1
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Rojas-Salazar Y, Gómez-Montañez E, Rojas-Salazar J, de Anda-Jáuregui G, Hernández-Lemus E. Potential Drug Synergy Through the ERBB2 Pathway in HER2+ Breast Tumors. Int J Mol Sci 2024; 25:12840. [PMID: 39684551 DOI: 10.3390/ijms252312840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
HER2-positive (HER2+) breast cancer is characterized by the overexpression of the ERBB2 (HER2) gene, which promotes aggressive tumor growth and poor prognosis. Targeting the ERBB2 pathway with single-agent therapies has shown limited efficacy due to resistance mechanisms and the complexity of gene interactions within the tumor microenvironment. This study aims to explore potential drug synergies by analyzing gene-drug interactions and combination therapies that target the ERBB2 pathway in HER2+ breast tumors. Using gene co-expression network analysis, we identified 23 metabolic pathways with significant cross-linking of gene interactions, including those involving EGFR tyrosine kinase inhibitors, PI3K, mTOR, and others. We visualized these interactions using Cytoscape to generate individual and combined drug-gene networks, focusing on frequently used drugs such as Erlotinib, Gefitinib, Lapatinib, and Cetuximab. Individual networks highlighted the direct effects of these drugs on their target genes and neighboring genes within the ERBB2 pathway. Combined drug networks, such as those for Cetuximab with Lapatinib, Cetuximab with Erlotinib, and Erlotinib with Lapatinib, revealed potential synergies that could enhance therapeutic efficacy by simultaneously influencing multiple genes and pathways. Our findings suggest that a network-based approach to analyzing drug combinations provides valuable insights into the molecular mechanisms of HER2+ breast cancer and offers promising strategies for overcoming drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Yareli Rojas-Salazar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Emiliano Gómez-Montañez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Jorge Rojas-Salazar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores e Investigadoras por Mexico Program, Conahcyt, Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Zheng D, Li W, Liang J, Wang X, Yu M, Wang H, Wang X, Zhao J, Jin Z, Ma J. Study of Azobenzene-modified Black Phosphorus for Potential Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63225-63240. [PMID: 39513435 DOI: 10.1021/acsami.4c13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Exploring the interaction between black phosphorus (BP)-based hybrid systems and target proteins is of great significance for understanding the biological effects of 2D nanomaterials at the molecular level. Density functional theory (DFT) calculations revealed that different terminal groups of the azobenzene (AB) motif in BP@AB hybrids can affect the extent of interfacial charge transfer between the BP sheet and AB-derivatives, which determines the electrostatic interaction with proteins and hence biofunctions of BP@AB hybrids. With the advantage of AB modification, BP@AB hybrids displayed antitumor effects and induced production of cellular reactive oxygen species and apoptosis in cancer cells. Through the proteomics profiling, cellular ribosome and lipid metabolic processes were screened out as the target pathways of the BP@AB-NH2 in HeLa cells, while the BP@AB-S-S-AB system mainly targets the ERBB and PPAR signaling pathways. Molecular docking simulations revealed that due to the positive charge, ribosomal pathway proteins enriched in negatively charged amino acids such as lysine and arginine are preferentially adsorbed and bound by BP@AB-NH2 hybrids. Whereas for BP@AB-S-S-AB, receptors containing narrow and long pocket domains are more likely to bind with BP@AB-S-S-AB by van der Waals forces for the rod-like hybrids. Different biomolecule targeting and action modes of BP@AB hybrids have been rationalized by different electrostatic environments and matching of geometric configurations, shedding insight for designing efficient and targeted modification of a 2D nanomaterial-based strategy for cancer therapy.
Collapse
Affiliation(s)
- Dong Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, P. R. China
- Atom Manufacturing Institute (AMI), Nanjing 211805, P. R. China
| | - Wenxi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Junchuan Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Xueping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Maokai Yu
- School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| |
Collapse
|
4
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Rönnlund C, Sifakis EG, Schagerholm C, Yang Q, Karlsson E, Chen X, Foukakis T, Weidler J, Bates M, Fredriksson I, Robertson S, Hartman J. Prognostic impact of HER2 biomarker levels in trastuzumab-treated early HER2-positive breast cancer. Breast Cancer Res 2024; 26:24. [PMID: 38321542 PMCID: PMC10848443 DOI: 10.1186/s13058-024-01779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Overexpression of human epidermal growth factor receptor 2 (HER2) caused by HER2 gene amplification is a driver in breast cancer tumorigenesis. We aimed to investigate the prognostic significance of manual scoring and digital image analysis (DIA) algorithm assessment of HER2 copy numbers and HER2/CEP17 ratios, along with ERBB2 mRNA levels among early-stage HER2-positive breast cancer patients treated with trastuzumab. METHODS This retrospective study comprised 371 early HER2-positive breast cancer patients treated with adjuvant trastuzumab, with HER2 re-testing performed on whole tumor sections. Digitized tumor tissue slides were manually scored and assessed with uPath HER2 Dual ISH image analysis, breast algorithm. Targeted ERBB2 mRNA levels were assessed by the Xpert® Breast Cancer STRAT4 Assay. HER2 copy number and HER2/CEP17 ratio from in situ hybridization assessment, along with ERBB2 mRNA levels, were explored in relation to recurrence-free survival (RFS). RESULTS The analysis showed that patients with tumors with the highest and lowest manually counted HER2 copy number levels had worse RFS than those with intermediate levels (HR = 2.7, CI 1.4-5.3, p = 0.003 and HR = 2.1, CI 1.1-3.9, p = 0.03, respectively). A similar trend was observed for HER2/CEP17 ratio, and the DIA algorithm confirmed the results. Moreover, patients with tumors with the highest and the lowest values of ERBB2 mRNA had a significantly worse prognosis (HR = 2.7, CI 1.4-5.1, p = 0.003 and HR = 2.8, CI 1.4-5.5, p = 0.004, respectively) compared to those with intermediate levels. CONCLUSIONS Our findings suggest that the association between any of the three HER2 biomarkers and RFS was nonlinear. Patients with tumors with the highest levels of HER2 gene amplification or ERBB2 mRNA were associated with a worse prognosis than those with intermediate levels, which is of importance to investigate in future clinical trials studying HER2-targeted therapy.
Collapse
Affiliation(s)
- Caroline Rönnlund
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden.
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Emmanouil G Sifakis
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Caroline Schagerholm
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Qiao Yang
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Emelie Karlsson
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jodi Weidler
- Medical and Scientific Affairs and Strategy, Oncology, Cepheid, Sunnyvale, CA, USA
| | - Michael Bates
- Medical and Scientific Affairs and Strategy, Oncology, Cepheid, Sunnyvale, CA, USA
| | - Irma Fredriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast-, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Stephanie Robertson
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Medtechlabs, Bioclinicum, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
7
|
Wu X, Huang S, He W, Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int Immunopharmacol 2023; 122:110602. [PMID: 37437432 DOI: 10.1016/j.intimp.2023.110602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
HER2 is an established therapeutic target in breast, gastric, and gastroesophageal junction carcinomas with HER2 overexpression or genomic alterations. The humanized monoclonal antibody trastuzumab targeting HER2 has substantially improved the clinical outcomes of HER2-positive patients, yet the inevitable intrinsic or acquired resistance to trastuzumab limits its clinical benefit, necessitating the elucidation of resistance mechanisms to develop alternate therapeutic strategies. This review presents an overview of trastuzumab resistance mechanisms involving signaling pathways, cellular metabolism, cell plasticity, and tumor microenvironment, particularly discussing the prospects of developing rational combinations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
8
|
Castagnoli L, Corso S, Franceschini A, Raimondi A, Bellomo SE, Dugo M, Morano F, Prisciandaro M, Brich S, Belfiore A, Vingiani A, Di Bartolomeo M, Pruneri G, Tagliabue E, Giordano S, Pietrantonio F, Pupa SM. Fatty acid synthase as a new therapeutic target for HER2-positive gastric cancer. Cell Oncol (Dordr) 2023; 46:661-676. [PMID: 36753044 PMCID: PMC10205874 DOI: 10.1007/s13402-023-00769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE Trastuzumab is an HER2-specific agent approved as the gold-standard therapy for advanced HER2-positive (HER2+) gastric cancer (GC), but the high rate and rapid appearance of resistance limit its clinical efficacy, resulting in the need to identify new vulnerabilities. Defining the drivers influencing HER2+ cancer stem cell (CSC) maintenance/survival could represent a clinically useful strategy to counteract tumor growth and therapy resistance. Accumulating evidence show that targeting crucial metabolic hubs, as the fatty acid synthase (FASN), may be clinically relevant. METHODS FASN protein and transcript expression were examined by WB and FACS and by qRT-PCR and GEP analyses, respectively, in trastuzumab-sensitive and trastuzumab-resistant HER2+ GC cell lines cultured in adherent (2D) or gastrosphere promoting (3D) conditions. Molecular data were analyzed in silico in public HER2+ GC datasets. The effectiveness of the FASN inhibitor TVB3166 to overcome anti-HER2 therapy resistance was tested in vitro in gastrospheres forming efficiency bioassays and in vivo in mice bearing trastuzumab-resistant GC cells. RESULTS We compared the transcriptome profiles of HER2+ GC cells cultured in 2D versus 3D conditions finding a significant enrichment of FASN in 3D cultures. FASN upregulation significantly correlated with high stemness score and poor prognosis in HER2+ GC cases. TVB3166 treatment significantly decreased GCSCs in all cell targets. HER2 and FASN cotargeting significantly decreased the capability to form gastrospheres versus monotherapy and reduced the in vivo growth of trastuzumab-resistant GC cells. CONCLUSION Our findings indicate that cotargeting HER2 and FASN increase the benefit of anti-HER2 therapy representing a new opportunity for metabolically combating trastuzumab-resistant HER2+ GC.
Collapse
Affiliation(s)
- Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Alma Franceschini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Sara Erika Bellomo
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Matteo Dugo
- Department of Medical Oncology-Breast Cancer Unit Clinical Translational and Immunotherapy Research, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Antonino Belfiore
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
9
|
Cancer-Associated Adipocytes and Breast Cancer: Intertwining in the Tumor Microenvironment and Challenges for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030726. [PMID: 36765683 PMCID: PMC9913307 DOI: 10.3390/cancers15030726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Adipocytes are the main components in breast tissue, and cancer-associated adipocytes (CAAs) are one of the most important components in the tumor microenvironment of breast cancer (BC). Bidirectional regulation was found between CAAs and BC cells. BC facilitates the dedifferentiation of adjacent adipocytes to form CAAs with morphological and biological changes. CAAs increase the secretion of multiple cytokines and adipokines to promote the tumorigenesis, progression, and metastasis of BC by remodeling the extracellular matrix, changing aromatase expression, and metabolic reprogramming, and shaping the tumor immune microenvironment. CAAs are also associated with the therapeutic response of BC and provide potential targets in BC therapy. The present review provides a comprehensive description of the crosstalk between CAAs and BC and discusses the potential strategies to target CAAs to overcome BC treatment resistance.
Collapse
|
10
|
An Q, Lin R, Wang D, Wang C. Emerging roles of fatty acid metabolism in cancer and their targeted drug development. Eur J Med Chem 2022; 240:114613. [PMID: 35853429 DOI: 10.1016/j.ejmech.2022.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Metabolic reprogramming is now considered as one of hallmark of tumor cells and provides them with a selective survival/growth advantage to resist harsh micro-environmental stress. Fatty acid (FA) metabolism of tumor cells supports the biosynthetic needs and provides fuel sources for energy supply. Since FA metabolic reprogramming is a critical link in tumor metabolism, its various roles in tumors have attracted increasing interest. Herein, we review the mechanisms through which cancer cells rewire their FA metabolism with a focus on the pathway of FA metabolism and its targeting drug development. The failure and successful cases of targeting tumor FA metabolism are expected to bypass the metabolic vulnerability and improve the efficacy of targeted therapy.
Collapse
Affiliation(s)
- Qi An
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Rui Lin
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China.
| |
Collapse
|
11
|
Wang J, Lin W, Li R, Cheng H, Sun S, Shao F, Yang Y, Zhang L, Feng X, Gao S, Gao Y, He J. The Deubiquitinase USP13 Maintains Cancer Cell Stemness by Promoting FASN Stability in Small Cell Lung Cancer. Front Oncol 2022; 12:899987. [PMID: 35898882 PMCID: PMC9309731 DOI: 10.3389/fonc.2022.899987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
USP13 is significantly amplified in over 20% of lung cancer patients and critical for tumor progression. However, the functional role of USP13 in small cell lung cancer (SCLC) remains largely unclear. In this study, we found that the deubiquitinase USP13 is highly expressed in SCLC tumor samples and positively associated with poor prognosis in multiple cohorts. In vitro and in vivo depletion of USP13 inhibited SCLC cancer stem cells (CSCs) properties and tumorigenesis, and this inhibitory effect was rescued by reconstituted expression of wide type (WT) USP13 but not the enzyme-inactive USP13 mutant. Mechanistically, USP13 interacts with fatty acid synthase (FASN) and enhances FASN protein stability. FASN downregulation suppresses USP13-enhanced cell renewal regulator expression, sphere formation ability, and de novo fatty acids biogenesis. Accordingly, we found FASN expression is upregulated in surgical resected SCLC specimens, positively correlated with USP13, and associated with poor prognosis of SCLC patients. More importantly, the small molecule inhibitor of FASN, TVB-2640, significantly inhibits lipogenic phenotype and attenuates self-renewal ability, chemotherapy resistance and USP13-mediated tumorigenesis in SCLC. Thus, our study highlights a critical role of the USP13-FASN-lipogenesis axis in SCLC cancer stemness maintenance and tumor growth, and reveals a potential combination therapy for SCLC patients.
Collapse
Affiliation(s)
- Juhong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Cheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sijin Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| |
Collapse
|
12
|
Lipid metabolism in tumor microenvironment: novel therapeutic targets. Cancer Cell Int 2022; 22:224. [PMID: 35790992 PMCID: PMC9254539 DOI: 10.1186/s12935-022-02645-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Bioactive lipid molecules have been proposed to play important roles linking obesity/metabolic syndrome and cancers. Studies reveal that aberrant lipid metabolic signaling can reprogram cancer cells and non-cancer cells in the tumor microenvironment, contributing to cancer initiation, progression, metastasis, recurrence, and poor therapeutic response. Existing evidence indicates that controlling lipid metabolism can be a potential strategy for cancer prevention and therapy. By reviewing the current literature on the lipid metabolism in various cancers, we summarized major lipid molecules including fatty acids and cholesterol as well as lipid droplets and discussed their critical roles in cancer cells and non-cancer in terms of either promoting- or anti-tumorigenesis. This review provides an overview of the lipid molecules in cellular entities and their tumor microenvironment, adding to the existing knowledge with lipid metabolic reprogramming in immune cells and cancer associated cells. Comprehensive understanding of the regulatory role of lipid metabolism in cellular entities and their tumor microenvironment will provide a new direction for further studies, in a shift away from conventional cancer research. Exploring the lipid-related signaling targets that drive or block cancer development may lead to development of novel anti-cancer strategies distinct from traditional approaches for cancer prevention and treatment.
Collapse
|
13
|
Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol 2022; 10:875318. [PMID: 35646898 PMCID: PMC9136290 DOI: 10.3389/fcell.2022.875318] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy is one of the primary treatments for most human cancers. Despite great progress in cancer therapeutics, chemotherapy continues to be important for improving the survival of cancer patients, especially for those who has unresectable metastatic tumors or fail to respond to immunotherapy. However, intrinsic or acquired chemoresistance results in tumor recurrence, which remains a major obstacle in anti-cancer treatment. The high prevalence of chemoresistant cancer makes it urgent to deepen our understanding on chemoresistance mechanisms and to develop novel therapeutic strategies. Multiple mechanisms, including drug efflux, enhanced DNA damage reparability, increased detoxifying enzymes levels, presence of cancer stem cells (CSCs), epithelial mesenchymal transition (EMT), autophagy, ferroptosis and resistance to apoptosis, underlie the development of chemoresistance. Recently, accumulating evidence suggests that lipid metabolism alteration is closely related to drug resistance in tumor. Targeting lipid metabolism in combination with traditional chemotherapeutic drugs is a promising strategy to overcome drug resistance. Therefore, this review compiles the current knowledge about aberrant lipid metabolism in chemoresistant cancer, mainly focusing on aberrant fatty acid metabolism, and presents novel therapeutic strategies targeting altered lipid metabolism to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ruixue Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
14
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Khiewkamrop P, Surangkul D, Srikummool M, Richert L, Pekthong D, Parhira S, Somran J, Srisawang P. Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells. FEBS Open Bio 2022; 12:937-958. [PMID: 35243817 PMCID: PMC9063442 DOI: 10.1002/2211-5463.13391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022] Open
Abstract
The de novo lipogenesis (DNL) pathway has been identified as a regulator of cancer progression and aggressiveness. Downregulation of key lipogenesis enzymes has been shown to activate apoptosis in cancerous cells. Epigallocatechin gallate (EGCG) inhibits cancer cell proliferation without causing cytotoxicity in healthy cells. The present study aimed to investigate the effects of EGCG on the promotion of apoptosis associated with the DNL pathway inhibition in cancer cells, both in vitro and in vivo. We observed that two colorectal cancer cell lines (HCT116 and HT-29) had a higher cytotoxic response to EGCG treatment than hepatocellular carcinoma cells, including HepG2 and HuH-7. EGCG treatment decreased cell viability and increased mitochondrial damage-triggered apoptosis in both HCT116 and HT-29 cancer cells. Additionally, we treated mice transplanted with HCT116 cells with 30 or 50 mg·kg-1 EGCG for 7 days to evaluate the apoptotic effects of EGCG treatment in a xenograft mouse model of cancer. We observed a decrease in intracellular fatty acid levels, which suggested that EGCG-induced apoptosis was associated with a decrease in fatty acid levels in cancer. Suppression of ATP synthesis by EGCG indicated that cell death induction in cancer cells could be mediated by shared components of the DNL and energy metabolism pathways. In addition, EGCG-induced apoptosis suppressed the expression of the phosphorylation protein kinase B and extracellular signal-regulated kinase 1/2 signaling proteins in tumors from xenografted mice. Cytotoxic effects in unaffected organs and tissues of the mouse xenograft model were absent upon EGCG treatment.
Collapse
Affiliation(s)
- Phuriwat Khiewkamrop
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Damratsamon Surangkul
- Department of BiochemistryFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Metawee Srikummool
- Department of BiochemistryFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Lysiane Richert
- KaLy‐CellPlobsheimFrance
- EA 4267 PEPITEUniversité de Bourgogne Franche‐ComtéBesançonFrance
| | - Dumrongsak Pekthong
- Department of Pharmacy PracticeFaculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
| | - Supawadee Parhira
- Department of Pharmaceutical TechnologyFaculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
| | - Julintorn Somran
- Department of PathologyFaculty of MedicineNaresuan UniversityPhitsanulokThailand
| | - Piyarat Srisawang
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
16
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
17
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Kelly JM, Jeitner TM, Waterhouse NN, Qu W, Linstad EJ, Samani B, Williams C, Nikolopoulou A, Amor-Coarasa A, DiMagno SG, Babich JW. Synthesis and Evaluation of 11C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography. Molecules 2022; 27:1552. [PMID: 35268652 PMCID: PMC8911806 DOI: 10.3390/molecules27051552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.
Collapse
Affiliation(s)
- James M. Kelly
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Thomas M. Jeitner
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Nicole N. Waterhouse
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Wenchao Qu
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Ethan J. Linstad
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Banafshe Samani
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - Clarence Williams
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Anastasia Nikolopoulou
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Alejandro Amor-Coarasa
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Stephen G. DiMagno
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - John W. Babich
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
19
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Rabionet M, Polonio-Alcalá E, Relat J, Yeste M, Sims-Mourtada J, Kloxin AM, Planas M, Feliu L, Ciurana J, Puig T. Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds. Mater Today Bio 2021; 12:100155. [PMID: 34841239 PMCID: PMC8606546 DOI: 10.1016/j.mtbio.2021.100155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022] Open
Abstract
There is no targeted therapy for triple negative breast cancer (TNBC), which presents an aggressive profile and poor prognosis. Recent studies noticed the feasibility of breast cancer stem cells (BCSCs), a small population responsible for tumor initiation and relapse, to become a novel target for TNBC treatments. However, new cell culture supports need to be standardized since traditional two-dimensional (2D) surfaces do not maintain the stemness state of cells. Hence, three-dimensional (3D) scaffolds represent an alternative to study in vitro cell behavior without inducing cell differentiation. In this work, electrospun polycaprolactone scaffolds were used to enrich BCSC subpopulation of MDA-MB-231 and MDA-MB-468 TNBC cells, confirmed by the upregulation of several stemness markers and the existence of an epithelial-to-mesenchymal transition within 3D culture. Moreover, 3D-cultured cells displayed a shift from MAPK to PI3K/AKT/mTOR signaling pathways, accompanied by an enhanced EGFR and HER2 activation, especially at early cell culture times. Lastly, the fatty acid synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, was found to be hyperactivated in stemness-enriched samples. Its pharmacological inhibition led to stemness diminishment, overcoming the BCSC expansion achieved in 3D culture. Therefore, FASN may represent a novel target for BCSC niche in TNBC samples.
Collapse
Affiliation(s)
- Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Pic de Peguera 15, 17003, Girona, Spain
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA
| | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
| |
Collapse
|
21
|
PdpaMn inhibits fatty acid synthase-mediated glycolysis by down-regulating PI3K/Akt signaling pathway in breast cancer. Anticancer Drugs 2021; 31:1046-1056. [PMID: 32649369 DOI: 10.1097/cad.0000000000000968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Novel manganese complex, PdpaMn ([(Pdpa)MnCl2]), was developed to induce apoptosis in breast cancer cells. The impact of phosphoinositide-(3)-kinase pathway onto fatty acid synthase (FASN) has an effect on cellular metabolism in breast cancer. However, reverse actions from FASN towards PI3K/Akt are still indefinable. Perhaps, loss of FASN could regulate glycolysis. Previously we established that PdpaMn inhibits FASN and involve in mitochondrial function. This study investigated the activity of PdpaMn on glycolysis and its mechanism. PdpaMn was used to suppress FASN expression in tumor. Expression of ATP and lactic acid level was measured to investigate the glycolysis variance in cells and animals. MCF-7 and 4T1 cells were treated with G28UCM, an inhibitor of FASN and PdpaMn, western blotting to detect PI3K/Akt signaling pathway. The capacity of proliferation was investigated by western blotting and immunohistochemistry. PdpaMn selectively inhibits cancer cells and tumor growth but also block FASN expression and suppresses the content of free fatty acid. Lactate dehydrogenase (LDHA) protein level was down-regulated as G28UCM and PdpaMn inhibited FASN, glucose transporter (Glut1), and pyruvate kinase (PKM2) proteins level were not affected. PI3K, p-Akt in the experimental group evidently declined compared to the control group. Proliferation was suppressed in FASN-arbitrated glycolysis. Our study supports the hypothesis that loss of FASN by PdpaMn suppressed glycolysis via down-regulating PI3K/Akt signaling pathway revealing the direct link between FASN and glycolysis. The results have paved the way to unravel the mechanisms of FASN and mitochondrial will be useful for designing novel co-targeting strategies for breast cancer.
Collapse
|
22
|
FASN Knockdown Inhibited Anoikis Resistance of Gastric Cancer Cells via P-ERK1/2/Bcl-xL Pathway. Gastroenterol Res Pract 2021; 2021:6674204. [PMID: 34456997 PMCID: PMC8390150 DOI: 10.1155/2021/6674204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Anoikis resistance (AR) is a crucial step in tumor metastasis. The overexpression of fatty acid synthase (FASN) is not only related to the AR of osteosarcoma cells, but also evidenced on gastric cancer (GC). This study investigated the role of FASN in the AR of GC cells. Plates coated with poly-HEMA were used for the culture of cells with AR. Small interfering RNA targeting FASN (siFASN) was transfected into MNK-45 and AGS cells. The number and apoptosis of cells were assessed by a hemacytometer and Annexin-V-FITC/PI assay, respectively. Aggregated cells and colony numbers were manually counted under a microscope. The migration and invasion rates were measured via wound healing and Transwell invasion assays, respectively. The levels of FASN, phosphorylated (p)-ERK1/2, ERK1/2 and Bcl-xL were detected through western blot or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The results showed that the cell numbers of MNK-45 and AGS were increased while that of GES-1 cell was decreased during the culture in suspension. A higher apoptosis rate and a smaller number of aggregated cells were observed in GES-1 cells in comparison with MNK-45 and AGS cells. A larger colony number, greater migration and invasion rates, and higher mRNA and protein expressions of FASN were presented in the AR group compared with the control group. Cells transfected with siFASN possessed lower migration and invasion rates, reduced expressions of FASN mRNA and protein, p-ERK1/2 and Bcl-xL, and induced a significantly declined ratio of p-ERK1/2 to ERK1/2. These findings suggest that down-regulation of FASN suppresses the AR of GC cells, which may be related to the inhibition of p-ERK1/2/Bcl-xL pathway.
Collapse
|
23
|
Malik P, Hoidal JR, Mukherjee TK. Recent Advances in Curcumin Treated Non-Small Cell Lung Cancers: An Impetus of Pleiotropic Traits and Nanocarrier Aided Delive ry. Curr Med Chem 2021; 28:3061-3106. [PMID: 32838707 DOI: 10.2174/0929867327666200824110332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Characterized by the abysmal 18% five year survival chances, non-small cell lung cancers (NSCLCs) claim more than half of their sufferers within the first year of being diagnosed. Advances in biomedical engineering and molecular characterization have reduced the NSCLC diagnosis via timid screening of altered gene expressions and impaired cellular responses. While targeted chemotherapy remains a major option for NSCLCs complications, delayed diagnosis, and concurrent multi-drug resistance remain potent hurdles in regaining normalcy, ultimately resulting in relapse. Curcumin administration presents a benign resolve herein, via simultaneous interception of distinctly expressed pathological markers through its pleiotropic attributes and enhanced tumor cell internalization of chemotherapeutic drugs. Studies on NSCLC cell lines and related xenograft models have revealed a consistent decline in tumor progression owing to enhanced chemotherapeutics cellular internalization via co-delivery with curcumin. This presents an optimum readiness for screening the corresponding effectiveness in clinical subjects. Curcumin is delivered to NSCLC cells either (i) alone, (ii) in stoichiometrically optimal combination with chemotherapeutic drugs, (iii) through nanocarriers, and (iv) nanocarrier co-delivered curcumin and chemotherapeutic drugs. Nanocarriers protect the encapsulated drug from accidental and non-specific spillage. A unanimous trait of all nanocarriers is their moderate drug-interactions, whereby native structural expressions are not tampered. With such insights, this article focuses on the implicit NSCLC curative mechanisms viz-a-viz, free curcumin, nanocarrier delivered curcumin, curcumin + chemotherapeutic drug and nanocarrier assisted curcumin + chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
24
|
Grunt TW, Lemberger L, Colomer R, López Rodríguez ML, Wagner R. The Pharmacological or Genetic Blockade of Endogenous De Novo Fatty Acid Synthesis Does Not Increase the Uptake of Exogenous Lipids in Ovarian Cancer Cells. Front Oncol 2021; 11:610885. [PMID: 33928023 PMCID: PMC8076863 DOI: 10.3389/fonc.2021.610885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer(OC) is a serious threat to women worldwide. Peritoneal dissemination, ascites and omental metastasis are typical features for disease progression, which occurs in a micro-environment that is rich in high-energy lipids. OC cells require high amounts of lipids for survival and growth. Not only do they import lipids from the host, they also produce lipids de novo. Inhibitors of fatty acid(FA) synthase(FASN) – the rate-limiting enzyme of endogenous FA synthesis that is overexpressed in OC – induce growth-arrest and apoptosis, rendering them promising candidates for cancer drug development. However, cancer researchers have long hypothesized that the lipid deficiency caused by FASN inhibition can be circumvented by increasing the uptake of exogenous lipids from the host, which would confer resistance to FASN inhibitors. In contrast to a very recent report in colorectal cancer, we demonstrate in OC cells (A2780, OVCAR3, SKOV3) that neither FASN inhibitors (G28UCM, Fasnall) nor FASN-specific siRNAs can stimulate a relief pathway leading to enhanced uptake of extrinsic FAs or low density lipoproteins (LDLs). Instead, we observed that the growth-arrest due to FASN inhibition or FASN knock-down was associated with significant dose- and time-dependent reduction in the uptake of fluorescently labeled FAs and LDLs. Western blotting showed that the expression of the FA receptor CD36, the LDL receptor(LDLR) and the lipid transport proteins fatty acid binding proteins 1–9 (FABP1–9) was not affected by the treatment. Next, we compared experimental blockade of endogenous lipid production with physiologic depletion of exogenous lipids. Lipid-free media, similar to FASN inhibitors, caused growth-arrest. Although lipid-depleted cells have diminished amounts of CD36, LDLR and FABPs, they can still activate a restorative pathway that causes enhanced import of fluorophore-labeled FAs and LDLs. Overall, our data show that OC cells are strictly lipid-depend and exquisitely sensitive to FASN inhibitors, providing a strong rationale for developing anti-FASN strategies for clinical use against OC.
Collapse
Affiliation(s)
- Thomas W Grunt
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Lisa Lemberger
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ramón Colomer
- Clinical Research Program, Department of Medical Oncology, Hospital Universitario La Princesa and Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Luz López Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Renate Wagner
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| |
Collapse
|
25
|
Fatty Acid Synthase Confers Tamoxifen Resistance to ER+/HER2+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13051132. [PMID: 33800852 PMCID: PMC7961649 DOI: 10.3390/cancers13051132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Overactivation of the human epidermal growth factor receptor 2 (HER2) is one of the main drivers of tamoxifen resistance in estrogen receptor (ER)-positive breast cancer patients. Combined targeting of HER2 and ER, however, has yielded disappointing results in the clinical setting. Therefore, other potential mechanisms for tamoxifen resistance would not be overcome by solely blocking the cross-talk between ER and HER2 at the receptor(s) level. Using cell lines, animal models, and clinical data, we provide evidence to support a critical role of fatty acid synthase (FASN)—the major site for endogenous fat synthesis—in HER2-driven tamoxifen resistance. Importantly, treatment with a FASN inhibitor impeded the estrogen-like tumor-promoting effects of tamoxifen and fully restored the anti-estrogenic activity of tamoxifen in ER+/HER2-overexpressing breast cancer xenografts. We postulate FASN as a biological determinant of HER2-driven tamoxifen resistance and FASN inhibition as a novel therapeutic approach to restore tamoxifen sensitivity in endocrine-resistant breast cancer. Abstract The identification of clinically important molecular mechanisms driving endocrine resistance is a priority in estrogen receptor-positive (ER+) breast cancer. Although both genomic and non-genomic cross-talk between the ER and growth factor receptors such as human epidermal growth factor receptor 2 (HER2) has frequently been associated with both experimental and clinical endocrine therapy resistance, combined targeting of ER and HER2 has failed to improve overall survival in endocrine non-responsive disease. Herein, we questioned the role of fatty acid synthase (FASN), a lipogenic enzyme linked to HER2-driven breast cancer aggressiveness, in the development and maintenance of hormone-independent growth and resistance to anti-estrogens in ER/HER2-positive (ER+/HER2+) breast cancer. The stimulatory effects of estradiol on FASN gene promoter activity and protein expression were blunted by anti-estrogens in endocrine-responsive breast cancer cells. Conversely, an AKT/MAPK-related constitutive hyperactivation of FASN gene promoter activity was unaltered in response to estradiol in non-endocrine responsive ER+/HER2+ breast cancer cells, and could be further enhanced by tamoxifen. Pharmacological blockade with structurally and mechanistically unrelated FASN inhibitors fully impeded the strong stimulatory activity of tamoxifen on the soft-agar colony forming capacity—an in vitro metric of tumorigenicity—of ER+/HER2+ breast cancer cells. In vivo treatment with a FASN inhibitor completely prevented the agonistic tumor-promoting activity of tamoxifen and fully restored its estrogen antagonist properties against ER/HER2-positive xenograft tumors in mice. Functional cancer proteomic data from The Cancer Proteome Atlas (TCPA) revealed that the ER+/HER2+ subtype was the highest FASN protein expressor compared to basal-like, HER2-enriched, and ER+/HER2-negative breast cancer groups. FASN is a biological determinant of HER2-driven endocrine resistance in ER+ breast cancer. Next-generation, clinical-grade FASN inhibitors may be therapeutically relevant to countering resistance to tamoxifen in FASN-overexpressing ER+/HER2+ breast carcinomas.
Collapse
|
26
|
Germain N, Dhayer M, Boileau M, Fovez Q, Kluza J, Marchetti P. Lipid Metabolism and Resistance to Anticancer Treatment. BIOLOGY 2020; 9:biology9120474. [PMID: 33339398 PMCID: PMC7766644 DOI: 10.3390/biology9120474] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary Cancer cells directly control nutrient uptake and utilization in a different manner from that of normal cells. These metabolic changes drive growth, proliferation of cancer cells as well as their ability to develop resistance to traditional therapies. We review published studies with pre-clinical models, showing the essential roles of lipid metabolism in anticancer drug resistance. We also discuss how changes in cellular lipid metabolism contribute to the acquisition of drug resistance and the new therapeutic opportunities to target lipid metabolism for treating drug resistant cancers. Abstract Metabolic reprogramming is crucial to respond to cancer cell requirements during tumor development. In the last decade, metabolic alterations have been shown to modulate cancer cells’ sensitivity to chemotherapeutic agents including conventional and targeted therapies. Recently, it became apparent that changes in lipid metabolism represent important mediators of resistance to anticancer agents. In this review, we highlight changes in lipid metabolism associated with therapy resistance, their significance and how dysregulated lipid metabolism could be exploited to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Banque de Tissus, Centre de biologie-pathologie, CHU Lille, F-59000 Lille, France
- Correspondence: (N.G.); (P.M.); Tel.: +33-3-20-16-92-20 (P.M.)
| | - Mélanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Marie Boileau
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Service de Dermatologie, Hopital Claude Huriez, CHU Lille, F-59000 Lille, France
| | - Quentin Fovez
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Jerome Kluza
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Banque de Tissus, Centre de biologie-pathologie, CHU Lille, F-59000 Lille, France
- Correspondence: (N.G.); (P.M.); Tel.: +33-3-20-16-92-20 (P.M.)
| |
Collapse
|
27
|
Zabaleta ME, Forbes-Hernández TY, Simal-Gandara J, Quiles JL, Cianciosi D, Bullon B, Giampieri F, Battino M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res Int 2020; 137:109623. [DOI: 10.1016/j.foodres.2020.109623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
28
|
Grunt TW, Slany A, Semkova M, Colomer R, López-Rodríguez ML, Wuczkowski M, Wagner R, Gerner C, Stübiger G. Membrane disruption, but not metabolic rewiring, is the key mechanism of anticancer-action of FASN-inhibitors: a multi-omics analysis in ovarian cancer. Sci Rep 2020; 10:14877. [PMID: 32913236 PMCID: PMC7483762 DOI: 10.1038/s41598-020-71491-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023] Open
Abstract
Fatty-acid(FA)-synthase(FASN) is a druggable lipogenic oncoprotein whose blockade causes metabolic disruption. Whether drug-induced metabolic perturbation is essential for anticancer drug-action, or is just a secondary—maybe even a defence response—is still unclear. To address this, SKOV3 and OVCAR3 ovarian cancer(OC) cell lines with clear cell and serous histology, two main OC subtypes, were exposed to FASN-inhibitor G28UCM. Growth-inhibition was compared with treatment-induced cell-metabolomes, lipidomes, proteomes and kinomes. SKOV3 and OVCAR3 were equally sensitive to low-dose G28UCM, but SKOV3 was more resistant than OVCAR3 to higher concentrations. Metabolite levels generally decreased upon treatment, but individual acylcarnitines, glycerophospholipids, sphingolipids, amino-acids, biogenic amines, and monosaccharides reacted differently. Drug-induced effects on central-carbon-metabolism and oxidative-phosphorylation (OXPHOS) were essentially different in the two cell lines, since drug-naïve SKOV3 are known to prefer glycolysis, while OVCAR3 favour OXPHOS. Moreover, drug-dependent increase of desaturases and polyunsaturated-fatty-acids (PUFAs) were more pronounced in SKOV3 and appear to correlate with G28UCM-tolerance. In contrast, expression and phosphorylation of proteins that control apoptosis, FA synthesis and membrane-related processes (beta-oxidation, membrane-maintenance, transport, translation, signalling and stress-response) were concordantly affected. Overall, membrane-disruption and second-messenger-silencing were crucial for anticancer drug-action, while metabolic-rewiring was only secondary and may support high-dose-FASN-inhibitor-tolerance. These findings may guide future anti-metabolic cancer intervention.
Collapse
Affiliation(s)
- Thomas W Grunt
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Comprehensive Cancer Center, Vienna, Austria. .,Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria.
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Mariya Semkova
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Ramón Colomer
- Department of Medical Oncology, Hospital Universitario La Princesa and Spanish National Cancer Research Centre (CNIO), Clinical Research Program, Madrid, Spain
| | - María Luz López-Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Michael Wuczkowski
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Renate Wagner
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Gerald Stübiger
- Comprehensive Cancer Center, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Feng WW, Kurokawa M. Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3. [PMID: 32226926 PMCID: PMC7100881 DOI: 10.20517/cdr.2019.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is one of the leading causes of death in women in the United States. In general, patients with breast cancer undergo surgical resection of the tumor and/or receive drug treatment to kill or suppress the growth of cancer cells. In this regard, small molecule kinase inhibitors serve as an important class of drugs used in clinical and research settings. However, the development of resistance to these compounds, in particular HER2 and CDK4/6 inhibitors, often limits durable clinical responses to therapy. Emerging evidence indicates that PI3K/AKT/mTOR pathway hyperactivation is one of the most prominent mechanisms of resistance to many small molecule inhibitors as it bypasses upstream growth factor receptor inhibition. Importantly, the PI3K/AKT/mTOR pathway also plays a pertinent role in regulating various aspects of cancer metabolism. Recent studies from our lab and others have demonstrated that altered lipid metabolism mediates the development of acquired drug resistance to HER2-targeted therapies in breast cancer, raising an interesting link between reprogrammed kinase signaling and lipid metabolism. It appears that, upon development of resistance to HER2 inhibitors, breast cancer cells rewire lipid metabolism to somehow circumvent the inhibition of kinase signaling. Here, we review various mechanisms of resistance observed for kinase inhibitors and discuss lipid metabolism as a potential therapeutic target to overcome acquired drug resistance.
Collapse
Affiliation(s)
- William W Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
30
|
Palomeras S, Diaz-Lagares Á, Viñas G, Setien F, Ferreira HJ, Oliveras G, Crujeiras AB, Hernández A, Lum DH, Welm AL, Esteller M, Puig T. Epigenetic silencing of TGFBI confers resistance to trastuzumab in human breast cancer. Breast Cancer Res 2019; 21:79. [PMID: 31277676 PMCID: PMC6612099 DOI: 10.1186/s13058-019-1160-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Acquired resistance to trastuzumab is a major clinical problem in the treatment of HER2-positive (HER2+) breast cancer patients. The selection of trastuzumab-resistant patients is a great challenge of precision oncology. The aim of this study was to identify novel epigenetic biomarkers associated to trastuzumab resistance in HER2+ BC patients. Methods We performed a genome-wide DNA methylation (450K array) and a transcriptomic analysis (RNA-Seq) comparing trastuzumab-sensitive (SK) and trastuzumab-resistant (SKTR) HER2+ human breast cancer cell models. The methylation and expression levels of candidate genes were validated by bisulfite pyrosequencing and qRT-PCR, respectively. Functional assays were conducted in the SK and SKTR models by gene silencing and overexpression. Methylation analysis in 24 HER2+ human BC samples with complete response or non-response to trastuzumab-based treatment was conducted by bisulfite pyrosequencing. Results Epigenomic and transcriptomic analysis revealed the consistent hypermethylation and downregulation of TGFBI, CXCL2, and SLC38A1 genes in association with trastuzumab resistance. The DNA methylation and expression levels of these genes were validated in both sensitive and resistant models analyzed. Of the genes, TGFBI presented the highest hypermethylation-associated silencing both at the transcriptional and protein level. Ectopic expression of TGFBI in the SKTR model suggest an increased sensitivity to trastuzumab treatment. In primary tumors, TGFBI hypermethylation was significantly associated with trastuzumab resistance in HER2+ breast cancer patients. Conclusions Our results suggest for the first time an association between the epigenetic silencing of TGFBI by DNA methylation and trastuzumab resistance in HER2+ cell models. These results provide the basis for further clinical studies to validate the hypermethylation of TGFBI promoter as a biomarker of trastuzumab resistance in HER2+ breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s13058-019-1160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sònia Palomeras
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain
| | - Ángel Diaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago(CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain
| | - Gemma Viñas
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.,Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Girona Biomedical Research Institute (IDIBGI), E-17071, Girona, Catalonia, Spain
| | - Fernando Setien
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Glòria Oliveras
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.,Pathology Department, Dr. Josep Trueta Hospital and Catalan Institute of Health (ICS), E-17071, Girona, Catalonia, Spain
| | - Ana B Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela, Spain
| | - Alejandro Hernández
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - David H Lum
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain. .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain. .,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain. .,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
| | - Teresa Puig
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.
| |
Collapse
|
31
|
Sun T, Zhao Q, Zhang C, Cao L, Song M, Maimela NR, Liu S, Wang J, Gao Q, Qin G, Wang L, Zhang Y. Screening common signaling pathways associated with drug resistance in non-small cell lung cancer via gene expression profile analysis. Cancer Med 2019; 8:3059-3071. [PMID: 31025554 PMCID: PMC6558586 DOI: 10.1002/cam4.2190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related deaths worldwide. Although several therapeutic strategies have been employed to curb lung cancer, the survival rate is still poor owing to the development of drug resistance. The mechanisms underlying drug resistance development are incompletely understood. Here, we aimed to identify the common signaling pathways involved in drug resistance in non‐small cell lung cancer (NSCLC). Three published transcriptome microarray data were downloaded from the Gene Expression Omnibus (GEO) database comprising different drug‐resistant cell lines and their parental cell lines. Differentially expressed genes (DEGs) were identified and used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. An overlapping analysis was performed for KEGG pathways enriched from all the three datasets to identify the common signaling pathways. As a result, we found that metabolic pathways, ubiquitin‐mediated proteolysis, and mitogen‐activated protein kinase (MAPK) signaling were the most aberrantly expressed signaling pathways. The knockdown of nicotinamide phosphoribosyltransferase (NAMPT), the gene involved in metabolic pathways and known to be upregulated in drug‐resistant tumor cells, was shown to increase the apoptosis of cisplatin‐resistant A549 cells following cisplatin treatment. Thus, our results provide an in‐depth analysis of the signaling pathways that are commonly altered in drug‐resistant NSCLC cell lines and highlight the potential strategy that facilitates the development of interventions to interfere with upregulated signaling pathways as well as to boost downregulated signaling pathways in drug‐resistant tumors for the elimination of multiple resistance of NSCLC.
Collapse
Affiliation(s)
- Ting Sun
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Respiratory medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjia Song
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjin Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, China
| |
Collapse
|
32
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
33
|
EGCG-Derivative G28 Shows High Efficacy Inhibiting the Mammosphere-Forming Capacity of Sensitive and Resistant TNBC Models. Molecules 2019; 24:molecules24061027. [PMID: 30875891 PMCID: PMC6471537 DOI: 10.3390/molecules24061027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies showed that Fatty Acid Synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, plays an important role in drug resistance. Furthermore, the enrichment of Breast Cancer Stem Cell (BCSC) features has been found in breast tumors that progressed after chemotherapy. Hence, we used the triple negative breast cancer (TNBC) cell line MDA-MB-231 (231) to evaluate the FASN and BCSC population role in resistance acquisition to chemotherapy. For this reason, parental cell line (231) and its derivatives resistant to doxorubicin (231DXR) and paclitaxel (231PTR) were used. The Mammosphere-Forming Assay and aldehyde dehydrogenase (ALDH) enzyme activity assay showed an increase in BCSCs in the doxorubicin-resistant model. Moreover, the expression of some transcription factors involved in epithelial-mesenchymal transition (EMT), a process that confers BCSC characteristics, was upregulated after chemotherapy treatment. FASN inhibitors C75, (−)-Epigallocatechin 3-gallate (EGCG), and its synthetic derivatives G28, G56 and G37 were used to evaluate the effect of FASN inhibition on the BCSC-enriched population in our cell lines. G28 showed a noticeable antiproliferative effect in adherent conditions and, interestingly, a high mammosphere-forming inhibition capacity in all cell models. Our preliminary results highlight the importance of studying FASN inhibitors for the treatment of TNBC patients, especially those who progress after chemotherapy.
Collapse
|
34
|
Peng H, Wang Q, Qi X, Wang X, Zhao X. Orlistat induces apoptosis and protective autophagy in ovarian cancer cells: involvement of Akt-mTOR-mediated signaling pathway. Arch Gynecol Obstet 2018; 298:597-605. [PMID: 29974191 DOI: 10.1007/s00404-018-4841-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Orlistat possesses anti-tumor capacity by inducing apoptosis in ovarian cancer cells. However, the mechanism is not clearly understood. Emerging evidence indicates the overlaps between autophagy and apoptosis. In this study, we have investigated the role of autophagy in orlistat-induced apoptosis in ovarian cancer (OC) cells. METHODS The effect of orlistat on apoptosis was evaluated in SKOV3 and A2780 cell lines by MTT and TUNEL assay. The formations of autophagosomes were observed by acridine orange and GFP-LC3 fluorescence. In addition, conversions of LC3-I to LC3-II were analyzed by western blot, as well as other autophagy-related proteins. 3-Methyladenine (3-MA) was used as an autophagy inhibitor in combined treatment with orlistat. Western blot was further conducted to investigate the molecular mechanisms of orlistat-affected apoptosis and autophagy on protein level. RESULTS The proliferation activities of OC cells were inhibited by orlistat in a dose-dependent manner. The expressions of cleaved-caspase 3 and 9 in orlistat-treated cells were increasing, which suggested that orlistat-induced apoptosis was caspase-dependent. At the same time, the average number of GFP-LC3 dots per cell was increased after 48 h of orlistat treatment. The expression levels of LC3-II were significantly up-regulated, as well as other autophagy-related proteins such as Vsp34, Atg7 and UVRAG. These results suggested orlistat-induced autophagy flux, which was further found involved in inhibiting the Akt/mTOR/p70S6K signaling pathway. However, combined treatment of orlistat and 3-MA significantly suppressed the cell viability, which indicated a pro-survival role of autophagy in OC cells. CONCLUSION We suggested that orlistat had anti-cancer effect in OC cells. In addition, autophagy played a pro-survival role, suppressing which the orlistat-induced anti-cancer effect would be more significant.
Collapse
Affiliation(s)
- Hongling Peng
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Wang
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Wang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Baumann J, Kokabee M, Wong J, Balasubramaniyam R, Sun Y, Conklin DS. Global metabolite profiling analysis of lipotoxicity in HER2/neu-positive breast cancer cells. Oncotarget 2018; 9:27133-27150. [PMID: 29930756 PMCID: PMC6007458 DOI: 10.18632/oncotarget.25500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Recent work has shown that HER2/neu-positive breast cancer cells rely on a unique Warburg-like metabolism for survival and aggressive behavior. These cells are dependent on fatty acid (FA) synthesis, show markedly increased levels of stored fats and disruption of the synthetic process results in apoptosis. In this study, we used global metabolite profiling and a multi-omics network analysis approach to model the metabolic changes in this physiology under palmitate-supplemented growth conditions to gain insights into the molecular mechanism and its relevance to disease prevention and treatment. Computational analyses were used to define pathway enrichment based on the dataset of significantly altered metabolites and to integrate metabolomics and transcriptomics data in a multi-omics network analysis. Network-predicted changes and functional relationships were tested with cell assays in vitro. Palmitate-supplemented growth conditions induce distinct metabolic alterations. Growth of HER2-normal MCF7 cells is unaffected under these conditions whereas HER2/neu-positive cells display unchanged neutral lipid content, AMPK activation, inhibition of fatty acid synthesis and significantly altered glutamine, glucose and serine/glycine metabolism. The predominant upregulated lipid species is the novel bioactive lipid N-palmitoylglycine, which is non-toxic to these cells. Limiting the availability of glutamine significantly ameliorates the lipotoxic effects of palmitate, reduces CHOP and XBP1(s) induction and restores the expression levels of HER2 and HER3. The study shows that HER2/neu-positive breast cancer cells change their metabolic phenotype in the presence of palmitate. Palmitate induces AMPK activation and inhibition of fatty acid synthesis that feeds back into glycolysis as well as anaplerotic glutamine metabolism.
Collapse
Affiliation(s)
- Jan Baumann
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA
| | - Mostafa Kokabee
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA
| | - Jason Wong
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA
| | - Rakshika Balasubramaniyam
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA
| | - Yan Sun
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA
| | - Douglas S Conklin
- Cancer Research Center, Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
36
|
(-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer. Molecules 2018; 23:molecules23051160. [PMID: 29751678 PMCID: PMC6099607 DOI: 10.3390/molecules23051160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
(−)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.
Collapse
|
37
|
Huang LH, Chung HY, Su HM. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line. BMC Cancer 2017; 17:890. [PMID: 29282029 PMCID: PMC5745739 DOI: 10.1186/s12885-017-3936-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/19/2017] [Indexed: 12/02/2022] Open
Abstract
Background Fatty acid synthase (FASN), the major enzyme in de novo fatty acid synthesis, is highly expressed in breast cancer and its expression is reduced by polyunsaturated fatty acids (PUFAs) in liver. We previously found a positive association between rat mammary tumor levels of the n-6 PUFA arachidonic acid (AA) and tumor weight. We examined the roles of the major n-3 PUFA, docosahexaenoic acid (DHA, 22:6n-3), and the major n-6 PUFA, AA, in FASN expression in, and proliferation of, human breast cancer MCF-7 cells. Methods The cells were treated for 48 h with BSA or 60 μM BSA-bound DHA, AA, or oleic acid (OA, 18:1n-9), then were incubated with or without estradiol or insulin. Western blot and 3H–thymidine incorporation assay were used to determine the role of DHA on FASN regulation and MCF-7 cell proliferation. Results DHA, but neither AA nor OA, inhibits estradiol-induced and insulin-induced expression of the precursor of sterol regulatory element binding protein-1 (p-SREBP-1), its mature form (m-SREBP-1), and FASN. Estradiol or insulin stimulation increased the pAkt/Akt and pS6/S6 ratios, expression of p-SREBP-1, m-SREBP-1, and FASN, and cell proliferation, and these effects were decreased by DHA. The DHA-induced decrease in FASN expression resulted from reduced pAkt/Akt signaling and not pERK1/2/ERK1/2 signaling. In addition, DHA enhanced the inhibitory effect of LY294002 on pAkt signaling and expression of p-SREBP-1, m-SREBP-1, and FASN. However, addition of rapamycin, an inhibitor of the mTOR signaling pathways, 1 h before addition of estradiol or insulin increased the pAkt/Akt ratio and FASN expression, and this effect was inhibited by addition of DHA 48 h before rapamycin. Conclusion We conclude that, in MCF-7 cells, DHA inhibits pAKT signaling and thus expression of p-SREBP-1, m-SREBP-1, and FASN and cell proliferation.
Collapse
Affiliation(s)
- Li-Hsuan Huang
- Institute of Physiology, College of Medicine, National Taiwan University, 1 Sec 1 Jai-Ai Rd, Taipei, 100, Taiwan
| | - Hsin-Yun Chung
- Institute of Physiology, College of Medicine, National Taiwan University, 1 Sec 1 Jai-Ai Rd, Taipei, 100, Taiwan
| | - Hui-Min Su
- Institute of Physiology, College of Medicine, National Taiwan University, 1 Sec 1 Jai-Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
38
|
Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, Loiselle D, Torrelles JB, Funderburg NT, Haystead TA, Kwiek JJ. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 2017; 14:45. [PMID: 28962653 PMCID: PMC5622536 DOI: 10.1186/s12977-017-0368-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background
Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. Results Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. Conclusions Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy.
Collapse
Affiliation(s)
- Manjusha M Kulkarni
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Annette N Ratcliff
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.,Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711-5399, USA
| | - Menakshi Bhat
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Yazan Alwarawrah
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - David Loiselle
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA.,Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA.
| | - Jesse J Kwiek
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
Giró-Perafita A, Sarrats A, Pérez-Bueno F, Oliveras G, Buxó M, Brunet J, Viñas G, Miquel TP. Fatty acid synthase expression and its association with clinico-histopathological features in triple-negative breast cancer. Oncotarget 2017; 8:74391-74405. [PMID: 29088795 PMCID: PMC5650350 DOI: 10.18632/oncotarget.20152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) has poor prognosis and no approved targeted therapy. We previously showed that the enzyme fatty acid synthase (FASN) was largely expressed in a small TNBC patients' cohort and its inhibition synergized with cetuximab in TNBC preclinical mouse models. Here, we evaluated FASN and EGFR expression in a cohort of TNBC patients and we study their prognostic role and their association with clinico-histopathological features, intrinsic TNBC subtypes and survival. FASN, EGFR, CK5/6 and vimentin expression were retrospective evaluated by Immunohistochemistry in 100 primary TNBC tumors. FASN expression was classified into high and low FASN groups. EGFR, CK5/6 and vimentin expression were used in TNBC intrinsic subtypes classification. FASN was expressed in most of the TNBC patients but did not correlate with overall survival or disease-free survival in this cohort. High FASN group was significantly associated with positive node status. FASN expression was significantly higher in Basal-Like patients than in Mesenchymal-Like ones. EGFR expression was positive in 50% of the tumors, and those patients showed poorer DFS. Altogether, our findings provide a rationale for further investigation the prognostic role of FASN and EGFR expression in a larger cohort of TNBC patients.
Collapse
Affiliation(s)
- Ariadna Giró-Perafita
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Ariadna Sarrats
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Ferran Pérez-Bueno
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
- Pathology Department, Dr. Josep Trueta Hospital and Catalan Institute of Health (ICS), Girona, Spain
| | - Glòria Oliveras
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Spain
| | - Gemma Viñas
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Spain
| | - Teresa Puig Miquel
- New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
40
|
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21:1001-1016. [PMID: 28922023 DOI: 10.1080/14728222.2017.1381087] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase (FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer initiation and progression, FASN has received considerable attention as a therapeutic target. However, despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN blockade to the clinical arena remains a challenge. Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceutical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-molecular approaches that should help us to convert roadblocks into roadways that will propel forward our therapeutic understanding of FASN. Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug development in breast cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance) , Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Parc Hospitalari Martí i Julià , Girona , Spain
| | - Ruth Lupu
- c Department of Medicine and Experimental Pathology , Mayo Clinic , Rochester , MN , USA.,d Mayo Clinic Cancer Center , Rochester , MN , USA
| |
Collapse
|
41
|
Buckley D, Duke G, Heuer TS, O'Farrell M, Wagman AS, McCulloch W, Kemble G. Fatty acid synthase – Modern tumor cell biology insights into a classical oncology target. Pharmacol Ther 2017; 177:23-31. [DOI: 10.1016/j.pharmthera.2017.02.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Souchek JJ, Davis AL, Hill TK, Holmes MB, Qi B, Singh PK, Kridel SJ, Mohs AM. Combination Treatment with Orlistat-Containing Nanoparticles and Taxanes Is Synergistic and Enhances Microtubule Stability in Taxane-Resistant Prostate Cancer Cells. Mol Cancer Ther 2017; 16:1819-1830. [PMID: 28615298 DOI: 10.1158/1535-7163.mct-17-0013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
Taxane-based therapy provides a survival benefit in patients with metastatic prostate cancer, yet the median survival is less than 20 months in this setting due in part to taxane-associated resistance. Innovative strategies are required to overcome chemoresistance for improved patient survival. Here, NanoOrl, a new experimental nanoparticle formulation of the FDA-approved drug, orlistat, was investigated for its cytotoxicity in taxane-resistant prostate cancer utilizing two established taxane-resistant (TxR) cell lines. Orlistat is a weight loss drug that inhibits gastric lipases, but is also a potent inhibitor of fatty acid synthase (FASN), which is overexpressed in many types of cancer. NanoOrl was also investigated for its potential to synergize with taxanes in TxR cell lines. Both orlistat and NanoOrl synergistically inhibited cell viability when combined with paclitaxel, docetaxel, and cabazitaxel in PC3-TxR and DU145-TxR cells, yet these combinations were also additive in parental lines. We observed synergistic levels of apoptosis in TxR cells treated with NanoOrl and docetaxel in combination. Mechanistically, the synergy between orlistat and taxanes was independent of effects on the P-glycoprotein multidrug resistance protein, as determined by an efflux activity assay. On the other hand, immunoblot and immunofluorescence staining with an anti-detyrosinated tubulin antibody demonstrated that enhanced microtubule stability was induced by combined NanoOrl and docetaxel treatment in TxR cells. Furthermore, TxR cells exhibited higher lipid synthesis, as demonstrated by 14C-choline incorporation that was abrogated by NanoOrl. These results provide a strong rationale to assess the translational potential of NanoOrl to overcome taxane resistance. Mol Cancer Ther; 16(9); 1819-30. ©2017 AACR.
Collapse
Affiliation(s)
- Joshua J Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Amanda L Davis
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Tanner K Hill
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Megan B Holmes
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bowen Qi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven J Kridel
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina.,Wake Forest Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
43
|
Effect of Curcumin on Fatty Acid Synthase Expression and Enzyme Activity in Breast Cancer Cell Line SKBR3. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Heuer TS, Ventura R, Mordec K, Lai J, Fridlib M, Buckley D, Kemble G. FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression. EBioMedicine 2016; 16:51-62. [PMID: 28159572 PMCID: PMC5474427 DOI: 10.1016/j.ebiom.2016.12.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of β-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers. FASN inhibition decreases tubulin palmitoylation and disrupts microtubules in tumor cells but not non-tumor cells Combined FASN inhibition and taxane treatment increases inhibition of in vitro tumor cell colony growth FASN inhibition does not affect intracellular paclitaxel concentrations Combined FASN inhibition and taxane treatment significantly increases inhibition of tumor growth or causes regression of diverse xenograft tumors Taxane treatment sensitizes xenograft tumors to FASN inhibition-mediated beta-catenin blockade and gene expression changes
Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition combines with taxane treatment to enhance tumor growth inhibition and induce tumor regression in varied preclinical tumor models. Mechanism-of-action studies indicate that the increased activity of the combination results from the effects of both drugs. The results support clinical investigation of combined FASN inhibition and taxane treatment as an anti-cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Julie Lai
- 3-V Biosciences, Menlo Park, CA, USA
| | | | | | | |
Collapse
|
45
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
46
|
Baumann J, Wong J, Sun Y, Conklin DS. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells. BMC Cancer 2016; 16:551. [PMID: 27464732 PMCID: PMC4964104 DOI: 10.1186/s12885-016-2611-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/25/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND HER2/neu-positive breast cancer cells have recently been shown to use a unique Warburg-like metabolism for survival and aggressive behavior. These cells exhibit increased fatty acid synthesis and storage compared to normal breast cells or other tumor cells. Disruption of this synthetic process results in apoptosis. Since the addition of physiological doses of exogenous palmitate induces cell death in HER2/neu-positive breast cancer cells, the pathway is likely operating at its limits in these cells. We have studied the response of HER2/neu-positive breast cancer cells to physiological concentrations of exogenous palmitate to identify lipotoxicity-associated consequences of this physiology. Since epidemiological data show that a diet rich in saturated fatty acids is negatively associated with the development of HER2/neu-positive cancer, this cellular physiology may be relevant to the etiology and treatment of the disease. We sought to identify signaling pathways that are regulated by physiological concentrations of exogenous palmitate specifically in HER2/neu-positive breast cancer cells and gain insights into the molecular mechanism and its relevance to disease prevention and treatment. METHODS Transcriptional profiling was performed to assess programs that are regulated in HER2-normal MCF7 and HER2/neu-positive SKBR3 breast cancer cells in response to exogenous palmitate. Computational analyses were used to define and predict functional relationships and identify networks that are differentially regulated in the two cell lines. These predictions were tested using reporter assays, fluorescence-based high content microscopy, flow cytometry and immunoblotting. Physiological effects were confirmed in HER2/neu-positive BT474 and HCC1569 breast cancer cell lines. RESULTS Exogenous palmitate induces functionally distinct transcriptional programs in HER2/neu-positive breast cancer cells. In the lipogenic HER2/neu-positive SKBR3 cell line, palmitate induces a G2 phase cell cycle delay and CHOP-dependent apoptosis as well as a partial activation of the ER stress response network via XBP1 and ATF6. This response appears to be a general feature of HER2/neu-positive breast cancer cells but not cells that overexpress only HER2/neu. Exogenous palmitate reduces HER2 and HER3 protein levels without changes in phosphorylation and sensitizes HER2/neu-positive breast cancer cells to treatment with the HER2-targeted therapy trastuzumab. CONCLUSIONS Several studies have shown that HER2, FASN and fatty acid synthesis are functionally linked. Exogenous palmitate exerts its toxic effects in part through inducing ER stress, reducing HER2 expression and thereby sensitizing cells to trastuzumab. These data provide further evidence that HER2 signaling and fatty acid metabolism are highly integrated processes that may be important for disease development and progression.
Collapse
Affiliation(s)
- Jan Baumann
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, University at Albany, Rensselaer, NY, 12144, USA
| | - Jason Wong
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, University at Albany, Rensselaer, NY, 12144, USA
| | - Yan Sun
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, University at Albany, Rensselaer, NY, 12144, USA
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, University at Albany, Rensselaer, NY, 12144, USA.
| |
Collapse
|
47
|
Fasnall, a Selective FASN Inhibitor, Shows Potent Anti-tumor Activity in the MMTV-Neu Model of HER2(+) Breast Cancer. Cell Chem Biol 2016; 23:678-88. [PMID: 27265747 DOI: 10.1016/j.chembiol.2016.04.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022]
Abstract
Many tumors are dependent on de novo fatty acid synthesis to maintain cell growth. Fatty acid synthase (FASN) catalyzes the final synthetic step of this pathway, and its upregulation is correlated with tumor aggressiveness. The consequences and adaptive responses of acute or chronic inhibition of essential enzymes such as FASN are not fully understood. Herein we identify Fasnall, a thiophenopyrimidine selectively targeting FASN through its co-factor binding sites. Global lipidomics studies with Fasnall showed profound changes in cellular lipid profiles, sharply increasing ceramides, diacylglycerols, and unsaturated fatty acids as well as increasing exogenous palmitate uptake that is deviated more into neutral lipid formation rather than phospholipids. We also showed that the increase in ceramide levels contributes to some extent in the mediation of apoptosis. Consistent with this mechanism of action, Fasnall showed potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer, particularly when combined with carboplatin.
Collapse
|
48
|
Giró-Perafita A, Palomeras S, Lum DH, Blancafort A, Viñas G, Oliveras G, Pérez-Bueno F, Sarrats A, Welm AL, Puig T. Preclinical Evaluation of Fatty Acid Synthase and EGFR Inhibition in Triple-Negative Breast Cancer. Clin Cancer Res 2016; 22:4687-97. [DOI: 10.1158/1078-0432.ccr-15-3133] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
|
49
|
Cancer (stem) cell differentiation: An inherent or acquired property? Med Hypotheses 2015; 85:1012-8. [PMID: 26347071 DOI: 10.1016/j.mehy.2015.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 08/23/2015] [Indexed: 02/08/2023]
Abstract
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment.
Collapse
|
50
|
Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS One 2015; 10:e0137204. [PMID: 26334757 PMCID: PMC4559312 DOI: 10.1371/journal.pone.0137204] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023] Open
Abstract
PURPOSE The tumor biology of metastatic breast cancers differ according to the metastatic sites, and the features of cancer metabolism may also be different. The aim of this study is to investigate the expression of lipid metabolism-related proteins in metastatic breast cancer according to metastatic site and discuss the clinical significance thereof. METHODS Immunohistochemical staining for lipid metabolism-related proteins [fatty acid synthase (FASN), hormone-sensitive lipase (HSL), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxidase 1 (ACOX1), fatty acid binding protein 4 (FABP4,) and perilipin 1 (PLIN1)] was performed using a tissue microarray of 149 cases of metastatic breast cancer (bone metastasis = 39, brain metastasis = 37, liver metastasis = 21, and lung metastasis = 52). RESULTS The expression levels of ACOX1 (p = 0.009) and FASN (p = 0.007) varied significantly according to metastatic site, with the highest expression in brain metastasis and the lowest expression in liver metastasis. ACOX1 positivity (p = 0.005) and FASN positivity (p = 0.003) correlated with HER-2 positivity. The expression of FASN was significantly higher in HER-2 type breast cancer, and lower in luminal A and TNBC type breast cancer (p<0.001). Among lipid metabolism-related proteins, PLIN1 positivity was found to be an independent poor prognostic factor on multivariate analysis (Hazard ratio: 4.979, 95% CI: 1.054-22.59, p = 0.043). CONCLUSION Different expression levels of lipid metabolism-related proteins were observed according to metastatic site. The expression of ACOX1 and FASN was highest in brain metastasis. These results suggest that the metastatic site should be considered when using lipid metabolism inhibitors for targeted therapy.
Collapse
|