(s)
- Charles J Malemud
- Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Department of Medicine, Division of Rheumatic Diseases, 2061 Cornell Road, Cleveland, Ohio 44106-5076, USA.
| | | |
Collapse
|
39
|
Gilbert SJ, Blain EJ, Duance VC, Mason DJ. Sphingomyelinase decreases type II collagen expression in bovine articular cartilage chondrocytes via the ERK signaling pathway. ACTA ACUST UNITED AC 2008; 58:209-20. [PMID: 18163502 DOI: 10.1002/art.23172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Ceramide, a mediator of proinflammatory cytokine signaling, induces cartilage degradation and reduces type II collagen synthesis in articular cartilage. The accumulation of ceramide is associated with arthritis in Farber's disease. The aim of this study was to investigate the mechanism of ceramide-induced down-regulation of type II collagen. METHODS Bovine articular chondrocytes were stimulated with sphingomyelinase (SMase) to increase levels of endogenous ceramide. Components of the ERK pathway were inhibited by Raf-1 kinase inhibitor and the MEK inhibitor, PD98059. Cell extracts were analyzed by Western blotting for ERK-1/2, SOX9, c-Fos, and type II collagen, and the level of c-fos messenger RNA (mRNA) was analyzed by quantitative polymerase chain reaction. Localization of ERK-1/2, SOX9, and c-Fos was assessed by immunocytochemistry and confocal microscopy. RESULTS SMase treatment of chondrocytes caused sustained phosphorylation of ERK-1/2 throughout the cytoplasm and nucleus that was reduced by inhibitors of Raf-1 kinase and MEK-1/2. SMase treatment of chondrocytes also induced translocation of c-Fos to the nucleus and phospho-SOX9 to the cytoplasm and increased expression of c-fos mRNA. Type II collagen expression, which was down-regulated by SMase treatment, was restored by the MEK-1/2 inhibitor, PD98059. CONCLUSION SMase down-regulates type II collagen in articular chondrocytes via activation of the ERK signaling cascade, redistribution of SOX9, and recruitment of c-Fos. This new mechanism for cartilage degradation provides potential targets for future treatment of arthritic disease.
Collapse
|
40
|
Nagatani K, Itoh K, Nakajima K, Kuroki H, Katsuragawa Y, Mochizuki M, Aotsuka S, Mimori A. Rheumatoid arthritis fibroblast-like synoviocytes express BCMA and are stimulated by APRIL. ACTA ACUST UNITED AC 2007; 56:3554-63. [PMID: 17968879 DOI: 10.1002/art.22929] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLS) are among the principal effector cells in the pathogenesis of rheumatoid arthritis (RA). This study was undertaken to examine the variety of stimulating effects of APRIL and its specific effect on FLS in the affected RA synovium. METHODS Synovium and serum samples were obtained from patients with RA, patients with osteoarthritis (OA), and healthy subjects. Soluble APRIL proteins were assayed by enzyme-linked immunosorbent assay. The relative gene expression of APRIL, BCMA, interleukin-6 (IL-6), tumor necrosis factor alpha (TNFalpha), IL-1beta, and RANKL was assessed in RA and OA FLS by polymerase chain reaction. Effects of APRIL on the production of proinflammatory cytokines and RANKL in RA FLS were investigated by flow cytometry and with the use of a BCMA-Fc fusion protein. RESULTS A significantly higher level of soluble APRIL was detected in RA serum compared with normal serum. Among the 3 receptors of APRIL tested, RA FLS expressed only BCMA, whereas OA FLS expressed none of the receptors. APRIL stimulated RA FLS, but not OA FLS, to produce IL-6, TNFalpha, IL-1beta, and APRIL itself. In addition, APRIL increased RA FLS expression of RANKL and also enhanced progression of the cell cycle of RA FLS. Neutralization of APRIL by the BCMA-Fc fusion protein attenuated all of these stimulating effects of APRIL on RA FLS. CONCLUSION RA FLS are stimulated by APRIL and express the APRIL receptor BCMA. These results provide evidence that APRIL is one of the main regulators in the pathogenesis of RA.
Collapse
|
41
|
Thiel MJ, Schaefer CJ, Lesch ME, Mobley JL, Dudley DT, Tecle H, Barrett SD, Schrier DJ, Flory CM. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. ACTA ACUST UNITED AC 2007; 56:3347-57. [PMID: 17907188 DOI: 10.1002/art.22869] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To evaluate the role of the MEK/ERK MAP kinase pathway in murine collagen-induced arthritis (CIA) using the selective MEK inhibitor PD184352. We examined the effects of the inhibitor in cytokine-stimulated synovial fibroblasts and in cytokine-induced arthritis in rabbits to investigate its antiinflammatory mechanisms. METHODS Murine CIA was used to assess the effects of the selective MEK inhibitor on paw edema, clinical scores, weight loss, histopathologic features, and joint levels of p-ERK. Western blotting and immunohistochemistry techniques were used to assess p-ERK in human and rabbit synovial fibroblasts and synovial tissue from rheumatoid arthritis (RA) patients. Interleukin-1alpha (IL-1alpha)-stimulated stromelysin production in rabbit synovial fibroblasts was assessed by enzyme-linked immunosorbent assay. A rabbit IL-1alpha-induced arthritis model was used to assess the effects of the inhibitor on IL-1alpha-induced MEK activity, stromelysin production, and cartilage degradation. RESULTS In the CIA model, PD184352 inhibited paw edema and clinical arthritis scores in a dose-dependent manner. Disease-induced weight loss and histopathologic changes were also significantly improved by treatment. Inhibition of disease-induced p-ERK levels in the joints was seen with the inhibitor. Levels of p-ERK in the synovium were higher in RA patients than in normal individuals. PD184352 reduced IL-1alpha-induced p-ERK levels in human RA synovial fibroblasts. The production of p-ERK and stromelysin was also inhibited in IL-1alpha-stimulated rabbit synovial fibroblasts. We observed IL-1alpha-induced p-ERK in the synovial lining, subsynovial vasculature, and articular chondrocytes. IL-1alpha-induced stromelysin production and proteoglycan loss from the articular cartilage were reduced by PD184352. CONCLUSION These data demonstrate the inhibition of murine CIA by PD184352, support the hypothesis that antiinflammatory activity contributes to the mechanism of action of the inhibitor, and suggest that a selective inhibitor may effectively treat RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Melissa J Thiel
- Pfizer Global Research and Development, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kunisch E, Gandesiri M, Fuhrmann R, Roth A, Winter R, Kinne RW. Predominant activation of MAP kinases and pro-destructive/pro-inflammatory features by TNF alpha in early-passage synovial fibroblasts via TNF receptor-1: failure of p38 inhibition to suppress matrix metalloproteinase-1 in rheumatoid arthritis. Ann Rheum Dis 2007; 66:1043-51. [PMID: 17223661 PMCID: PMC1954705 DOI: 10.1136/ard.2006.062521] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2006] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To examine the relative importance of tumour necrosis factor-receptor 1 (TNF-R1) and TNF-R2 and their signalling pathways for pro-inflammatory and pro-destructive features of early-passage synovial fibroblasts (SFB) from rheumatoid arthritis (RA) and osteoarthritis (OA). METHODS Cells were stimulated with tumour necrosis factor (TNF)alpha or agonistic anti-TNF-R1/TNF-R2 monoclonal antibodies. Phosphorylation of p38, ERK and JNK kinases was assessed by western blot; proliferation by bromodesoxyuridine incorporation; interleukin (IL)6, IL8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase (MMP)-1 secretion by ELISA; and MMP-3 secretion by western blot. Functional assays were performed with or without inhibition of p38 (SB203580), ERK (U0126) or JNK (SP600125). RESULTS In RA- and OA-SFB, TNFalpha-induced phosphorylation of p38, ERK or JNK was exclusively mediated by TNF-R1. Reduction of proliferation and induction of IL6, IL8 and MMP-1 were solely mediated by TNF-R1, whereas PGE(2) and MMP-3 secretion was mediated by both TNF-Rs. In general, inhibition of ERK or JNK did not significantly alter the TNFalpha influence on these effector molecules. In contrast, inhibition of p38 reversed TNFalpha effects on proliferation and IL6/PGE(2) secretion (but not on IL8 and MMP-3 secretion). The above effects were comparable in RA- and OA-SFB, except that TNFalpha-induced MMP-1 secretion was reversed by p38 inhibition only in OA-SFB. CONCLUSION In early-passage RA/OA-SFB, activation of MAPK cascades and pro-inflammatory/pro-destructive features by TNFalpha is predominantly mediated by TNF-R1 and, for proliferation and IL6/PGE(2) secretion, exclusively regulated by p38. Strikingly, RA-SFB are insensitive to p38 inhibition of MMP-1 secretion. This indicates a resistance of RA-SFB to the inhibition of pro-destructive functions and suggests underlying structural/functional alterations of the p38 pathway, which may contribute to the pathogenesis or therapeutic sensitivity of RA, or both.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopaedics, Friedrich Schiller University Jena, Klosterlausnitzer Str. 81, D-07607 Eisenberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Korb A, Peters M, Meinecke I, Pap T. [Intracellular signaling pathways of synovial fibroblasts in rheumatoid arthritis]. Z Rheumatol 2007; 66:311-6. [PMID: 17549500 DOI: 10.1007/s00393-007-0181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of still unknown etiology that results in characteristic destructive changes of the joints. Research of the past years has demonstrated that synovial fibroblasts play a central role in the initiation and perpetuation of these destructive changes. Stimulation of the synovial fibroblasts through complex and interacting intracellular signaling pathways results in a stable activation that is maintain even without continuous stimulation by inflammatory cells and their mediators. The pathological attachment to articular cartilage, increased secretion of matrix degrading enzymes and alterations in programmed cell death are main characteristics of synovial fibroblasts from patients with RA and result in the progressive destruction of articular structures. The permanent activation of a number of intracellular signaling pathways constitutes the underlying responsible mechanism for the activation of synovial fibroblasts in RA. These signaling pathways do not only show a high degree of complexity, but are also interconnected in multiple ways. This article summarizes recent findings on the activation of intracellular signaling pathways in fibroblasts and points to potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- A Korb
- Bereich molekulare Medizin des Muskuloskelettalen Systems, Universitätsklinikum Münster, Domagkstrasse 3, 48129 Münster
| | | | | | | |
Collapse
|
44
|
Tarner IH, Müller-Ladner U, Gay S. Emerging targets of biologic therapies for rheumatoid arthritis. ACTA ACUST UNITED AC 2007; 3:336-45. [PMID: 17538565 DOI: 10.1038/ncprheum0506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 03/06/2007] [Indexed: 12/31/2022]
Abstract
Advances in molecular biology and the clinical success of strategies that target tumor necrosis factor (TNF) have led to further research into the pathophysiology of human rheumatoid arthritis. Several novel therapeutic targets have emerged from these efforts, including not only molecules that regulate TNF (e.g. TNF-alpha converting enzyme), the complex cytokine network (e.g. interleukin [IL]-6, IL-15, IL-17) and several adipokines, but also targets that originate from cellular and subcellular components of the disease. Strategies that aim at cellular targets include antibodies to CD20 or BLyS (also known as TNF ligand family member 13b), which deplete or inhibit B cells, as well as approaches that interfere with membrane-derived microparticles. Components of subcellular pathways, which are predominantly upstream of the central regulator of transcription nuclear factor kappaB, have also been studied. Of these, strategies that target mitogen-activated protein kinases have a leading role and are on the verge of clinical use; approaches that target specific molecules such as Janus kinases, signal transducer and activator of transcription proteins, and suppressor of cytokine signaling proteins also seem to show promise and might have a clinical application in the future.
Collapse
Affiliation(s)
- Ingo H Tarner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University of Giessen, and Division of Rheumatology and Clinical Immunology at the Kerckhoff-Klinik Bad Nauheim, Germany
| | | | | |
Collapse
|
45
|
Hoberg M, Rudert M, Pap T, Klein G, Gay S, Aicher WK. Attachment to laminin-111 facilitates transforming growth factor beta-induced expression of matrix metalloproteinase-3 in synovial fibroblasts. Ann Rheum Dis 2007; 66:446-51. [PMID: 17124250 PMCID: PMC1856036 DOI: 10.1136/ard.2006.060228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2006] [Indexed: 01/15/2023]
Abstract
BACKGROUND In the synovial membrane of patients with rheumatoid arthritis (RA), a strong expression of laminins and matrix degrading proteases was reported. AIM To investigate the regulation of matrix metalloproteinases (MMPs) in synovial fibroblasts (SFs) of patients with osteoarthritis (OA) and RA by attachment to laminin-1 (LM-111) and in the presence or absence of costimulatory signals provided by transforming growth factor beta (TGFbeta). METHODS SFs were seeded in laminin-coated flasks and activated by addition of TGFbeta. The expression of genes was investigated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunocytochemistry and ELISA, and intracellular signalling pathways by immunoblotting, and by poisoning p38MAPK by SB203580, MEK-ERK by PD98059 and SMAD2 by A-83-01. RESULTS Attachment of SF to LM-111 did not activate the expression of MMPs, but addition of TGFbeta induced a fivefold higher expression of MMP-3. Incubation of SF on LM-111 in the presence of TGFbeta induced a significant 12-fold higher expression of MMP-3 mRNA, and secretion of MMP-3 was elevated 20-fold above controls. Functional blocking of LM-111-integrin interaction reduced the laminin-activated MMP-3 expression significantly. Stimulation of SF by LM-111 and TGFbeta activated the p38MAPK, ERK and SMAD2 pathways, and inhibition of these pathways by using SB203580, PD98059 or A-83-01 confirmed the involvement of these pathways in the regulation of MMP-3. CONCLUSION Attachment of SF to LM-111 by itself has only minor effects on the expression of MMP-1 or MMP-3, but it facilitates the TGFbeta-induced expression of MMP-3 significantly. This mode of MMP-3 induction may therefore contribute to inflammatory joint destruction in RA independent of the proinflammatory cytokines interleukin (IL)1beta or tumour necrosis factor (TNF)alpha.
Collapse
Affiliation(s)
- Maik Hoberg
- Department of Orthopedic Surgery, CRONA University Hospital, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Gao B, Calhoun K, Fang D. The proinflammatory cytokines IL-1beta and TNF-alpha induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway. Arthritis Res Ther 2007; 8:R172. [PMID: 17105652 PMCID: PMC1794516 DOI: 10.1186/ar2081] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 10/10/2006] [Accepted: 11/14/2006] [Indexed: 12/30/2022] Open
Abstract
The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.
Collapse
Affiliation(s)
- Beixue Gao
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | - Karen Calhoun
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | - Deyu Fang
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
47
|
Douni E, Armaka M, Kontoyiannis DL, Kollias G. Functional Genetic and Genomic Analysis of Modeled Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 602:33-42. [DOI: 10.1007/978-0-387-72009-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
48
|
Karouzakis E, Neidhart M, Gay RE, Gay S. Molecular and cellular basis of rheumatoid joint destruction. Immunol Lett 2006; 106:8-13. [PMID: 16824621 DOI: 10.1016/j.imlet.2006.04.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/26/2006] [Accepted: 04/27/2006] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with joint destruction. Synovial fibroblasts are key players in this pathological process. They favorise a pro-inflammatory environment in the synovial tissue, interact with the immune system and regulate the differentiation of monocytes into osteoclasts. Synovial hyperplasia is another characteristic of RA, reflecting not only an imbalance between proliferation and apoptosis, but also the migration of cells into the synovial tissue. Gene transfer experiments have been used as important tools for the understanding of molecular and cellular changes that characterize the activated RA synovial fibroblasts. Activated synovial fibroblasts can invade cartilage and bone. Synovial activation is driven by cytokines, such as TNFalpha and IL-1, as well as IL-15, 16, 17, 18, 22, 23, but also by cytokine-independent mechanisms that involve the innate immune system (i.e. TLRs), a unique communication network of microparticles and epigenetic changes (e.g. L1 retroelements).
Collapse
Affiliation(s)
- Emmanuel Karouzakis
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| | | | | | | |
Collapse
|
49
|
Meyer LH, Pap T. MAPK signalling in rheumatoid joint destruction: can we unravel the puzzle? Arthritis Res Ther 2005; 7:177-8. [PMID: 16207342 PMCID: PMC1257450 DOI: 10.1186/ar1810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been associated with the pathogenesis of rheumatoid arthritis (RA), but the individual contributions of the three MAPK family members are incompletely understood. Although previous data have established a role for c-Jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) in different animal models of arthritis, most recent data indicate that the stable activation of p38 MAPK and in part of ERK significantly contributes to destructive arthritis in mice transgenic for human tumour necrosis factor-alpha. These data highlight the complexity of MAPK signalling in arthritis and provide a basis for the design of novel strategies to treat human RA.
Collapse
Affiliation(s)
- Lars-Henrik Meyer
- Division of Molecular Medicine of Musculoskeletal Tissue, Department of Orthopaedics, University Hospital of Munster, Munster, Germany
| | - Thomas Pap
- Division of Molecular Medicine of Musculoskeletal Tissue, Department of Orthopaedics, University Hospital of Munster, Munster, Germany
| |
Collapse
|