1
|
Xue B, Li J, Xie D, Weng Y, Zhang X, Li X, Xia J, Lin J. Effects of early intervention in neuromyelitis optica spectrum disorder patients with seropositive AQP4 antibodies. Front Immunol 2024; 15:1458556. [PMID: 39555058 PMCID: PMC11563946 DOI: 10.3389/fimmu.2024.1458556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background The impact of early intervention with immunosuppressive treatment (IST) in anti-Aquaporin4-antibody (AQP4-ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) has not been thoroughly evaluated. Objective This study aims to assess the effects of early IST intervention in patients with NMOSD. Methods This retrospective cohort study included 174 treatments from 137 NMOSD patients seropositive for AQP4-antibody, treated with ISTs such as rituximab, mycophenolate mofetil, azathioprine, or tacrolimus. Multiple statistical analyses, including regression discontinuity design (RDD), kaplan-meier analyze, Cox proportional hazards regression model, were employed to evaluate the effects of early IST intervention on annualized relapse rate (ARR) change, Expanded Disability Status Scale (EDSS) change, and time to next relapse. Results A total of 174 treatments from 137 patients were analyzed. Patients exhibited significant improvement in ARR[1.95 vs.0, IQR (0.70-6.0 vs. 0-0.42), p<0.001] and EDSS [3.0 vs. 2.5, IQR (2.0-4.0 vs. 1.0-3.0) p<0.001]after IST, although the ARR change was not significant in patients treated with TAC. Early IST initiation was associated with greater improvements in both ARR and EDSS compared to later initiation. RDD analysis demonstrated a time-dependent effect of ARR-change, indicating greater efficacy with early IST intervention. Conclusions Early intervention with ISTs in AQP4-antibody-positive NMOSD patients is associated with better outcomes in terms of reducing relapse rate and improving disability. These findings underscore the importance of early treatment in NMOSD.
Collapse
Affiliation(s)
- Binbin Xue
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dewei Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junhui Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Wu Y, Zhou Y, Zhu Q, Liu Y, Deng D, Zhang J. B cell function in patients with systemic lupus erythematosus is regulated by the upregulation of JunD. Heliyon 2024; 10:e35949. [PMID: 39220919 PMCID: PMC11365431 DOI: 10.1016/j.heliyon.2024.e35949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is largely caused by B cell dysfunction. JunD is an activator protein 1 family protein that has been linked to the regulation of apoptotic and proliferative activities. However, the precise mechanism(s) by which JunD functions remains to be fully elucidated. Accordingly, this study aimed to clarify the functional importance of JUND gene expression in SLE, with further analyses of the functional role that JunD plays as a regulator of B cell proliferation and immune function. Methods Reverse transcriptase quantitative polymerase chain reaction techniques were used to analyze JunD expression in B cells of patients with SLE and healthy subjects. Cell Counting Kit-8 (CCK-8) assays and flow cytometry methods were used to characterise proliferative activity, cell cycle progression, and apoptosis of B cells in which JunD was either knocked down or overexpressed. The immune status and autophagic activity of these cells were assessed using Western immunoblotting and enzyme-linked immunosorbent assay (ELISA). Additionally, a JunD knockdown mouse model was established, and the functional role of B cell JunD expression in the pathogenesis of SLE was assessed using Western immunoblotting, ELISA, and haematoxylin and eosin staining. Results B cells from patients with SLE exhibited upregulation of JunD, with overexpression facilitating in vitro cellular proliferation and modulation of the immune and autophagic status of these B cells. JunD knockdown was also sufficient to modulate in vivo immune function and the autophagic status of B cells. Conclusion JunD was upregulated in the B cells of patients with SLE, where it regulates proliferation, autophagy, and immunity.
Collapse
Affiliation(s)
- Yongzhuo Wu
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, PR China
| | - Yali Zhou
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, PR China
| | - Qinghuan Zhu
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, PR China
| | - Yingying Liu
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, PR China
| | - Danqi Deng
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, PR China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, 100044, PR China
| |
Collapse
|
3
|
Liu TC, Shih CJ, Chiou YL. Oral administration of oligo fucoidan improves the survival rate, quality of life, and immunity in patients with lung cancer. Food Nutr Res 2024; 68:10674. [PMID: 38974912 PMCID: PMC11227263 DOI: 10.29219/fnr.v68.10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background Lung cancer, the most commonly diagnosed cancer globally, has the highest incidence and mortality rates in Taiwan. It can be divided into two types. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, which is further divided into adenocarcinoma, squamous cell carcinoma, and large cell lung cancer accounting for approximately 40%, 25%, and 15% of NSCLC cases, respectively. Small cell lung cancer accounts for approximately 15% of lung cancers. Early systemic therapy NSCLC was based on chemotherapy, and immunotherapy is currently under development. Fucoidan, from brown seaweed extracts, shows promise in mitigating radiation-induced lung fibrosis in animal studies, suggesting its potential as an adjuvant for radiation therapy-related lung fibrosis in lung cancer patients. However, the clinical utility of such adjuvant therapy in lung cancer treatment remains uncertain. The purpose of this study was to investigate the effects of oral administration of oligo-fucoidan on the survival rate, quality of life, and immunity of patients with lung cancer. Methods Subjects with Non-small cell lung cancer aged between 20 and 80 were collected from outpatient clinics, divided into control group (n = 7): conventional therapy and fucoidan group (n = 13): received conventional therapy+ oral supplementation of oligo-fucoidan (550 mg × 4 tablets). Data were collected before the study, at weeks 4, 12, and 24 during the study, and to collect 20 ml of peripheral blood, for analysis biochemical data, liver and kidney function, lymphocyte population, inflammation cytokines, and using EORTC QLQ-C30 questionnaire to assess quality of life. Results The survival rates of the subjects in the control and fucoidan groups were 20% and 28.6%, respectively. During the study, patients in the fucoidan group experienced a better quality of life than those in the control group, but this difference lacked statistical significance. Oligo-fucoidan increases the CD19 lymphocyte population. The patients in the fucoidan group also had Lower inflammatory cytokine. Conclusion Oligo-fucoidan holds promise as an adjuvant therapy to enhance the survival rate, quality of life, and immune function in patients with lung cancer.
Collapse
Affiliation(s)
- Tu-Chen Liu
- Department of Chest Medicine, Cheng-Ching General Hospital, Taichung, Republic of China
| | - Chia-Ju Shih
- Department of Nutrition (Master Program), Hungkuang University, Taichung, Taiwan, Republic of China
| | - Ya-Ling Chiou
- Department of Nutrition (Master Program), Hungkuang University, Taichung, Taiwan, Republic of China
| |
Collapse
|
4
|
Huang HYR, Wireko AA, Miteu GD, Khan A, Roy S, Ferreira T, Garg T, Aji N, Haroon F, Zakariya F, Alshareefy Y, Pujari AG, Madani D, Papadakis M. Advancements and progress in juvenile idiopathic arthritis: A Review of pathophysiology and treatment. Medicine (Baltimore) 2024; 103:e37567. [PMID: 38552102 PMCID: PMC10977530 DOI: 10.1097/md.0000000000037567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a chronic clinical condition characterized by arthritic features in children under the age of 16, with at least 6 weeks of active symptoms. The etiology of JIA remains unknown, and it is associated with prolonged synovial inflammation and structural joint damage influenced by environmental and genetic factors. This review aims to enhance the understanding of JIA by comprehensively analyzing relevant literature. The focus lies on current diagnostic and therapeutic approaches and investigations into the pathoaetiologies using diverse research modalities, including in vivo animal models and large-scale genome-wide studies. We aim to elucidate the multifactorial nature of JIA with a strong focus towards genetic predilection, while proposing potential strategies to improve therapeutic outcomes and enhance diagnostic risk stratification in light of recent advancements. This review underscores the need for further research due to the idiopathic nature of JIA, its heterogeneous phenotype, and the challenges associated with biomarkers and diagnostic criteria. Ultimately, this contribution seeks to advance the knowledge and promote effective management strategies in JIA.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Goshen David Miteu
- School of Biosciences, Biotechnology, University of Nottingham, Nottingham, UK
- Department of Biochemistry, Caleb University Lagos, Lagos, Nigeria
| | - Adan Khan
- Kent and Medway Medical School, Canterbury, Kent, UK
| | - Sakshi Roy
- School of Medicine, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Tomas Ferreira
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Tulika Garg
- Government Medical College and Hospital Chandigarh, Chandigarh, India
| | - Narjiss Aji
- Faculty of Medicine and Pharmacy of Rabat, Rabat, Morocco
| | - Faaraea Haroon
- Faculty of Public Health, Health Services Academy, Islamabad, Pakistan
| | - Farida Zakariya
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Yasir Alshareefy
- School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Anushka Gurunath Pujari
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Djabir Madani
- UCD Lochlann Quinn School of Business and Sutherland School of Law, University College Dublin, Dublin, Ireland
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| |
Collapse
|
5
|
Monson N, Smith C, Greenberg H, Plumb P, Guzman A, Tse K, Chen D, Zhang W, Morgan M, Speed H, Powell C, Batra S, Cowell L, Christley S, Vernino S, Blackburn K, Greenberg B. VH2+ Antigen-Experienced B Cells in the Cerebrospinal Fluid Are Expanded and Enriched in Pediatric Anti-NMDA Receptor Encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1332-1339. [PMID: 37712756 PMCID: PMC10593502 DOI: 10.4049/jimmunol.2300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nancy Monson
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Chad Smith
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Hannah Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Patricia Plumb
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Alyssa Guzman
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Key Tse
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Ding Chen
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Wei Zhang
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Miles Morgan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Haley Speed
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Craig Powell
- Department of Neurobiology, Civitan International Research Center, University of Alabama Marnix E. Heersink School of Medicine, Birmingham, AL
| | - Sushobhna Batra
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Lindsay Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Steve Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Kyle Blackburn
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
6
|
Kaudewitz D, Lorenz HM. [Drug therapy of rheumatoid arthritis: where do biologics and novel synthetic disease-modifying antirheumatic drugs stand today?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:1005-1012. [PMID: 37493758 DOI: 10.1007/s00108-023-01554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
Biologics and Janus kinase (JAK) inhibitors play an important role in the treatment of rheumatoid arthritis. As new therapeutic developments have emerged in recent decades, the morbidity and mortality of rheumatoid arthritis have been significantly reduced. The characterization of the structure and function of immune cell receptors has led to the development of biologics that specifically inhibit cytokines and immune cell receptors. An important therapeutic addition was the approval of JAK inhibitors, which act directly on intracellular signaling by tyrosine kinases. This article provides an overview of the current therapeutic options for rheumatoid arthritis with a special focus on indication, mechanism of action and the place in the treatment algorithm of biologics and JAK inhibitors.
Collapse
Affiliation(s)
- Dorothee Kaudewitz
- Medizinische Klinik V, Klinik für Hämatologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland.
| | - Hanns-Martin Lorenz
- Medizinische Klinik V, Klinik für Hämatologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| |
Collapse
|
7
|
Li X, Armon C, Barkhaus P, Barnes B, Benatar M, Bertorini T, Bromberg M, Carter GT, Crayle J, Cudkowicz M, Dimachkie M, Feldman EL, Glass J, Goslinga J, Heiman-Patterson T, Jhooty S, Lichtenstein R, Lund I, Mcdermott C, Pattee G, Pierce K, Ratner D, Salmon K, Wicks P, Bedlack R. ALSUntangled #67: rituximab. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:544-547. [PMID: 36106861 DOI: 10.1080/21678421.2022.2122845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/04/2022] [Indexed: 11/01/2022]
Abstract
ALSUntangled reviews alternative and off-label treatments on behalf of people with ALS who ask about them. Here we review rituximab, a drug which specifically depletes B lymphocytes. We show a current lack of evidence for a role of these cells in ALS progression. The one patient we found who described using Rituximab for their ALS found no benefit. Given all this, and the known serious risks of rituximab, we advise against its use as an ALS treatment.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benjamin Barnes
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jesse Crayle
- Neurology Department, Washington University, St. Louis, MO, USA
| | - Merit Cudkowicz
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mazen Dimachkie
- Department of Neurology, University of Kansas, Kansas City, KS, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Glass
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Jill Goslinga
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Sartaj Jhooty
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel Lichtenstein
- Avram and Stella Goren-Goldstein Biotechnology Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isaac Lund
- Undergraduate, Green Hope High School, Cary, NC, USA
| | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaitlyn Pierce
- Department of Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dylan Ratner
- Undergraduate, Longmeadow High School, Longmeadow, MA, USA
| | - Kristiana Salmon
- Department of Neurology, Montreal Neurological Institute, Montreal, CA and
| | | | | |
Collapse
|
8
|
Pitsiu M, Yalkinoglu Ö, Farrell C, Girard P, Vazquez‐Mateo C, Papasouliotis O. Population pharmacokinetics of atacicept in systemic lupus erythematosus: An analysis of three clinical trials. CPT Pharmacometrics Syst Pharmacol 2023; 12:1157-1169. [PMID: 37332136 PMCID: PMC10431037 DOI: 10.1002/psp4.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
B cell stimulating factor (BLyS) and a proliferation-inducing ligand (APRIL) are targets for novel treatments in patients with systemic lupus erythematosus (SLE). Atacicept is a recombinant, soluble fusion protein that blocks BLyS and APRIL activity. This study characterized the pharmacokinetic (PK) profile of atacicept using a population PK model and identified covariates explaining the PK variability. Total atacicept concentrations from a phase I study in healthy volunteers and two phase II studies in patients with SLE, using subcutaneous administration, were modeled using a quasi-steady-state approximation of the target-mediated drug disposition model with first-order absorption. The model included 3640 serum atacicept concentration records from 37 healthy volunteers and 503 patients with SLE and described total atacicept concentrations of the three trials, providing precise estimates of all parameters. Body weight and baseline BLyS concentration were the only statistically significant covariates, whereas no differences were found between patients and healthy volunteers. Apparent clearance and volume of the central compartment increased with body weight and initial target concentration increased with baseline BLyS. The change on atacicept exposure was moderate, with a difference in area under the curve compared with the median of 20%-32% for body weight, and 7%-18% for BLyS. Therefore, the effects of these covariates on atacicept exposure are not expected to be clinically relevant. The model described the complete total atacicept concentration-time profiles without finding any differences between healthy subjects and patients with SLE and supports the 150 mg once weekly dose for further trials.
Collapse
Affiliation(s)
- Maria Pitsiu
- Quantitative Pharmacology and PharmacometricsICON Clinical Research UK LtdMarlowUK
| | - Özkan Yalkinoglu
- Translational Medicinethe healthcare business of Merck KGaADarmstadtGermany
| | - Colm Farrell
- Quantitative Pharmacology and PharmacometricsICON Clinical Research UK LtdMarlowUK
| | - Pascal Girard
- Merck Institute of Pharmacometrics, Lausanne, Switzerland, an Affiliate of Merck KGaA, Darmstadt, GermanyAres Trading S.A.LausanneSwitzerland
| | | | - Orestis Papasouliotis
- Merck Institute of Pharmacometrics, Lausanne, Switzerland, an Affiliate of Merck KGaA, Darmstadt, GermanyAres Trading S.A.LausanneSwitzerland
| |
Collapse
|
9
|
Chen LM, Chai KX. Exosome-Mediated Activation of the Prostasin-Matriptase Serine Protease Cascade in B Lymphoma Cells. Cancers (Basel) 2023; 15:3848. [PMID: 37568664 PMCID: PMC10417574 DOI: 10.3390/cancers15153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prostasin and matriptase are extracellular membrane serine proteases with opposing effects in solid epithelial tumors. Matriptase is an oncoprotein that promotes tumor initiation and progression, and prostasin is a tumor suppressor that reduces tumor invasion and metastasis. Previous studies have shown that a subgroup of Burkitt lymphoma have high levels of ectopic matriptase expression but no prostasin. Reducing the matriptase level via small interfering RNAs in B lymphoma cells impeded tumor xenograft growth in mice. Here, we report a novel approach to matriptase regulation in B cancer cells by prostasin via exosomes to initiate a prostasin-matriptase protease activation cascade. The activation and shedding of matriptase were monitored by measuring its quantity and trypsin-like serine protease activity in conditioned media. Sustained activation of the protease cascade in the cells was achieved by the stable expression of prostasin. The B cancer cells with prostasin expression presented phenotypes consistent with its tumor suppressor role, such as reduced growth and increased apoptosis. Prostasin exosomes could be developed as an agent to initiate the prostasin-matriptase cascade for treating B lymphoma with further studies in animal models.
Collapse
Affiliation(s)
- Li-Mei Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Karl X. Chai
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Zhang Y, Xu Y, Dang X, Zhu Z, Qian W, Liang A, Han W. Challenges and optimal strategies of CAR T therapy for hematological malignancies. Chin Med J (Engl) 2023; 136:269-279. [PMID: 36848181 PMCID: PMC10106177 DOI: 10.1097/cm9.0000000000002476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Remarkable improvement relative to traditional approaches in the treatment of hematological malignancies by chimeric antigen receptor (CAR) T-cell therapy has promoted sequential approvals of eight commercial CAR T products within last 5 years. Although CAR T cells' productization is now rapidly boosting their extensive clinical application in real-world patients, the limitation of their clinical efficacy and related toxicities inspire further optimization of CAR structure and substantial development of innovative trials in various scenarios. Herein, we first summarized the current status and major progress in CAR T therapy for hematological malignancies, then described crucial factors which possibly compromise the clinical efficacies of CAR T cells, such as CAR T cell exhaustion and loss of antigen, and finally, we discussed the potential optimization strategies to tackle the challenges in the field of CAR T therapy.
Collapse
Affiliation(s)
- Yajing Zhang
- Department of Bio-Therapeutics, The First Medical Centre, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiuyong Dang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Zeyu Zhu
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Weidong Han
- Department of Bio-Therapeutics, The First Medical Centre, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
11
|
Wang Y, Sun Z, Du X, Yu Q, Sun C, Huang J, Wang L. Increased death and exhaustion of CD69 high T cells and NK cells are associated with PD-1 antibody application in the in vitro co-culture system. PeerJ 2023; 11:e15374. [PMID: 37180581 PMCID: PMC10174060 DOI: 10.7717/peerj.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Background The application of PD-1 monoclonal antibody (mAb) helps to treat non-small cell lung cancer, but acquired resistance has emerged in clinical practice. We tested the hypothesis that acquired resistance of anti-PD-1 immunotherapy is linked to death and exhaustion of activated T and NK cell. Methods The co-culture system of HCC827 cells and peripheral mononuclear cells (PBMCs) was established to evaluate the effect of PD-1 mAb on the death rate and exhaustion of T and NK cell. The predisposing role of CD69 for death and exhaustion was validated by using PHA-activated PBMCs of CD69low NSCLC patients. The 10-colour/three laser flow cytometer was used to test related markers for cell activation, death and exhaustion. Results We found that PD-1 mAb increase the death and exhaustion of T cells and NK cells in a dose-dependent way when PBMCs from NSCLC patients whose the percentages of CD69+ cells in peripheral blood T cells were greater than 5% (CD69high NSCLC patients). By analyzing PBMCs from healthy volunteers and CD69low NSCLC patients, we found that T cells and NK cells can be induced to die by PD-1 mAb after PHA activation, and had a tendency to raise the rate of cell exhaustion. Conclusions Our findings imply that increased death and exhaustion of CD69high T cells and NK cells are associated with ineffective anti-PD-1 immunotherapy in lung cancer. The CD69 expression of T cells and NK cells may be developed as a potential predictor for acquired resistance of anti-PD-1 immunotherapy. These data may provide ideas to guide individualized medication of PD-1 mAb in NSCLC patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhengyi Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Du
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qiuyang Yu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Chao Sun
- Cancer Centre, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
13
|
Pseurotin D inhibits delayed type IV hypersensitivity response. Chem Biol Interact 2022; 368:110241. [DOI: 10.1016/j.cbi.2022.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
14
|
miR-155: An Important Role in Inflammation Response. J Immunol Res 2022; 2022:7437281. [PMID: 35434143 PMCID: PMC9007653 DOI: 10.1155/2022/7437281] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, mature, noncoding RNA that lead to posttranscriptional gene silencing to regulate gene expression. miRNAs are instrumental in biological processes such as cell development, cell differentiation, cell proliferation, and cell apoptosis. The miRNA-mediated gene silencing is an important part of the regulation of gene expression in many kinds of diseases. miR-155, one of the best-characterized miRNAs, has been found to be closely related to physiological and pathological processes. What is more, miR-155 can be used as a potential therapeutic target for inflammatory diseases. We analyze the articles about miR-155 for nearly five years, review the advanced study on the function of miR-155 in different inflammatory cells like T cells, B cells, DCs, and macrophages, and then summarize the biological functions of miR-155 in different inflammatory cells. The widespread involvement of miR-155 in human diseases has led to a novel therapeutic approach between Chinese and Western medicine.
Collapse
|
15
|
Beladakere Ramaswamy S, Singh S, Hooshmand S, Junsang C, Sweeney M, Govindarajan R. Current and Upcoming Treatment Modalities in Myasthenia Gravis. J Clin Neuromuscul Dis 2021; 23:75-99. [PMID: 34808650 DOI: 10.1097/cnd.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ABSTRACT Myasthenia gravis (MG) is one of the extensively studied autoimmune disorder. There has been a dramatic increase in research to further understand molecular pathogenesis of MG and clinical trials for new drugs in MG treatment in the past decade. This review article is to consolidate the available information in simple terms with students, residents, and fellows as target audience for easy learning and help application of this knowledge to clinical practice.
Collapse
|
16
|
Chan SCW, Lau CS. Systemic Lupus Erythematosus and Immunodeficiency. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:131-138. [PMID: 36465072 PMCID: PMC9524792 DOI: 10.2478/rir-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease caused by a combination of genetic, epigenetic, and environmental factors. Recent advances in genetic analysis coupled with better understanding of different immune regulatory and signaling pathways have revealed the complex relationship between autoimmunity, including SLE, and immunodeficiency. Furthermore, the expanding therapeutic armamentarium has led to the increasing awareness of secondary immunodeficiency in these patients. This article serves to update the current understanding of SLE and immunodeficiency by discussing the shared genetic factors and immunobiology. We also summarize the effects of immunosuppressive therapies with a focus on secondary antibody deficiency (SAD) after B-cell targeted therapies.
Collapse
Affiliation(s)
- Shirley Chiu Wai Chan
- Department of Medicine, Division of Rheumatology and Clinical Immunology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Chak Sing Lau
- Department of Medicine, Division of Rheumatology and Clinical Immunology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
17
|
Qelliny MR, Shimizu T, Elsadek NE, Emam SE, Takata H, Fathalla ZMA, Hussein AK, Khaled KA, Ando H, Ishima Y, Ishida T. Incorporating Gangliosides into PEGylated Cationic Liposomes that Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice. Mol Pharm 2021; 18:2406-2415. [PMID: 33896187 DOI: 10.1021/acs.molpharmaceut.1c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.
Collapse
Affiliation(s)
- Milad Reda Qelliny
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Zeinab M A Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
18
|
Pseurotin D Inhibits the Activation of Human Lymphocytes. Int J Mol Sci 2021; 22:ijms22041938. [PMID: 33669259 PMCID: PMC7920033 DOI: 10.3390/ijms22041938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pseurotins, a family of secondary metabolites of different fungi characterized by an unusual spirocyclic furanone-lactam core, are suggested to have different biological activities including the modulation of immune response. Purpose: Complex characterization of the effects of pseurotin D on human lymphocyte activation in order to understand the potential of pseurotin to modulate immune response in humans. Methods: CD4+ and CD8+ T cells and CD19+ B cells isolated from human blood were activated by various activators simultaneously with pseurotin D treatment. The effects of pseurotin were tested on the basis of changes in cell viability, apoptosis, activation of signal transducers and activators of transcription (STAT) signaling pathways, production of tumor necrosis factor (TNF)-α by T cells, expression of activation markers CD69 and CD25 on T cells and Human Leukocyte Antigen–DR isotype (HLA-DR) on B cells, and the differentiation markers CD20, CD27, CD38, and immunoglobulin (Ig) D on B cells. Results: Pseurotin D significantly inhibited the activation of both CD4+ and CD8+ human T cells complemented by the inhibition of TNF-α production without significant acute toxic effects. The Pseurotin D-mediated inhibition of T-cell activation was accompanied by the induction of the apoptosis of T cells. This corresponded with the inhibited phosphorylation of STAT3 and STAT5. In human B cells, pseurotin D did not significantly inhibit their activation; however, it affected their differentiation. Conclusions: Our results advance the current mechanistic understanding of the pseurotin-induced inhibition of lymphocytes and suggest pseurotins as new attractive chemotypes for future research in the context of immune-modulatory drugs.
Collapse
|
19
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|
20
|
Vašíček O, Fedr R, Skoroplyas S, Chalupa D, Sklenář M, Tharra PR, Švenda J, Kubala L. Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153194. [PMID: 32146299 DOI: 10.1016/j.phymed.2020.153194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/29/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The frequency of allergic diseases is constantly rising. Dysregulated production of isotype E immunoglobulins is one of the key factors behind allergic reactions and its modulation is therefore an important target for pharmacological intervention. Natural products of the pseurotin family were reported to be inhibitors of IgE production in B-cells. Mechanistic details underlying these effects are however not well understood. PURPOSE In the present study, we synthesized new analogs of natural pseurotins and extensively investigated their inhibitory effects on activation, proliferation and differentiation of B-cells, as well as on the production of IgE. STUDY DESIGN Effects of two natural pseurotins (pseurotins A and D) and a collection of fully synthetic pseurotin analogs were studied on mouse B-cells stimulated by the combination of IL-4 and E. coli lipopolysaccharide. The IgE production was determined along with cell viability and cell proliferation. The phosphorylation of selected members of the STAT transcription factor family was subsequently investigated. Finally, the in vivo effect of pseurotin D on the ovalbumin-induced delayed type hypersensitivity response was tested in mice. RESULTS We discovered that several fully synthetic pseurotin analogs were able to decrease the production of IgE in stimulated B-cells with potency comparable to that of pseurotins A and D. We found that the two natural pseurotins and the active synthetic analogs inhibited the phosphorylation of STAT3, STAT5 and STAT6 proteins in stimulated B-cells, resulting in the inhibition of B-cell proliferation and differentiation into the plasma cells. In vivo, pseurotin D decreased ovalbumin-induced foot pad edema. CONCLUSION Our results advance the current mechanistic understanding of the pseurotin-induced inhibition of IgE production in B-cells by linking the effect to STAT signaling, and associated modulation of B-cell proliferation and differentiation. Together with our finding that structurally simpler pseurotin analogs were able to reproduce the effects of natural pseurotins, the presented work has implications for the future research on these secondary metabolites in the context of allergic diseases.
Collapse
Affiliation(s)
- Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Svitlana Skoroplyas
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - David Chalupa
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Matěj Sklenář
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Prabhakara Rao Tharra
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jakub Švenda
- International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Brno 612 65, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|
21
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
22
|
Abstract
In recent years tremendous progress has been made in the therapeutic management of rheumatoid arthritis. Rheumatologists now have a large armamentarium of highly efficient drugs with different mechanisms of action at their disposal. These new drugs consist of biologicals (biological disease-modifying antirheumatic drugs, bDMARDs) as well as targeted synthetic DMARDs (tsDMARD). A common feature of these new drugs for treatment of rheumatoid arthritis is that the molecular target of the drug is known, which is not the case for conventional DMARDs. With the help of the new drugs, the therapeutic goal of inducing remission in patients with rheumatoid arthritis has become reality for many patients. Nevertheless, there is still a significant proportion of patients who do not adequately respond to all available drugs, leaving room for still further improvement. This review gives a short overview on the currently available and effective substances for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Stephan Blüml
- Klinik für Innere Medizin III/Abteilung für Rheumatologie, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
23
|
Cimaz R, Maioli G, Calabrese G. Current and emerging biologics for the treatment of juvenile idiopathic arthritis. Expert Opin Biol Ther 2020; 20:725-740. [PMID: 32116038 DOI: 10.1080/14712598.2020.1733524] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The management of a child with juvenile idiopathic arthritis (JIA) requires a combination of pharmacological, physical, and psychosocial therapies in order to induce disease remission, by controlling articular and systemic inflammation. This review aims to provide a comprehensive discussion on the biological therapies currently in use in the treatment of JIA referring to existing recommendations and clinical evidence. We also discuss on the emerging biological drugs actually under consideration. AREAS COVERED Recent findings on immunological mechanisms involved in the pathogenesis of the disease allowed us to identify several specific targets for biologic therapies. A systematic literature review was conducted between January 1997 and January 2020 on PubMed including national and international guidelines and recommendations, trials and case-control studies. EXPERT OPINION There is now a plethora of therapies that are directed against variable targets, and the physician has to choose the most appropriate available medication in order to achieve early and sustained remission with as few side effects as possible. Research is advancing very fast in order to be more and more specific in suppressing inflammatory pathways without harming natural defenses. Finally, pharmacoeconomic considerations will also be very important to deal with, considering the high cost of most of these molecules.
Collapse
Affiliation(s)
- Rolando Cimaz
- Pediatric Rheumatology Department, ASST-Gaetano Pini-CTO, Department of Clinical Sciences and Community Health, University of Milan , Milan, Italy.,Pediatric Rheumatology Department, ASST-Gaetano Pini-CTO, University of Milan , Milan, Italy
| | | | | |
Collapse
|
24
|
Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol 2020; 15:303-315. [PMID: 30967621 DOI: 10.1038/s41584-019-0211-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen-presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co-engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Samuel J S Rubin
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michelle S Bloom
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - William H Robinson
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA. .,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
25
|
Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS. Exploiting CD22 To Selectively Tolerize Autoantibody Producing B-Cells in Rheumatoid Arthritis. ACS Chem Biol 2019; 14:644-654. [PMID: 30835424 DOI: 10.1021/acschembio.8b01018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the synovial joints and can lead to bone erosion and cartilage damage. One hallmark of RA is anticitrullinated protein autoantibodies (ACPA) and memory citrulline-specific B-cells, which have been implicated in RA pathogenesis. While depletion of B-cells with Rituximab improves clinical responses in RA patients, this treatment strategy leaves patients susceptible to infections. Here we use of Siglec-engaging Tolerance-inducing Antigenic Liposomes (STALs) to selectively target the citrulline-specific B-cells. ACPA production from purified human RA patients' B-cells in vitro was achieved through a set of stimulation conditions, which includes the following: BAFF, anti-CD40, IL-21, and LPS. In vivo generation of citrulline specific B-cells and ACPA production was accomplished by antigenic liposomes consisting of monophosphoryl lipid A (MPLA) and a cyclic citrullinated peptide (CCP) administered to SJL/J mice. We show that STALs that codisplay a high affinity CD22 glycan ligand and synthetic citrullinated antigen (CCP STALs) can prevent ACPA production from RA patients' memory B-cells in vitro. These CCP STALs were also effective in inducing tolerance to citrullinated antigens in SJL/J mice. The results demonstrate that tolerization of the B-cells responsible for ACPA can be achieved by exploiting the inhibitory receptor CD22 with high-affinity glycan ligands. Such a treatment strategy could be beneficial in the treatment of RA.
Collapse
Affiliation(s)
- Kyle J. Bednar
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Corwin M. Nycholat
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tadimeti S. Rao
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Wai-Ping Fung-Leung
- Discovery Immunology, Janssen Pharmaceutical Research and Development, LLC, 3210 Merryfield Road, San Diego, California 92121, United States
| | - Matthew S. Macauley
- Department of Molecular Medicine, The Scripps Research Institute, North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Assessment of serum a proliferation-induced ligand level in patients with pemphigus vulgaris. JOURNAL OF THE EGYPTIAN WOMEN’S DERMATOLOGIC SOCIETY 2018. [DOI: 10.1097/01.ewx.0000542472.35180.f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Wong KY, Baron R, Seldon TA, Jones ML, Rice AM, Munster DJ. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3383-3396. [PMID: 29643191 DOI: 10.4049/jimmunol.1700064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023]
Abstract
Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83+ human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83+ B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83-) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells.
Collapse
Affiliation(s)
- Kuan Y Wong
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4102, Australia; and
| | - Rebecca Baron
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4102, Australia; and
| | - Therese A Seldon
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4102, Australia; and
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alison M Rice
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4102, Australia; and
| | - David J Munster
- Mater Research Institute, University of Queensland, Brisbane, Queensland 4102, Australia; and
| |
Collapse
|
28
|
Pranzatelli MR. Advances in Biomarker-Guided Therapy for Pediatric- and Adult-Onset Neuroinflammatory Disorders: Targeting Chemokines/Cytokines. Front Immunol 2018; 9:557. [PMID: 29670611 PMCID: PMC5893838 DOI: 10.3389/fimmu.2018.00557] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
The concept and recognized components of “neuroinflammation” are expanding at the intersection of neurobiology and immunobiology. Chemokines (CKs), no longer merely necessary for immune cell trafficking and positioning, have multiple physiologic, developmental, and modulatory functionalities in the central nervous system (CNS) through neuron–glia interactions and other mechanisms affecting neurotransmission. They issue the “help me” cry of neurons and astrocytes in response to CNS injury, engaging invading lymphoid cells (T cells and B cells) and myeloid cells (dendritic cells, monocytes, and neutrophils) (adaptive immunity), as well as microglia and macrophages (innate immunity), in a cascade of events, some beneficial (reparative), others destructive (excitotoxic). Human cerebrospinal fluid (CSF) studies have been instrumental in revealing soluble immunobiomarkers involved in immune dysregulation, their dichotomous effects, and the cells—often subtype specific—that produce them. CKs/cytokines continue to be attractive targets for the pharmaceutical industry with varying therapeutic success. This review summarizes the developing armamentarium, complexities of not compromising surveillance/physiologic functions, and insights on applicable strategies for neuroinflammatory disorders. The main approach has been using a designer monoclonal antibody to bind directly to the chemo/cytokine. Another approach is soluble receptors to bind the chemo/cytokine molecule (receptor ligand). Recombinant fusion proteins combine a key component of the receptor with IgG1. An additional approach is small molecule antagonists (protein therapeutics, binding proteins, and protein antagonists). CK neutralizing molecules (“neutraligands”) that are not receptor antagonists, high-affinity neuroligands (“decoy molecules”), as well as neutralizing “nanobodies” (single-domain camelid antibody fragment) are being developed. Simultaneous, more precise targeting of more than one cytokine is possible using bispecific agents (fusion antibodies). It is also possible to inhibit part of a signaling cascade to spare protective cytokine effects. “Fusokines” (fusion of two cytokines or a cytokine and CK) allow greater synergistic bioactivity than individual cytokines. Another promising approach is experimental targeting of the NLRP3 inflammasome, amply expressed in the CNS and a key contributor to neuroinflammation. Serendipitous discovery is not to be discounted. Filling in knowledge gaps between pediatric- and adult-onset neuroinflammation by systematic collection of CSF data on CKs/cytokines in temporal and clinical contexts and incorporating immunobiomarkers in clinical trials is a challenge hereby set forth for clinicians and researchers.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, United States.,College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
29
|
Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, Zhang X, Yu T, Gan S, Dai D, Luo X, Lu Q, Mao C, Zhang Y, Shen N, Li B, Huang M, Zhu X, Jin J, Cheng X, Sun SC, Xiao Y. Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nat Commun 2018; 9:1136. [PMID: 29555915 PMCID: PMC5859150 DOI: 10.1038/s41467-018-03530-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/18/2018] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by uncontrolled secretion of autoantibodies by plasma cells. Although the functional importance of plasma cells and autoantibodies in SLE has been well established, the underlying molecular mechanisms of controlling autoantibody production remain poorly understood. Here we show that Peli1 has a B cell-intrinsic function to protect against lupus-like autoimmunity in mice. Peli1 deficiency in B cells induces autoantibody production via noncanonical NF-κB signaling. Mechanically, Peli1 functions as an E3 ligase to associate with NF-κB inducing kinase (NIK) and mediates NIK Lys48 ubiquitination and degradation. Overexpression of Peli1 inhibits noncanonical NF-κB activation and alleviates lupus-like disease. In humans, PELI1 levels negatively correlate with disease severity in SLE patients. Our findings establish Peli1 as a negative regulator of the noncanonical NF-κB pathway in the context of restraining the pathogenesis of lupus-like disease.
Collapse
Affiliation(s)
- Junli Liu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinfang Huang
- Department of Nephrology and Rheumatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Shumeng Hao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yan Wang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Manman Liu
- Department of Nephrology and Rheumatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xingli Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Tao Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shucheng Gan
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Dongfang Dai
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Qingyan Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, 212001, Zhenjiang, China
| | - Yanyun Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Nan Shen
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Jin
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xuhong Cheng
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX, 77030, USA
| | - Yichuan Xiao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
30
|
Effect of glucocorticoid treatment on BAFF and APRIL expression in patients with immune thrombocytopenia (ITP). Clin Immunol 2018; 188:74-80. [DOI: 10.1016/j.clim.2017.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
|
31
|
Jiang XX, Liu Y, Li H, Gao Y, Mu R, Guo J, Zhang J, Yang YM, Xiao F, Liu B, Wang C, Shen B, Chen SY, Li Z, Yang G. MYSM1/miR-150/FLT3 inhibits B1a cell proliferation. Oncotarget 2018; 7:68086-68096. [PMID: 27590507 PMCID: PMC5356540 DOI: 10.18632/oncotarget.11738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
Abstract
The aberrant expansion of B1a cells has been observed in several murine autoimmune disease models; however, the mechanism of such proliferation of B1a cells is still limited. Here, we identify that Myb Like, SWIRM And MPN Domains 1 (MYSM1), a histone H2A deubiquitinase, plays an intrinsic role in the proliferation of B1a cells where MYSM1 deficiency results in the increased proliferation of B1a cells in mice. We demonstrate that MYSM1 recruits c-Myc to the promoter of miR-150 and stimulates the transcription of miR-150. Our further investigation shows that miR-150 decreases FMS-like tyrosine kinase 3 (FLT3) in B1a cells. In agreement with our animal studies, the percentage of FLT3+ B1 cells in Systemic Lupus Erythematosus (SLE) patients is significantly higher than healthy control. Thus, this study uncovers a novel pathway MYSM1/miR-150/FLT3 that inhibits proliferation of B1a, which may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xiao-Xia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Hong Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Yan-Mei Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | - Bing Liu
- 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
32
|
Chowdhury K, Kumar U, Das S, Chaudhuri J, Kumar P, Kanjilal M, Ghosh P, Sircar G, Basyal RK, Kanga U, Bandyopadhaya S, Mitra DK. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis Res Ther 2018; 20:18. [PMID: 29382374 PMCID: PMC5791733 DOI: 10.1186/s13075-017-1505-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Background Role of Th9 cells and interleukin-9 (IL-9) in human autoimmune diseases such as psoriasis and ulcerative colitis has been explored only very recently. However, their involvement in human rheumatoid arthritis (RA) is not conclusive. Pathogenesis of RA is complex and involves various T cell subsets and neutrophils. Here, we aimed at understanding the impact of IL-9 on infiltrating immune cells and their eventual role in synovial inflammation in RA. Methods In vitro stimulation of T cells was performed by engagement of anti-CD3 and anti-CD28 monoclonal antibodies. Flow cytometry was employed for measuring intracellular cytokine, RORγt in T cells, evaluating apoptosis of neutrophils. ELISA was used for measuring soluble cytokine, Western blot analysis and confocal microscopy were used for STAT3 phosphorylation and nuclear translocation. Results We demonstrated synovial enrichment of Th9 cells and their positive correlation with disease activity (DAS28-ESR) in RA. Synovial IL-9 prolonged the survival of neutrophils, increased their matrix metalloprotienase-9 production and facilitated Th17 cell differentiation evidenced by induction of transcription factor RORγt and STAT3 phosphorylation. IL-9 also augmented the function of IFN-γ + and TNF-α + synovial T cells. Conclusions We provide evidences for critical role of IL-9 in disease pathogenesis and propose that targeting IL-9 may be an effective strategy to ameliorate synovial inflammation in RA. Inhibiting IL-9 may have wider impact on the production of pathogenic cytokines involved in autoimmune diseases including RA and may offer better control over the disease. Electronic supplementary material The online version of this article (10.1186/s13075-017-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaustav Chowdhury
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Uma Kumar
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Soumabha Das
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Jaydeep Chaudhuri
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), Kolkata, India
| | - Prabin Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Maumita Kanjilal
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Parashar Ghosh
- Rheumatology Center, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata, India
| | - Geetabali Sircar
- Rheumatology Center, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata, India
| | - Ravi Kiran Basyal
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Santu Bandyopadhaya
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), Kolkata, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India.
| |
Collapse
|
33
|
Zhang R, Sage PT, Finn K, Huynh A, Blazar BR, Marangoni F, Mempel TR, Sharpe AH, Turka LA. B Cells Drive Autoimmunity in Mice with CD28-Deficient Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3972-3980. [PMID: 29093061 PMCID: PMC5716898 DOI: 10.4049/jimmunol.1700409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022]
Abstract
Follicular regulatory T (TFR) cells are a newly defined regulatory T cell (Treg) subset that suppresses follicular helper T cell-mediated B cell responses in the germinal center reaction. The precise costimulatory signal requirements for proper TFR cell differentiation and function are still not known. Using conditional knockout strategies of CD28, we previously demonstrated that loss of CD28 signaling in Tregs caused autoimmunity in mice (termed CD28-ΔTreg mice), characterized by lymphadenopathy, accumulation of activated T cells, and cell-mediated inflammation of the skin and lung. In this study, we show that CD28 signaling is required for TFR cell differentiation. Treg-specific deletion of CD28 caused a reduction in TFR cell numbers and function, which resulted in increased germinal center B cells and Ab production. Moreover, residual CD28-deficient TFR cells showed a diminished suppressive capacity as assessed by their ability to inhibit Ab responses in vitro. Surprisingly, genetic deletion of B cells in CD28-ΔTreg mice prevented the development of lymphadenopathy and CD4+ T cell activation, and autoimmunity that mainly targeted skin and lung tissues. Thus, autoimmunity occurring in mice with CD28-deficient Tregs appears to be driven primarily by loss of TFR cell differentiation and function with resulting B cell-driven inflammation.
Collapse
Affiliation(s)
- Ruan Zhang
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
| | - Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kelsey Finn
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
| | - Alexandria Huynh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; and
| | - Francesco Marangoni
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129;
| |
Collapse
|
34
|
Li PH, Lau CS. Secondary antibody deficiency and immunoglobulin replacement. HONG KONG BULLETIN ON RHEUMATIC DISEASES 2017. [DOI: 10.1515/hkbrd-2017-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Antibody deficiencies can be either primary or secondary, leading to significant morbidity and mortality without appropriate management. Secondary antibody deficiency can be due to various diseases or iatrogenic causes, especially with the use of immunosuppressive agents such as B-cell depleting therapies. Unlike its primary counterpart, little is known regarding the management of secondary antibody deficiency and it remains an underappreciated entity. This is a growing concern with the growing numbers of patients on various immunosuppressant therapies and increasing survivors of autoimmune diseases and haematological malignancies. In this report, we review the diagnosis and management of secondary antibody deficiency, especially after rituximab-induced hypogammaglobulinemia.
Collapse
Affiliation(s)
- Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital , University of Hong Kong , Hong Kong , Hong Kong
| | - Chak-Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital , University of Hong Kong , Hong Kong , Hong Kong
| |
Collapse
|
35
|
Tesar V, Hruskova Z. Belimumab in the management of systemic lupus erythematosus – an update. Expert Opin Biol Ther 2017; 17:901-908. [DOI: 10.1080/14712598.2017.1324846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vladimir Tesar
- Department of Nephrology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Hruskova
- Department of Nephrology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
36
|
Coppo R. Biomarkers and targeted new therapies for IgA nephropathy. Pediatr Nephrol 2017; 32:725-731. [PMID: 27324471 DOI: 10.1007/s00467-016-3390-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/26/2022]
Abstract
IgA nephropathy (IgAN) has variable clinical presentation and outcome. There is a need to identify children who have the potential to progress to end stage renal disease (ESRD). Biomarkers related to the pathogenetic process of IgAN can detect risk factors and identify targets for new therapies. Galactose-deficient IgA1 (Gd-IgA1) is a specific biomarker of IgAN and could be the first treatment target. In experimental mice, reduction of IgA1 deposits and hematuria was observed after treatment with a bacterial protease that selectively cleaves human IgA1. Glycan-targeted drugs that may act to neutralize Gd-IgA1 inhibit abnormal enzymatic glycosylation of IgA1 or deplete cells producing Gd-IgA1. The autoimmune response to Gd-IgA1 produces autoantibodies that are sensitive and specific biomarkers of IgAN development and progression and suggests the possible benefits of anti-B cell therapies directed against CD20, B-cell activating factor (BAFF), or B cell receptor, and also proteasome inhibitors. The activation of complement in IgAN offers new biomarkers and the rationale for using complement inhibitors, including eculizumab. Renal pathological features represent sensitive biomarkers of added value over clinical data and may drive steroid therapy in selected cases. Finally, the hypothesis of the involvement of intestinal mucosal immunity in the pathogenesis of IgAN suggests the possibility of avoiding the systemic effect of steroid. Enteric budesonide targeting Peyer's patches at the ileocecal junction is an interesting option that has provided some preliminary favorable results in IgAN. In conclusion, the identification of new biomarkers is a promising area for therapies targeting IgAN in patients at risk of progression.
Collapse
Affiliation(s)
- Rosanna Coppo
- Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Fondazione Ricerca Molinette, Turin, Italy.
| |
Collapse
|
37
|
Hui-Yuen JS, Nguyen SC, Askanase AD. Targeted B cell therapies in the treatment of adult and pediatric systemic lupus erythematosus. Lupus 2017; 25:1086-96. [PMID: 27497253 DOI: 10.1177/0961203316652491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Belimumab (Benlysta) is a fully-humanized monoclonal antibody that inhibits B-lymphocyte stimulator (also known as B cell activating factor) and was approved by the U.S. Federal Drug Administration and European Medicines Evaluation Agency for treatment in adults with autoantibody-positive systemic lupus erythematosus (SLE). Rituximab (Rituxan) is a chimeric anti-CD20 monoclonal antibody targeting B lymphocytes. This review discusses the key findings of the phase III trials in adults with SLE and of real-world use of belimumab and rituximab in the care of both adult and pediatric SLE patients. It highlights the safety profile of belimumab and rituximab and gives insight into the consideration of these therapies for specific SLE disease states. It concludes with a discussion of the current clinical trials investigating B cell therapies in specific SLE disease states and a look to the future, with ongoing clinical trials.
Collapse
Affiliation(s)
- J S Hui-Yuen
- Division of Pediatric Rheumatology, Steven and Alexandra Cohen Children Medical Center, Hofstra Northwell School of Medicine, USA
| | - S C Nguyen
- Division of Rheumatology, New York-Presbyterian Hospital/Columbia University Medical Center, USA
| | - A D Askanase
- Division of Rheumatology, New York-Presbyterian Hospital/Columbia University Medical Center, USA
| |
Collapse
|
38
|
Park GT, Go RE, Lee HM, Lee GA, Kim CW, Seo JW, Hong WK, Choi KC, Hwang KA. Potential Anti-proliferative and Immunomodulatory Effects of Marine Microalgal Exopolysaccharide on Various Human Cancer Cells and Lymphocytes In Vitro. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:136-146. [PMID: 28161850 DOI: 10.1007/s10126-017-9735-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Marine microalgal exopolysaccharides (EPSs) have drawn great attention due to their biotechnological potentials such as anti-viral, anti-oxidant, anti-lipidemic, anti-proliferative, and immunomodulatory activities, etc. In the present study, the EPS derived from microalgae Thraustochytriidae sp.-derived mutant GA was investigated for its anti-proliferation and immunomodulation. Anti-cancer efficacy of the microalgal EPS was examined for the alterations in cell proliferation and cell cycle-related gene expression that occur in three types of human cancer cell lines, BG-1 ovarian, MCF-7 breast, and SW-620 colon cancer cell lines, by its treatment. Alterations in immunoreactivity by the microalgal EPS were examined by measuring its influence on the growth of T and B lymphocytes and cytokine production of T cells. In cell viability assay, the microalgal EPS inhibited cancer cell growth at the lowest concentration of 10-11 dilution and in a dose-responsive manner within the range of dilution of 10-11~10-3. In addition, the protein expression of cell cycle progression genes such as cyclin D1 and E in these cancer cell lines was significantly reduced by the microalgal EPS in a dose- and a time-dependant manner. In cell proliferation assay using T and B cells, the microalgal EPS induced B cell proliferation even at the lowest dilution of 10-11, but not T cells. In cytokine assay, the microalgal EPS decreased the formation of IL-6 and INF-γ at 10-3 dilution compared to the control and had no significant effects on TNF-α. Collectively, these findings suggest that the EPS derived from microalgae Thraustochytriidae sp. GA has an anti-proliferative activity against cancer cells and an immunomodulatory effect by having an influence on B cell proliferation and cytokine secretion of T cells.
Collapse
Affiliation(s)
- Geon-Tae Park
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Geum-A Lee
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jeong-Woo Seo
- Korea Research Institute of Bioscience & Biotechnology, 181 Ipsin-gil, Jeongup, Jeonbuk, Republic of Korea
| | - Won-Kyung Hong
- LED Agri-bio Fusion Technology Research Center, College of Environmental & Bioresource Science, Chonbuk National University, Iksan Campus, Jeonju, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
39
|
Oleksyn D, Zhao J, Vosoughi A, Zhao JC, Misra R, Pentland AP, Ryan D, Anolik J, Ritchlin C, Looney J, Anandarajah AP, Schwartz G, Calvi LM, Georger M, Mohan C, Sanz I, Chen L. PKK deficiency in B cells prevents lupus development in Sle lupus mice. Immunol Lett 2017; 185:1-11. [PMID: 28274793 DOI: 10.1016/j.imlet.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B-lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment.
Collapse
Affiliation(s)
- D Oleksyn
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Zhao
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A Vosoughi
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J C Zhao
- Department of Biology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - R Misra
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A P Pentland
- Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - D Ryan
- Department of Pathology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Anolik
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - C Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Looney
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A P Anandarajah
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - G Schwartz
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - L M Calvi
- Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - M Georger
- Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - C Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - I Sanz
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - L Chen
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States; Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
40
|
Chen D, Gallagher S, Monson NL, Herbst R, Wang Y. Inebilizumab, a B Cell-Depleting Anti-CD19 Antibody for the Treatment of Autoimmune Neurological Diseases: Insights from Preclinical Studies. J Clin Med 2016; 5:jcm5120107. [PMID: 27886126 PMCID: PMC5184780 DOI: 10.3390/jcm5120107] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Exaggerated or inappropriate responses by B cells are an important feature in many types of autoimmune neurological diseases. The recent success of B-cell depletion in the treatment of multiple sclerosis (MS) has stimulated the development of novel B-cell-targeting therapies with the potential for improved efficacy. CD19 has emerged as a promising target for the depletion of B cells as well as CD19-positive plasmablasts and plasma cells. Inebilizumab (MEDI-551), an anti-CD19 antibody with enhanced antibody-dependent cell-mediated cytotoxicity against B cells, is currently being evaluated in MS and neuromyelitis optica. This review discusses the role of B cells in autoimmune neurological disorders, summarizes the development of inebilizumab, and analyzes the recent results for inebilizumab treatment in an autoimmune encephalitis mouse model. The novel insights obtained from these preclinical studies can potentially guide future investigation of inebilizumab in patients.
Collapse
Affiliation(s)
- Ding Chen
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sandra Gallagher
- Department of Project Management, MedImmune, Gaithersburg, MD 20878, USA.
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ronald Herbst
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878, USA.
| | - Yue Wang
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
41
|
Association of Serum CXCL13 with Intrarenal Ectopic Lymphoid Tissue Formation in Lupus Nephritis. J Immunol Res 2016; 2016:4832543. [PMID: 27990444 PMCID: PMC5136399 DOI: 10.1155/2016/4832543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
Aims. To assess the concentrations of serum CXCL13 and intrarenal ectopic lymphoid tissue (ELT) profiles and their correlation in the patients with lupus nephritis (LN). Methods. Serum CXCL13 levels were measured using enzyme-linked immunosorbent assays (ELISA). The expression of CD3, CD20, and CD21 in renal biopsy specimens was tested using immunohistochemical methods. Results. Serum CXCL13 levels were significantly higher in the LN group than those in the SLE group without LN and also in the type III and IV LN patients than in type V LN patients. LN patients with positive CD20 expression (CD20+ LN) had a longer disease course and poorer response to combination therapy and higher serum CXCL13 levels than CD20- LN patients. Moreover, the serum CXCL13 level was positively correlated with the number of B cells/HP in the renal tissue of LN patients. The coexpression patterns of CD3, CD20, and CD21 in the renal tissue of LN patients with different WHO pathological types were significantly different. Serum CXCL13 levels were significantly higher in ELT-2 type LN patients than in 0 or 1 type LN patients. Conclusions. This study suggested that increased serum levels of CXCL13 might be involved in renal ELT formation and renal impairment process in LN.
Collapse
|
42
|
VAMP2 is implicated in the secretion of antibodies by human plasma cells and can be replaced by other synaptobrevins. Cell Mol Immunol 2016; 15:353-366. [PMID: 27616736 DOI: 10.1038/cmi.2016.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 11/08/2022] Open
Abstract
The production and secretion of antibodies by human plasma cells (PCs) are two essential processes of humoral immunity. The secretion process relies on a group of proteins known as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are located in the plasma membrane (t-SNAREs) and in the antibody-carrying vesicle membrane (v-SNARE), and mediate the fusion of both membranes. We have previously shown that SNAP23 and STX4 are the t-SNAREs responsible for antibody secretion. Here, using human PCs and antibody-secreting cell lines, we studied and characterized the expression and subcellular distribution of vesicle associated membrane protein (VAMP) isoforms, demonstrating that all isoforms (with the exception of VAMP1) are expressed by the referenced cells. Furthermore, the functional role in antibody secretion of each expressed VAMP isoform was tested using siRNA. Our results show that VAMP2 may be the v-SNARE involved in vesicular antibody release. To further support this conclusion, we used tetanus toxin light chain to cleave VAMP2, conducted experiments to verify co-localization of VAMP2 in antibody-carrying vesicles, and demonstrated the coimmunoprecipitation of VAMP2 with STX4 and SNAP23 and the in situ interaction of VAMP2 with STX4. Taken together, these findings implicate VAMP2 as the main VAMP isoform functionally involved in antibody secretion.
Collapse
|
43
|
Gallagher S, Yusuf I, McCaughtry TM, Turman S, Sun H, Kolbeck R, Herbst R, Wang Y. MEDI-551 Treatment Effectively Depletes B Cells and Reduces Serum Titers of Autoantibodies in Mice Transgenic for Sle1 and Human CD19. Arthritis Rheumatol 2016; 68:965-76. [PMID: 26606525 DOI: 10.1002/art.39503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate treatment with MEDI-551, a humanized anti-human CD19 monoclonal antibody, in a model of autoimmunity involving mice transgenic (Tg) for Sle1 and human CD19 (hCD19). METHODS Sle1.hCD19-Tg mice were given either a single intravenous dose of MEDI-551 or repeated doses of MEDI-551 biweekly for up to 12 weeks. The numbers of B cells in the blood, spleen, and bone marrow were determined by flow cytometry assay. In the spleen and bone marrow, the number of IgM- and IgG-specific antibody-secreting cells (ASCs) and the number of ASCs specific for anti-double-stranded DNA (anti-dsDNA) were determined by enzyme-linked immunospot assay. Serum autoantibody and total immunoglobulin levels were determined by enzyme-linked immunosorbent assay, and levels of inflammatory proteins were tested using a multianalyte profiling platform. RESULTS MEDI-551 treatment of Sle1.hCD19-Tg mice resulted in effective and sustained B cell depletion throughout the duration of the experiment. The frequency of IgM and IgG ASCs in the spleen was reduced by ≥90%, whereas in the bone marrow, the total ASC frequency was not changed. Levels of autoantibodies specific for dsDNA as well as antihistone and antinuclear antibodies were each reduced by 40-80%, but total serum immunoglobulin levels were largely unchanged at the end of 12 weeks of treatment. CONCLUSION These findings highlight the ability of MEDI-551 to deplete B cells and ASCs in autoimmune Sle1.hCD19-Tg mice. MEDI-551 treatment resulted in a robust reduction of autoantibodies but had minimal effect on total serum immunoglobulins. Thus, the novel ability of MEDI-551 to remove a broad range of B cells as well as to lower most disease-driving autoantibodies in an autoimmune disease mouse model warrants continued research. Several clinical studies to explore the safety and activity of MEDI-551 in autoantibody-associated autoimmune diseases are ongoing.
Collapse
Affiliation(s)
| | | | | | | | - Hong Sun
- MedImmune, Gaithersburg, Maryland
| | | | | | - Yue Wang
- MedImmune, Gaithersburg, Maryland
| |
Collapse
|
44
|
In silico designing, cloning, and heterologous expression of novel chimeric human B lymphocyte CD20 extra loop. Tumour Biol 2016; 37:12547-12553. [DOI: 10.1007/s13277-016-5105-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/09/2016] [Indexed: 01/10/2023] Open
|
45
|
Raje NS, Faber EA, Richardson PG, Schiller G, Hohl RJ, Cohen AD, Forero A, Carpenter S, Nguyen TS, Conti I, Kaiser CJ, Cronier DM, Wooldridge JE, Anderson KC. Phase 1 Study of Tabalumab, a Human Anti-B-Cell Activating Factor Antibody, and Bortezomib in Patients with Relapsed/Refractory Multiple Myeloma. Clin Cancer Res 2016; 22:5688-5695. [PMID: 27287072 DOI: 10.1158/1078-0432.ccr-16-0201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/06/2016] [Accepted: 05/22/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Tabalumab, a human mAb that neutralizes B-cell-activating factor (BAFF), demonstrated antitumor activity in xenograft models of multiple myeloma. Here we report on a phase I study of relapsed/refractory multiple myeloma patients in which the primary objective was to identify a tolerable and potentially efficacious dose of tabalumab when combined with bortezomib. EXPERIMENTAL DESIGN Forty-eight patients were enrolled; 20 to the dose-escalation cohort, and 28 to cohort expansion in which a dose of 100 mg of tabalumab was evaluated. All patients had received either prior bortezomib or an immunomodulatory drug; the median number of prior therapies was 3. Bortezomib was administered intravenously on days 1, 4, 8, and 11 of a 21-day schedule. Tabalumab was given every 21 days for 3 cycles, then every 42 days thereafter. RESULTS The most common grade 3/4 toxicities included thrombocytopenia, neutropenia, pneumonia, and peripheral sensory neuropathy. There were no dose-limiting toxicities, and the maximum tolerated dose was not reached. Pharmacokinetic data suggested serum exposure increased in a greater than dose-proportional manner up to a dose of 100 mg. Out of 46 evaluable patients, 20 had confirmed responses. The median time to progression (9 patients censored) was 4.8 months, and the median response duration (4 patients censored) was 7.2 months. CONCLUSIONS A dose of 100 mg tabalumab in combination with bortezomib was well tolerated and active and is currently under further investigation. Clin Cancer Res; 22(23); 5688-95. ©2016 AACR.
Collapse
Affiliation(s)
- Noopur S Raje
- Massachusetts General Hospital, Boston, Massachusetts.
| | | | | | - Gary Schiller
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Raymond J Hohl
- University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Adam D Cohen
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andres Forero
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Aletaha D, Blüml S. Therapeutic implications of autoantibodies in rheumatoid arthritis. RMD Open 2016; 2:e000009. [PMID: 27252890 PMCID: PMC4879342 DOI: 10.1136/rmdopen-2014-000009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/04/2016] [Indexed: 01/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterised by the presence of autoantibodies. Their value for diagnostic/prognostic purposes has been well established. In contrast, their role in established disease and their associations with disease activity is less clear. Moreover, as evidence is accumulating that these autoantibodies are causally involved in certain key aspects of the disease, such as the initiation and perpetuation of joint inflammation or join destruction, autoantibodies in RA can no longer be regarded as mere epiphenomena, but are integral elements of the pathophysiology of RA.
Collapse
Affiliation(s)
- Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine 3 , Medical University Vienna , Vienna , Austria
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine 3 , Medical University Vienna , Vienna , Austria
| |
Collapse
|
47
|
Gallagher S, Turman S, Yusuf I, Akhgar A, Wu Y, Roskos LK, Herbst R, Wang Y. Pharmacological profile of MEDI-551, a novel anti-CD19 antibody, in human CD19 transgenic mice. Int Immunopharmacol 2016; 36:205-212. [PMID: 27163209 DOI: 10.1016/j.intimp.2016.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
B cell depletion therapy is beneficial for patients with B cell malignancies and autoimmune diseases. CD19, a transmembrane protein, is expressed on a vast majority of normal and neoplastic B cells, making it a suitable target for monoclonal antibody (MAb) mediated immunotherapy. We have developed MEDI-551, an affinity optimized and afucosylated IgG1 MAb targeting human CD19 for B cell depletion. MEDI-551 is currently under investigation in multiple clinical trials. Because MEDI-551 does not cross react with rodent and non-human primate CD19, the pharmacological characteristics of the MAb were evaluated in human CD19 transgenic mice (hCD19 Tg). Here we show that MEDI-551 potently depletes tissue and circulating B cells in hCD19 Tg mice and is more efficacious than the anti-CD19 MAb with intact fucose. The length of B cell depletion depends on MEDI-551 dose; and, B cell recovery in the circulation follows stepwise phenotypic maturation. Furthermore, intravenous (IV) and subcutaneous (SC) administration of MEDI-551 results in comparable efficacy. Lastly, the combination of MEDI-551 with the anti-CD20 MAb, rituximab, further prolongs the duration of B cell depletion. In summary, the pharmacological profile of MEDI-551 presented in hCD19 Tg mice supports further testing of MEDI-551 in clinical trials involving B cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Gallagher
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Sean Turman
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Isharat Yusuf
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Ahmad Akhgar
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Yuling Wu
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Lorin K Roskos
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Ronald Herbst
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Yue Wang
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States.
| |
Collapse
|
48
|
Singh N, Kumar B, Aluri V, Lenert P. Interfering with baffled B cells at the lupus tollway: Promises, successes, and failed expectations. J Allergy Clin Immunol 2016; 137:1325-33. [PMID: 26953155 DOI: 10.1016/j.jaci.2015.12.1326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022]
Abstract
B cells play an important role in systemic lupus erythematosus by acting not only as precursors of autoantibody-producing cells but also as antigen-presenting, cytokine-secreting, and regulatory cells. Unopposed activation of B cells through their B-cell receptor for antigen, as seen in B cells lacking Lyn kinase, results in systemic autoimmunity. The B-cell activating factor of the TNF family (BAFF), nucleic acid-sensing Toll-like receptors (TLRs), and type I interferon can affect B-cell survival and decrease their threshold for activation. Herein we discuss both direct and indirect strategies aimed at targeting B cells in patients with lupus by blocking BAFF, type I interferon, or TLR7 to TLR9. Although BAFF-depleting therapy with belimumab achieved approval for lupus, other BAFF inhibitors were much less beneficial in clinical trials. Inhibitors of the B-cell receptor for antigen signaling and antibodies against type I interferon are in the pipeline. The TLR7 to TLR9 blocker hydroxychloroquine has been in use in patients with lupus for more than 50 years, but oligonucleotide-based inhibitors of TLR7 to TLR9, despite showing promise in animal models of lupus, have not reached the primary end point in a recent phase 1 trial. These data point toward possible redundancies in B-cell signaling/survival pathways, which must be better understood before future clinical trials are executed.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Bharat Kumar
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vijay Aluri
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Petar Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
49
|
Rituximab in lupus nephritis: A non-systematic review. ACTA ACUST UNITED AC 2016; 12:210-5. [PMID: 26906063 DOI: 10.1016/j.reuma.2016.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/19/2015] [Accepted: 01/15/2016] [Indexed: 11/21/2022]
Abstract
Lupus nephritis (LN) is a common and severe complication in patients with lupus. Current therapy is based on immunosuppressive drugs and glucocorticoids. Recently, rituximab has been proposed as an alternative treatment for LN. Rituximab is a monoclonal antibody directed against the CD20 antigen receptor on B cells. The aim of this review is to summarize all the available information about rituximab in LN. Eleven studies were found; three of them were observational studies (2 prospective and 1 retrospective) and eight were clinical trials (7 open-label studies and only 1 randomized controlled trial [RCT]). The evidence is insufficient to establish the role of rituximab in the treatment of LN. Results from the only RCT, which were negative, suggest a clinical benefit in black people. Further studies must confirm this hypothesis. Controlled clinical trials involving adaptive randomization are required to establish the real benefit of rituximab in LN.
Collapse
|
50
|
Gasperi C, Stüve O, Hemmer B. B cell-directed therapies in multiple sclerosis. Neurodegener Dis Manag 2016; 6:37-47. [DOI: 10.2217/nmt.15.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurological disease of the CNS that goes along with demyelination and neurodegeneration. It is probably caused by an autoimmune response against the CNS, which emerges from the interplay of genetic and environmental factors. Although major progress has been made in the treatment of MS, it is still the leading cause for acquired nontraumatic neurological disability in young adults. Several therapeutic agents have been approved for the treatment of relapsing–remitting MS (RRMS), aiming at the reduction of relapses and a delay in disability progression. Three therapeutic monoclonal antibodies targeting CD20-positive B cells (rituximab, ocrelizumab and ofatumumab) were investigated in MRI-based Phase II and Phase III trials in RRMS, providing consistent evidence for a disease-ameliorating effect of B cell depleting therapies in MS. Here, we discuss the role of B cells and review current and future therapeutic approaches to target B cells in MS.
Collapse
Affiliation(s)
- Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Olaf Stüve
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
- Departments of Neurology & Neurotherapeutics, University of Texas Southwestern Medical center, Dallas, TX, USA
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
- Munich Cluster for Systems Neurology (SyNergy), München, Germany
| |
Collapse
|