1
|
Zhang WR, Bhutani T, North JP. The Association of Interleukin-36 Staining Intensity and Response to Biologic Therapy in Patients With Psoriasis: A Retrospective Immunohistochemical and Chart Review Pilot Study. J Cutan Pathol 2024. [PMID: 39377573 DOI: 10.1111/cup.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND There are limited surrogate biomarkers to identify the active inflammatory pathway in psoriasis to direct treatment with targeted biologic therapies. We investigated the association of interleukin (IL)-36 epidermal expression, a diagnostic marker of psoriasis, with response to biologic therapy in patients with psoriasis. METHODS Retrospective immunohistochemical and chart review pilot study. RESULTS Patients with psoriasis with low (scores 0-2) vs. high (scores 3-4) IL-36 expression did not have significantly different response rates to tumor necrosis factor α (TNFα), IL-17, and IL-12/23 or IL-23 inhibitors; and similarly, mean IL-36 expression scores did not significantly differ among responders vs. non-responders to each treatment mechanism. However, in patients with psoriasis treated with IL-12/23 or IL-23 inhibitors, there was a marked absolute difference in response rates in those with high vs. low IL-36 (84% vs. 50%, p = 0.12) and in mean IL-36 scores in responders vs. non-responders (3.35 vs. 2.57, p = 0.19). CONCLUSIONS Patients with psoriasis with high IL-36 expression were more likely to respond to IL-12/23 and IL-23 inhibition than those with low IL-36, though these findings were not statistically significant. Additional studies with larger sample sizes are needed to validate and expand upon these findings.
Collapse
Affiliation(s)
- William R Zhang
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Tina Bhutani
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Jeffrey P North
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Xu Y, Wang JY, Zou Y, Ma XW, Meng T. Role of IL-1 Family Cytokines IL-36, IL-37, IL-38 in Osteoarthritis and Rheumatoid Arthritis: A Comprehensive Review. J Inflamm Res 2024; 17:4001-4016. [PMID: 38915806 PMCID: PMC11195677 DOI: 10.2147/jir.s474879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Inflammatory cytokines, interleukin-36 (IL-36), IL-37, IL-38 belong to IL-1 family. The IL-36 subfamily obtains pro- and anti-inflammatory effects on various immune responses. Cytokine IL-37, has anti-inflammatory functions in immunity, and the recently identified IL-38 negatively associated with disease pathogenesis. To date, expression of IL-36, IL-37, IL-38 is reported dysregulated in osteoarthritis (OA) and rheumatoid arthritis (RA), and may be disease markers for arthritis-related diseases. Interestingly, expression of IL-38 was different either in OA patients or animal models, and expression of IL-36Ra in synovium was different in OA and RA patients. Moreover, functional studies have demonstrated significant role of these cytokines in OA and RA progress. These processes were related to immune cells and non-immune cells, where the cytokines IL-36, IL-37, IL-38 may regulate downstream signalings in the cells, and then involve in OA, RA development. In this review, we comprehensively discuss recent advancements in cytokines and the development of OA, RA. We hope that targeting these cytokines will become a potential treatment option for OA and RA in the future.
Collapse
Affiliation(s)
- Yuan Xu
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Jing-Yan Wang
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Yang Zou
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Xue-Wei Ma
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Tian Meng
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| |
Collapse
|
3
|
Wang C, Hu J, Shi J. Role of Interleukin-36 in inflammatory joint diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:249-259. [PMID: 37283111 PMCID: PMC10409900 DOI: 10.3724/zdxbyxb-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Collapse
Affiliation(s)
- Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
4
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
5
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
6
|
Esmaeilzadeh A, Bahmaie N, Nouri E, Hajkazemi MJ, Zareh Rafie M. Immunobiological Properties and Clinical Applications of Interleukin-38 for Immune-Mediated Disorders: A Systematic Review Study. Int J Mol Sci 2021; 22:12552. [PMID: 34830435 PMCID: PMC8625918 DOI: 10.3390/ijms222212552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Exponential growth in the usage of "cytokines" (as seroimmunobiomarkers) has facilitated more accurate prognosis, early diagnosis, novel, and efficient immunotherapeutics. Numerous studies have reported immunopathophysiological and immunopathological processes of interleukin-38 (IL-38). Therefore, in this systematic review article, the authors aimed to present an updated comprehensive overview on the immunobiological mechanisms, diagnostic, and immune gene-based therapeutic potentials of IL-38. According to our inclusion and exclusion criteria, a total of 216 articles were collected from several search engines and databases from the January 2012 to July 2021 time interval by using six main keywords. Physiologic or pathologic microenvironments, optimal dosage, and involved receptors affect the functionalities of IL-38. Alterations in serum levels of IL-38 play a major role in the immunopathogenesis of a wide array of immune-mediated disorders. IL-38 shows anti-inflammatory activities by reduction or inhibition of pro-inflammatory cytokines, supporting the therapeutic aspects of IL-38 in inflammatory autoimmune diseases. According to the importance of pre-clinical studies, it seems that manipulation of the immune system by immunomodulatory properties of IL-38 can increase the accuracy of diagnosis, and decipher optimal clinical outcomes. To promote our knowledge, more collaboration is highly recommended among laboratory scientists, internal/infectious diseases specialists, oncologists, immunologists, diseases-specific biomarkers scientists, and basic medical researchers.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Immunotherapy Research & Technology Group, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Nazila Bahmaie
- Department of Allergy and Immunology, Faculty of Medicine, Graduate School of Health Science, Near East University (NEU), Nicosia 99138, Cyprus;
- Pediatric Ward, Department of Allergy and Immunology, Near East University affiliated Hospital, Nicosia 99138, Cyprus
- Serology and Immunology Ward, Clinical Diagnosis Laboratory, Private Baskent Hospital, Nicosia 99138, Cyprus
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Elham Nouri
- School of Paramedicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
- Shahid Beheshti University Affiliated Hospital, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Mohammad Javad Hajkazemi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| | - Maryam Zareh Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| |
Collapse
|
7
|
Hao Z, Liu Y. IL-38 and IL-36 Target Autophagy for Regulating Synoviocyte Proliferation, Migration, and Invasion in Rheumatoid Arthritis. DISEASE MARKERS 2021; 2021:7933453. [PMID: 34845417 PMCID: PMC8627363 DOI: 10.1155/2021/7933453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease leading to severe joint damage and disability. Fibroblast-like synoviocytes (FLSs) mostly contribute to the joint inflammation and destruction in RA through distinct mechanisms. However, little is known about newly discovered interleukin- (IL-) 36 and IL-38 involving in the pathology of RA. Here, we assessed the effect of IL-36 and IL-38 on RA-FLS function using IL-36 and IL-38 overexpression plasmids. We found that IL-36 inhibited synoviocytes proliferation while IL-38 showed an opposite influence. Furthermore, IL-36 and IL-38 significantly sequestered or accelerated RA-FLS migration and invasion capacity, respectively. Mechanically, IL-36 and IL-38 targeted autophagy for RA-FLS modulation. Using autophagy inhibitor 3-MA and inducer compound rapamycin, we found that autophagy negatively regulated the survival, migration, and invasion of synovial cells. Based on these results, IL-38 in combination with autophagy inhibitor 3-MA treatment demonstrated the strongest blockage of the above three activities of RA-FLS, and IL-38 overexpression reversed rapamycin-inhibited cell proliferation, migration, and invasion. Moreover, injection of IL-36 can improve the symptoms of RA in a rat model of RA. Taken together, we conclude that IL-38 and IL-36 target autophagy for regulating synoviocyte proliferation, migration, and invasion in RA.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arthritis, Experimental/etiology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/prevention & control
- Autophagy
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Interleukin-1/administration & dosage
- Interleukins/administration & dosage
- Male
- Rats
- Rats, Sprague-Dawley
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Synoviocytes/pathology
Collapse
Affiliation(s)
- Zhe Hao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
8
|
Byrne J, Baker K, Houston A, Brint E. IL-36 cytokines in inflammatory and malignant diseases: not the new kid on the block anymore. Cell Mol Life Sci 2021; 78:6215-6227. [PMID: 34365521 PMCID: PMC8429149 DOI: 10.1007/s00018-021-03909-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/02/2022]
Abstract
The IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.
Collapse
Affiliation(s)
- James Byrne
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Kevin Baker
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Zhang M, Liu J, Gao R, Hu Y, Lu L, Liu C, Ai L, Pan J, Tian L, Fan J. Interleukin-36γ aggravates macrophage foam cell formation and atherosclerosis progression in ApoE knockout mice. Cytokine 2021; 146:155630. [PMID: 34246054 DOI: 10.1016/j.cyto.2021.155630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerosis-related cardiovascular diseases are the leading cause of mortality worldwide. Macrophage-derived foam cell formation is a critical early event in atherogenesis. However, the molecular pathways involved in this disease have not been fully elucidated. Interleukin (IL)-36 plays a crucial role in inflammation, and this study was conducted to investigate the possible role of IL-36γ in the pathogenesis and regulation of atherosclerosis. In this study, we show that IL-36γ regulates inflammatory responses and lipoprotein metabolic processes in macrophages and exerts its atherosclerosis-promoting effects by increasing macrophage foam cell formation and uptake of oxidized low-density lipoproteins. Mechanistically, IL-36γ specifically upregulates expression of the scavenger receptor CD36 through the phosphoinositide 3-kinase pathway in macrophages. These results contribute to our understanding of IL-36γ as a novel regulator of foam cell formation and atherogenesis progression.
Collapse
Affiliation(s)
- Minghua Zhang
- Clinical Pharmacy Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rong Gao
- Air Force Medical Center, PLA, Beijing 100142, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, China
| | - Chuanbin Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lunna Ai
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jingkun Pan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Tian
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
10
|
Ge Y, Huang M, Dong N, Yao YM. Effect of Interleukin-36β on Activating Autophagy of CD4+CD25+ Regulatory T cells and Its Immune Regulation in Sepsis. J Infect Dis 2020; 222:1517-1530. [PMID: 32421784 DOI: 10.1093/infdis/jiaa258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND CD4+CD25+ regulatory T cells (Tregs) play an essential role in sepsis-induced immunosuppression. How, the effects of interleukin 36 (IL-36) cytokines on CD4+CD25+ Tregs and their underlying mechanism(s) in sepsis remain unknown. METHODS Our study was designed to investigate the impacts of IL-36 cytokines on murine CD4+CD25+ Tregs in presence of lipopolysaccharide (LPS) and in a mouse model of sepsis induced by cecal ligation and puncture (CLP). IL-36-activated autophagy was evaluated by autophagy markers, autophagosome formation, and autophagic flux. RESULTS IL-36α, IL-36β, and IL-36γ were expressed in murine CD4+CD25+ Tregs. Stimulation of CD4+CD25+ Tregs with LPS markedly up-regulated the expression of these cytokines, particularly IL-36β. IL-36β strongly suppressed CD4+CD25+ Tregs under LPS stimulation and in septic mice challenged with CLP, resulting in the amplification of T-helper 1 response and the proliferation of effector T cells. Mechanistic studies revealed that IL-36β triggered autophagy of CD4+CD25+ Tregs. These effects were significantly attenuated in the presence of the autophagy inhibitor 3-methyladenine or Beclin1 knockdown. In addition, early IL-36β administration reduced the mortality rate in mice subjected to CLP. Depletion of CD4+CD25+ Tregs before the onset of sepsis obviously abrogated IL-36β-mediated protection against sepsis. CONCLUSIONS These findings suggest that IL-36β diminishes the immunosuppressive activity of CD4+CD25+ Tregs by activating the autophagic process, thereby contributing to improvement of the host immune response and prognosis in sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ning Dong
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
11
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
12
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
13
|
Peng X, Pan X, Tan J, Li Y, Li M. Protective effect of interleukin-36 receptor antagonist on liver injury induced by concanavalin A in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:623-628. [PMID: 32742600 PMCID: PMC7374990 DOI: 10.22038/ijbms.2020.35614.8492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective(s): Interleukin-36 receptor antagonist (IL-36Ra) is a new member of the IL-1 family that exhibits anti-inflammatory activity in a variety of inflammatory and immune diseases. Our purpose was to determine the effect of IL-36Ra on liver injury in a mouse hepatitis model induced by concanavalin A (ConA). Materials and Methods: Mice were treated with IL-36Ra DNA or pcDNA3.1 control plasmid using a hydrodynamic gene delivery approach. Results: Our data reveal that treatment with IL-36Ra decreased liver inflammation and serum level of aminotransferases. Furthermore, IL-36Ra reduced ConA-induced pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, and IL-17A) production when compared to control plasmid. Conclusion: Our results demonstrated that IL-36Ra is a critical protector against ConA-induced liver injury.
Collapse
Affiliation(s)
- Xiao Peng
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiuhe Pan
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jun Tan
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Yan Li
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| | - Mingcai Li
- Department of Immunology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
14
|
Boutet MA, Nerviani A, Lliso-Ribera G, Lucchesi D, Prediletto E, Ghirardi GM, Goldmann K, Lewis M, Pitzalis C. Interleukin-36 family dysregulation drives joint inflammation and therapy response in psoriatic arthritis. Rheumatology (Oxford) 2020; 59:828-838. [PMID: 31504934 PMCID: PMC7188345 DOI: 10.1093/rheumatology/kez358] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES IL-36 agonists are pro-inflammatory cytokines involved in the pathogenesis of psoriasis. However, their role in the pathogenesis of arthritis and treatment response to DMARDs in PsA remains uncertain. Therefore, we investigated the IL-36 axis in the synovium of early, treatment-naïve PsA, and for comparison RA patients, pre- and post-DMARDs therapy. METHODS Synovial tissues were collected by US-guided biopsy from patients with early, treatment-naïve PsA and RA at baseline and 6 months after DMARDs therapy. IL-36 family members were investigated in synovium by RNA sequencing and immunohistochemistry, and expression levels correlated with DMARDs treatment response ex vivo. Additionally, DMARDs effects on IL-36 were investigated in vitro in fibroblast-like synoviocytes. RESULTS PsA synovium displayed a reduced expression of IL-36 antagonists, while IL-36 agonists were comparable between PsA and RA. Additionally, neutrophil-related molecules, which drive a higher activation of the IL-36 pathway, were upregulated in PsA compared with RA. At baseline, the synovial expression of IL-36α was significantly higher in PsA non-responders to DMARDs treatment, with the differential expression being sustained at 6 months post-treatment. In vitro, primary PsA-derived fibroblasts were more responsive to IL-36 stimulation compared with RA and, importantly, DMARDs treatment increased IL-36 expression in PsA fibroblasts. CONCLUSION The impaired balance between IL-36 agonists-antagonists described herein for the first time in PsA synovium and the decreased sensitivity to DMARDs in vitro may explain the apparent lower efficacy of DMARDs in PsA compared with RA. Exogenous replacement of IL-36 antagonists may be a novel promising therapeutic target for PsA patients.
Collapse
Affiliation(s)
- Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gloria Lliso-Ribera
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Lucchesi
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edoardo Prediletto
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Myles Lewis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Interleukin-36: Structure, Signaling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:191-210. [PMID: 32026417 DOI: 10.1007/5584_2020_488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IL-36 family belongs to a larger IL-1 superfamily and consists of three agonists (IL-36α/β/γ), one antagonist (IL-36Ra), one cognate receptor (IL-36R) and one accessory protein (IL-1RAcP). The receptor activation follows a two-step mechanism in that the agonist first binds to IL-36R and the resulting binary complex recruits IL-1RAcP. Assembled ternary complex brings together intracellular TIR domains of receptors which activate downstream NF-κB and MAPK signaling. Antagonist IL-36Ra inhibits the signaling by binding to IL-36R and preventing recruitment of IL-1RAcP. Members of IL-36 are normally expressed at low levels. Upon stimulation, they are inducted and act on a variety of cells including epithelial and immune cells. Protease mediated N-terminal processing is needed for cytokine activation. In the skin, the functional role of IL-36 is to contribute to host defense through inflammatory response. However, when dysregulated, IL-36 stimulates keratinocyte and immune cells to enhance the Th17/Th23 axis and induces psoriatic-like skin disorder. Genetic mutations of the antagonist IL-36Ra are associated with occurrence of generalized pustular psoriasis, a rare but life-threatening skin disease. Anti-IL-36 antibodies attenuate IMQ or IL-23 induced skin inflammation in mice, illustrating IL-36's involvement in mouse model of psoriasis. Other organs such as the lungs, the intestine, the joints and the brain also express IL-36 family members upon stimulation. The physiological and pathological roles of IL-36 are less well defined in these organs than in the skin. In this chapter, current progress on IL-36 protein and biology is reviewed with a discussion on investigative tools for this novel target.
Collapse
|
16
|
Queen D, Ediriweera C, Liu L. Function and Regulation of IL-36 Signaling in Inflammatory Diseases and Cancer Development. Front Cell Dev Biol 2019; 7:317. [PMID: 31867327 PMCID: PMC6904269 DOI: 10.3389/fcell.2019.00317] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
The IL-36 subfamily of cytokines belongs to the IL-1 superfamily and consists of three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, and an IL-36 receptor (IL-36R) antagonist, IL-36Ra. These IL-36 cytokines function through a common receptor to modulate innate and adaptive immune responses. IL-36 cytokines are expressed as inactive precursors and require proteolytic processing to become fully active. Upon binding to IL-36R, IL-36 agonists augment the expression and production of inflammatory cytokines via activating signaling pathways. IL-36 is mainly expressed in epidermal, bronchial, and intestinal epithelial cells that form the barrier structures of the body and regulates the balance between pro-inflammatory and anti-inflammatory cytokine production at these tissue sites. Dysregulation of IL-36 signaling is a major etiological factor in the development of autoimmune and inflammatory diseases. Besides its critical role in inflammatory skin diseases such as psoriasis, emerging evidence suggests that aberrant IL-36 activities also promote inflammatory diseases in the lung, kidneys, and intestines, underscoring the potential of IL-36 as a therapeutic target for common inflammatory diseases. The role of IL-36 signaling in cancer development is also under investigation, with limited studies suggesting a potential anti-tumor effect. In this comprehensive review, we summarize current knowledge regarding the expression, activation, regulatory mechanisms, and biological functions of IL-36 signaling in immunity, inflammatory diseases, and cancer development.
Collapse
Affiliation(s)
- Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| |
Collapse
|
17
|
Yuan ZC, Xu WD, Liu XY, Liu XY, Huang AF, Su LC. Biology of IL-36 Signaling and Its Role in Systemic Inflammatory Diseases. Front Immunol 2019; 10:2532. [PMID: 31736959 PMCID: PMC6839525 DOI: 10.3389/fimmu.2019.02532] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-36 is a member of the IL-1 superfamily and includes three agonists (IL-36α, IL-36β, and IL-36γ) and an antagonist (IL-36Ra). IL-36 agonists bind to heterodimeric receptor complexes. Then, the heterotrimer complexes signal via intracellular functional domains, binding to downstream signaling proteins and inducing inflammatory responses. In this review, we summarized the current knowledge about the biological role of IL-36 and its correlation with systemic inflammatory diseases. The information collected will help to increase the understanding of the potential of IL-36 and may give clues for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Chao Yuan
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, China
| | - Xiao-Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Xing-You Liu
- School of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
18
|
Xie L, Huang Z, Li H, Liu X, Zheng S, Su W. IL-38: A New Player in Inflammatory Autoimmune Disorders. Biomolecules 2019; 9:E345. [PMID: 31387327 PMCID: PMC6723600 DOI: 10.3390/biom9080345] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-38, a newly discovered IL-1 family cytokine, is expressed in several tissues and secreted by various cells. IL-38 has recently been reported to exert an anti-inflammatory function by binding to several receptors, including interleukin-36 receptor (IL-36R), interleukin-1 receptor accessory protein-like 1 (IL-1RAPL1), and interleukin-1 receptor 1 (IL-1R1) to block binding with other pro-inflammatory cytokines and inhibit subsequent signaling pathways; thereby regulating the differentiation and function of T cells, peripheral blood mononuclear cells, macrophages, and dendritic cells. Inflammatory autoimmune diseases, which are common immune-mediated inflammatory syndromes, are characterized by an imbalance between T helper cells (Ths), especially Th1s and Th17s, and regulatory T cells (Tregs). Recent findings have shown that abnormal expression of IL-38 in inflammatory autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, primary Sjogren's syndrome, psoriasis, inflammatory bowel disease, hidradenitis suppurativa, ankylosing spondylitis, and glaucoma, involves Th1s, Th17s, and Tregs. In this review, the expression, regulation, and biological function of IL-38 are discussed, as are the roles of IL-38 in various inflammatory autoimmune disorders. Current data support that the IL-38/IL-36R and/or IL-38/IL-1RAPL1 axis primarily play an anti-inflammatory role in the development and resolution of inflammatory autoimmune diseases and indicate a possible therapeutic benefit of IL-38 in these diseases.
Collapse
Affiliation(s)
- Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Songguo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
19
|
Li T, Chubinskaya S, Esposito A, Jin X, Tagliafierro L, Loeser R, Hakimiyan AA, Longobardi L, Ozkan H, Spagnoli A. TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med 2019; 11:eaan2585. [PMID: 31068441 PMCID: PMC7102613 DOI: 10.1126/scitranslmed.aan2585] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Mechanisms that govern the shift from joint homeostasis to osteoarthritis (OA) remain unknown. Here, we identify a pathway used for joint development and homeostasis, and its role in OA. Using a combination of transgenic, pharmacological, and surgical conditions in mouse and human tissues, we found that TGF-β signaling promotes joint homeostasis through regulation of the IL-36 family. We identified IL-36 receptor antagonist (IL-36 in mice and IL-36RN in humans) as a potential disease-modifying OA drug. Specifically, OA development was associated with IL-36α up-regulation and IL-36Ra down-regulation in mice with tissue-specific postnatally induced ablation of Tgfbr2, mice treated with a TGF-β signaling inhibitor, mice with posttraumatic OA, and aging mice with naturally occurring OA. In human cartilage, OA severity was associated with decreased TGFBR2 and IL-36RN, whereas IL-36α increased. Functionally, intra-articular treatment with IL-36Ra attenuated OA development in mice, and IL-36RN reduced MMP13 in human OA chondrocytes. These findings highlight the relevance of TGFBR2-IL-36 interplay in joint homeostasis and IL-36RN as a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Tieshi Li
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alessandra Esposito
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| | - Xin Jin
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | - Richard Loeser
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arnavaz A Hakimiyan
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lara Longobardi
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Huseyin Ozkan
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Orthopedics and Traumatology, Gulhane Military Medical School, Ankara, Turkey
| | - Anna Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| |
Collapse
|
20
|
IL-36 Cytokines: Regulators of Inflammatory Responses and Their Emerging Role in Immunology of Reproduction. Int J Mol Sci 2019; 20:ijms20071649. [PMID: 30987081 PMCID: PMC6479377 DOI: 10.3390/ijms20071649] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
The IL-36 subfamily of cytokines has been recently described as part of the IL-1 superfamily. It comprises three pro-inflammatory agonists (IL-36α, IL-36β, and IL-36γ), their receptor (IL-36R), and one antagonist (IL-36Ra). Although expressed in a variety of cells, the biological relevance of IL-36 cytokines is most evident in the communication between epithelial cells, dendritic cells, and neutrophils, which constitute the common triad responsible for the initiation, maintenance, and expansion of inflammation. The immunological role of IL-36 cytokines was initially described in studies of psoriasis, but novel evidence demonstrates their involvement in further immune and inflammatory processes in physiological and pathological situations. Preliminary studies have reported a dynamic expression of IL-36 cytokines in the female reproductive tract throughout the menstrual cycle, as well as their association with the production of immune mediators and cellular recruitment in the vaginal microenvironment contributing to host defense. In pregnancy, alteration of the placental IL-36 axis has been reported upon infection and pre-eclampsia suggesting its pivotal role in the regulation of maternal immune responses. In this review, we summarize current knowledge regarding the regulatory mechanisms and biological actions of IL-36 cytokines, their participation in different inflammatory conditions, and the emerging data on their potential role in normal and complicated pregnancies.
Collapse
|
21
|
IL-36, IL-37, and IL-38 Cytokines in Skin and Joint Inflammation: A Comprehensive Review of Their Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20061257. [PMID: 30871134 PMCID: PMC6470667 DOI: 10.3390/ijms20061257] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, β, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases. For instance, IL-36 agonists seem to be relevant for the pathogenesis of skin psoriasis whereas, despite being expressed within the synovial tissue, their silencing or overexpression do not critically influence the course of arthritis in mice. In this review, we will focus on the state of the art of the molecular features and biological roles of IL-36, IL-37, and IL-38 in representative skin- and joint-related inflammatory diseases, namely psoriasis, rheumatoid arthritis, and psoriatic arthritis. We will then offer an overview of the therapeutic potential of targeting the IL-36 axis in these diseases, either by blocking the proinflammatory agonists or enhancing the physiologic inhibitory feedback on the inflammation mediated by the antagonists IL-37 and IL-38.
Collapse
|
22
|
Bassoy EY, Towne JE, Gabay C. Regulation and function of interleukin-36 cytokines. Immunol Rev 2018; 281:169-178. [PMID: 29247994 DOI: 10.1111/imr.12610] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interleukin (IL)-36 cytokines include 3 agonists, IL-36α, IL-36β, and IL-36γ that bind to a common receptor composed of IL-36R and IL-1RAcP to stimulate inflammatory responses. IL-36Ra is a natural antagonist that binds to IL-36R, but does not recruit the co-receptor IL-1RAcP and does not stimulate any intracellular responses. The IL-36 cytokines are expressed predominantly by epithelial cells and act on a number of cells including immune cells, epithelial cells, and fibroblasts. Processing of the N-terminus is required for full agonist or antagonist activity for all IL-36 members. The role of IL-36 has been extensively demonstrated in the skin where it can act on keratinocytes and immune cells to induce a robust inflammatory response that has been implicated in psoriatic disorders. Emerging data also suggest a role for this cytokine family in pulmonary and intestinal physiology and pathology.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Division of Rheumatology, Department of Internal Medicine Specialties & Department of Pathology-Immunology, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Jennifer E Towne
- Immunology Discovery, Janssen Research and Development, San Diego, CA, USA
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties & Department of Pathology-Immunology, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Mai SZ, Li CJ, Xie XY, Xiong H, Xu M, Zeng FQ, Guo Q, Han YF. Increased serum IL-36α and IL-36γ levels in patients with systemic lupus erythematosus: Association with disease activity and arthritis. Int Immunopharmacol 2018; 58:103-108. [DOI: 10.1016/j.intimp.2018.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
|
24
|
Garraud T, Harel M, Boutet MA, Le Goff B, Blanchard F. The enigmatic role of IL-38 in inflammatory diseases. Cytokine Growth Factor Rev 2018; 39:26-35. [PMID: 29366546 DOI: 10.1016/j.cytogfr.2018.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
IL-38 is the most recently discovered cytokine of the IL-1 family and is considered a potential inhibitor of the IL-1 and Toll-like receptor families. IL-38 exerts anti-inflammatory properties, especially on macrophages, by inhibiting secretion of pro-inflammatory cytokines, leading to reduced T-lymphocyte TH17 maturation. IL-38 has been studied most extensively in the context of chronic inflammatory diseases, particularly arthritis, where it is considered an attractive new drug candidate. IL-38 research has entered a new phase, with the realization that IL-38 is important in the pathophysiology of TH17 dependent-diseases (psoriasis, psoriatic arthritis and ankylosing spondylitis). In this review, we provide a critical evaluation of several controversial issues concerning IL-38 function and regulation. There is effectively contrasting data regarding IL-38: it is produced in conditions such as apoptosis, necrosis or inflammation, but data is lacking regarding IL-38 processing and biological function. Furthermore, the receptor for IL-38 has yet to be identified, although three candidate receptors - IL-1R1, IL-36R and IL-1RAPL1-have been proposed. Future studies will hopefully uncover new aspects of this enigmatic cytokine.
Collapse
Affiliation(s)
- Thomas Garraud
- INSERM UMR1238, Nantes University, Nantes, France; Rheumatology Unit, Nantes University Hospital, Nantes, France.
| | | | | | - Benoit Le Goff
- INSERM UMR1238, Nantes University, Nantes, France; Rheumatology Unit, Nantes University Hospital, Nantes, France
| | | |
Collapse
|
25
|
Ding L, Wang X, Hong X, Lu L, Liu D. IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget 2017; 9:2895-2901. [PMID: 29416822 PMCID: PMC5788690 DOI: 10.18632/oncotarget.22814] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/29/2017] [Indexed: 02/07/2023] Open
Abstract
The inteleukin-36 (IL-36) cytokines include IL-36α, IL-36β, IL-36γ and IL-36Ra, which belong to the IL-1 family and exert pro-inflammatory effects on various target cells such as keratinocytes, synoviocytes, dendritic cells and T cells. Emerging evidence has suggested a role of IL-36 in the pathogenesis of many inflammatory diseases. Here, we provide a brief review on the activation of IL-36 family cytokines and their involvement in autoimmunity and inflammatory diseases, which will provide further insights in understanding the functions of IL-36 family cytokines in the pathophysiology of autoimmunity and inflammatory diseases.
Collapse
Affiliation(s)
- Liping Ding
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
26
|
Alunno A, Carubbi F, Giacomelli R, Gerli R. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatol 2017; 1:3. [PMID: 30886947 PMCID: PMC6383595 DOI: 10.1186/s41927-017-0001-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, the landscape of pro- and anti-inflammatory cytokines has rapidly expanded with the identification of new members proven to be involved at different extent in the pathogenesis of chronic immune mediated inflammatory diseases including rheumatoid arthritis (RA). The advance of our understanding of mediators involved in the pathogenesis of RA and in consequence, the development of novel targeted therapies is necessary to provide patients not responding to currently available strategies with novel compounds. The aim of this review article is to provide an overview on recently identified cytokines, emphasizing their pathogenic role and therapeutic potential in RA. A systematic literature review was performed to retrieve articles related to every cytokine discussed in the review. In some cases, evidence from animal models and RA patients is already consistent to move forward into drug development. In others, conflicting observation and the paucity of data require further investigations.Forty years after the discovery of IL-1, the landscape of cytokines is continuously expanding with increasing possibilities to develop novel therapeutic strategies in RA.
Collapse
Affiliation(s)
- Alessia Alunno
- 1Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Carubbi
- 2Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,ASL1 Avezzano-L'Aquila-Sulmona, Department of Medicine, L'Aquila, Italy
| | - Roberto Giacomelli
- 2Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Gerli
- 1Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Schmitt V, Hahn M, Kästele V, Wagner O, Wiendl M, Derer A, Taddeo A, Hahne S, Radbruch A, Jäck HM, Schuh W, Mielenz D, Gay S, Schett G, Hueber AJ, Frey S. Interleukin-36 receptor mediates the crosstalk between plasma cells and synovial fibroblasts. Eur J Immunol 2017; 47:2101-2112. [PMID: 28857172 DOI: 10.1002/eji.201646788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 11/08/2022]
Abstract
The IL-1 family member IL-36α has proinflammatory and pathogenic properties in psoriasis. IL-36α binds to the IL-36 receptor leading to nuclear factor kappa B/mitogen activated protein kinase mediated cytokine release. The IL-36R antagonist prevents recruitment of IL-1 receptor accessory protein and therefore IL-36-dependent cell activation. In inflamed human tissue, we previously could show that resident B cells and plasma cells (PC) express IL-36α. Further, fibroblast-like synoviocytes (FLS) produced proinflammatory cytokines upon IL-36α-stimulation. We hypothesize an IL-36-specific crosstalk between B cells/PCs and FLS permitting a proinflammatory B cell niche. Here, we firstly demonstrated that B cell lines and B cells from healthy donors express IL-36α and stimulation increased IL-36α in B cells and primary plasmablasts/PCs. Moreover, FLS respond specifically to IL-36α by proliferation and production of matrix metalloproteinases via p38/HSP27 signaling. Importantly, IL-36R-deficiency abrogated IL-36α-induced production of inflammatory mediators in FLS and changed the intrinsic FLS-phenotype. Using an in vitro co-culture system, we could show that IL-36R-deficient FLS had a limited capacity to support PC survival compared to wild-type FLS. Hence, we demonstrated an IL-36R-dependent crosstalk between B cells/PCs and FLS. Our data support the concept of initiation and maintenance of a proinflammatory niche by B cells in the joints.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Madelaine Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Verena Kästele
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Olga Wagner
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Maximilian Wiendl
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Anja Derer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Adriano Taddeo
- German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany
| | - Stefanie Hahne
- German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
28
|
|
29
|
Sharma J, Bhar S, Devi CS. A review on interleukins: The key manipulators in rheumatoid arthritis. Mod Rheumatol 2017; 27:723-746. [DOI: 10.1080/14397595.2016.1266071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jatin Sharma
- School of Biosciences and Technology, VIT University, Vellore, India
| | - Sutonuka Bhar
- School of Biosciences and Technology, VIT University, Vellore, India
| | - C. Subathra Devi
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
30
|
Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann N Y Acad Sci 2016; 1417:23-34. [PMID: 27783881 DOI: 10.1111/nyas.13280] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
The recently discovered interleukin (IL)-36 family of cytokines form part of the broader IL-1 family and are emerging as important mediators of inflammatory disease. The IL-36 subfamily consists of three ligands-IL-36α, IL-36β, and IL-36γ-and the natural antagonist IL-36Ra. The cytokines exert their effects through a specific IL-36 receptor consisting of IL-36R and IL-1RAcP chains. IL-36 cytokines can direct both innate and adaptive immune responses by acting on parenchymal, stromal, and specific immune cell subsets. In humans, inactivating mutations in the gene encoding the IL-36R antagonist, which lead to unregulated IL-36R signaling, lead to an autoinflammatory condition termed deficiency of the IL-36R antagonist, which primarily manifests as a severe form of pustular psoriasis. While such discoveries have prompted deeper mechanistic studies highlighting the important role of IL-36 cytokines in psoriatic skin inflammation, it is now evident that IL-36 cytokines can also play important roles in inflammatory disorders in other organs, such as the gastrointestinal tract and the lungs. Given these emerging roles, strategies to specifically target the expression and activity of the IL-36 family have the potential to uncover novel therapeutic approaches aimed at treating inflammatory diseases in humans.
Collapse
Affiliation(s)
- Patrick T Walsh
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G Fallon
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines. Cytokine 2016; 84:88-98. [DOI: 10.1016/j.cyto.2016.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
|
32
|
Penha R, Higgins J, Mutamba S, Barrow P, Mahida Y, Foster N. IL-36 receptor is expressed by human blood and intestinal T lymphocytes and is dose-dependently activated via IL-36β and induces CD4+ lymphocyte proliferation. Cytokine 2016; 85:18-25. [PMID: 27269181 DOI: 10.1016/j.cyto.2016.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
We show that IL-36R is expressed by T (CD4+ and CD8+) and B (CD19+) lymphocytes in human blood and also by CD4+ T lymphocytes in the intestinal lamina propria. IL-36R protein was mostly stored in the cytoplasm of CD4 lymphocytes and B cells, during steady state conditions and the greatest expression of IL-36R mRNA was measured in CD4+ (T helper) lymphocytes. IL-36 β, which functions via IL-36R induced rapid and significant (P<0.05) proliferation of CD4+ lymphocytes, within 48h. IL-36R expression was also maintained on the surface of circulating CD4+ lymphocytes which enter the intestinal lamina propria. In conclusion our study is the first to show that (1) all human blood lymphocytes express IL-36R; (2) IL-36R expression is maintained by circulating CD4+ lymphocytes which enter the intestinal lamina propria and (3) IL-36R/IL-36 β induces rapid CD4 lymphocyte proliferation. The possible significance of these results in the context of human disease is discussed.
Collapse
Affiliation(s)
- Rafael Penha
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - John Higgins
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Shilla Mutamba
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Yashwant Mahida
- The Institute of Infection, Immunity and Inflammation, University of Nottingham, UK
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, UK.
| |
Collapse
|
33
|
Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F. Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn's disease. Clin Exp Immunol 2016; 184:159-73. [PMID: 26701127 DOI: 10.1111/cei.12761] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-36α, IL-36β and IL-36γ are expressed highly in skin and are involved in the pathogenesis of psoriasis, while the antagonists IL-36Ra or IL-38, another potential IL-36 inhibitor, limit uncontrolled inflammation. The expression and role of IL-36 cytokines in rheumatoid arthritis (RA) and Crohn's disease (CD) is currently debated. Here, we observed that during imiquimod-induced mouse skin inflammation and in human psoriasis, expression of IL-36α, γ and IL-36Ra, but not IL-36β and IL-38 mRNA, was induced and correlated with IL-1β and T helper type 17 (Th17) cytokines (IL-17A, IL-22, IL-23, CCL20). In mice with collagen-induced arthritis and in the synovium of patients with RA, IL-36α, β, γ, IL-36Ra and IL-38 were all elevated and correlated with IL-1β, CCL3, CCL4 and macrophage colony-stimulating factor (M-CSF), but not with Th17 cytokines. In the colon of mice with dextran sulphate sodium-induced colitis and in patients with CD, only IL-36α, γ and IL-38 were induced at relatively low levels and correlated with IL-1β and IL-17A. We suggest that only a minor subgroup of patients with RA (17-29%) or CD (25%) had an elevated IL-36 agonists/antagonists ratio, versus 93% of patients with psoriasis. By immunohistochemistry, IL-36 cytokines were produced by various cell types in skin, synovium and colonic mucosa such as keratinocytes, CD68⁺ macrophages, dendritic/Langerhans cells and CD79α⁺ plasma cells. In primary cultures of monocytes or inflammatory macrophages (M1), IL-36β and IL-36Ra were produced constitutively, but IL-36α, γ and IL-38 were produced after lipopolysaccharide stimulation. These distinct expression profiles may help to explain why only subgroups of RA and CD patients have a potentially elevated IL-36 agonists/antagonists ratio.
Collapse
Affiliation(s)
- M-A Boutet
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités
| | - G Bart
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités.,Rheumatology Unit, Nantes University Hospital, Nantes, France
| | - M Penhoat
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités.,Rheumatology Unit, Nantes University Hospital, Nantes, France
| | - J Amiaud
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités
| | - B Brulin
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités
| | - C Charrier
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités
| | - F Morel
- EA 4331, University of Poitiers, Poitiers, France
| | - J-C Lecron
- EA 4331, University of Poitiers, Poitiers, France.,Service Immunologie/Inflammation, Poitiers University Hospital, Poitiers, France
| | | | - A Bourreille
- INSERM, UMR 913, Nantes, France.,Service d'Hépato-Gastroentérologie, Nantes University Hospital, Nantes, France
| | - S Vigne
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva and Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - C Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva and Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - G Palmer
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva and Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - B Le Goff
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités.,Rheumatology Unit, Nantes University Hospital, Nantes, France
| | - F Blanchard
- INSERM, UMR 957, Nantes, France.,Laboratoire De Physiopathologie De La Résorption Osseuse, Faculté De Médecine, Université De Nantes, Nantes Atlantique Universités
| |
Collapse
|
34
|
Increased Expression of Interleukin-36, a Member of the Interleukin-1 Cytokine Family, in Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:303-14. [PMID: 26752465 DOI: 10.1097/mib.0000000000000654] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Interleukin (IL)-36 (IL-36α, IL-36β, and IL-36γ) is a recently reported member of the IL-1 cytokine family. In this study, we investigated IL-36 expression in the inflamed mucosa of patients with inflammatory bowel disease and characterized the proinflammatory actions of IL-36 cytokines in human colonic epithelial cells. METHODS IL-36 mRNA expression was evaluated using real-time PCR. IL-36 protein expression was analyzed using immunoblotting and immunohistochemical technique. Intracellular signaling pathways were evaluated by immunoblotting and by specific siRNA-transfected cells. RESULTS The mRNA expression of IL-36α and IL-36γ, but not of IL-36β, was enhanced in the inflamed mucosa of patients with inflammatory bowel disease, in particular, in ulcerative colitis. Immunohistochemical analysis showed that T cells, monocytes, and plasma cells are the source of IL-36α and IL-36γ in colonic mucosa. DNA microarray analysis indicated that IL-36α induces the mRNA expression of CXC chemokines and acute phase proteins in intestinal epithelial cell line, HT-29 cells. IL-36α and IL-36γ dose-dependently and time-dependently induced the mRNA and protein expression of CXC chemokines (CXCL1, CXCL2, CXCL3 etc.) in HT-29 and Widr cells. Stimulation with IL-36α and IL-36γ assembled MyD88 adaptor proteins (MyD88, TRAF6, IRAK1, and TAK1) into a complex and induced the activation of NF-κB and AP-1 and also the phosphorylation of MAPKs. MAPK inhibitors and siRNAs specific for NF-κB and c-Jun AP-1 significantly reduced IL-36-induced CXC chemokine expression. CONCLUSIONS IL-36α and IL-36γ may play a proinflammatory role in the pathophysiology of inflammatory bowel disease through induction of CXC chemokines and acute phase proteins.
Collapse
|
35
|
Chu M, Wong CK, Cai Z, Dong J, Jiao D, Kam NW, Lam CWK, Tam LS. Elevated Expression and Pro-Inflammatory Activity of IL-36 in Patients with Systemic Lupus Erythematosus. Molecules 2015; 20:19588-604. [PMID: 26516833 PMCID: PMC6332178 DOI: 10.3390/molecules201019588] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022] Open
Abstract
We investigated the expression and proinflammatory activity of interleukin (IL)-36 in patients with systemic lupus erythematosus (SLE). The expression level of IL-36, its putative receptors and the frequency of CD19+CD24highCD27+ regulatory B (Breg) lymphocytes of peripheral blood from 43 SLE patients and 16 normal control (NC) subjects were studied using ELISA and flow cytometry. Plasma cytokines/chemokines and ex vivo productions of cytokine/chemokine from peripheral blood mononuclear cells (PBMC) stimulated with recombinant IL-36 were determined by Luminex multiplex assay. Plasma concentrations of IL-36α, IL-36γ and the proportions of circulating IL-36R-positive CD19+ B lymphocytes in total B lymphocytes and PBMC were significantly increased in active SLE patients compared with NC (all p < 0.05). Plasma IL-36α and IL-36γ correlated positively with SLE disease activity and elevated plasma IL-10 concentration (all p < 0.05). The frequencies of circulating Breg lymphocytes in total B lymphocytes and PBMC were significantly decreased in both inactive and active SLE patients compared with NC (all p < 0.01). The frequency of Breg lymphocytes in total B lymphocytes correlated negatively with the proportion of IL-36R-positive B lymphocytes (p < 0.05). IL-36α exerted substantial proinflammatory effect in PBMC from SLE patients by inducing the production of IL-6 and CXCL8. Upon stimulation with IL-36α and IL-36γ, ex vivo productions of IL-6 and CXCL8 were significantly increased in SLE patients compared with NC (all p < 0.05). This cross-sectional study demonstrated that over expression of circulating IL-36α may exert a proinflammatory effect as observed in human SLE.
Collapse
Affiliation(s)
- Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Zhe Cai
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Jie Dong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Ngar Woon Kam
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau.
| | - Lai Shan Tam
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| |
Collapse
|
36
|
Kanda T, Nishida A, Takahashi K, Hidaka K, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Interleukin(IL)-36α and IL-36γ Induce Proinflammatory Mediators from Human Colonic Subepithelial Myofibroblasts. Front Med (Lausanne) 2015; 2:69. [PMID: 26442271 PMCID: PMC4585048 DOI: 10.3389/fmed.2015.00069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/04/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interleukin (IL)-36 cytokines are recently reported member of the IL-1 cytokine family. However, there is little information regarding the association between IL-36 cytokines and gut inflammation. In the present study, we investigated the biological activity of IL-36α and IL-36γ using human colonic subepithelial myofibroblasts (SEMFs). METHODS The mRNA expression and the protein expression of target molecules in SEMFs were evaluated using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The intracellular signaling of IL-36 cytokines was analyzed using Western blot analysis and small interfering RNAs (siRNAs) specific for MyD88 adaptor proteins (MyD88 and IRAK1) and NF-κB p65. RESULTS IL-36α and IL-36γ significantly enhanced the secretion of IL-6 and CXC chemokines (CXCL1, CXCL2, and CXCL8) by SEMFs. The combination of IL-36α/γ and IL-17A or of IL-36α/γ and tumor necrosis factor-α showed a synergistic effect on the induction of IL-6 and CXC chemokines. The mRNA expression of proinflammatory mediators induced by IL-36α and/or IL-36γ was significantly suppressed by transfection of siRNA for MyD88 or IRAK1. Both inhibitors of mitogen activated protein kinases and siRNAs specific for NF-κBp65 significantly reduced the expression of IL-6 and CXC chemokines induced by IL-36α and/or IL-36γ. CONCLUSION These results suggest that IL-36α and IL-36γ contribute to gut inflammation through the induction of proinflammatory mediators.
Collapse
Affiliation(s)
- Toshihiro Kanda
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | | | - Kentaro Hidaka
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Hirotsugu Imaeda
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Shigeki Bamba
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | | | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| |
Collapse
|
37
|
Interleukin-36γ is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis. J Neuroinflammation 2015; 12:173. [PMID: 26377915 PMCID: PMC4574267 DOI: 10.1186/s12974-015-0392-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is a model of inflammatory demyelinating diseases mediated by different types of leukocytes. How these cells communicate with each other to orchestrate autoimmune attacks is not fully understood, especially in the case of neutrophils, whose importance in EAE is newly established. The present study aimed to determine the expression pattern and role of different components of the IL-36 signaling pathway (IL-36α, IL-36β, IL-36γ, IL-36R) in EAE. Methods EAE was induced by either active immunization with myelin peptide, passive transfer of myelin-reactive T cells or injection of pertussis toxin to transgenic 2D2 mice. The molecules of interest were analyzed using a combination of techniques, including quantitative real-time PCR (qRT-PCR), flow cytometry, Western blotting, in situ hybridization, and immunohistochemistry. Microglial cultures were treated with recombinant IL-36γ and analyzed using DNA microarrays. Different mouse strains were subjected to clinical evaluation and flow cytometric analysis in order to compare their susceptibility to EAE. Results Our observations indicate that both IL-36γ and IL-36R are strongly upregulated in nervous and hematopoietic tissues in different forms of EAE. IL-36γ is specifically expressed by neutrophils, while IL-36R is expressed by different immune cells, including microglia and other myeloid cells. In culture, microglia respond to recombinant IL-36γ by expressing molecules involved in neutrophil recruitment, such as Csf3, IL-1β, and Cxcl2. However, mice deficient in either IL-36γ or IL-36R develop similar clinical and histopathological signs of EAE compared to wild-type controls. Conclusion This study identifies IL-36γ as a neutrophil-related cytokine that can potentially activate microglia, but that is only correlative and not contributory in EAE. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0392-7) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Ciccia F, Accardo-Palumbo A, Alessandro R, Alessandri C, Priori R, Guggino G, Raimondo S, Carubbi F, Valesini G, Giacomelli R, Rizzo A, Triolo G. Interleukin-36α axis is modulated in patients with primary Sjögren's syndrome. Clin Exp Immunol 2015; 181:230-8. [PMID: 25902739 PMCID: PMC4516438 DOI: 10.1111/cei.12644] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate the expression of the interleukin (IL)-36 axis in patients with primary Sjögren's syndrome (pSS). Blood and minor labial salivary glands (MSG) biopsies were obtained from 35 pSS and 20 non-Sjögren's syndrome patients (nSS) patients. Serum IL-36α was assayed by enzyme-linked immunosorbent assay (ELISA). IL-36α, IL-36R, IL-36RA, IL-38, IL-22, IL-17, IL-23p19 and expression in MSGs was assessed by reverse transcription-polymerase chain reaction (RT-PCR), and tissue IL-36α and IL-38 expression was also investigated by immunohistochemistry (IHC). αβ and γδ T cells and CD68(+) cells isolated from MSGs were also studied by flow cytometry and confocal microscopy analysis. IL-36α was over-expressed significantly in the serum and in the salivary glands of pSS. Salivary gland IL-36α expression was correlated with the expression levels of IL-17, IL-22 and IL-23p19. IL-38, that acts as inhibitor of IL-36α, was also up-regulated in pSS. αβ(+) CD3(+) T cells and CD68(+) cells were the major source of IL-36α in minor salivary glands of pSS. γδ T cells were not significantly expanded in the salivary glands of pSS but produced more IL-17, as their percentage correlated with the focus score. Higher expression of IL-36α and IL-36R was also demonstrated in γδ T cells isolated from pSS compared to controls. In this study we demonstrate that a significant increase in circulating and tissue levels of IL-36α occurs in pSS patients.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Case-Control Studies
- Female
- Gene Expression Regulation
- Humans
- Interleukin-1/genetics
- Interleukin-1/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-23 Subunit p19/genetics
- Interleukin-23 Subunit p19/immunology
- Interleukins/genetics
- Interleukins/immunology
- Male
- Middle Aged
- Primary Cell Culture
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Salivary Glands/immunology
- Salivary Glands/pathology
- Signal Transduction
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- Sjogren's Syndrome/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Interleukin-22
Collapse
Affiliation(s)
- F Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistiche, Sezione di Reumatologia, Università di PalermoItaly
| | - A Accardo-Palumbo
- Dipartimento di Oncoematologia, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Sezione di Anatomia PatologicaPalermo, Italy
| | - R Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoItaly
| | - C Alessandri
- UOC di Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università degli Studi di RomaItaly
| | - R Priori
- UOC di Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università degli Studi di RomaItaly
| | - G Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistiche, Sezione di Reumatologia, Università di PalermoItaly
| | - S Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoItaly
| | - F Carubbi
- UOC di Oculistica, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di PalermoItaly
| | - G Valesini
- UOC di Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università degli Studi di RomaItaly
| | - R Giacomelli
- UOC di Oculistica, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di PalermoItaly
| | - A Rizzo
- Dipartimento di Oncoematologia, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Sezione di Anatomia PatologicaPalermo, Italy
| | - G Triolo
- Dipartimento Biomedico di Medicina Interna e Specialistiche, Sezione di Reumatologia, Università di PalermoItaly
| |
Collapse
|
39
|
Unprocessed Interleukin-36α Regulates Psoriasis-Like Skin Inflammation in Cooperation With Interleukin-1. J Invest Dermatol 2015. [PMID: 26203636 PMCID: PMC4648684 DOI: 10.1038/jid.2015.289] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Generalized pustular psoriasis is a severe skin disease characterized by epidermal hyperplasia, neutrophil-rich abscesses within the epidermis, and a mixed inflammatory infiltrate in the dermis. The disease may be caused by missense mutations in the IL-36 receptor antagonist, IL-36Ra. Curiously, the related IL-1Ra has therapeutic effects in some of these latter patients. Here, using an experimental mouse model of psoriasiform skin inflammation, we demonstrate in vivo connections between IL-36 and IL-1 expression. After disease initiation, IL-36α-deficient mice exhibited dramatically diminished skin pathology, including absence of epidermal neutrophils, reduced keratinocyte acanthosis, and less dermal edema. In contrast, IL-36β and IL-36γ knockout mice developed disease indistinguishable from that of wild-type mice. The endogenous IL-36α was not processed through proteolysis. Although IL-36α expression was strongly induced in an IL-1 signaling-dependent manner during disease, expression of IL-1α was also dependent upon IL-36α. Hence, after being upregulated by IL-1α, IL-36α acts through a feedback mechanism to boost IL-1α levels. Analyses of double knockout mice further revealed that IL-36α and IL-1α cooperate to promote psoriasis-like disease. In conclusion, IL-1α and IL-36α form a self-amplifying inflammatory loop in vivo that in patients with insufficient counter regulatory mechanisms may become hyper-engaged and/or chronic.
Collapse
|
40
|
Abstract
The inflammatory status of the tumor microenvironment (TME) has been heavily investigated in recent years. Chemokine- and cytokine-signaling pathways such as CCR7, CXCR5, lymphotoxin, and IL-36, which are involved in the generation of secondary lymphoid organs and effector immune responses, are now recognized as having value both as prognostic factors and as immunomodulatory therapeutics in the context of cancer. Furthermore, when produced in the TME, these mediators have been shown to promote the recruitment of immune cells, including T cells, B cells, dendritic cells (DCs), and other specialized immune cell subsets such as follicular DCs and T follicular helper cells, in association with the formation of "tertiary" lymphoid structures (TLSs) within or adjacent to sites of disease. Although TLSs are composed of a heterogeneous collection of immune cell types, whose composition differs based on cancer subtype, the qualitative presence of TLSs has been shown to represent a biomarker of good prognosis for cancer patients. A comprehensive understanding of the role each of these pathways plays within the TME may support the rational design of future immunotherapies to selectively promote/bolster TLS formation and function, leading to improved clinical outcomes across the vast range of solid cancer types.
Collapse
|
41
|
Role of IL-38 and its related cytokines in inflammation. Mediators Inflamm 2015; 2015:807976. [PMID: 25873772 PMCID: PMC4383490 DOI: 10.1155/2015/807976] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin- (IL-) 38 is a recently discovered cytokine and is the tenth member of the IL-1 cytokine family. IL-38 shares structural features with IL-1 receptor antagonist (IL-1Ra) and IL-36Ra. IL-36R is the specific receptor of IL-38, a partial receptor antagonist of IL-36. IL-38 inhibits the production of T-cell cytokines IL-17 and IL-22. IL-38 also inhibits the production of IL-8 induced by IL-36γ, thus inhibiting inflammatory responses. IL-38-related cytokines, including IL-1Ra and IL-36Ra, are involved in the regulation of inflammation and immune responses. The study of IL-38 and IL-38-related cytokines might provide new insights for developing anti-inflammatory treatments in the near future.
Collapse
|
42
|
Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol 2015; 97:645-52. [DOI: 10.1189/jlb.3ri1014-495r] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Dietrich D, Gabay C. IL-36 has proinflammatory effects in skin but not in joints. Nat Rev Rheumatol 2014; 10:639-40. [DOI: 10.1038/nrrheum.2014.156] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Derer A, Groetsch B, Harre U, Böhm C, Towne J, Schett G, Frey S, Hueber AJ. Blockade of IL-36 receptor signaling does not prevent from TNF-induced arthritis. PLoS One 2014; 9:e101954. [PMID: 25111378 PMCID: PMC4128584 DOI: 10.1371/journal.pone.0101954] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022] Open
Abstract
Introduction Interleukin (IL)-36α is a newly described member of the IL-1 cytokine family with a known inflammatory and pathogenic function in psoriasis. Recently, we could demonstrate that the receptor (IL-36R), its ligand IL-36α and its antagonist IL-36Ra are expressed in synovial tissue of arthritis patients. Furthermore, IL-36α induces MAP-kinase and NFκB signaling in human synovial fibroblasts with subsequent expression and secretion of pro-inflammatory cytokines. Methods To understand the pathomechanism of IL-36 dependent inflammation, we investigated the biological impact of IL-36α signaling in the hTNFtg mouse. Also the impact on osteoclastogenesis by IL-36α was tested in murine and human osteoclast assays. Results Diseased mice showed an increased expression of IL-36R and IL-36α in inflamed knee joints compared to wildtype controls. However, preventively treating mice with an IL-36R blocking antibody led to no changes in clinical onset and pattern of disease. Furthermore, blockade of IL-36 signaling did not change histological signs of TNF-induced arthritis. Additionally, no alteration on bone homeostasis was observed in ex vivo murine and human osteoclast differentiation assays. Conclusion Thus we conclude that IL-36α does not affect the development of inflammatory arthritis.
Collapse
Affiliation(s)
- Anja Derer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bettina Groetsch
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Ulrike Harre
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Christina Böhm
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Jennifer Towne
- Department of Inflammation Research, Amgen Inc., Longmont, Colorado, United States of America
| | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Silke Frey
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Axel J. Hueber
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
45
|
Abstract
Psoriasis and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases with a high burden of disability and increased mortality. The pathogenesis of the disease comprises a dysregulated interaction between stromal and immune cells and a dysfunctional cytokine network supporting chronic inflammation of the skin, entheses and joints. In addition to recent advances in the understanding of TNF blockade, more targets have been discovered delivering insights into the pathogenesis of PsA. This article gives a translational approach by utilizing current clinical development programs providing an insight into the IL-12/IL-23 and the IL-17 axes and also focuses on tissue damage and new small molecules.
Collapse
|
46
|
|
47
|
van de Veerdonk FL, Netea MG. New Insights in the Immunobiology of IL-1 Family Members. Front Immunol 2013; 4:167. [PMID: 23847614 PMCID: PMC3703542 DOI: 10.3389/fimmu.2013.00167] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/12/2013] [Indexed: 12/28/2022] Open
Abstract
The interleukin-1 (IL 1) family of ligands is associated with acute and chronic inflammation, and plays an essential role in the non-specific innate response to infection. The biological properties of IL 1 family ligands are typically pro-inflammatory. The IL 1 family has 11 family members and can be categorized into subfamilies according to the length of their precursor and the length of the propiece for each precursor (Figure 1). The IL 1 subfamily consists of IL 1α, IL 1β, and IL 33, with the longest propieces of the IL 1 family. IL 18 and IL 37 belong to the IL 18 subfamily and contain smaller propieces than IL 1 and IL-33. Since IL 37 binds to the IL 18Rα chain it is part of the IL 18 subfamily, however it remains to be elucidated how the propiece of IL 37 is removed. IL 36α, β, and γ as well as IL 36 Ra belong to the IL 36 subfamily. In addition, IL 38 likely belongs to this family since it has the ability to bind to the IL 36R. The IL 36 subfamily has the shortest propiece. The one member of the IL 1 family that cannot be categorized in these subfamilies is IL 1 receptor antagonist (IL 1Ra), which has a signal peptide and is readily secreted. In the present review we will describe the biological functions of the IL-1F members and new insights in their biology.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Medicine, Radboud University Nijmegen Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| | | |
Collapse
|