1
|
Yang C, Song X, Kong J, Li H, Zhan Y. Immunolocalization patterns of histone-deacetylases in salivary glands of mice during postnatal development. Acta Histochem 2024; 126:152144. [PMID: 38382218 DOI: 10.1016/j.acthis.2024.152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Histone-deacetylases (HDACs) are epigenetic modulators involved in the control of gene expression. No data are available on the expression or subcellular localization of HDACs in salivary glands. The present study aims to examine the subcellular distribution of HDACs in salivary glands during postnatal development. DESIGN The major salivary glands of C57/BL6 mice were separately removed at 10, 25, 30,60 and 90 days after birth. Hematoxylin-eosin (H&E) and immunohistochemical staining were performed for HDACs. Gene Expression of HDACs in C57BL/6. NOD-Aec1Aec2 mice salivary glands during the development of Sjögren's syndrome-like illness were also analyzed by using the gene expression datasets (GSE 15640). RESULTS In the mice salivary gland, HDACs were found to have different localization patterns at various stages of development (10, 25, 30, 60, and 90 days). Apart from HDAC6, ductal cells of salivary glands were the primary sites for HDAC localization. HDAC2, 8, 5, 10 and 11 were expressed at high levels in the salivary gland after birth while HDAC6 showed no expression during postnatal development. This suggests that these HDAC subtypes may have different roles in salivary gland function. In the context of Sjögren's syndrome-like illness, HDAC 2, 8 and 10 showed low expression while HDAC1, 6,5,3 and 11 had relatively high expression in the salivary gland. CONCLUSIONS This study has provided an important reference for understanding the spatiotemporal-specific expression of HDACs in the salivary gland. These results offer new clues for the experimenters and hold promise for developing innovative therapeutic strategies for salivary gland-related diseases.
Collapse
Affiliation(s)
- Chubo Yang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejing Song
- Harbin Institute of Technology Hospital, Harbin, China
| | - Jiaqi Kong
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huishu Li
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
3
|
Mieliauskaitė D, Kontenis V, Šiaurys A. Lessons from Animal Models in Sjögren's Syndrome. Int J Mol Sci 2023; 24:12995. [PMID: 37629175 PMCID: PMC10454747 DOI: 10.3390/ijms241612995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a connective tissue disease characterized by a wide spectrum of clinical features, extending from a benign glandular disease to an aggressive systemic disorder and/or lymphoma. The pathogenesis of Sjögren's syndrome (SS) is not completely understood, but it is assumed that pathogenesis of SS is multifactorial. The studies based on the animal models of SS provided significant insight in SS disease pathogenesis and management. The aim of this review is to summarize current studies on animal models with primary SS-like symptoms and discuss the impact of these studies on better understanding pathogenesis and management of Sjögren's syndrome. Databases PubMed, Web of Science, Scopus and Cochrane library were searched for summarizing studies on animal models in SS. Available data demonstrate that animal models are highly important for our understanding of SS disease.
Collapse
Affiliation(s)
- Diana Mieliauskaitė
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Vilius Kontenis
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Almantas Šiaurys
- State Research Institute Center for Innovative Medicine, Department of Immunology, LT-08406 Vilnius, Lithuania;
| |
Collapse
|
4
|
Involvement of aquaporin 5 in Sjögren's syndrome. Autoimmun Rev 2023; 22:103268. [PMID: 36621535 DOI: 10.1016/j.autrev.2023.103268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with the pathological hallmark of lymphoplasmacytic infiltration of exocrine glands - more specifically salivary and lacrimal glands - resulting in a diminished production of tears and saliva (sicca syndrome). The pathophysiology underscoring the mechanisms of the sicca symptoms in SS has still yet to be unraveled but recent advances have identified a cardinal role of aquaporin-5 (AQP5) as a key player in saliva secretion as well as salivary gland epithelial cell dysregulation. AQP5 expression and localization are significantly altered in salivary glands from patients and mice models of the disease, shedding light on a putative mechanism accounting for diminished salivary flow. Furthermore, aberrant expression and localization of AQP5 protein partners, such as prolactin-inducible protein and ezrin, may account for altered AQP5 localization in salivary glands from patients suffering from SS and are considered as new players in SS development. This review provides an overview of the role of AQP5 in SS salivary gland epithelial cell dysregulation, focusing on its trafficking and protein-protein interactions.
Collapse
|
5
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
6
|
Hasegawa K, Raudales JLM, I T, Yoshida T, Honma R, Iwatake M, Tran SD, Seki M, Asahina I, Sumita Y. Effective-mononuclear cell (E-MNC) therapy alleviates salivary gland damage by suppressing lymphocyte infiltration in Sjögren-like disease. Front Bioeng Biotechnol 2023; 11:1144624. [PMID: 37168614 PMCID: PMC10164970 DOI: 10.3389/fbioe.2023.1144624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.
Collapse
Affiliation(s)
- Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshida
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Simon D. Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Depatment of Oral and Maxillofacial Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- *Correspondence: Yoshinori Sumita,
| |
Collapse
|
7
|
Peck AB, Ambrus JL. A Temporal Comparative RNA Transcriptome Profile of the Annexin Gene Family in the Salivary versus Lacrimal Glands of the Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mouse. Int J Mol Sci 2022; 23:11709. [PMID: 36233010 PMCID: PMC9570365 DOI: 10.3390/ijms231911709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
A generally accepted hypothesis for the initial activation of an immune or autoimmune response argues that alarmins are released from injured, dying and/or activated immune cells, and these products complex with receptors that activate signal transduction pathways and recruit immune cells to the site of injury where the recruited cells are stimulated to initiate immune and/or cellular repair responses. While there are multiple diverse families of alarmins such as interleukins (IL), heat-shock proteins (HSP), Toll-like receptors (TLR), plus individual molecular entities such as Galectin-3, Calreticulin, Thymosin, alpha-Defensin-1, RAGE, and Interferon-1, one phylogenetically conserved family are the Annexin proteins known to promote an extensive range of biomolecular and cellular products that can directly and indirectly regulate inflammation and immune activities. For the present report, we examined the temporal expression profiles of the 12 mammalian annexin genes (Anxa1-11 and Anxa13), applying our temporal genome-wide transcriptome analyses of ex vivo salivary and lacrimal glands from our C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's Syndrome (SS), a human autoimmune disease characterized primarily by severe dry mouth and dry eye symptoms. Results indicate that annexin genes Anax1-7 and -11 exhibited upregulated expressions and the initial timing for these upregulations occurred as early as 8 weeks of age and prior to any covert signs of a SS-like disease. While the profiles of the two glands were similar, they were not identical, suggesting the possibility that the SS-like disease may not be uniform in the two glands. Nevertheless, this early pre-clinical and concomitant upregulated expression of this specific set of alarmins within the immune-targeted organs represents a potential target for identifying the pre-clinical stage in human SS as well, a fact that would clearly impact future interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA
| | - Julian L Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Peck AB, Nguyen CQ, Ambrus JL. A MZB Cell Activation Profile Present in the Lacrimal Glands of Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mice Defined by Global RNA Transcriptomic Analyses. Int J Mol Sci 2022; 23:6106. [PMID: 35682784 PMCID: PMC9181468 DOI: 10.3390/ijms23116106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
The C57BL/6.NOD-Aec1Aec2 mouse has been extensively studied to define the underlying cellular and molecular basis for the onset and development of Sjögren's syndrome (SS), a human systemic autoimmune disease characterized clinically as the loss of normal lacrimal and salivary gland functions leading respectively to dry eye and dry mouth pathologies. While an overwhelming majority of SS studies in both humans and rodent models have long focused primarily on pathophysiological events and the potential role of T lymphocytes in these events, recent studies in our murine models have indicated that marginal zone B (MZB) lymphocytes are critical for both development and onset of SS disease. Although migration and function of MZB cells are difficult to study in vivo and in vitro, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to track early cellular and molecular events in these exocrine glands of C57BL/6.NOD-Aec1Aec2 mice. In the present report, genome-wide transcriptome analyses of lacrimal glands indicate that genes and gene-sets temporally upregulated during early onset of disease define the Notch2/NF-kβ14 and Type1 interferon signal transduction pathways, as well as identify chemokines, especially Cxcl13, and Rho-GTPases, including DOCK molecules, in the cellular migration of immune cells to the lacrimal glands. We discuss how the current results compare with our recently published salivary gland data obtained from similar studies carried out in our C57BL/6.NOD-Aec1Aec2 mice, pointing out both similarities and differences in the etiopathogeneses underlying the autoimmune response within the two glands. Overall, this study uses the power of transcriptomic analyses to identify temporal molecular bioprocesses activated during the preclinical covert pathogenic stage(s) of SS disease and how these findings may impact future intervention therapies as the disease within the two exocrine glands may not be identical.
Collapse
Affiliation(s)
- Ammon B. Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Julian L. Ambrus
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
9
|
Gupta S, Li D, Ostrov DA, Nguyen CQ. Epitope Mapping of Pathogenic Autoantigens on Sjögren’s Syndrome-Susceptible Human Leukocyte Antigens Using In Silico Techniques. J Clin Med 2022; 11:jcm11061690. [PMID: 35330015 PMCID: PMC8953074 DOI: 10.3390/jcm11061690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Sjögren’s syndrome (SjS) is characterized by lymphocytic infiltration and the dysfunction of the salivary and lacrimal glands. The autoimmune response is driven by the effector T cells and their cytokines. The activation of the effector helper T cells is mediated by autoantigen presentation by human leukocyte antigen (HLA) class II molecules of antigen-presenting cells. Studies using familial aggregation, animal models, and genome-wide association demonstrate a significant genetic correlation between specific risk HLAs and SjS. One of the key HLA alleles is HLA-DRB1*0301; it is one of the most influential associations with primary SjS, having the highest odds ratio and occurrence across different ethnic groups. The specific autoantigens attributed to SjS remain elusive, especially the specific antigenic epitopes presented by HLA-DRB1*0301. This study applied a high throughput in silico mapping technique to identify antigenic epitopes of known SjS autoantigens presented by high-risk HLAs. Furthermore, we identified specific binding HLA-DRB1*0301 epitopes using structural modeling tools such as Immune Epitope Database and Analysis Resource IEDB, AutoDock Vina, and COOT. By deciphering the critical epitopes of autoantigens presented by HLA-DRB1*0301, we gain a better understanding of the origin of the antigens, determine the T cell receptor function, learn the mechanism of disease progression, and develop therapeutic applications.
Collapse
Affiliation(s)
- Shivai Gupta
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Danmeng Li
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (D.L.); (D.A.O.)
| | - David A. Ostrov
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (D.L.); (D.A.O.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL 32611, USA
- Correspondence: ; Tel.: +1-352-294-4180; Fax: +1-352-392-9704
| |
Collapse
|
10
|
Gupta S, Li D, Ostrov DA, Nguyen CQ. Blocking IAg 7 class II major histocompatibility complex by drug-like small molecules alleviated Sjögren's syndrome in NOD mice. Life Sci 2022; 288:120182. [PMID: 34843735 PMCID: PMC8883604 DOI: 10.1016/j.lfs.2021.120182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sjögren's syndrome (SjS) is an autoimmune disease with a strong genetic association. To date, no vaccine or therapeutic agent exists to cure SjS, and patients must rely on lifelong therapies to treat symptoms. Human leukocyte antigens (HLA) are primary susceptibility loci that form the genetic basis for many autoimmune diseases, including SjS. In this study, we sought to determine whether blocking MHC class II IAg7 antigen presentation in the NOD mouse would alleviate SjS by preventing the recognition of autoantigens by pathogenic T cells. METHODS Mapping of the antigenic epitopes of Ro60 autoantigen to IAg7 of the NOD mice was performed using structural modeling and in-vitro stimulation. Tetraazatricyclo-dodecane (TATD) and 8-Azaguanine (8-Aza) were previously identified as potential binders to IAg7 of the NOD mice using in silico drug screening. Mice were treated with 20mgs/kg via IP every day five days/week for 23 weeks. Disease profiling was conducted. FINDINGS Specific peptides of Ro60 autoantigen were identified to bind to IAg7 and stimulated splenocytes of the NOD mice. Treating NOD mice with TATD or 8-Azaguanine alleviated SjS symptoms by improving salivary and lacrimal gland secretory function, decreasing the levels of autoantibodies, and reducing the severity of lymphocytic infiltration in the salivary and lacrimal glands. INTERPRETATION This study presents a novel therapeutic approach for SjS by identifying small molecules capable of inhibiting T cell response via antigen-specific presentation. FUNDING CQN is supported financially in part by PHS grants AI130561, DE026450, and DE028544 from the National Institutes of Health.
Collapse
Affiliation(s)
- Shivai Gupta
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Danmeng Li
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David A Ostrov
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Horeth E, Oyelakin A, Song EAC, Che M, Bard J, Min S, Kiripolsky J, Kramer JM, Sinha S, Romano RA. Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Front Immunol 2021; 12:729040. [PMID: 34912329 PMCID: PMC8666453 DOI: 10.3389/fimmu.2021.729040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
Collapse
Affiliation(s)
- Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jonathan Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Mori T, Kataoka H, Into T. Effect of Myd88 deficiency on gene expression profiling in salivary glands of female non-obese diabetic (NOD) mice. J Oral Biosci 2021; 63:192-198. [PMID: 33933610 DOI: 10.1016/j.job.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory lesions in the salivary and lacrimal glands, which are caused by distinct lymphocytic infiltrates. Female non-obese diabetic (NOD) mice spontaneously develop inflammatory lesions of the salivary glands with SS-like pathological features. Previous studies have shown that MyD88, a crucial adaptor protein that activates innate immune signaling, affects lymphocytic infiltration, but its detailed role remains unclear. In this study, we investigated the role of MyD88 through gene expression profiling in the early phase of pathogenesis in the salivary glands of female NOD mice. METHODS Submandibular glands collected from 10-week-old female wild-type and Myd88-deficient NOD mice were used for RNA preparation, followed by microarray analysis. The microarray dataset was analyzed to identify Myd88-dependent differentially expressed genes (DEGs). Data generated were used for GO enrichment, KEGG pathway, STRING database, and INTERFEROME database analyses. RESULTS Myd88 deficiency was found to affect 230 DEGs, including SS-associated genes, such as Cxcl9 and Bpifa2. Most of the DEGs were identified as being involved in immunological processes. KEGG pathway analysis indicated that the DEGs were putatively involved in autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Furthermore, the DEGs included 149 interferon (IFN)-regulated genes. CONCLUSIONS MyD88 is involved in the expression of specific genes associated with IFN-associated immunopathological processes in the salivary glands of NOD mice. Our findings are important for understanding the role of MyD88-dependent innate immune signaling in SS manifestation.
Collapse
Affiliation(s)
- Taiki Mori
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Hideo Kataoka
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| |
Collapse
|
13
|
Early Covert Appearance of Marginal Zone B Cells in Salivary Glands of Sjögren's Syndrome-Susceptible Mice: Initiators of Subsequent Overt Clinical Disease. Int J Mol Sci 2021; 22:ijms22041919. [PMID: 33671965 PMCID: PMC7919007 DOI: 10.3390/ijms22041919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
The C57BL/6.NOD-Aec1Aec2 mouse model has been extensively studied to define the underlying cellular and molecular bioprocesses critical in the onset of primary Sjögren’s Syndrome (pSS), a human systemic autoimmune disease characterized clinically as the loss of lacrimal and salivary gland functions leading to dry eye and dry mouth pathologies. This mouse model, together with several gene knockout mouse models of SS, has indicated that B lymphocytes, especially marginal zone B (MZB) cells, are necessary for development and onset of clinical manifestations despite the fact that destruction of the lacrimal and salivary gland cells involves a classical T cell-mediated autoimmune response. Because migrations and functions of MZB cells are difficult to study in vivo, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to profile autoimmunity as it develops within the salivary glands of C57BL/6.NOD-Aec1Aec2 mice. Temporal profiles indicate the appearance of Notch2-positive cells within the salivary glands of these SS-susceptible mice concomitant with the early-phase appearance of lymphocytic foci (LF). Data presented here identify cellular bioprocesses occurring during early immune cell migrations into the salivary glands and suggest MZB cells are recruited to the exocrine glands by the upregulated Cxcl13 chemokine where they recognize complement (C’)-decorated antigens via their sphingosine-1-phosphate (S1P) and B cell (BC) receptors. Based on known MZB cell behavior and mobility, we propose that MZB cells activated in the salivary glands migrate to splenic follicular zones to present antigens to follicular macrophages and dendritic cells that, in turn, promote a subsequent systemic cell-mediated and autoantibody-mediated autoimmune T cell response that targets exocrine gland cells and functions. Overall, this study uses the power of transcriptomic analyses to provide greater insight into several molecular events defining cellular bioprocesses underlying SS that can be modelled and more thoroughly studied at the cellular level.
Collapse
|
14
|
Wang B, Chen S, Zheng Q, Li Y, Zhang X, Xuan J, Liu Y, Shi G. Early diagnosis and treatment for Sjögren's syndrome: current challenges, redefined disease stages and future prospects. J Autoimmun 2020; 117:102590. [PMID: 33310686 DOI: 10.1016/j.jaut.2020.102590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
There are some challenges and unmet needs in the early diagnosis and management of Sjögren's syndrome (SjS) such as prominent glandular dysfunction at diagnosis and long diagnostic delay. Those challenges are partly attributed to the lack of a good knowledge of the early stages of SjS, which is a major obstacle to delivering appropriate care to SjS patients. Findings from both clinical and experimental studies suggest the plausibility of a redefined SjS course consisting of 4 stages, which includes initiation stage, preclinical stage, asymptomatic SjS stage and overt SjS stage. More studies focusing on the pathological processes and changes during the early stages of SjS are needed. To enable early diagnosis and treatment for SjS, more useful biomarkers of the early stages of SjS need to be identified, and individuals at high risk of SjS development need to be identified. Appropriate screening can be performed to facilitate the early diagnosis of SjS among those high-risk individuals.
Collapse
Affiliation(s)
- Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Qing Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361003, China.
| |
Collapse
|
15
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|
16
|
Gao Y, Chen Y, Zhang Z, Yu X, Zheng J. Recent Advances in Mouse Models of Sjögren's Syndrome. Front Immunol 2020; 11:1158. [PMID: 32695097 PMCID: PMC7338666 DOI: 10.3389/fimmu.2020.01158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex rheumatoid disease that mainly affects exocrine glands, resulting in xerostomia (dry mouth) and xerophthalmia (dry eye). SS is characterized by autoantibodies, infiltration into exocrine glands, and ectopic expression of MHC II molecules on glandular epithelial cells. In contrast to the well-characterized clinical and immunological features, the etiology and pathogenesis of SS remain largely unknown. Animal models are powerful research tools for elucidating the pathogenesis of human diseases. To date, many mouse models of SS, including induced models, in which disease is induced in mice, and genetic models, in which mice spontaneously develop SS-like disease, have been established. These mouse models have provided new insight into the pathogenesis of SS. In this review, we aim to provide a comprehensive overview of recent advances in the field of experimental SS.
Collapse
Affiliation(s)
- Yunzhen Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yan Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junfeng Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Kiripolsky J, Romano RA, Kasperek EM, Yu G, Kramer JM. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren's Syndrome. Front Immunol 2020; 10:2963. [PMID: 31993047 PMCID: PMC6964703 DOI: 10.3389/fimmu.2019.02963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are important mediators of chronic inflammation in numerous autoimmune diseases, although the role of these receptors in primary Sjögren's syndrome (pSS) remains incompletely understood. Previous studies in our laboratory established Myd88 as a crucial mediator of pSS, although the disease-relevant ligands and the upstream signaling events that culminate in Myd88 activation have yet to be established. The objective of this study was to identify specific Myd88-dependent TLR-related pathways that are dysregulated both locally and systemically in a mouse model of pSS [NOD.B10Sn-H2b/J (NOD.B10)]. We performed RNA-sequencing on spleens derived from NOD.B10 mice. We then harvested salivary tissue and spleens from Myd88-sufficient and deficient C57BL/10 (BL/10) and NOD.B10 mice and performed flow cytometry to determine expression of Myd88-dependent TLRs. We cultured splenocytes with TLR2 and TLR4 agonists and measured production of inflammatory mediators by ELISA. Next, we evaluated spontaneous and TLR4-mediated inflammatory cytokine secretion in NOD.B10 salivary tissue. Finally, we assessed spontaneous Myd88-dependent cytokine secretion by NOD.B10 salivary cells. We identified dysregulation of numerous TLR-related networks in pSS splenocytes, particularly those employed by TLR2 and TLR4. We found upregulation of TLRs in both the splenic and salivary tissue from pSS mice. In NOD.B10 splenic tissue, robust expression of B cell TLR1 and TLR2 required Myd88. Splenocytes from NOD.B10 mice were hyper-responsive to TLR2 ligation and the endogenous molecule decorin modulated inflammation via TLR4. Finally, we observed spontaneous secretion of numerous inflammatory cytokines and this was enhanced following TLR4 ligation in female NOD.B10 salivary tissue as compared to males. The spontaneous production of salivary IL-6, MCP-1 and TNFα required Myd88 in pSS salivary tissue. Thus, our data demonstrate that Myd88-dependent TLR pathways contribute to the inflammatory landscape in pSS, and inhibition of such will likely have therapeutic utility.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eileen M Kasperek
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
18
|
Min HK, Moon SJ, Park KS, Kim KJ. Integrated systems analysis of salivary gland transcriptomics reveals key molecular networks in Sjögren's syndrome. Arthritis Res Ther 2019; 21:294. [PMID: 31856901 PMCID: PMC6921432 DOI: 10.1186/s13075-019-2082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Treatment of patients with Sjögren’s syndrome (SjS) is a clinical challenge with high unmet needs. Gene expression profiling and integrative network-based approaches to complex disease can offer an insight on molecular characteristics in the context of clinical setting. Methods An integrated dataset was created from salivary gland samples of 30 SjS patients. Pathway-driven enrichment profiles made by gene set enrichment analysis were categorized using hierarchical clustering. Differentially expressed genes (DEGs) were subjected to functional network analysis, where the elements of the core subnetwork were used for key driver analysis. Results We identified 310 upregulated DEGs, including nine known genetic risk factors and two potential biomarkers. The core subnetwork was enriched with the processes associated with B cell hyperactivity. Pathway-based subgrouping revealed two clusters with distinct molecular signatures for the relevant pathways and cell subsets. Cluster 2, with low-grade inflammation, showed a better response to rituximab therapy than cluster 1, with high-grade inflammation. Fourteen key driver genes appeared to be essential signaling mediators downstream of the B cell receptor (BCR) signaling pathway and to have a positive relationship with histopathology scores. Conclusion Integrative network-based approaches provide deep insights into the modules and pathways causally related to SjS and allow identification of key targets for disease. Intervention adjusted to the molecular traits of the disease would allow the achievement of better outcomes, and the BCR signaling pathway and its leading players are promising therapeutic targets.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Zinkevičienė A, Dumalakienė I, Mieliauskaitė D, Vilienė R, Narkevičiūtė I, Girkontaitė I. sICAM-1 as potential additional parameter in the discrimination of the Sjögren syndrome and non-autoimmune sicca syndrome: a pilot study. Clin Rheumatol 2019; 38:2803-2809. [PMID: 31152257 DOI: 10.1007/s10067-019-04621-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Both Sjögren's syndrome (SS) and non-autoimmune sicca syndrome (nSS) can show symptoms of dry eyes and a dry mouth, and objective reductions in tear and saliva production. Dry eyes and dry mouth are frequent but they are distinct pathological entities that require diagnostic discrimination. METHODS The aim of present study was to compare the serum levels of sICAM-1, TFF3, RANTES, adiponectin, and FGF in primary (pSS), secondary due to rheumatoid arthritis (sSS), non-autoimmune sicca syndrome (nSS), and healthy groups. The serum levels of selected molecules were determined by enzyme-linked immunosorbent assay (ELISA) in 29 patients with pSS, 30 with sSS, 17 with nSS, and 15 healthy subjects. RESULTS sICAM-1 was significantly elevated in pSS and sSS patients compared with nSS group. Levels of FGF, TFF3, and RANTES were significantly increased in pSS, sSS, and nSS patients compared with healthy controls. No significant correlations were found between the levels of measured molecules and the clinical parameters. CONCLUSIONS Our study showed that sICAM-1 might be useful as an additional parameter for differential diagnosis of SS and nSS, and TFF could be additional diagnostic marker for SS diagnosis. KEY POINTS • sICAM-1 was significantly elevated in Sjögren syndrome patients compared with non-autoimmune sicca syndrome group. • TFF was significantly elevated in Sjögren syndrome patients compared with healthy controls. • They might be useful as additional parameters for differential diagnosis.
Collapse
Affiliation(s)
- Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania. .,Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania.
| | - Irena Dumalakienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania
| | - Diana Mieliauskaitė
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania
| | - Rita Vilienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania
| | - Ieva Narkevičiūtė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Vilnius, Lithuania
| |
Collapse
|
20
|
Mandal SM, Manna S, Mondal S, Ghosh AK, Chakraborty R. Transcriptional regulation of human defense peptides: a new direction in infection control. Biol Chem 2019; 399:1277-1284. [PMID: 30044754 DOI: 10.1515/hsz-2018-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/03/2018] [Indexed: 11/15/2022]
Abstract
While antibiotics remain as a major therapy against life threatening pathogenic infections, they often lead to side effects like rashes, gastrointestinal and central nervous system reactions to serious allergies or organ damage. These adverse effects alongside the emergence of multi-antibiotic resistant bacteria and the decline in the development of new antibiotics, have posed a serious impediment for effective antibiotic therapy. A paradigm shift in attitudes has led us to think about the possibility of controlling infections with the indigenous antimicrobial peptides synthesized by human beings. It has been observed that few transcription factors can stimulate more than three dozen defense peptides in the human system. Hence, during the infection stage, if we can induce these common factors, most of the infections could be healed from inside without the administration of any antibiotics. The efficiency of such peptides is being proven in clinical tests leading to the development of drugs.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Sounik Manna
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri 734 013, WB, India
| | - Sneha Mondal
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
21
|
Wanchoo A, Voigt A, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Single-cell analysis reveals sexually dimorphic repertoires of Interferon-γ and IL-17A producing T cells in salivary glands of Sjögren's syndrome mice. Sci Rep 2017; 7:12512. [PMID: 28970488 PMCID: PMC5624952 DOI: 10.1038/s41598-017-12627-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
The development of Sjögren's syndrome (SjS) is a dynamic and temporal process with a female predilection. Following the initial influx of immune cells, T cell clusters develop, accelerating the pathology in the salivary glands. Proinflammatory cytokines, IFN-γ and IL-17A, produced by T cells contribute synergistically to the disease. In this study, we examined the sexual dimorphism in cellular infiltrates of the salivary glands by using functional single-cell microengraving analysis. Using high-throughput sequencing, we investigated the clonal diversity of the T cell receptors (TCRs) of infiltrating IFN-γ and IL-17A-producing T cells in male and female SjS-susceptible (SjSs) C57BL/6.NOD-Aec1Aec2 mice. There were elevated frequencies of IFN-γ and IL-17A-producing effector T cell populations in female SjSS mice compared to male SjSS mice. MEME analysis shows high frequency and unique, sexually dimorphic motifs in the TCR hypervariable regions in the SjSS mice. Male mice selected for TRAV8/TRAJ52 (CATDLNTGANTGKLTFG) TCR genes in Th1 cells and TRBV16/(TRBD1/2)TRBJ1-7 (CGGKRRLESIFR) in Th1 and Th17 cells. Female SjSS mice selected for TRAV8/TRAJ52 (CATDLNTGANTGKLTFG), TRAV13D-2/TRAJ23 (CVYLEHHFE), and TRBV23/(TRBD2)TRBJ2-2 (CRKLHSCATCALNFL) in Th1 cells. These findings suggest that there is an elevated prevalence of pathogenic effector T cells in the glands with a sexually dimorphic selection bias of TCR repertoires.
Collapse
Affiliation(s)
- Arun Wanchoo
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville Florida, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville Florida, USA
| | - Sukesh Sukumaran
- Rheumatology Section, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock Arkansas, USA
| | - Carol M Stewart
- Department of Oral and Maxillofacial Diagnostic Sciences, Gainesville Florida, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville Florida, USA
| | - Indraneel Bhattacharya
- Department of Oral and Maxillofacial Diagnostic Sciences, Gainesville Florida, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville Florida, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville Florida, USA.
- Department of Oral Biology, Gainesville Florida, USA.
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville Florida, USA.
| |
Collapse
|
22
|
Kiripolsky J, McCabe LG, Kramer JM. Innate immunity in Sjögren's syndrome. Clin Immunol 2017; 182:4-13. [PMID: 28396235 PMCID: PMC6025757 DOI: 10.1016/j.clim.2017.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease of exocrine tissue that primarily affects women. Although patients typically experience xerostomia and xerophthalmia, numerous systemic disease manifestations are seen. Innate immune hyperactivity is integral to many autoimmune diseases, including SS. Results from SS mouse models suggest that innate immune dysregulation drives disease and this is a seminal event in SS pathogenesis. Findings in SS patients corroborate those in mouse models, as innate immune cells and pathways are dysregulated both in exocrine tissue and in peripheral blood. We will review the role of the innate immune system in SS pathogenesis. We will discuss the etiology of SS with an emphasis on innate immune dysfunction. Moreover, we will review the innate cells that mediate inflammation in SS, the pathways implicated in disease, and the potential mechanisms governing their dysregulation. Finally, we will discuss emerging therapeutic approaches to target dysregulated innate immune signaling in SS.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Liam G McCabe
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States; Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
23
|
Oftedal BE, Marthinussen MC, Erichsen MM, Tveitarås MK, Kjellesvik-Kristiansen A, Hammenfors D, Jonsson MV, Kisand K, Jonsson R, Wolff ASB. Impaired salivary gland activity in patients with autoimmune polyendocrine syndrome type I. Autoimmunity 2017; 50:211-222. [PMID: 28686485 DOI: 10.1080/08916934.2017.1344972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/18/2017] [Indexed: 10/19/2022]
Abstract
Autoimmune polyendocrine syndrome type I (APS-I) is a severe disease caused by mutations in the autoimmune regulator (AIRE) gene. We hypothesized that salivary gland dysfunction could be a possible unexplored component of these patients and here aimed to investigate salivary and lachrymal symptoms in the Norwegian cohort of APS-I patients (N = 41) and the aetiology behind it. Sicca symptoms and possible corresponding underlying factors were assessed by subjective reports combined with objective measures of saliva and tear flow, serological testing, immune fluorescence microscopy, ultrasonography and searching for putative autoantibodies in the salivary glands. In addition, defensin and anti-defensin levels were analysed in patients and compared with healthy controls. Our results indicate mild salivary and/or lachrymal gland dysfunction manifesting in low saliva or tear flow in a total of 62% of APS-I patients. Serum IgG from 9 of 12 patients bound to targets in salivary gland biopsy slides, although the specificity and pattern of binding varied. There was no reactivity against known Sjögren-associated autoantigens in sera from APS-I patients using quantitative methods, but 11% were ANA positive by immunofluorescence microscopy. We identified several putative autoantigens in one patient, although none of these were verified as APS-I specific. We conclude that impaired salivary gland activity is part of the clinical picture of APS-I and our findings could indicate an autoimmune aetiology. We further show that APS-I patients have an altered antimicrobial signature in both sera and saliva, which requires further investigations.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | | | - Martina M Erichsen
- c Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Maria K Tveitarås
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | | | - Daniel Hammenfors
- a Department of Clinical Science , University of Bergen , Bergen , Norway
- d Department of Rheumatology , Haukeland University Hospital , Bergen , Norway
| | - Malin V Jonsson
- e Department of Clinical Dentistry , University of Bergen , Bergen , Norway
| | - Kai Kisand
- f Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Roland Jonsson
- d Department of Rheumatology , Haukeland University Hospital , Bergen , Norway
- g Broegelmann Research Laboratory, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Anette S B Wolff
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| |
Collapse
|
24
|
Peck AB, Nguyen CQ. What can Sjögren's syndrome-like disease in mice contribute to human Sjögren's syndrome? Clin Immunol 2017; 182:14-23. [PMID: 28478104 DOI: 10.1016/j.clim.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
For decades, Sjögren's syndrome (SS) and Sjögren's syndrome-like (SS-like) disease in patients and mouse models, respectively, have been intensely investigated in attempts to identify the underlying etiologies, the pathophysiological changes defining disease phenotypes, the nature of the autoimmune responses, and the propensity for developing B cell lymphomas. An emerging question is whether the generation of a multitude of mouse models and the data obtained from their studies is actually important to the understanding of the human disease and potential interventional therapies. In this brief report, we comment on how and why mouse models can stimulate interest in specific lines of research that apparently parallel aspects of human SS. Focusing on two mouse models, NOD and B6·Il14α, we present the possible relevance of mouse models to human SS, highlighting a few selected disease-associated biological processes that have baffled both SS and SS-like investigations for decades.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, Gainesville, FL 32608, USA.
| | - Cuong Q Nguyen
- Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, Gainesville, FL 32608, USA; Department of Oral Biology, College of Dentistry, University of Florida, FL 32608, USA
| |
Collapse
|
25
|
Sexual dimorphic function of IL-17 in salivary gland dysfunction of the C57BL/6.NOD-Aec1Aec2 model of Sjögren's syndrome. Sci Rep 2016; 6:38717. [PMID: 27958291 PMCID: PMC5153841 DOI: 10.1038/srep38717] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-17 is one of the critical inflammatory cytokines that plays a direct role in development of Sjögren’s syndrome (SjS), a systemic autoimmune disease characterized by a progressive chronic attack against the exocrine glands. The expression levels of IL-17 are correlated with a number of essential clinical parameters such as focus score and disease duration in human patients. Significantly immunological differences of Th17 cells were detected at the onset of clinical disease in female SjS mice compared to males. To further define the role of IL-17 in SjS and elucidate its involvement in the sexual dimorphism, we examined the systemic effect of IL-17 by genetically ablating Il-17 in the C57BL/6.NOD-Aec1Aec2, spontaneous SjS murine model. The results indicate that IL-17 is a potent inflammatory molecule in the induction of chemoattractants, cytokines, and glandular apoptosis in males and females. Elimination of IL-17 reduced sialadenitis more drastically in females than males. IL-17 is highly involved in modulating Th2 cytokines and altering autoantibody profiles which has a greater impact on changing plasma cells and germinal center B cell populations in females than males. The result supports a much more important role for IL-17 and demonstrates the sexual dimorphic function of IL-17 in SjS.
Collapse
|
26
|
Lavoie TN, Carcamo WC, Wanchoo A, Sharma A, Gulec A, Berg KM, Stewart CM, Nguyen CQ. IL-22 regulation of functional gene expression in salivary gland cells. GENOMICS DATA 2015; 7:178-84. [PMID: 26981401 PMCID: PMC4778602 DOI: 10.1016/j.gdata.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022]
Abstract
TH17 cells and their associated signature cytokines, IL-17 and IL-22, are highly elevated in primary Sjögren's syndrome (pSjS). The levels of IL-22 present in sera showed significant correlations with many disease parameters, specifically hyposalivation, anti-SSB, anti-SSA/SSB, hypergammaglobulinemia and rheumatoid factor. The present study aims to examine the biological function of IL-22 on human salivary glands. To accomplish the goal, microarray analysis using the HumanHT-12 v4 Expression BeadChip was utilized to determine the biological function of IL-22. Differential expression analyses were conducted using the LIMMA package from the Bioconductor project. MTT assay, flow cytometry and Western blotting were used to identify the function of IL-22 on human salivary gland cells. Results indicate an extensive effect of IL-22 on many major molecular functions including activation of antimicrobial genes and downregulation of immune-associated pathways. Functional studies performed in-vitro using human salivary gland cells treated with IL-22 indicated a direct effect of IL-22 on cell cycling, specifically reducing cellular proliferation at the G2-M phase by activation of STAT3. These results suggest the important role of IL-22 in the salivary gland function. The present study suggests that IL-22 might be involved in regulating inflammation and controlling the cell proliferation in SjS.
Collapse
Affiliation(s)
- Tegan N Lavoie
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32611, USA
| | - Wendy C Carcamo
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32611, USA
| | - Arun Wanchoo
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32611, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Afife Gulec
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32611, USA
| | - Kathleen M Berg
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, FL 32610, USA; Center for Orphan Autoimmune Disorders, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| | - Carol M Stewart
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, FL 32610, USA; Center for Orphan Autoimmune Disorders, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32611, USA; Center for Orphan Autoimmune Disorders, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Association of aging with gene expression profiling in mouse submandibular glands. GENOMICS DATA 2015; 5:115-9. [PMID: 26484237 PMCID: PMC4584023 DOI: 10.1016/j.gdata.2015.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/21/2015] [Indexed: 11/23/2022]
Abstract
Aging, also called senescence, is thought to be a physiological phenomenon that commonly occurs in various organs and tissues (Enoki et al., 2007 [1]). Many older adults experience dysfunction in their salivary glands, for example xerostomia, which is defined as dry mouth resulting from reduced or absent saliva flow (Nagler et al., 2004 [2]). In the present study, we investigated gene expression in submandibular glands of young (8 weeks old) and adult (50 weeks old) mice to analyze association of aging with gene expression profiling in mouse submandibular glands. Whole-genome gene expression profiles were analyzed using an Illumina Sentrix system with Mouse-WG-6 v.2 Expression BeadChips (Illumina). Of the genes screened, 284 showed detection values at a significance level of P < 0.01. Among those, the expression of 94 genes (33%) showed a greater decrease in adult mice as compared to young mice. On the other hand, that of 190 genes (77%) was increased in the adults more than in young mice. The data obtained in this study are publicly available in the Gene Expression Omnibus (GEO) database (accession number GSE66857).
Collapse
|
28
|
Temporal gene expression analysis of Sjögren’s syndrome in C57BL/6.NOD-Aec1Aec2 mice based on microarray time-series data using an improved empirical Bayes approach. Mol Biol Rep 2014; 41:5953-60. [DOI: 10.1007/s11033-014-3471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
|
29
|
Kramer JM. Early events in Sjögren's Syndrome pathogenesis: the importance of innate immunity in disease initiation. Cytokine 2014; 67:92-101. [PMID: 24656928 DOI: 10.1016/j.cyto.2014.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/24/2022]
Abstract
Sjögren's Syndrome (SS) is a debilitating autoimmune disease that primarily affects women. Patients with SS experience dry eyes and dry mouth in addition to systemic disease manifestations, including arthritis, peripheral neuropathy and pulmonary fibrosis. As in many autoimmune diseases, the inciting factors that precipitate SS are poorly understood. Patients with SS have periductal and perivascular lymphocytic infiltration of salivary and lacrimal tissue, and this is a hallmark of disease. While this infiltration is well characterized, the pathologic events that precede and cause this inflammatory cell recruitment are unknown. Although few studies have examined SS salivary tissue prior to disease onset, there is strong evidence for innate immune hyperactivity. Accordingly, processes such as apoptosis of glandular tissue, heightened inflammatory cytokine and chemokine production, and toll-like receptor (TLR) activation are described in early disease and are each linked to innate immune activation in murine models of disease and SS patients. This review will explore the relationship between innate immunity and SS pathogenesis prior to overt disease onset and discuss therapeutic strategies to mitigate disease progression in SS patients.
Collapse
Affiliation(s)
- Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, 211 Foster Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
30
|
Delaleu N, Nguyen CQ, Tekle KM, Jonsson R, Peck AB. Transcriptional landscapes of emerging autoimmunity: transient aberrations in the targeted tissue's extracellular milieu precede immune responses in Sjögren's syndrome. Arthritis Res Ther 2013; 15:R174. [PMID: 24286337 PMCID: PMC3978466 DOI: 10.1186/ar4362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Our understanding of autoimmunity is skewed considerably towards the late stages of overt disease and chronic inflammation. Defining the targeted organ’s role during emergence of autoimmune diseases is, however, critical in order to define their etiology, early and covert disease phases and delineate their molecular basis. Methods Using Sjögren’s syndrome (SS) as an exemplary rheumatic autoimmune disease and temporal global gene-expression profiling, we systematically mapped the transcriptional landscapes and chronological interrelationships between biological themes involving the salivary glands’ extracellular milieu. The time period studied spans from pre- to subclinical and ultimately to onset of overt disease in a well-defined model of spontaneous SS, the C57BL/6.NOD-Aec1Aec2 strain. In order to answer this aim of great generality, we developed a novel bioinformatics-based approach, which integrates comprehensive data analysis and visualization within interactive networks. The latter are computed by projecting the datasets as a whole on a priori-defined consensus-based knowledge. Results Applying these methodologies revealed extensive susceptibility loci-dependent aberrations in salivary gland homeostasis and integrity preceding onset of overt disease by a considerable amount of time. These alterations coincided with innate immune responses depending predominantly on genes located outside of the SS-predisposing loci Aec1 and Aec2. Following a period of transcriptional stability, networks mapping the onset of overt SS displayed, in addition to natural killer, T- and B-cell-specific gene patterns, significant reversals of focal adhesion, cell-cell junctions and neurotransmitter receptor-associated alterations that had prior characterized progression from pre- to subclinical disease. Conclusions This data-driven methodology advances unbiased assessment of global datasets an allowed comprehensive interpretation of complex alterations in biological states. Its application delineated a major involvement of the targeted organ during the emergence of experimental SS.
Collapse
|
31
|
Innate immune signaling induces interleukin-7 production from salivary gland cells and accelerates the development of primary Sjögren's syndrome in a mouse model. PLoS One 2013; 8:e77605. [PMID: 24147035 PMCID: PMC3798297 DOI: 10.1371/journal.pone.0077605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023] Open
Abstract
Elevated IL-7 in the target tissues is closely associated with multiple autoimmune disorders, including Sjögren’s syndrome (SS). We recently found that IL-7 plays an essential role in the development and onset of primary SS (pSS) in C57BL/6.NOD-Aec1Aec2 mice, a well-defined mouse model of primary SS. However, environmental signals that cause excessive IL-7 production are not well-characterized. Innate immune signaling plays a critical role in shaping the adaptive immune responses including autoimmune responses. We and others have previously shown that innate immune signaling can induce IL-7 expression in lungs and intestines of C57BL/6 mice. In this study, we characterized the effects of poly I:C, a double-stranded RNA analog and toll-like receptor 3 agonist, on the induction of IL-7 expression in salivary glands and on pSS development. We showed that poly I:C administration to C57BL/6 mice rapidly induced IL-7 expression in the salivary glands in a type 1 IFN- and IFN-γ-dependent manner. Moreover, poly I:C-induced IL-7 contributed to the optimal up-regulation of CXCL9 in the salivary glands, which may subsequently promote recruitment of more IFN-γ-producing T cells. Repeated administration of poly I:C to C57BL/6.NOD-Aec1Aec2 mice accelerated the development of SS-like exocrinopathy, and this effect was abolished by the blockade of IL-7 receptor signaling with a neutralizing antibody. Finally, poly I:C or a combination of IFN-α and IFN-γ induced IL-7 gene expression and protein production in a human salivary gland epithelial cell line. Hence, we demonstrate that IL-7 expression in the salivary gland cells can be induced by poly I:C and delineate a crucial mechanism by which innate immune signals facilitate the development of pSS, which is through induction of IL-7 in the target tissues.
Collapse
|
32
|
Jin JO, Kawai T, Cha S, Yu Q. Interleukin-7 enhances the Th1 response to promote the development of Sjögren's syndrome-like autoimmune exocrinopathy in mice. ACTA ACUST UNITED AC 2013; 65:2132-42. [PMID: 23666710 DOI: 10.1002/art.38007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although elevated interleukin-7 (IL-7) levels have been reported in patients with primary Sjögren's syndrome (SS), the role of IL-7 in this disease remains unclear. We undertook this study to characterize the previously unexplored role of IL-7 in the development and onset of primary SS using the C57BL/6.NOD-Aec1Aec2 (B6.NOD-Aec) mouse model, which recapitulates human primary SS. METHODS For gain-of-function studies, recombinant IL-7 or control phosphate buffered saline was injected intraperitoneally (IP) into 12-week-old B6.NOD-Aec mice for 8 weeks. For loss-of-function studies, anti-IL-7 receptor α-chain (anti-IL-7Rα) antibody or its isotype control IgG was administered IP into 16-week-old B6.NOD-Aec mice. Salivary flow measurement, histologic and flow cytometric analysis of salivary glands, and serum antinuclear antibody assay were performed to assess various disease parameters. RESULTS Administration of exogenous IL-7 accelerated the development of primary SS, whereas blockade of IL-7Rα signaling almost completely abolished the development of primary SS, based on salivary gland inflammation and apoptosis, autoantibody production, and secretory dysfunction. IL-7 positively regulated interferon-γ (IFNγ)-producing Th1 and CD8+ T cells in the salivary glands without affecting IL-17. Moreover, IL-7 enhanced the expression of CXCR3 ligands in a T cell- and IFNγ-dependent manner. Accordingly, IFNγ induced a human salivary gland epithelial cell line to produce CXCR3 ligands. IL-7 also increased the level of tumor necrosis factor α, another Th1-associated cytokine that can facilitate tissue destruction and inflammation. CONCLUSION IL-7 plays a pivotal pathogenic role in SS, which is underpinned by an enhanced Th1 response and IFNγ/CXCR3 ligand-mediated lymphocyte infiltration of target organs. These results suggest that targeting the IL-7 pathway may be a potential future strategy for preventing and treating SS.
Collapse
Affiliation(s)
- Jun-O Jin
- The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
33
|
Karabiyik A, Peck AB, Nguyen CQ. The important role of T cells and receptor expression in Sjögren's syndrome. Scand J Immunol 2013; 78:157-66. [PMID: 23679844 DOI: 10.1111/sji.12079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022]
Abstract
Sjögren's syndrome (SjS), an autoimmune disease characterized by exocrine gland dysfunction leading to dry mouth and dry eye diseases, is typified by progressive leucocyte infiltrations of the salivary and lacrimal glands. Histologically, these leucocyte infiltrations generally establish periductal aggregates, referred to as lymphocytic foci (LF), which occasionally appear as germinal centre (GC)-like structures. The formation and organization of these LF suggest an important and dynamic role for helper T cells (TH), specifically TH1, TH2 and the recently discovered TH17, in development and onset of clinical SjS, considered a B cell-mediated hypersensitivity type 2 disease. Despite an ever-increasing focus on identifying the underlying aetiology of SjS, defining factors that initiate this autoimmune disease remain a mystery. Thus, determining interactions between infiltrating TH cells and exocrine gland tissue (auto-)antigens represents a fertile research endeavour. This review discusses pathological functions of TH cells in SjS, the current status of TH cell receptor gene rearrangements associated with human and mouse models of SjS and potential future prospects for identifying receptor-autoantigen interactions.
Collapse
Affiliation(s)
- A Karabiyik
- Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
34
|
Szczerba B, Rybakowska P, Dey P, Payerhin K, Peck A, Bagavant H, Deshmukh U. Type I interferon receptor deficiency prevents murine Sjogren's syndrome. J Dent Res 2013; 92:444-9. [PMID: 23533183 PMCID: PMC3627507 DOI: 10.1177/0022034513483315] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/09/2013] [Accepted: 02/27/2013] [Indexed: 01/05/2023] Open
Abstract
In Sjögren's Syndrome (SS), inherent glandular defects, autoimmunity, and mononuclear cell infiltration within the salivary glands cause reduced salivation leading to xerostomia. Excessive production of type I interferons (IFN), triggered by environmental and genetic factors, is considered pathogenic in this disorder. However, whether type I IFN production is causative or an outcome of the disease process is not known. To address this question, we introduced a deficiency of interferon alpha receptor 1 (Ifnar1) into B6.Aec1Aec2 mice, which are known to have the genetic loci necessary for developing a SS-like disorder. This new mouse strain, B6.Aec1Aec2Ifnar1 (-/-), lacking type I IFN-mediated signaling, was characterized for pilocarpine-induced salivation, the presence of serum autoantibodies, sialoadenitis, and dacryoadenitis. Compared with the B6.Aec1Aec2Ifnar1 (+/+) (wild-type) mice, the B6.Aec1Aec2Ifnar1 (-/-) (knockout) mice had significantly lower mononuclear cell infiltration in the salivary and lacrimal glands. The knockout mice were completely protected from salivary gland dysfunction. Surprisingly, they had a robust autoantibody response comparable with that of the wild-type mice. These findings demonstrate that, in the absence of type I IFN-mediated signaling, systemic autoantibody responses can be dissociated from glandular pathology. Our study suggests that, in genetically susceptible individuals, the type I IFN pathway can instigate certain features of SS.
Collapse
Affiliation(s)
- B.M Szczerba
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine
| | - P.D Rybakowska
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine
| | - P. Dey
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine
| | - K.M. Payerhin
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine
| | - A.B. Peck
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - H. Bagavant
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine
- Department of Pharmacology, University of Virginia, HSC, Box 800746, Charlottesville, VA 22908, USA
| | - U.S. Deshmukh
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine
- Department of Pharmacology, University of Virginia, HSC, Box 800746, Charlottesville, VA 22908, USA
| |
Collapse
|
35
|
Abstract
Oral Diseases (2012) Underlying molecular genetic mechanisms of diseases can be deciphered with unbiased strategies using recently developed technologies enabling genome-wide scale investigations. These technologies have been applied in scanning for genetic variations, gene expression profiles, and epigenetic changes for oral and craniofacial diseases. However, these approaches as applied to oral and craniofacial conditions are in the initial stages, and challenges remain to be overcome, including analysis of high throughput data and their interpretation. Here, we review methodology and studies using genome-wide approaches in oral and craniofacial diseases and suggest future directions.
Collapse
Affiliation(s)
- H Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | | |
Collapse
|
36
|
Peck AB, Nguyen CQ. Transcriptome analysis of the interferon-signature defining the autoimmune process of Sjögren's syndrome. Scand J Immunol 2012; 76:237-45. [PMID: 22703193 DOI: 10.1111/j.1365-3083.2012.02749.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sjögren's syndrome (SS) of humans and SS-like (SjS-like) diseases in mouse models are characterized by chronic immune attacks against the salivary and lacrimal glands leading to exocrine dysfunction. One characteristic of SS and SjS-like diseases repeatedly observed is a strong upregulated expression of both the type I (α/β) and type II (γ) interferons (IFNs). In addition, recent global transcriptome studies have identified a variety of IFN-stimulated gene (ISG) transcripts differentially expressed in tissues of SS patients and mouse models exhibiting SjS-like disease. Analyses of these transcriptome databases indicate that the sets of differentially expressed genes are highly restricted, suggesting that there is a unique specificity in ISGs activated (or suppressed) during development and onset of disease. As a result, these observations have led to both SS and SjS-like diseases being designated as 'interferon-signature' diseases. While SS and SjS-like diseases may be designated as such, very little effort has been made to determine what an interferon-signature might signify relative to autoinflammation and whether it might point directly to an underlying etiopathological mechanism. Here, we review these limited data and provide a model of how the products of these genes interact molecularly and biologically to define critical details of SS pathology.
Collapse
Affiliation(s)
- A B Peck
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA. peck@ pathology.ufl.edu
| | | |
Collapse
|
37
|
Gorr SU, Wennblom TJ, Horvath S, Wong DTW, Michie SA. Text-mining applied to autoimmune disease research: the Sjögren's syndrome knowledge base. BMC Musculoskelet Disord 2012; 13:119. [PMID: 22759918 PMCID: PMC3495204 DOI: 10.1186/1471-2474-13-119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 06/18/2012] [Indexed: 12/17/2022] Open
Abstract
Background Sjögren’s syndrome is a tissue-specific autoimmune disease that affects exocrine tissues, especially salivary glands and lacrimal glands. Despite a large body of evidence gathered over the past 60 years, significant gaps still exist in our understanding of Sjögren’s syndrome. The goal of this study was to develop a database that collects and organizes gene and protein expression data from the existing literature for comparative analysis with future gene expression and proteomic studies of Sjögren’s syndrome. Description To catalog the existing knowledge in the field, we used text mining to generate the Sjögren’s Syndrome Knowledge Base (SSKB) of published gene/protein data, which were extracted from PubMed using text mining of over 7,700 abstracts and listing approximately 500 potential genes/proteins. The raw data were manually evaluated to remove duplicates and false-positives and assign gene names. The data base was manually curated to 477 entries, including 377 potential functional genes, which were used for enrichment and pathway analysis using gene ontology and KEGG pathway analysis. Conclusions The Sjögren’s syndrome knowledge base (
http://sskb.umn.edu) can form the foundation for an informed search of existing knowledge in the field as new potential therapeutic targets are identified by conventional or high throughput experimental techniques.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
38
|
Lee BH, Gauna AE, Pauley KM, Park YJ, Cha S. Animal models in autoimmune diseases: lessons learned from mouse models for Sjögren's syndrome. Clin Rev Allergy Immunol 2012; 42:35-44. [PMID: 22105703 DOI: 10.1007/s12016-011-8288-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The mouse model is the one of the most frequently used and well-established animal models, and is currently used in many research areas. To date, various mouse models have been utilized to elucidate underlying causes of multifactorial autoimmune conditions, including pathological immune components and specific signaling pathways. This review summarizes the more recent mouse models for Sjögren's syndrome, a systemic autoimmune disease characterized by lymphocytic infiltration in the exocrine glands, such as the salivary and lacrimal glands, and loss of secretory function, resulting in dry mouth and dry eyes in patients. Although every Sjögren's syndrome mouse model resembles the major symptoms or phenotypes of Sjögren's syndrome conditions in humans, the characteristics of each model are variable. Moreover, to date, there is no single mouse model that can completely replicate the human conditions. However, unique features of each mouse model provide insights into the roles of potential etiological and immunological factors in the development and progression of Sjögren's syndrome. Here, we will overview the Sjögren's syndrome mouse models. Lessons from these mouse models will aid us to understand underlying immune dysregulation in autoimmune diseases in general, and will guide us to direct future research towards appropriate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Byung Ha Lee
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, JHMHSC, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
39
|
Yin H, Nguyen CQ, Samuni Y, Uede T, Peck AB, Chiorini JA. Local delivery of AAV2-CTLA4IgG decreases sialadenitis and improves gland function in the C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's syndrome. Arthritis Res Ther 2012; 14:R40. [PMID: 22369699 PMCID: PMC3392840 DOI: 10.1186/ar3753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a key negative costimulatory molecule that displays a wide range of anti-inflammatory properties and is currently approved to treat rheumatoid arthritis as a recombinant fusion protein (CTLA4IgG). To better understand the role of CTLA4IgG in primary Sjögren's syndrome (pSS), we generated a recombinant adeno-associated virus vector serotype 2 (AAV2) expressing a chimera of mouse CTLA-4 fused with a human immunoglobulin (AAV2-CTLA4IgG) and observed the effect of this molecule in C57BL/6.NOD-Aec1Aec2 mice, an animal model of pSS. METHODS A recombinant adeno-associated virus-2 (AAV-2) vector was constructed encoding a CTLA4IgG fusion protein. The AAV2-CTLA4IgG vector and an AAV2 control vector encoding beta galactosidase (LacZ) were administered by retrograde cannulation of the submandibular glands of C57BL/6.NOD-Aec1Aec2 mice. Protein expression was measured by ELISA and salivary glands were assessed for inflammation and activity. RESULTS Recombinant CTLA4IgG blocked B7 expression on macrophages in vitro. In vivo, localized expression of CTLA4IgG in the salivary glands of C57BL/6.NOD-Aec1Aec2 mice inhibited the loss of salivary gland activity and decreased T and B cell infiltration as well as dendritic cells and macrophages in the glands compared with control mice. In addition a decrease in several proinflammatory cytokines and an increase in transforming growth factor beta-1 (TGF-β1) expression were also observed. CONCLUSIONS These data suggest expression of CTLA4IgG in the salivary gland can decrease the inflammation and improve the xerostomia reported in these mice.
Collapse
Affiliation(s)
- Hongen Yin
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Cranial Research, National Institutes of Health, 10 Center Drive, MSC1190, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Peck AB, Saylor BT, Nguyen L, Sharma A, She JX, Nguyen CQ, McIndoe RA. Gene expression profiling of early-phase Sjögren's syndrome in C57BL/6.NOD-Aec1Aec2 mice identifies focal adhesion maturation associated with infiltrating leukocytes. Invest Ophthalmol Vis Sci 2011; 52:5647-55. [PMID: 21666236 DOI: 10.1167/iovs.11-7652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Despite considerable efforts, the molecular and cellular events in lacrimal gland tissues initiating inflammatory responses leading to keratoconjunctivitis sicca (KCS), autoimmunity, and Sjögren's syndrome (SjS) have yet to be defined. To determine whether altered glandular homeostasis occurs before the onset of autoimmunity, a temporal transcriptome study was carried out in an animal model of primary SjS. METHODS Using oligonucleotide microarrays, gene expression profiles were generated for lacrimal glands of C57BL/6.NOD-Aec1Aec2 mice 4 to 20 weeks of age. Pairwise analyses identified genes differentially expressed, relative to their 4-week expression, during the development of SjS-like disease. Statistical analyses defined differentially and coordinately expressed gene sets. The PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system was used to define annotated biological processes or functions. RESULTS Temporal transcript expression profiles of C57BL/6.NOD-Aec1Aec2 lacrimal glands before, or concomitant with, the first appearance of inflammatory cells revealed a highly restricted subset of differentially expressed genes encoding interactive extracellular matrix proteins, fibronectin, integrins, and syndecans. In contrast, genes encoding interepithelial junctional complex proteins defined alterations in tight junctions (TJ), adherens, desmosomes, and gap junctions, suggesting perturbations in the permeability of the paracellular spaces between epithelial barriers. Correlating with this were gene sets defining focal adhesion (FA) maturation and Ras/Raf-Mek/Erk signal transduction. Immunohistochemically, FAs were associated with infiltrating leukocytes and not with lacrimal epithelial cells. CONCLUSIONS For the first time, FA maturations are implicated as initial biomarkers of impending autoimmunity in lacrimal glands of SjS-prone mice. Changes in TJ complex genes support an increased movement of cells through paracellular spaces.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Delaleu N, Nguyen CQ, Peck AB, Jonsson R. Sjögren's syndrome: studying the disease in mice. Arthritis Res Ther 2011; 13:217. [PMID: 21672284 PMCID: PMC3218871 DOI: 10.1186/ar3313] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sjögren's syndrome (SS), a systemic autoimmune disease, is characterized by inflammation of exocrine tissues accompanied by a significant loss of their secretory function. Clinical symptoms develop late and there are no diagnostic tests enabling early diagnosis of SS. Thus, particularly to study these covert stages, researchers turn to studying animal models where mice provide great freedom for genetic manipulation and testing the effect of experimental intervention. The present review summarizes current literature pertaining to both spontaneous and extrinsic-factor induced SS-like diseases in mouse models, discussing advantages and disadvantages related to the use of murine models in SS research.
Collapse
Affiliation(s)
- Nicolas Delaleu
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, New Laboratory Building, 5th floor, #5305, 5021 Bergen, Norway.
| | | | | | | |
Collapse
|
42
|
Nguyen CQ, Yin H, Lee BH, Carcamo WC, Chiorini JA, Peck AB. Pathogenic effect of interleukin-17A in induction of Sjögren's syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther 2010; 12:R220. [PMID: 21182786 PMCID: PMC3046533 DOI: 10.1186/ar3207] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/30/2010] [Accepted: 12/23/2010] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Sjögren's syndrome (SS) involves a chronic, progressive inflammation primarily of the salivary and lacrimal glands leading to decreased levels of saliva and tears resulting in dry mouth and dry eye diseases. Seminal findings regarding TH17 cell populations that secrete predominantly interleukin (IL)-17A have been shown to play an important role in an increasing number of autoimmune diseases, including SS. In the present study, we investigated the function of IL-17A on the development and onset of SS. METHODS Adenovirus serotype 5 (Ad5) vectors expressing either IL-17A or LacZ were infused via retrograde cannulation into the salivary glands of C57BL/6J mice between 6 and 8 weeks of age or between 15 and 17 weeks of age. The mice were characterized for SS phenotypes. RESULTS Disease profiling indicated that SS-non-susceptible C57BL/6J mice whose salivary glands received the Ad5-IL17A vector developed a SS-like disease profile, including the appearance of lymphocytic foci, increased cytokine levels, changes in antinuclear antibody profiles, and temporal loss of saliva flow. CONCLUSIONS Induction of SS pathology by IL-17A in SS-non-susceptible mice strongly suggests that IL-17A is an important inflammatory cytokine in salivary gland dysfunction. Thus, localized anti-IL17 therapy may be effective in preventing glandular dysfunction.
Collapse
Affiliation(s)
- Cuong Q Nguyen
- Eli and Edythe L, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Nguyen CQ, Peck AB. Inflammation in dry eye diseases culminating in loss of ocular homeostasis. EXPERT REVIEW OF OPHTHALMOLOGY 2010. [DOI: 10.1586/eop.10.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|