1
|
Surdacka LM, Jakubas A, Jagiełło J, Daniłowska K, Picheta N, Gil-Kulik P. Epigenetic and Immune Mechanisms Linking Breastfeeding to Lower Breast Cancer Rates. Med Sci Monit 2024; 30:e945451. [PMID: 39497379 PMCID: PMC11549897 DOI: 10.12659/msm.945451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/24/2024] [Indexed: 11/11/2024] Open
Abstract
This review shows how mammary stem cells (MaSCs) influence breast development, breastfeeding, and breast cancer risk. MaSCs, which can differentiate into various cell types, are vital for breast tissue health, but also disease development in breast tissue. Research shows that breastfeeding affects MaSCs, offering protection against breast cancer through various mechanisms. Hormonal changes such as increased prolactin concentration, oxytocin secretion, lower progesterone levels, and reduced exposure to estrogen during lactation promote apoptosis in potential cancer cells, boost immune surveillance, and modulate inflammation. Key findings reveal that pregnancy at an earlier age and extended breastfeeding reduce MaSC numbers, lowering cancer risk. Additionally, breastfeeding induces various epigenetic changes, such as DNA methylation and histone modification, which provide long-term protection against the development of cancer. Components of breast milk, like alpha-lactalbumin and lactoferrin, contribute by promoting cancer cell apoptosis and inhibiting tumor growth. The dual benefits of breastfeeding are reduced breast cancer risk for mothers and immunological advantages for infants. Multicenter epidemiology research has focused particular attention on longer breastfeeding duration associated with a reduced risk of triple-negative breast cancer. This review offers comprehensive evidence that breastfeeding protects against breast cancer through various biological, hormonal, and molecular mechanisms, showing the importance of promoting breastfeeding as a natural cancer prevention method. This article reviews the role of mammary stem cells in breast development, lactation, and breast cancer.
Collapse
Affiliation(s)
- Laura Maria Surdacka
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Adam Jakubas
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Jakub Jagiełło
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Karolina Daniłowska
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Natalia Picheta
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Fu S, Ke H, Yuan H, Xu H, Chen W, Zhao L. Dual role of pregnancy in breast cancer risk. Gen Comp Endocrinol 2024; 352:114501. [PMID: 38527592 DOI: 10.1016/j.ygcen.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.
Collapse
Affiliation(s)
- Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | | | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
3
|
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta 2024; 557:117855. [PMID: 38453050 DOI: 10.1016/j.cca.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is the most common cancer and the leading cause of mortality worldwide. Despite advancements in detection and treatment, it remains a major cause of cancer-related deaths in women. Breast cancer stem cells (BCSCs) are a crucial group of cells responsible for carcinogenesis, metastasis, medication resistance, and tumor recurrence. Identifying and understanding their molecular pathways is essential for developing effective breast cancer therapy. BCSCs are responsible for tumor genesis, development, metastasis, treatment resistance, and recurrence. Biomarkers are essential tools for identifying high-risk patients, improving diagnostic accuracy, developing follow-up programs, assessing treatment susceptibility, and predicting prognostic outcomes. Stem cell intervention therapy can provide specialized tools for precision therapy. Biomarker analysis in cancer patients is crucial to identify cells associated with disease progression and post-therapeutic relapse. However, negative post-therapeutic impacts can enhance cancer stemness by boosting BCSCs plasticity phenotypes, activating stemness pathways in non-BCSCs, and promoting senescence escape, leading to tumor relapse and metastasis. Despite the advancements in precision medicine, challenges persist in identifying stem cell markers, limiting the number of eligible patients for treatment. The diversity of biomedical research hinders the development of individualization-based preventative, monitoring, and treatment strategies, especially in oncology. Integrating and interpreting clinical and scientific data remains challenging. The development of stem cell-related indicators could significantly improve disease precision, enabling stem cell-targeted therapy and personalized treatment plans, although BCSCs are promising for breast cancer treatment optimization, serving as biomarkers for current therapy modalities. This summary discusses recent advancements in breast cancer stem cell research, including biomarkers, identification methods, molecular mechanisms, and tools for studying their biological origin and lineage development for precision medicine.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
4
|
Mogus JP, Matouskova K, Clark ZW, Jerry DJ, Vandenberg LN. Effects of butyl benzyl phthalate exposure during pregnancy and lactation on the post-involution mammary gland. Reprod Toxicol 2023; 122:108470. [PMID: 37743007 DOI: 10.1016/j.reprotox.2023.108470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The mammary gland undergoes comprehensive reorganization during pregnancy, lactation, and subsequent involution. Following involution, the mammary gland has structural and functional differences compared to the gland of a nulliparous female. These parity-associated changes are regulated by hormones and may be vulnerable to endocrine-disrupting chemicals (EDCs). In this study, we evaluated the long-term effects of butyl benzyl phthalate (BBP), an estrogenic plasticizer, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 3, 500, or 18000 µg/kg/day BBP throughout both pregnancy and the lactational period. The litters born to these females were evaluated for litter size and growth. The parous females were then kept for five weeks following weaning of the pups, during which period there was no exposure to BBP. After five weeks of post-weaning, mammary glands were collected and assessed for changes in histomorphology, steroid receptor expression, innate immune cell number, and gene expression. An unexposed age-matched nulliparous control was also evaluated as a comparator group. BBP increased male and female pup weight at puberty and female offspring in adulthood. BBP also altered innate immune cells in the post-involution mammary gland, reducing the effect of parity on macrophages. Lastly, BBP modestly increased mammary gland ductal complexity and periductal structure, but had no effect on expression of estrogen receptor, progesterone receptor, or a marker of proliferation. These results suggest that BBP may interfere with some effects of parity on the mouse mammary gland and induce weight gain in exposed offspring.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zachary W Clark
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA; Pioneer Valley Life Sciences Institute, Springfield, MA, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
5
|
Rocha AS, Collado-Solé A, Graña-Castro O, Redondo-Pedraza J, Soria-Alcaide G, Cordero A, Santamaría PG, González-Suárez E. Luminal Rank loss decreases cell fitness leading to basal cell bipotency in parous mammary glands. Nat Commun 2023; 14:6213. [PMID: 37813842 PMCID: PMC10562464 DOI: 10.1038/s41467-023-41741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.
| | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | | | | | - Alex Cordero
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | | | - Eva González-Suárez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.
- Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Su Y, Dang NM, Depypere H, Santucci-Pereira J, Gutiérrez-Díez PJ, Kanefsky J, Janssens JP, Russo J. Recombinant human chorionic gonadotropin induces signaling pathways towards cancer prevention in the breast of BRCA1/2 mutation carriers. Eur J Cancer Prev 2023; 32:126-138. [PMID: 35881946 PMCID: PMC9800649 DOI: 10.1097/cej.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Strategies for breast cancer prevention in women with germline BRCA1/2 mutations are limited. We previously showed that recombinant human chorionic gonadotropin (r-hCG) induces mammary gland differentiation and inhibits mammary tumorigenesis in rats. The present study investigated hCG-induced signaling pathways in the breast of young nulliparous women carrying germline BRCA1/2 mutations. METHODS We performed RNA-sequencing on breast tissues from 25 BRCA1/2 mutation carriers who received r-hCG treatment for 3 months in a phase II clinical trial, we analyzed the biological processes, reactome pathways, canonical pathways, and upstream regulators associated with genes differentially expressed after r-hCG treatment, and validated genes of interest. RESULTS We observed that r-hCG induces remarkable transcriptomic changes in the breast of BRCA1/2 carriers, especially in genes related to cell development, cell differentiation, cell cycle, apoptosis, DNA repair, chromatin remodeling, and G protein-coupled receptor signaling. We revealed that r-hCG inhibits Wnt/β-catenin signaling, MYC, HMGA1 , and HOTAIR , whereas activates TGFB/TGFBR-SMAD2/3/4, BRCA1, TP53, and upregulates BRCA1 protein. CONCLUSION Our data suggest that the use of r-hCG at young age may reduce the risk of breast cancer in BRCA1/2 carriers by inhibiting pathways associated with stem/progenitor cell maintenance and neoplastic transformation, whereas activating genes crucial for breast epithelial differentiation and lineage commitment, and DNA repair.
Collapse
Affiliation(s)
- Yanrong Su
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Nhi M. Dang
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Herman Depypere
- Department of Gynecology, Breast and Menopause clinic, University Hospital of Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Julia Santucci-Pereira
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | - Joice Kanefsky
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jaak Ph. Janssens
- European Cancer Prevention Organization, University of Hasselt, Klein Hilststraat 5, 3500 Hasselt, Belgium
| | - Jose Russo
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- Dr. Russo conceived the study and supervised the work. Dr. Russo passed away on September 24, 2021
| |
Collapse
|
7
|
Kumar R, Abreu C, Toi M, Saini S, Casimiro S, Arora A, Paul AM, Velaga R, Rameshwar P, Lipton A, Gupta S, Costa L. Oncobiology and treatment of breast cancer in young women. Cancer Metastasis Rev 2022; 41:749-770. [PMID: 35488982 DOI: 10.1007/s10555-022-10034-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
Female breast cancer emerged as the leading cancer type in terms of incidence globally in 2020. Although mortality due to breast cancer has improved during the past three decades in many countries, this trend has reversed in women less than 40 years since the past decade. From the biological standpoint, there is consensus among experts regarding the clinically relevant definition of breast cancer in young women (BCYW), with an age cut-off of 40 years. The idea that breast cancer is an aging disease has apparently broken in the case of BCYW due to the young onset and an overall poor outcome of BCYW patients. In general, younger patients exhibit a worse prognosis than older pre- and postmenopausal patients due to the aggressive nature of cancer subtypes, a high percentage of cases with advanced stages at diagnosis, and a high risk of relapse and death in younger patients. Because of clinically and biologically unique features of BCYW, it is suspected to represent a distinct biologic entity. It is unclear why BCYW is more aggressive and has an inferior prognosis with factors that contribute to increased incidence. However, unique developmental features, adiposity and immune components of the mammary gland, hormonal interplay and crosstalk with growth factors, and a host of intrinsic and extrinsic risk factors and cellular regulatory interactions are considered to be the major contributing factors. In the present article, we discuss the status of BCYW oncobiology, therapeutic interventions and considerations, current limitations in fully understanding the basis and underlying cause(s) of BCYW, understudied areas of BCYW research, and postulated advances in the coming years for the field.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India. .,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India. .,Department of Medicine, Division of Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA. .,Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Catarina Abreu
- Department of Medical Oncology, Hospital de Santa Maria- Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Masakazu Toi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sunil Saini
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Sandra Casimiro
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Anshika Arora
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Ravi Velaga
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Allan Lipton
- Hematology-Oncology, Department of Medicine, Penn State University School of Medicine, Hershey, PA, USA
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Luis Costa
- Department of Medical Oncology, Hospital de Santa Maria- Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal.,Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary Development and Breast Cancer: a Notch Perspective. J Mammary Gland Biol Neoplasia 2021; 26:309-320. [PMID: 34374886 PMCID: PMC8566423 DOI: 10.1007/s10911-021-09496-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liyan Zhang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shiqi Hu
- DU-ANU Joint Science College, Shandong University, Weihai, 264200, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Ruiz de Garibay G, Fernandez-Garcia I, Mazoyer S, Leme de Calais F, Ameri P, Vijayakumar S, Martinez-Ruiz H, Damiola F, Barjhoux L, Thomassen M, Andersen LVB, Herranz C, Mateo F, Palomero L, Espín R, Gómez A, García N, Jimenez D, Bonifaci N, Extremera AI, Castaño J, Raya A, Eyras E, Puente XS, Brunet J, Lázaro C, Radice P, Barnes DR, Antoniou AC, Spurdle AB, de la Hoya M, Baralle D, Barcellos-Hoff MH, Pujana MA. Altered regulation of BRCA1 exon 11 splicing is associated with breast cancer risk in carriers of BRCA1 pathogenic variants. Hum Mutat 2021; 42:1488-1502. [PMID: 34420246 DOI: 10.1002/humu.24276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ignacio Fernandez-Garcia
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sylvie Mazoyer
- Equipe GENDEV, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Université St Etienne, Lyon, France
| | - Flavia Leme de Calais
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pietro Ameri
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sangeetha Vijayakumar
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Francesca Damiola
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Lars V B Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Carmen Herranz
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Francesca Mateo
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Luis Palomero
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Roderic Espín
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Gene Regulation, Stem Cells and Cancer, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - Nadia García
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Daniel Jimenez
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Núria Bonifaci
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ana I Extremera
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Julio Castaño
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain.,Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Eduardo Eyras
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain.,Department of Genome Sciences, The John Curtin School of Medical Research, EMBL Australia Partner Laboratory Network, Australian National University, Canberra, Australia
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, University Institute of Oncology, University of Oviedo, Oviedo, Spain.,Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Conxi Lázaro
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | -
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | -
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Miguel de la Hoya
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Molecular Oncology Laboratory, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, Southampton University Hospital NHS Trust, Southampton, UK
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Miquel A Pujana
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Pitzer LM, Moroney MR, Nokoff NJ, Sikora MJ. WNT4 Balances Development vs Disease in Gynecologic Tissues and Women's Health. Endocrinology 2021; 162:6272210. [PMID: 33963381 PMCID: PMC8197283 DOI: 10.1210/endocr/bqab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.
Collapse
Affiliation(s)
- Lauren M Pitzer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Marisa R Moroney
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- Correspondence: Matthew J. Sikora, PhD; Department of Pathology, University of Colorado Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Rm 5117, 12801 E 17th Ave, Aurora, CO 80045, USA. . Twitter: @mjsikora
| |
Collapse
|
11
|
Pader J, Basmadjian RB, O'Sullivan DE, Mealey NE, Ruan Y, Friedenreich C, Murphy R, Wang E, Quan ML, Brenner DR. Examining the etiology of early-onset breast cancer in the Canadian Partnership for Tomorrow's Health (CanPath). Cancer Causes Control 2021; 32:1117-1128. [PMID: 34173131 DOI: 10.1007/s10552-021-01460-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Breast cancer incidence among younger women (under age 50) has increased over the past 25 years, yet little is known about the etiology among this age group. The objective of this study was to investigate relationships between modifiable and non-modifiable risk factors and early-onset breast cancer among three prospective Canadian cohorts. METHODS A matched case-control study was conducted using data from Alberta's Tomorrow Project, BC Generations Project, and the Ontario Health Study. Participants diagnosed with breast cancer before age 50 were identified through provincial registries and matched to three control participants of similar age and follow-up. Conditional logistic regression was used to examine the association between factors and risk of early-onset breast cancer. RESULTS In total, 609 cases and 1,827 controls were included. A body mass index ≥ 30 kg/m2 was associated with a lower risk of early-onset breast cancer (OR 0.65; 95% CI 0.47-0.90), while a waist circumference ≥ 88 cm was associated with an increased risk (OR 1.58; 95% CI 1.18-2.11). A reduced risk was found for women with ≥ 2 pregnancies (OR 0.76; 95% CI 0.59-0.99) and a first-degree family history of breast cancer was associated with an increased risk (OR 1.95; 95% CI 1.47-2.57). CONCLUSIONS In this study, measures of adiposity, pregnancy history, and familial history of breast cancer are important risk factors for early-onset breast cancer. Evidence was insufficient to conclude if smoking, alcohol intake, fruit and vegetable consumption, and physical activity are meaningful risk factors. The results of this study could inform targeted primary and secondary prevention for early-onset breast cancer.
Collapse
Affiliation(s)
- Joy Pader
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB, Canada
| | - Robert B Basmadjian
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole E Mealey
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yibing Ruan
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB, Canada
| | - Christine Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rachel Murphy
- Department of Epidemiology, Biostatistics and Public Health Practice, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Edwin Wang
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - May Lynn Quan
- Department of Surgery, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB, Canada. .,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Oncology and Community Health Sciences, University of Calgary, Heritage Medical Research Building, 3300 Hospital Dr NW, Room 382B, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
12
|
Mogus JP, LaPlante CD, Bansal R, Matouskova K, Schneider BR, Daniele E, Silva SJ, Hagen MJ, Dunphy KA, Jerry DJ, Schneider SS, Vandenberg LN. Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology 2021; 162:bqab041. [PMID: 33724348 PMCID: PMC8121128 DOI: 10.1210/endocr/bqab041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Benjamin R Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Elizabeth Daniele
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shannon J Silva
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary J Hagen
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karen A Dunphy
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
O'Leary KA, Rugowski DE, Shea MP, Sullivan R, Moser AR, Schuler LA. Prolactin synergizes with canonical Wnt signals to drive development of ER+ mammary tumors via activation of the Notch pathway. Cancer Lett 2021; 503:231-239. [PMID: 33472091 DOI: 10.1016/j.canlet.2021.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Prolactin (PRL) cooperates with other factors to orchestrate mammary development and lactation, and is epidemiologically linked to higher risk for breast cancer. However, how PRL collaborates with oncogenes to foster tumorigenesis and influence breast cancer phenotype is not well understood. To understand its interactions with canonical Wnt signals, which elevate mammary stem cell activity, we crossed heterozygous NRL-PRL mice with ApcMin/+ mice and treated pubertal females with a single dose of mutagen. PRL in the context of ApcMin/+ fueled a dramatic increase in tumor incidence in nulliparous mice, compared to ApcMin/+ alone. Although carcinomas in both NRL-PRL/ApcMin/+ and ApcMin/+ females acquired a mutation in the remaining wildtype Apc allele and expressed abundant β-catenin, PRL-promoted tumors displayed higher levels of Notch-driven target genes and Notch-dependent cancer stem cell activity, compared to β-catenin-driven activity in ApcMin/+ tumors. This PRL-induced shift to dominant Notch signals was evident in preneoplastic epithelial hyperplasias at 120 days of age. In NRL-PRL/ApcMin/+ females, rapidly proliferating hyperplasias, characterized by β-catenin at cell junctions and high NOTCH1 expression, contrasted with slower growing lesions with nuclear β-catenin in ApcMin/+ females. These studies demonstrate that PRL can powerfully modulate the incidence and phenotype of mammary tumors, shedding light on mechanisms whereby PRL elevates risk of breast cancer.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael P Shea
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Amy R Moser
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
14
|
Daraei A, Izadi P, Khorasani G, Nafissi N, Naghizadeh MM, Meysamie A, Mansoori Y, Nariman-Saleh-Fam Z, Bastami M, Saadatian Z, Roshan SJ, Bayani N, Tavakkoly-Bazzaz J. A methylation signature at the CpG island promoter of estrogen receptor beta (ER-β) in breasts of women may be an early footmark of lack of breastfeeding and nulliparity. Pathol Res Pract 2020; 218:153328. [PMID: 33422777 DOI: 10.1016/j.prp.2020.153328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022]
Abstract
Although little is known regarding the mechanisms behind the onset of breast cancer (BC) through reproductive risk factors, new researches have highlighted some early tumor-related methylation footmarks in the breast tissue of apparently clinically healthy women as their potential epigenetic mechanism. Previous evidence supports that the estrogen receptor beta (ER-β), whose anti-cancer roles had already been revealed in BC, is downregulated in the breasts of healthy nulliparous women. Nevertheless, data on such a link about its methylation alterations have not been reported. The goal of current study was to determine possible methylation alterations at CpG island promoter of the ER-β gene, including promoter 0 N and exon 0 N, in relation to aspects of reproductive history in the healthy breasts. The DNA was extracted from the breasts of 120 subjects undergoing cosmetic mammoplasty. Thereafter, the methylation levels of targeted regions in ER-β gene were determined by using MeDIP-qPCR assay. The results revealed that ER-β exon 0 N had no methylation in 84.2 % of the women, whereas the rest, comprising 2.5 % and 13.3 % of the samples, showed a lower and higher of its methylation, respectively. Interestingly, nulliparous women were found to have an elevated methylation level of the ER-β exon 0 N than parous women (P = 0.036). Moreover, we observed a high methylation of the ER-β exon 0 N in the breasts of non-breastfeeding women compared to breastfeeding subgroup (P = 0.048). Likewise, the non-breastfeeding subgroup showed exon 0N high methylation in comparison to women with breastfeeding >24 months (P = 0.023). Finally, although we found that 6.67 % of the samples had a high methylation level at the promoter 0N, no any relationship was found between its methylation and reproductive history. These results may provide key clues to revealing the epigenetic mechanism through which the nulliparity and lack of breastfeeding influencing the risk factor of BC as well as introducing the potential new early prediction and prevention strategies. Although further investigations need to be done in order to gain a better understanding the roles of these epigenetic signatures.
Collapse
Affiliation(s)
- Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasemali Khorasani
- Division of Plastic and Reconstructive Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Nafissi
- Surgical Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alipasha Meysamie
- Community and Preventive Medicine Department, Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Samaneh Jafari Roshan
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Niloofar Bayani
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Estrogen Regulation of mTOR Signaling and Mitochondrial Function in Invasive Lobular Carcinoma Cell Lines Requires WNT4. Cancers (Basel) 2020; 12:cancers12102931. [PMID: 33053661 PMCID: PMC7650584 DOI: 10.3390/cancers12102931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Invasive lobular carcinoma (ILC) is a common but understudied breast cancer subtype. ILC is presumed to be a low-risk disease in part because nearly all ILCs contain the estrogen receptor (ER). However, we previously showed that ER has unique functions in ILC cells, including driving expression of the Wnt ligand WNT4. WNT4 signaling is required for ILC cell proliferation and survival, but the mechanisms and targets of WNT4 signaling in ILC is unknown. We found that WNT4 regulates mTOR signaling via S6 kinase, and controls levels of MCL-1 protein, ultimately regulating mitochondrial function and cellular metabolism. These findings offer new insight into a novel Wnt signaling pathway and identify new targets to inhibit WNT4 signaling as potential treatments against ILC cells. Abstract Invasive lobular carcinoma of the breast (ILC) is strongly estrogen-driven and represents a unique context for estrogen receptor (ER) signaling. In ILC, ER controls the expression of the Wnt ligand WNT4, which is critical for endocrine response and anti-estrogen resistance. However, signaling mediated by WNT4 is cell type- and tissue-specific, and has not been explored in ILC. We utilized reverse phase protein array (RPPA) to characterize ER and WNT4-driven signaling in ILC cells and identified that WNT4 mediates downstream mTOR signaling via phosphorylation of S6 Kinase. Additionally, ER and WNT4 control levels of MCL-1, which is associated with regulation of mitochondrial function. In this context, WNT4 knockdown led to decreased ATP production and increased mitochondrial fragmentation. WNT4 regulation of both mTOR signaling and MCL-1 were also observed in anti-estrogen resistant models of ILC. We identified that high WNT4 expression is associated with similar mTOR pathway activation in ILC and serous ovarian cancer tumors, suggesting that WNT4 signaling is active in multiple tumor types. The identified downstream pathways offer insight into WNT4 signaling and represent potential targets to overcome anti-estrogen resistance for patients with ILC.
Collapse
|
16
|
Abstract
Despite decades of laboratory, epidemiological and clinical research, breast cancer incidence continues to rise. Breast cancer remains the leading cancer-related cause of disease burden for women, affecting one in 20 globally and as many as one in eight in high-income countries. Reducing breast cancer incidence will likely require both a population-based approach of reducing exposure to modifiable risk factors and a precision-prevention approach of identifying women at increased risk and targeting them for specific interventions, such as risk-reducing medication. We already have the capacity to estimate an individual woman's breast cancer risk using validated risk assessment models, and the accuracy of these models is likely to continue to improve over time, particularly with inclusion of newer risk factors, such as polygenic risk and mammographic density. Evidence-based risk-reducing medications are cheap, widely available and recommended by professional health bodies; however, widespread implementation of these has proven challenging. The barriers to uptake of, and adherence to, current medications will need to be considered as we deepen our understanding of breast cancer initiation and begin developing and testing novel preventives.
Collapse
Affiliation(s)
- Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Kelly-Anne Phillips
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Parity reduces mammary repopulating activity but does not affect mammary stem cells defined as CD24 + CD29/CD49fhi in mice. Breast Cancer Res Treat 2020; 183:565-575. [PMID: 32696317 DOI: 10.1007/s10549-020-05804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Breast cancer (BCa) mortality is decreasing with early detection and improvement in therapies. The incidence of BCa, however, continues to increase, particularly estrogen-receptor-positive (ER +) subtypes. One of the greatest modifiers of ER + BCa risk is childbearing (parity), with BCa risk halved in young multiparous mothers. Despite convincing epidemiological data, the biology that underpins this protection remains unclear. Parity-induced protection has been postulated to be due to a decrease in mammary stem cells (MaSCs); however, reports to date have provided conflicting data. METHODS We have completed rigorous functional testing of repopulating activity in parous mice using unfractionated and MaSC (CD24midCD49fhi)-enriched populations. We also developed a novel serial transplant method to enable us to assess self-renewal of MaSC following pregnancy. Lastly, as each pregnancy confers additional BCa protection, we subjected mice to multiple rounds of pregnancy to assess whether additional pregnancies impact MaSC activity. RESULTS Here, we report that while repopulating activity in the mammary gland is reduced by parity in the unfractionated gland, it is not due to a loss in the classically defined MaSC (CD24+CD49fhi) numbers or function. Self-renewal was unaffected by parity and additional rounds of pregnancy also did not lead to a decrease in MaSC activity. CONCLUSIONS Our data show instead that parity impacts on the stem-like activity of cells outside the MaSC population.
Collapse
|
18
|
Sengodan SK, Hemalatha SK, Nadhan R, Somanathan T, Mathew AP, Chil A, Kopczynski J, Nair RS, Kumar JM, Srinivas P. β-hCG-induced mutant BRCA1 ignites drug resistance in susceptible breast tissue. Carcinogenesis 2020; 40:1415-1426. [PMID: 30963174 DOI: 10.1093/carcin/bgz070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/05/2019] [Indexed: 11/14/2022] Open
Abstract
β-hCG expression in breast cancer is highly controversial with reports supporting both protective and tumorigenic effects. It has also been reported that risk of breast cancer at an early age is increased with full-term pregnancies if a woman is a BRCA1 mutation carrier. We have already demonstrated that BRCA1-defective cells express high levels of β-hCG and that when BRCA1 is restored, β-hCG level is reduced. Also, BRCA1 can bind to the promoter and reduce the levels of β-hCG. β-hCG induces tumorigenicity in BRCA1-defective cells by directly binding to TGFBRII and induces TGFBRII-mediated cell proliferation. In this study, we analyzed the mechanism of action of β-hCG on BRCA1 expression and its influence on drug sensitivity in breast cancer cells. We demonstrate that β-hCG induces mutant BRCA1 protein expression in BRCA1 mutant cells; however, in BRCA1 wild-type cells, β-hCG reduced wild-type BRCA1 protein expression. Transcriptionally, β-hCG could induce Slug/LSD1-mediated repression of wild-type and mutant BRCA1 messenger RNA levels. However, β-hCG induces HSP90-mediated stabilization of mutant BRCA1 and hence the overexpression of mutant BRCA1 protein, resulting in partial restoration of homologous recombination repair of damaged DNA. This contributes to drug resistance to HSP90 inhibitor 17AAG in BRCA1-defective cancer cells. A combination of HSP90 inhibitor and TGFBRII inhibitor has shown to sensitize β-hCG expressing BRCA1-defective breast cancers to cell death. Targeting the β-hCG-HSP90-TGFBRII axis could prove an effective treatment strategy for BRCA1-mutated breast tumors.
Collapse
Affiliation(s)
- Satheesh Kumar Sengodan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sreelatha K Hemalatha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Thara Somanathan
- Department of Pathology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Arun Peter Mathew
- Department of Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Arkadiusz Chil
- Department of Gynecologic Oncology, Kielce Cancer Center, Kielce, Poland
| | | | - Rakesh Sathish Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Oncology Research, Division of Clinical Oncology, Department of Surgery, University of Illinois at Chicago, IL, USA
| | | | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
19
|
Rao DM, Shackleford MT, Bordeaux EK, Sottnik JL, Ferguson RL, Yamamoto TM, Wellberg EA, Bitler BG, Sikora MJ. Wnt family member 4 (WNT4) and WNT3A activate cell-autonomous Wnt signaling independent of porcupine O-acyltransferase or Wnt secretion. J Biol Chem 2019; 294:19950-19966. [PMID: 31740580 PMCID: PMC6937561 DOI: 10.1074/jbc.ra119.009615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Porcupine O-acyltransferase (PORCN) is considered essential for Wnt secretion and signaling. However, we observed that PORCN inhibition does not phenocopy the effects of WNT4 knockdown in WNT4-dependent breast cancer cells. This suggests a unique relationship between PORCN and WNT4 signaling. To examine the role of PORCN in WNT4 signaling, here we overexpressed WNT4 or WNT3A in breast cancer, ovarian cancer, and fibrosarcoma cell lines. Conditioned media from these lines and co-culture systems were used to assess the dependence of Wnt secretion and activity on the critical Wnt secretion proteins PORCN and Wnt ligand secretion (WLS) mediator. We observed that WLS is universally required for Wnt secretion and paracrine signaling. In contrast, the dependence of WNT3A secretion and activity on PORCN varied across the cell lines, and WNT4 secretion was PORCN-independent in all models. Surprisingly, WNT4 did not exhibit paracrine activity in any tested context. Absent the expected paracrine activity of secreted WNT4, we identified cell-autonomous Wnt signaling activation by WNT4 and WNT3A, independent of PORCN or Wnt secretion. The PORCN-independent, cell-autonomous Wnt signaling demonstrated here may be critical in WNT4-driven cellular contexts or in those that are considered to have dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Deviyani M Rao
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Madeleine T Shackleford
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Evelyn K Bordeaux
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Joseph L Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Rebecca L Ferguson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Tomomi M Yamamoto
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
20
|
Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, Malecki KMC, Martin MB, Miller RL, Neuhausen SL, Silk K, Trentham-Dietz A. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res 2019; 21:96. [PMID: 31429809 PMCID: PMC6701090 DOI: 10.1186/s13058-019-1168-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention. Main text Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland’s structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers. Conclusions An integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1611, New York, NY, 10032, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Drive South, CHS 71-254, Los Angeles, CA, 90095, USA
| | | | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road A-1039F, Bethesda, MD, 20814, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA, 91010, USA
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute and Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant St., Amherst, MA, 01003, USA
| | - Kristen M C Malecki
- Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 605, Madison, WI, 53726, USA
| | - Mary Beth Martin
- Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University Medical Center, E411 New Research Building, Washington, DC, 20057, USA
| | - Rachel L Miller
- Departments of Medicine, Pediatrics, Environmental Health Sciences; Vagelos College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, PH8E-101B, 630 W. 168th St, New York, NY, 10032, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Kami Silk
- Department of Communication, University of Delaware, 250 Pearson Hall, 125 Academy St, Newark, DE, 19716, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 307, Madison, WI, 53726, USA.
| | | |
Collapse
|
21
|
Slepicka PF, Cyrill SL, Dos Santos CO. Pregnancy and Breast Cancer: Pathways to Understand Risk and Prevention. Trends Mol Med 2019; 25:866-881. [PMID: 31383623 DOI: 10.1016/j.molmed.2019.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Several studies have made strong efforts to understand how age and parity modulate the risk of breast cancer. A holistic understanding of the dynamic regulation of the morphological, cellular, and molecular milieu of the mammary gland offers insights into the drivers of breast cancer development as well as into potential prophylactic interventions, the latter being a longstanding ambition of the research and clinical community aspiring to eradicate the disease. In this review we discuss mechanisms that react to pregnancy signals, and we delineate the nuances of pregnancy-associated dynamism that contribute towards either breast cancer development or prevention. Further definition of the molecular basis of parity and breast cancer risk may allow the elaboration of tools to predict and survey those who are at risk of breast cancer development.
Collapse
Affiliation(s)
- Priscila F Slepicka
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Samantha L Cyrill
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
22
|
Santucci-Pereira J, Zeleniuch-Jacquotte A, Afanasyeva Y, Zhong H, Slifker M, Peri S, Ross EA, López de Cicco R, Zhai Y, Nguyen T, Sheriff F, Russo IH, Su Y, Arslan AA, Bordas P, Lenner P, Åhman J, Landström Eriksson AS, Johansson R, Hallmans G, Toniolo P, Russo J. Genomic signature of parity in the breast of premenopausal women. Breast Cancer Res 2019; 21:46. [PMID: 30922380 PMCID: PMC6438043 DOI: 10.1186/s13058-019-1128-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Background Full-term pregnancy (FTP) at an early age confers long-term protection against breast cancer. Previously, we reported that a FTP imprints a specific gene expression profile in the breast of postmenopausal women. Herein, we evaluated gene expression changes induced by parity in the breast of premenopausal women. Methods Gene expression profiling of normal breast tissue from 30 nulliparous (NP) and 79 parous (P) premenopausal volunteers was performed using Affymetrix microarrays. In addition to a discovery/validation analysis, we conducted an analysis of gene expression differences in P vs. NP women as a function of time since last FTP. Finally, a laser capture microdissection substudy was performed to compare the gene expression profile in the whole breast biopsy with that in the epithelial and stromal tissues. Results Discovery/validation analysis identified 43 differentially expressed genes in P vs. NP breast. Analysis of expression as a function of time since FTP revealed 286 differentially expressed genes (238 up- and 48 downregulated) comparing all P vs. all NP, and/or P women whose last FTP was less than 5 years before biopsy vs. all NP women. The upregulated genes showed three expression patterns: (1) transient: genes upregulated after FTP but whose expression levels returned to NP levels. These genes were mainly related to immune response, specifically activation of T cells. (2) Long-term changing: genes upregulated following FTP, whose expression levels decreased with increasing time since FTP but did not return to NP levels. These were related to immune response and development. (3) Long-term constant: genes that remained upregulated in parous compared to nulliparous breast, independently of time since FTP. These were mainly involved in development/cell differentiation processes, and also chromatin remodeling. Lastly, we found that the gene expression in whole tissue was a weighted average of the expression in epithelial and stromal tissues. Conclusions Genes transiently activated by FTP may have a role in protecting the mammary gland against neoplastically transformed cells through activation of T cells. Furthermore, chromatin remodeling and cell differentiation, represented by the genes that are maintained upregulated long after the FTP, may be responsible for the lasting preventive effect against breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1128-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA.
| | - Anne Zeleniuch-Jacquotte
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA.,New York University Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Yelena Afanasyeva
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
| | - Hua Zhong
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
| | - Michael Slifker
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, 19111, USA
| | - Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, 19111, USA
| | - Eric A Ross
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, 19111, USA
| | - Ricardo López de Cicco
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| | - Yubo Zhai
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| | - Theresa Nguyen
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| | - Fathima Sheriff
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| | - Irma H Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| | - Alan A Arslan
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA.,Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA
| | - Pal Bordas
- Sunderby Hospital, Luleå and the Norrbotten Mammography Screening Program, Luleå, Sweden.,Departments of Radiation Sciences and Oncology, Umeå University, Umeå, Sweden
| | - Per Lenner
- Departments of Radiation Sciences and Oncology, Umeå University, Umeå, Sweden
| | - Janet Åhman
- Sunderby Hospital, Luleå and the Norrbotten Mammography Screening Program, Luleå, Sweden
| | | | | | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Paolo Toniolo
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, P2051, Philadelphia, PA, 19111, USA
| |
Collapse
|
23
|
Fortner RT, Sisti J, Chai B, Collins LC, Rosner B, Hankinson SE, Tamimi RM, Eliassen AH. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: results from the Nurses' Health Studies. Breast Cancer Res 2019; 21:40. [PMID: 30867002 PMCID: PMC6416887 DOI: 10.1186/s13058-019-1119-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 01/02/2023] Open
Abstract
Background Epidemiologic data suggest that parity increases risk of hormone receptor-negative breast cancer and that breastfeeding attenuates this association. Prospective data, particularly on the joint effects of higher parity and breastfeeding, are limited. Methods We investigated parity, breastfeeding, and breast cancer risk by hormone-receptor (estrogen (ER) and progesterone receptor (PR)) and molecular subtypes (luminal A, luminal B, HER2-enriched, and basal-like) in the Nurses’ Health Study (NHS; 1976–2012) and NHSII (1989–2013). A total of 12,452 (ER+ n = 8235; ER− n = 1978) breast cancers were diagnosed among 199,514 women. We used Cox proportional hazards models, adjusted for breast cancer risk factors, to calculate hazard ratios (HR) and 95% confidence intervals (CI). Results Parous women had lower risk of ER+ breast cancer (vs. nulliparous, HR = 0.82 [0.77–0.88]); no association was observed for ER− disease (0.98 [0.84–1.13]; Phet = 0.03). Among parous women, breastfeeding was associated with lower risk of ER− (vs. never 0.82 [0.74–0.91]), but not ER+, disease (0.99 [0.94–1.05]; Phet < 0.001). Compared to nulliparous women, higher parity was inversely associated with luminal B breast cancer regardless of breastfeeding (≥ 3 children: ever breastfed, 0.78 [0.62–0.98]; never breastfed, 0.76 [0.58–1.00]) and luminal A disease only among women who had breastfed (≥ 3 children, 0.84 [0.71–0.99]). Basal-like breast cancer risk was suggestively higher among women with higher parity who never breastfed; associations were null among those who ever breastfed. Conclusions This study provides evidence that breastfeeding is inversely associated with hormone receptor-negative breast cancers, representing an accessible and cost-effective risk-reduction strategy for aggressive disease subtypes. Electronic supplementary material The online version of this article (10.1186/s13058-019-1119-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Julia Sisti
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Boyang Chai
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Susan E Hankinson
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA.,Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant St., Amherst, MA, 01003, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
24
|
Mariya S, Dewi FN, Suparto IH, Wilkerson GK, Cline MJ, Iskandriati D, Budiarsa NI, Sajuthi D. Mammosphere Culture of Mammary Cells from Cynomolgus Macaques ( Macaca fascicularis). Comp Med 2019; 69:144-150. [PMID: 30732675 DOI: 10.30802/aalas-cm-18-000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mammary gland contains adult stem cells that are capable of self-renewal. Although these cells hold an important role in the biology and pathology of the breast, the studies of mammary stem cells are few due to the difficulty of acquiring and expanding undifferentiated adult stem cell populations. In this study, we developed mammosphere cultures from frozen mammary cells of nulliparous cynomolgus macaques (Macaca fascicularis) as a culture system to enrich mammary stem cells. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured in epithelial cell growth medium and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for stemness was evaluated by using quantitative PCR analysis. Cells were further differentiated by using 2D and 3D approaches to evaluate morphology and organoid budding, respectively. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. In contrast, markers for epithelial cells and pluripotency decreased across multiple passages. The 2D differentiation of the cells showed heterogeneous morphology, whereas 3D differentiation allowed for organoid formation. The results indicate that mammospheres can be successfully developed from frozen mammary cells derived from breast tissue collected from nulliparous cynomolgus macaques through surgical biopsy. Because mammosphere cultures allow for the enrichment of a mammary stem cell population, this refined method provides a model for the in vitro or ex vivo study of mammary stem cells.
Collapse
Affiliation(s)
- Silmi Mariya
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia;,
| | - Fitriya N Dewi
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia
| | - Irma H Suparto
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia; Faculty of Mathematic and Nature Science, Bogor Agricultural University, Bogor, Indonesia
| | - Gregory K Wilkerson
- Michale E Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, Texas
| | - Mark J Cline
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Diah Iskandriati
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia
| | - Nengah I Budiarsa
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia
| | - Dondin Sajuthi
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia; Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
25
|
Mansoori Y, Zendehbad Z, Askari A, Kouhpayeh A, Tavakkoly-Bazzaz J, Nariman-Saleh-Fam Z, Bastami M, Saadatian Z, Mansoori B, Yousefvand A, Mansoori H, Daraei A. Breast cancer-linked lncRNA u-Eleanor is upregulated in breast of healthy women with lack or short duration of breastfeeding. J Cell Biochem 2018; 120:9869-9876. [PMID: 30548300 DOI: 10.1002/jcb.28269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Recently, it has been revealed that estrogen-related reproductive factors are linked with some early gene expression lesions associated with malignancy in clinically healthy breasts. Accordingly, the aim of the current study was to evaluate the association of expression levels of estrogen-related long noncoding RNAs (lncRNAs) upstream Eleanor (u-Eleanor) and HOX antisense intergenic RNA (HOTAIR) with the different patterns of reproductive factors in breast tissue of healthy women. The subjects of this study were 98 cancer-free women who had undergone cosmetic mammoplasty. The expression levels of u-Eleanor and HOTAIR were measured using quantitative real-time polymerase chain reaction. The results of the current study showed that the women without a history of breastfeeding had a high-level expression of u-Eleanor compared with the women with a breastfeeding duration greater than 6 to 24 months (P = 0.03) as well as the women with a breastfeeding duration of more than 24 months (P = 0.005). Furthermore, a higher expression of u-Eleanor was found in the women with a short breastfeeding duration for 1 to 6 months than that in the women with a breastfeeding duration of greater than 24 months (P = 0.02). In the same way, the results of correlation test (r = -0.258; P = 0.036) and multivariate regression model (β = -0.321; P = 0.023) are indicative of a significant relationship of elevated expression of u-Eleanor with decreasing breastfeeding duration in the women. These findings could be important to identify the molecular mechanisms behind the relationship between a lack or short duration of the breastfeeding and the risk of breast cancer, which has previously been reported by epidemiological studies.
Collapse
Affiliation(s)
- Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Zendehbad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Askari
- Department of Orthopedy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Yousefvand
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hosein Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
26
|
Dall GV, Hawthorne S, Seyed-Razavi Y, Vieusseux J, Wu W, Gustafsson JA, Byrne D, Murphy L, Risbridger GP, Britt KL. Estrogen receptor subtypes dictate the proliferative nature of the mammary gland. J Endocrinol 2018; 237:323-336. [PMID: 29636363 DOI: 10.1530/joe-17-0582] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Estrogen induces proliferation of breast epithelial cells and is responsible for breast development at puberty. This tightly regulated control is lost in estrogen-receptor-positive (ER+) breast cancers, which comprise over 70% of all breast cancers. Currently, breast cancer diagnosis and treatment considers only the α isoform of ER; however, there is a second ER, ERβ. Whilst ERα mediates estrogen-driven proliferation of the normal breast in puberty and breast cancers, ERβ has been shown to exert an anti-proliferative effect on the normal breast. It is not known how the expression of each ER (alone or in combination) correlates with the ability of estrogen to induce proliferation in the breast. We assessed the levels of each ER in normal mouse mammary glands subdivided into proliferative and non-proliferative regions. ERα was most abundant in the proliferative regions of younger mice, with ERβ expressed most abundantly in old mice. We correlated this expression profile with function by showing that the ability of estrogen to induce proliferation was reduced in older mice. To show that the ER profile associated with breast cancer risk, we assessed ER expression in parous mice which are known to have a reduced risk of developing ERα breast cancer. ERα expression was significantly decreased yet co-localization analysis revealed ERβ expression increased with parity. Parous mice had less unopposed nuclear ERα expression and increased levels of ERβ. These changes suggest that the nuclear expression of ERs dictates the proliferative nature of the breast and may explain the decreased breast cancer risk with parity.
Collapse
Affiliation(s)
| | - Samuel Hawthorne
- Department of Anatomy and Developmental BiologyMonash University, Melbourne, Australia
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental BiologyMonash University, Melbourne, Australia
| | | | - Wanfu Wu
- Department of Biology and BiochemistryUniversity of Houston, Houston, Texas, USA
| | - Jan-Ake Gustafsson
- Department of Biology and BiochemistryUniversity of Houston, Houston, Texas, USA
| | - David Byrne
- Department of PathologyPeter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Gail P Risbridger
- Peter MacCallum Cancer CentreMelbourne, Australia
- Department of Anatomy and Developmental BiologyMonash University, Melbourne, Australia
| | - Kara L Britt
- Peter MacCallum Cancer CentreMelbourne, Australia
- The Sir Peter MacCallumDepartment of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
27
|
Gabrielson M, Chiesa F, Behmer C, Rönnow K, Czene K, Hall P. Association of reproductive history with breast tissue characteristics and receptor status in the normal breast. Breast Cancer Res Treat 2018; 170:487-497. [PMID: 29603032 PMCID: PMC6022521 DOI: 10.1007/s10549-018-4768-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023]
Abstract
Introduction Reproductive history has been associated with breast cancer risk, but more knowledge of the underlying biological mechanisms is needed. Because of limited data on normal breast tissue from healthy women, we examined associations of reproductive history and established breast cancer risk factors with breast tissue composition and markers of hormone receptors and proliferation in a nested study within the Karolinska Mammography project for risk prediction for breast cancer (Karma). Materials and methods Tissues from 153 women were obtained by ultrasound-guided core needle biopsy as part of the Karma project. Immunohistochemical staining was used to assessed histological composition of epithelial, stromal and adipose tissue, epithelial and stromal oestrogen receptor (ER) and progesterone receptor (PR) status, and Ki-67 proliferation status. An individualised reproductive score including parity, number of pregnancies without birth, number of births, age at first birth, and duration of breastfeeding, was calculated based on self-reported reproductive history at the time of the Karma study entry. All analyses were adjusted for age and BMI. Results Cumulated reproductive score was associated with increased total epithelial content and greater expression of epithelial ER. Parity was associated with greater epithelial area, increased epithelial–stromal ratio, greater epithelial ER expression and a lower extent of stromal proliferation. Increasing numbers of pregnancies and births were associated with a greater epithelial area in the entire study set, which remained significant among postmenopausal women. Increasing numbers of pregnancies and births were also associated with a greater expression of epithelial ER among postmenopausal women. Longer duration of breastfeeding was associated with greater epithelial area and greater expression of epithelial PR both in the entire study set and among postmenopausal women. Breastfeeding was also positively associated with greater epithelial ER expression among postmenopausal women. Prior use of oral contraceptives was associated with lower epithelial–stromal ratio amongst all participants and among pre- and postmenopausal women separately. Conclusion Reproductive risk factors significantly influence the epithelial tissue compartment and expression of hormone receptors in later life. These changes remain after menopause. This study provides deeper insights of the biological mechanisms by which reproductive history influences epithelial area and expression of hormone receptors, and as a consequence the risk of breast cancer. Electronic supplementary material The online version of this article (10.1007/s10549-018-4768-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Stockholm, Sweden.
| | - Flaminia Chiesa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Stockholm, Sweden
| | - Catharina Behmer
- Department of Mammography, Unilabs, Jan Waldenströms gata 22, 205 02, Malmö, Sweden
| | - Katarina Rönnow
- Department of Mammography, Unilabs, Hospital of Helsingborg, 251 87, Helsingborg, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Stockholm, Sweden
- Department of Oncology, South General Hospital, 118 83, Stockholm, Sweden
| |
Collapse
|
28
|
Wang X, Zhang Q, Zhou Z, Liu M, Chen Y, Li J, Xu L, Guo J, Li Q, Yang J, Wang S. Retinoic acid receptor β, a potential therapeutic target in the inhibition of adenovirus replication. Antiviral Res 2018; 152:84-93. [PMID: 29421320 DOI: 10.1016/j.antiviral.2018.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Human adenoviruses (HAdVs) usually cause mild respiratory infections, but they can also lead to fatal outcomes for immunosuppressive patients. Unfortunately, there has been no specific anti-HAdV drug approved for medical use. A better understanding of the nature of virus-host interactions during infection is beneficial to the discovery of potential antiviral targets and new antiviral drugs. In this study, a time-course transcriptome analysis of HAdV-infected human lung epithelial cells (A549 cells) was performed to investigate virus-host interactions, and several key host molecules involved in the HAdV infection process were identified. The RARβ (retinoic acid receptor β) molecule, one of the upstream regulatory factors of differentially expressed genes (DEGs), played important roles in HAdV replication. The results of reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed that RARβ mRNA and protein were downregulated by HAdV infection in the A549 cells. The knockdown of RARβ by RARβ siRNA increased the HAdV production and the overexpression of RARβ decreased the HAdV production. Furthermore, FDA-approved Tazarotene, which is an RAR selective agonist with relatively more selectivity for RARβ, was found to inhibit HAdV replication in vitro. Taken together, our study presents a key host molecule in adenovirus infection, which could be developed as a potential host target to an anti-adenovirus drug. In addition, this study provides evidence for the re-exploitation of an FDA-approved small molecule for therapeutic applications in adenovirus replication.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qiling Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhe Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Manjiao Liu
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Yubao Chen
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Jianbo Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Linlin Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jing Guo
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
29
|
ElShamy WM. The protective effect of longer duration of breastfeeding against pregnancy-associated triple negative breast cancer. Oncotarget 2018; 7:53941-53950. [PMID: 27248476 PMCID: PMC5288234 DOI: 10.18632/oncotarget.9690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Parity associated breast cancer (PABC) often diagnosed within the 2-5 years after a full term pregnancy. PABC is usually present with more advanced, poorly differentiated, high-grade cancers that show shorter time to progression and often of the triple negative breast cancer (TNBC) subtype. Data from around the world show that pregnancy-associated TNBC is independently associated with poor survival, underscoring the impact of the pregnant breast microenvironment on the biology and consequently the prognosis of these tumors. Although it is not yet clear, a link between pregnancy-associated TNBCs and lack or shorter duration of breastfeeding (not pregnancy per se) has been proposed. Here, we present epidemiological and experimental evidence for the protective effect of longer duration of lactation against pregnancy-associated TNBCs, and propose a putative molecular mechanism for this protective effect and its effect in eliminating any potential TNBC precursors from the breast by the end of the natural breast involution.
Collapse
Affiliation(s)
- Wael M ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
30
|
Mammary Gland Cell Culture of Macaca fascicularis as a Reservoir for Stem Cells. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Dall G, Risbridger G, Britt K. Mammary stem cells and parity-induced breast cancer protection- new insights. J Steroid Biochem Mol Biol 2017; 170:54-60. [PMID: 26907964 DOI: 10.1016/j.jsbmb.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
Abstract
Parity (childbearing) significantly decreases a woman's risk of breast cancer and the protective effect is greater if the woman is younger and has more children. The mechanism/s of parity-induced protection are not known. Although several factors are postulated to play a role, we discuss how a reduction in the number of mammary stem cells (MaSCs) may lead to a reduction in breast cancer risk in parous women. Firstly we review the epidemiology linking childbearing to reduced breast cancer risk and discuss how additional births, a young age at first full term birth, and breastfeeding impact the protection. We then detail the mouse and human studies implicating MaSC in parity induced protection and the in-vivo work being performed in mice to directly investigate the effect of parity on MaSC. Finally we discuss the transplant and lineage tracing experiments assessing MaSC activity according to parity and the need to define if MaSC are indeed more carcinogen sensitive than mature mammary epithelial cells. Continuing and future studies attempting to define the parity induced mechanisms will aid in the development of preventative therapies.
Collapse
Affiliation(s)
- Genevieve Dall
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne 3002, Australia; Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd 3800, Australia
| | - Gail Risbridger
- Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd 3800, Australia
| | - Kara Britt
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne 3002, Australia; Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd 3800, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
32
|
Dall GV, Britt KL. Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Front Oncol 2017; 7:110. [PMID: 28603694 PMCID: PMC5445118 DOI: 10.3389/fonc.2017.00110] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
A woman has an increased risk of breast cancer if her lifelong estrogen exposure is increased due to an early menarche, a late menopause, and/or an absence of childbearing. For decades, it was presumed that the number of years of exposure drove the increased risk, however, recent epidemiological data have shown that early life exposure (young menarche) has a more significant effect on cancer risk than late menopause. Thus, rather than the overall exposure it seems that the timing of hormone exposure plays a major role in defining breast cancer risk. In support of this, it is also known that aberrant hormonal exposure prior to puberty can also increase breast cancer risk, yet the elevated estrogen levels during pregnancy decrease breast cancer risk. This suggests that the effects of estrogen on the mammary gland/breast are age-dependent. In this review article, we will discuss the existing epidemiological data linking hormone exposure and estrogen receptor-positive breast cancer risk including menarche, menopause, parity, and aberrant environmental hormone exposure. We will discuss the predominantly rodent generated experimental data that confirm the association with hormone exposure and breast cancer risk, confirming its use as a model system. We will review the work that has been done attempting to define the direct effects of estrogen on the breast, which are beginning to reveal the mechanism of increased cancer risk. We will then conclude with our views on the most pertinent questions to be addressed experimentally in order to explore the relationship between age, estrogen exposure, and breast cancer risk.
Collapse
Affiliation(s)
| | - Kara Louise Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Havas KM, Milchevskaya V, Radic K, Alladin A, Kafkia E, Garcia M, Stolte J, Klaus B, Rotmensz N, Gibson TJ, Burwinkel B, Schneeweiss A, Pruneri G, Patil KR, Sotillo R, Jechlinger M. Metabolic shifts in residual breast cancer drive tumor recurrence. J Clin Invest 2017; 127:2091-2105. [PMID: 28504653 DOI: 10.1172/jci89914] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/16/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor recurrence is the leading cause of breast cancer-related death. Recurrences are largely driven by cancer cells that survive therapeutic intervention. This poorly understood population is referred to as minimal residual disease. Here, using mouse models that faithfully recapitulate human disease together with organoid cultures, we have demonstrated that residual cells acquire a transcriptionally distinct state from normal epithelium and primary tumors. Gene expression changes and functional characterization revealed altered lipid metabolism and elevated ROS as hallmarks of the cells that survive tumor regression. These residual cells exhibited increased oxidative DNA damage, potentiating the acquisition of somatic mutations during hormonal-induced expansion of the mammary cell population. Inhibition of either cellular fatty acid synthesis or fatty acid transport into mitochondria reduced cellular ROS levels and DNA damage, linking these features to lipid metabolism. Direct perturbation of these hallmarks in vivo, either by scavenging ROS or by halting the cyclic mammary cell population expansion, attenuated tumor recurrence. Finally, these observations were mirrored in transcriptomic and histological signatures of residual cancer cells from neoadjuvant-treated breast cancer patients. These results highlight the potential of lipid metabolism and ROS as therapeutic targets for reducing tumor recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Kristina M Havas
- EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Monterotondo, Italy.,Istituto Firc di Oncologia Molecolare (IFOM) the Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | | | - Jens Stolte
- EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Monterotondo, Italy
| | | | - Nicole Rotmensz
- Division of Epidemiology and Biostatistics European Institute of Oncology, Milan, Italy
| | | | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, University Women's Clinic, Heidelberg, Germany
| | - Andreas Schneeweiss
- Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Giancarlo Pruneri
- Department of Pathology, Biobank for Translational Medicine Unit, European Institute of Oncology, Milan and University of Milan, School of Medicine, Milan, Italy
| | | | - Rocio Sotillo
- EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Monterotondo, Italy.,Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin Jechlinger
- EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Monterotondo, Italy.,EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Muenst S, Mechera R, Däster S, Piscuoglio S, Ng CK, Meier-Abt F, Weber WP, Soysal SD. Pregnancy at early age is associated with a reduction of progesterone-responsive cells and epithelial Wnt signaling in human breast tissue. Oncotarget 2017; 8:22353-22360. [PMID: 28423605 PMCID: PMC5410228 DOI: 10.18632/oncotarget.16023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pregnancy at early age is the most significant modifiable factor which consistently decreases lifetime breast cancer risk. However, the underlying mechanisms haven't been conclusively identified. Studies in mice suggest a reduction in progesterone-receptor (PR) sensitive epithelial cells as well as a downregulation of the Wnt signaling pathway as being one of the main mechanisms for the protective effect of early pregnancy. The aim of our study was to validate these findings in humans. METHODS We collected benign breast tissue of 125 women who had been stratified according to age at first pregnancy and the occurrence of subsequent breast cancer, and performed immunohistochemistry for PR, Wnt4 and the Wnt-target Versican. RESULTS The number of PR positive epithelial cells was significantly lower in the group of women with early pregnancy and no subsequent breast cancer compared to the group of nulliparous women with subsequent invasive breast cancer (p = 0.0135). In women with early pregnancy, expression of Versican and Wnt4 was significantly lower compared to nulliparous women (p = 0.0036 and p = 0.0241 respectively), and Versican expression was also significant lower compared to women with late pregnancy (p < 0.0001). DISCUSSION Our results confirm prior observations in mice and suggest a role of downregulation of epithelial Wnt signaling in the protective effect of early pregnancy in humans. This results in a decreased proliferation of stem/progenitor cells; therefore, the Wnt signaling pathway may represent a potential target for breast cancer prevention in humans.
Collapse
Affiliation(s)
- Simone Muenst
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Robert Mechera
- Department of Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Silvio Däster
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Charlotte K.Y. Ng
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Fabienne Meier-Abt
- Institute of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Walter P. Weber
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Savas D. Soysal
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
35
|
Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Koren S, De Silva D, Mertz KD, Kaup D, Varga Z, Voshol H, Vissieres A, Leroy C, Roloff T, Stadler MB, Scheel CH, Miraglia LJ, Orth AP, Bonamy GMC, Reddy VA, Bentires-Alj M. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature 2017; 541:541-545. [PMID: 28068668 DOI: 10.1038/nature20829] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/24/2016] [Indexed: 01/06/2023]
Abstract
Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1-cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.
Collapse
Affiliation(s)
- Adrian Britschgi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Stephan Duss
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Sungeun Kim
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Joana Pinto Couto
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Heike Brinkhaus
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Shany Koren
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Duvini De Silva
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Daniela Kaup
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Zsuzsanna Varga
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, 4058 Basel, Switzerland
| | | | - Cedric Leroy
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Novartis Institutes for Biomedical Research, 4058 Basel, Switzerland
| | - Tim Roloff
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Christina H Scheel
- Institute of Stem Cell Research, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Loren J Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Anthony P Orth
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Ghislain M C Bonamy
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Venkateshwar A Reddy
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
36
|
LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development. Sci Rep 2016; 6:35810. [PMID: 27808166 PMCID: PMC5093903 DOI: 10.1038/srep35810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that β-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland.
Collapse
|
37
|
Katz TA. Potential Mechanisms underlying the Protective Effect of Pregnancy against Breast Cancer: A Focus on the IGF Pathway. Front Oncol 2016; 6:228. [PMID: 27833901 PMCID: PMC5080290 DOI: 10.3389/fonc.2016.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023] Open
Abstract
A first full-term birth at an early age protects women against breast cancer by reducing lifetime risk by up to 50%. The underlying mechanism resulting in this protective effect remains unclear, but many avenues have been investigated, including lobular differentiation, cell fate, and stromal composition. A single pregnancy at an early age protects women for 30-40 years, and this long-term protection is likely regulated by a relatively stable yet still modifiable method, such as epigenetic reprograming. Long-lasting epigenetic modifications have been shown to be induced by pregnancy and to target the IGF pathway. Understanding how an early first full-term pregnancy protects against breast cancer and the role of epigenetic reprograming of the IGF system may aid in developing new preventative strategies for young healthy women in the future.
Collapse
Affiliation(s)
- Tiffany A Katz
- Center for Precision Environmental Health, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
38
|
Sikora MJ, Jacobsen BM, Levine K, Chen J, Davidson NE, Lee AV, Alexander CM, Oesterreich S. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res 2016; 18:92. [PMID: 27650553 PMCID: PMC5028957 DOI: 10.1186/s13058-016-0748-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. METHODS The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. RESULTS ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. CONCLUSIONS WNT4 drives a novel signaling pathway in ILC cells, with a critical role in estrogen-induced growth that may also mediate endocrine resistance. WNT4 signaling may represent a novel target to modulate endocrine response specifically for patients with ILC.
Collapse
Affiliation(s)
- Matthew J Sikora
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Present address: Department of Pathology, University of Colorado - Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin Levine
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jian Chen
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nancy E Davidson
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Liu Y, Tobias DK, Sturgeon KM, Rosner B, Malik V, Cespedes E, Joshi AD, Eliassen AH, Colditz GA. Physical activity from menarche to first pregnancy and risk of breast cancer. Int J Cancer 2016; 139:1223-30. [PMID: 27130486 PMCID: PMC5257171 DOI: 10.1002/ijc.30167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
Breast tissue is particularly susceptible to exposures between menarche and first pregnancy, and a longer interval between these reproductive events is associated with elevated breast cancer risk. Physical activity during this time period may offset breast cancer risk, particularly for those at highest risk with longer menarche-to-first-pregnancy intervals. We used data from 65,576 parous women in the Nurses' Health Study II free of cancer in 1989 (baseline) and recalled their leisure-time physical activity at ages 12-34 in 1997. Current activity was collected at baseline and over follow-up. Relative risks (RRs) were estimated using multivariable Cox proportional hazards regression models. Between 1989 and 2011, 2,069 invasive breast cancer cases were identified. Total recreational activity between menarche and first pregnancy was not significantly associated with the risk of breast cancer. However, physical activity between menarche and first pregnancy was associated with significantly lower breast cancer risk among women in the highest category of a menarche-to first-pregnancy interval (≥20 years; RR for the highest versus the lowest quartile = 0.73, 95% confidence interval = 0.55-0.97; Ptrend = 0.045; Pinteraction = 0.048). This was not observed in women with a shorter interval. Physical activity between menarche and first pregnancy was associated with a lower risk of breast cancer among women with at least 20 years between these reproductive events. This may provide a modifiable factor that women can intervene on to mitigate their breast cancer risk associated with a longer interval.
Collapse
Affiliation(s)
- Ying Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Deirdre K. Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kathleen M. Sturgeon
- Transdisciplinary Research on Energetics and Cancer (TREC) Center, University of Pennsylvania, Philadelphia, PA
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Vasanti Malik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Elizabeth Cespedes
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Amit D. Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - A. Heather Eliassen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Graham A. Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Reproductive behaviors and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev 2016; 49:65-76. [PMID: 27529149 DOI: 10.1016/j.ctrv.2016.07.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Breast cancer is composed of distinct subtypes defined mainly based on the expression of hormone receptors (HR) and HER2. For years, reproductive factors were shown to impact breast cancer risk but it is unclear whether this differs according to tumor subtype. In this meta-analysis we evaluated the association between parity, age at first birth, breastfeeding and the risk of developing breast cancer according to tumor subtype. METHODS PubMed and Embase were searched to identify epidemiological studies that evaluated the impact of parity and/or age at first birth and/or breastfeeding on breast cancer risk with available information on HR and HER2. Tumor subtypes were defined as: luminal (HR-positive, HER2-negative or HER2-positive), HER2 (HR-negative, HER2-positive) and triple-negative (HR-negative, HER2-negative). Summary risk estimates (pooled OR [pOR]) and 95% confidence intervals (CI) were calculated using random effects models. The MOOSE guidelines were applied. RESULTS This meta-analysis evaluated 15 studies, including 21,941 breast cancer patients and 864,177 controls. Parity was associated with a 25% reduced risk of developing luminal subtype (pOR 0.75; 95% CI, 0.70-0.81; p<0.0001). Advanced age at first birth was associated with an increased risk of developing luminal subtype (pOR 1.15; 95% CI, 1.00-1.32; p=0.05). Ever breastfeeding was associated with a reduced risk of developing both luminal (pOR 0.77; 95% CI, 0.66-0.88; p=0.003) and triple-negative (pOR 0.79, 95% CI, 0.66-0.94; p=0.01) subtypes. CONCLUSIONS The reproductive behaviors impact the risk of developing breast cancer but this varies according to subtype.
Collapse
|
41
|
Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, Salomon DS. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 2016; 156:211-26. [PMID: 26968398 PMCID: PMC4819564 DOI: 10.1007/s10549-016-3746-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/β-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/β-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Collapse
Affiliation(s)
- Maria Cristina Rangel
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Daniel Bertolette
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Malgorzata Klauzinska
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Frank Cuttitta
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
42
|
Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. ACTA ACUST UNITED AC 2015; 11:65-77. [PMID: 25581056 DOI: 10.2217/whe.14.62] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcohol consumption by adult women is consistently associated with risk of breast cancer. Several questions regarding alcohol and breast cancer need to be addressed. Menarche to first pregnancy represents a window of time when breast tissue is particularly susceptible to carcinogens. Youth alcohol consumption is common in the USA, largely in the form of binge drinking and heavy drinking. Whether alcohol intake acts early in the process of breast tumorigenesis is unclear. This review aims to focus on the influences of timing and patterns of alcohol consumption and the effect of alcohol on intermediate risk markers. We also review possible mechanisms underlying the alcohol-breast cancer association.
Collapse
Affiliation(s)
- Ying Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | | | | |
Collapse
|
43
|
Pemberton-Ross PJ, Pachkov M, van Nimwegen E. ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data. Methods 2015; 85:62-74. [PMID: 26164700 DOI: 10.1016/j.ymeth.2015.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
Analysis of gene expression data remains one of the most promising avenues toward reconstructing genome-wide gene regulatory networks. However, the large dimensionality of the problem prohibits the fitting of explicit dynamical models of gene regulatory networks, whereas machine learning methods for dimensionality reduction such as clustering or principal component analysis typically fail to provide mechanistic interpretations of the reduced descriptions. To address this, we recently developed a general methodology called motif activity response analysis (MARA) that, by modeling gene expression patterns in terms of the activities of concrete regulators, accomplishes dramatic dimensionality reduction while retaining mechanistic biological interpretations of its predictions (Balwierz, 2014). Here we extend MARA by presenting ARMADA, which models the activity dynamics of regulators across a time course, and infers the causal interactions between the regulators that drive the dynamics of their activities across time. We have implemented ARMADA as part of our ISMARA webserver, ismara.unibas.ch, allowing any researcher to automatically apply it to any gene expression time course. To illustrate the method, we apply ARMADA to a time course of human umbilical vein endothelial cells treated with TNF. Remarkably, ARMADA is able to reproduce the complex observed motif activity dynamics using a relatively small set of interactions between the key regulators in this system. In addition, we show that ARMADA successfully infers many of the key regulatory interactions known to drive this inflammatory response and discuss several novel interactions that ARMADA predicts. In combination with ISMARA, ARMADA provides a powerful approach to generating plausible hypotheses for the key interactions between regulators that control gene expression in any system for which time course measurements are available.
Collapse
Affiliation(s)
- Peter J Pemberton-Ross
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mikhail Pachkov
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
44
|
PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 2015; 525:114-8. [PMID: 26266975 DOI: 10.1038/nature14669] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 06/16/2015] [Indexed: 12/14/2022]
Abstract
The adult mouse mammary epithelium contains self-sustained cell lineages that form the inner luminal and outer basal cell layers, with stem and progenitor cells contributing to its proliferative and regenerative potential. A key issue in breast cancer biology is the effect of genomic lesions in specific mammary cell lineages on tumour heterogeneity and progression. The impact of transforming events on fate conversion in cancer cells of origin and thus their contribution to tumour heterogeneity remains largely elusive. Using in situ genetic lineage tracing and limiting dilution transplantation, we have unravelled the potential of PIK3CA(H1047R), one of the most frequent mutations occurring in human breast cancer, to induce multipotency during tumorigenesis in the mammary gland. Here we show that expression of PIK3CA(H1047R) in lineage-committed basal Lgr5-positive and luminal keratin-8-positive cells of the adult mouse mammary gland evokes cell dedifferentiation into a multipotent stem-like state, suggesting this to be a mechanism involved in the formation of heterogeneous, multi-lineage mammary tumours. Moreover, we show that the tumour cell of origin influences the frequency of malignant mammary tumours. Our results define a key effect of PIK3CA(H1047R) on mammary cell fate in the pre-neoplastic mammary gland and show that the cell of origin of PIK3CA(H1047R) tumours dictates their malignancy, thus revealing a mechanism underlying tumour heterogeneity and aggressiveness.
Collapse
|
45
|
Validated prediction of pro-invasive growth factors using a transcriptome-wide invasion signature derived from a complex 3D invasion assay. Sci Rep 2015; 5:12673. [PMID: 26243655 PMCID: PMC4525140 DOI: 10.1038/srep12673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/03/2015] [Indexed: 12/28/2022] Open
Abstract
The invasion of activated fibroblasts represents a key pathomechanism in fibrotic diseases, carcinogenesis and metastasis. Invading fibroblasts contribute to fibrotic extracellular matrix (ECM) formation and the initiation, progression, or resistance of cancer. To construct transcriptome-wide signatures of fibroblast invasion, we used a multiplex phenotypic 3D invasion assay using lung fibroblasts. Microarray-based gene expression profiles of invading and non-invading fibroblasts demonstrated that 1,049 genes were differentially regulated (>1.5-fold). Unbiased pathway analysis (Ingenuity) identified significant enrichment for the functional clusters 'invasion of cells', 'idiopathic pulmonary fibrosis', and 'metastasis'. Matrix metalloprotease 13 (MMP13), transforming growth factor (TGF)-β1, Caveolin (Cav) 1, Phosphatase and Tensin Homolog (Pten), and secreted frizzled-related protein (Sfrp) 1 were among the highest regulated genes, confirmed by qRT-PCR and Western Blotting. We next performed in silico analysis (Ingenuity Pathway Analysis) to predict mediators that induced fibroblast invasion. Of these, TGFβ1, epidermal growth factor (EGF), fibroblast growth factor (FGF) 2, and platelet-derived growth factor (PDGF)-BB were tested in our 3D invasion assay and found to significantly induce invasion, thus validating the transcriptome profile. Accordingly, our transcriptomic invasion signature describes the invading fibroblast phenotype in unprecedented detail and provides a tool for future functional studies of cell invasion and therapeutic modulation thereof using complex phenotypic assays.
Collapse
|
46
|
Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia 2015; 20:9-25. [PMID: 26188694 PMCID: PMC4596764 DOI: 10.1007/s10911-015-9337-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
The mammary gland undergoes dramatic post-natal growth beginning at puberty, followed by full development occurring during pregnancy and lactation. Following lactation, the alveoli undergo apoptosis, and the mammary gland reverses back to resemble the nonparous gland. This process of growth and regression occurs for multiple pregnancies, suggesting the presence of a hierarchy of stem and progenitor cells that are able to regenerate specialized populations of mammary epithelial cells. Expansion of epithelial cell populations in the mammary gland is regulated by ovarian steroids, in particular estrogen acting through its receptor estrogen receptor alpha (ERα) and progesterone signaling through progesterone receptor (PR). A diverse number of stem and progenitor cells have been identified based on expression of cell surface markers and functional assays. Here we review the current understanding of how estrogen and progesterone act together and separately to regulate stem and progenitor cells within the human and mouse mammary tissues. Better understanding of the hierarchal organization of epithelial cell populations in the mammary gland and how the hormonal milieu affects its regulation may provide important insights into the origins of different subtypes of breast cancer.
Collapse
Affiliation(s)
- Lisa M Arendt
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Charlotte Kuperwasser
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA.
- Developmental, Molecular, and Chemical Biology Department, Tufts University School of Medicine, 800 Washington St, Box 5609, Boston, MA, 02111, USA.
| |
Collapse
|
47
|
Hilton HN, Clarke CL. Impact of progesterone on stem/progenitor cells in the human breast. J Mammary Gland Biol Neoplasia 2015; 20:27-37. [PMID: 26254191 DOI: 10.1007/s10911-015-9339-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022] Open
Abstract
The epithelium of the human breast is made up of a branching ductal-lobular system, which is lined by a single layer of luminal cells surrounded by a contractile basal cell layer. The co-ordinated development of stem/progenitor cells into these luminal and basal cells is fundamentally important for breast morphogenesis. The ovarian steroid hormone, progesterone, is critical in driving proliferation and normal breast development, yet progesterone analogues have also been shown to be a major driver of breast cancer risk. Studies in recent years have revealed an important role for progesterone in stimulating the mammary stem cell compartment in the mouse mammary gland, and growing evidence supports the notion that progesterone also stimulates progenitor cells in both the normal human breast and in breast cancer cells. As changes in cell type composition are one of the hallmark features of breast cancer progression, these observations have critical implications in discerning the mechanisms of how progesterone increases breast cancer risk. This review summarises recent work regarding the impact of progesterone action on the stem/progenitor cell compartment of the human breast.
Collapse
Affiliation(s)
- Heidi N Hilton
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney Medical School, Westmead, NSW, Australia.
| | - Christine L Clarke
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney Medical School, Westmead, NSW, Australia
| |
Collapse
|
48
|
Elias S, McGuire JR, Yu H, Humbert S. Huntingtin Is Required for Epithelial Polarity through RAB11A-Mediated Apical Trafficking of PAR3-aPKC. PLoS Biol 2015; 13:e1002142. [PMID: 25942483 PMCID: PMC4420272 DOI: 10.1371/journal.pbio.1002142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
The establishment of apical-basolateral polarity is important for both normal development and disease, for example, during tumorigenesis and metastasis. During this process, polarity complexes are targeted to the apical surface by a RAB11A-dependent mechanism. Huntingtin (HTT), the protein that is mutated in Huntington disease, acts as a scaffold for molecular motors and promotes microtubule-based dynamics. Here, we investigated the role of HTT in apical polarity during the morphogenesis of the mouse mammary epithelium. We found that the depletion of HTT from luminal cells in vivo alters mouse ductal morphogenesis and lumen formation. HTT is required for the apical localization of PAR3-aPKC during epithelial morphogenesis in virgin, pregnant, and lactating mice. We show that HTT forms a complex with PAR3, aPKC, and RAB11A and ensures the microtubule-dependent apical vesicular translocation of PAR3-aPKC through RAB11A. We thus propose that HTT regulates polarized vesicular transport, lumen formation and mammary epithelial morphogenesis. Huntingtin—the protein that is aberrant in Huntington Disease—regulates apical vesicular trafficking to help establish apical-basolateral polarity during the development of mammary epithelia. In the adult mammary gland, tissue architecture is maintained through the regulation of the polarity of epithelial cells, which organize around a central cavity called the lumen. The mammary epithelium comprises a basal layer, which contains myoepithelial contractile cells and so-called mammary stem cells, and a luminal layer of cells organized around the lumen. The establishment of apical-basolateral polarity in luminal cells allows the separation of the apical and basolateral membranes and the maturation of cell–cell junctions. The protein complex composed of PAR3, PAR6, and aPKC regulates apical polarity in several tissues, including the mammary epithelium, and it is known that the loss of PAR3 and aPKC interferes with mammary gland development and promotes mammary tumor metastasis. RAB11A, a protein that regulates intracellular trafficking, coordinates apical translocation of PAR3-PAR6-aPKC. Huntingtin (HTT), the protein mutated in Huntington disease, modulates RAB11A activity and also regulates the microtubule-based vesicular trafficking in neurons. Using MCF10A, MDCK 2-D and 3-D cell cultures, and mouse models, we demonstrate here that HTT coordinates the apical vesicular trafficking of PAR3-PAR6-aPKC through RAB11A. We show that loss of HTT in luminal cells alters apical polarity, tissue architecture and the maturation of luminal cells during pregnancy and lactation in the mouse. Together, these findings uncover HTT-mediated vesicular trafficking as a new pathway in the establishment of epithelial apical polarity, with potential implications for health and disease.
Collapse
Affiliation(s)
- Salah Elias
- Institut Curie, Orsay, France
- CNRS UMR 3306, Orsay, France
- INSERM U1005, Orsay, France
| | - John Russel McGuire
- Institut Curie, Orsay, France
- CNRS UMR 3306, Orsay, France
- INSERM U1005, Orsay, France
| | - Hua Yu
- Institut Curie, Orsay, France
- CNRS UMR 3306, Orsay, France
- INSERM U1005, Orsay, France
| | - Sandrine Humbert
- Institut Curie, Orsay, France
- CNRS UMR 3306, Orsay, France
- INSERM U1005, Orsay, France
- Grenoble Institut des Neurosciences, University Grenoble Alpes, Grenoble, France
- INSERM U836, Grenoble, France
- * E-mail:
| |
Collapse
|
49
|
Privette Vinnedge LM, Benight NM, Wagh PK, Pease NA, Nashu MA, Serrano-Lopez J, Adams AK, Cancelas JA, Waltz SE, Wells SI. The DEK oncogene promotes cellular proliferation through paracrine Wnt signaling in Ron receptor-positive breast cancers. Oncogene 2015; 34:2325-36. [PMID: 24954505 PMCID: PMC4275425 DOI: 10.1038/onc.2014.173] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/18/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
Disease progression and recurrence are major barriers to survival for breast cancer patients. Understanding the etiology of recurrent or metastatic breast cancer and underlying mechanisms is critical for the development of new treatments and improved survival. Here, we report that two commonly overexpressed breast cancer oncogenes, Ron (Recepteur d'Origine Nantaise) and DEK, cooperate to promote advanced disease through multipronged effects on β-catenin signaling. The Ron receptor is commonly activated in breast cancers, and Ron overexpression in human disease stimulates β-catenin nuclear translocation and is an independent predictor of metastatic dissemination. Dek is a chromatin-associated oncogene whose expression has been linked to cancer through multiple mechanisms, including β-catenin activity. We demonstrate here that Dek is a downstream target of Ron receptor activation in murine and human models. The absence of Dek in the MMTV-Ron mouse model led to a significant delay in tumor development, characterized by decreased cell proliferation, diminished metastasis and fewer cells expressing mammary cancer stem cell markers. Dek complementation of cell lines established from this model was sufficient to promote cellular growth and invasion. Mechanistically, Dek expression stimulated the production and secretion of Wnt ligands to sustain an autocrine/paracrine canonical β-catenin signaling loop. Finally, we show that Dek overexpression promotes tumorigenic phenotypes in immortalized human mammary epithelial MCF10A cells and, in the context of Ron receptor activation, correlates with disease recurrence and metastasis in patients. Overall, our studies demonstrate that DEK overexpression, due in part to Ron receptor activation, drives breast cancer progression through the induction of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH
| | - Purnima K. Wagh
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nicholas A. Pease
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Madison A. Nashu
- Department of Cancer Biology, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH
| | - Juana Serrano-Lopez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- IMIBIC/UCO/University Hospital Reina Sofia, Cordoba, Spain
| | - Allie K. Adams
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH
- Department of Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
50
|
Soady KJ, Kendrick H, Gao Q, Tutt A, Zvelebil M, Ordonez LD, Quist J, Tan DWM, Isacke CM, Grigoriadis A, Smalley MJ. Mouse mammary stem cells express prognostic markers for triple-negative breast cancer. Breast Cancer Res 2015; 17:31. [PMID: 25849541 PMCID: PMC4381533 DOI: 10.1186/s13058-015-0539-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/18/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours in which chemotherapy, the current mainstay of systemic treatment, is often initially beneficial but with a high risk of relapse and metastasis. There is currently no means of predicting which TNBC will relapse. We tested the hypothesis that the biological properties of normal stem cells are re-activated in tumour metastasis and that, therefore, the activation of normal mammary stem cell-associated gene sets in primary TNBC would be highly prognostic for relapse and metastasis. METHODS Mammary basal stem and myoepithelial cells were isolated by flow cytometry and tested in low-dose transplant assays. Gene expression microarrays were used to establish expression profiles of the stem and myoepithelial populations; these were compared to each other and to our previously established mammary epithelial gene expression profiles. Stem cell genes were classified by Gene Ontology (GO) analysis and the expression of a subset analysed in the stem cell population at single cell resolution. Activation of stem cell genes was interrogated across different breast cancer cohorts and within specific subtypes and tested for clinical prognostic power. RESULTS A set of 323 genes was identified that was expressed significantly more highly in the purified basal stem cells compared to all other cells of the mammary epithelium. A total of 109 out of 323 genes had been associated with stem cell features in at least one other study in addition to our own, providing further support for their involvement in the biology of this cell type. GO analysis demonstrated an enrichment of these genes for an association with cell migration, cytoskeletal regulation and tissue morphogenesis, consistent with a role in invasion and metastasis. Single cell resolution analysis showed that individual cells co-expressed both epithelial- and mesenchymal-associated genes/proteins. Most strikingly, we demonstrated that strong activity of this stem cell gene set in TNBCs identified those tumours most likely to rapidly progress to metastasis. CONCLUSIONS Our findings support the hypothesis that the biological properties of normal stem cells are drivers of metastasis and that these properties can be used to stratify patients with a highly heterogeneous disease such as TNBC.
Collapse
Affiliation(s)
- Kelly J Soady
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS UK
| | - Howard Kendrick
- />European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Qiong Gao
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Andrew Tutt
- />Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- />Department of Research Oncology, King’s Health Partners AHSC, Life Sciences and Medicine, King’s College London, Guy’s Campus, London, SE1 1UL UK
| | - Marketa Zvelebil
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Liliana D Ordonez
- />European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Jelmar Quist
- />Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- />Department of Research Oncology, King’s Health Partners AHSC, Life Sciences and Medicine, King’s College London, Guy’s Campus, London, SE1 1UL UK
| | - David Wei-Min Tan
- />Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648 Singapore
| | - Clare M Isacke
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Anita Grigoriadis
- />Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- />Department of Research Oncology, King’s Health Partners AHSC, Life Sciences and Medicine, King’s College London, Guy’s Campus, London, SE1 1UL UK
| | - Matthew J Smalley
- />European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|