1
|
Faldoni FLC, Bizinelli D, Souza CP, Santana IVV, Marques MMC, Rainho CA, Marchi FA, Rogatto SR. DNA methylation profile of inflammatory breast cancer and its impact on prognosis and outcome. Clin Epigenetics 2024; 16:89. [PMID: 38971778 PMCID: PMC11227707 DOI: 10.1186/s13148-024-01695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare disease characterized by rapid progression, early metastasis, and a high mortality rate. METHODS Genome-wide DNA methylation analysis (EPIC BeadChip platform, Illumina) and somatic gene variants (105 cancer-related genes) were performed in 24 IBCs selected from a cohort of 140 cases. RESULTS We identified 46,908 DMPs (differentially methylated positions) (66% hypomethylated); CpG islands were predominantly hypermethylated (39.9%). Unsupervised clustering analysis revealed three clusters of DMPs characterized by an enrichment of specific gene mutations and hormone receptor status. The comparison among DNA methylation findings and external datasets (TCGA-BRCA stages III-IV) resulted in 385 shared DMPs mapped in 333 genes (264 hypermethylated). 151 DMPs were associated with 110 genes previously detected as differentially expressed in IBC (GSE45581), and 68 DMPs were negatively correlated with gene expression. We also identified 4369 DMRs (differentially methylated regions) mapped on known genes (2392 hypomethylated). BCAT1, CXCL12, and TBX15 loci were selected and evaluated by bisulfite pyrosequencing in 31 IBC samples. BCAT1 and TBX15 had higher methylation levels in triple-negative compared to non-triple-negative, while CXCL12 had lower methylation levels in triple-negative than non-triple-negative IBC cases. TBX15 methylation level was associated with obesity. CONCLUSIONS Our findings revealed a heterogeneous DNA methylation profile with potentially functional DMPs and DMRs. The DNA methylation data provided valuable insights for prognostic stratification and therapy selection to improve patient outcomes.
Collapse
Affiliation(s)
- Flavia Lima Costa Faldoni
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
- Department of Gynecology and Obstetrics, Medical School, São Paulo State University (UNESP), Botucatu, SP, 18618-687, Brazil
| | - Daniela Bizinelli
- Interunit Graduate Program in Bioinformatics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | | | | | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo, SP, 05402-000, Brazil
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
2
|
Lim B, Seth S, Yam C, Huo L, Fujii T, Lee J, Bassett R, Nasser S, Ravenberg L, White J, Clayborn A, Guerra G, Litton JK, Damodaran S, Layman R, Valero V, Tripathy D, Lewis M, Dobrolecki LE, Lei J, Candelaria R, Arun B, Rauch G, Zhao L, Zhang J, Ding Q, Symmans WF, Chang JT, Thompson AM, Moulder SL, Ueno NT. Phase 2 study of neoadjuvant enzalutamide and paclitaxel for luminal androgen receptor-enriched TNBC: Trial results and insights into "ARness". Cell Rep Med 2024; 5:101595. [PMID: 38838676 PMCID: PMC11228653 DOI: 10.1016/j.xcrm.2024.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Luminal androgen receptor (LAR)-enriched triple-negative breast cancer (TNBC) is a distinct subtype. The efficacy of AR inhibitors and the relevant biomarkers in neoadjuvant therapy (NAT) are yet to be determined. We tested the combination of the AR inhibitor enzalutamide (120 mg daily by mouth) and paclitaxel (80 mg/m2 weekly intravenously) (ZT) for 12 weeks as NAT for LAR-enriched TNBC. Eligibility criteria included a percentage of cells expressing nuclear AR by immunohistochemistry (iAR) of at least 10% and a reduction in sonographic volume of less than 70% after four cycles of doxorubicin and cyclophosphamide. Twenty-four patients were enrolled. Ten achieved a pathologic complete response or residual cancer burden-I. ZT was safe, with no unexpected side effects. An iAR of at least 70% had a positive predictive value of 0.92 and a negative predictive value of 0.97 in predicting LAR-enriched TNBC according to RNA-based assays. Our data support future trials of AR blockade in early-stage LAR-enriched TNBC.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sahil Seth
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Breast Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takeo Fujii
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Cold Spring Harbor Laboratory-Northwell Health Cancer Institute, Riverhead, NY, USA
| | - Jangsoon Lee
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Nasser
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alyson Clayborn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gil Guerra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachel Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Lewis
- Lester Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Lei
- Lester Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Rosalind Candelaria
- Department of Breast Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane Rauch
- Department of Breast Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingqing Ding
- Department of Breast Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Fraser Symmans
- Department of Breast Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alastair M Thompson
- Department of Surgical Oncology, Baylor College of Medicine, Houston, TX, USA; Lester Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
3
|
Zhang M, Zhou K, Wang Z, Liu T, Stevens LE, Lynce F, Chen WY, Peng S, Xie Y, Zhai D, Chen Q, Shi Y, Shi H, Yuan Z, Li X, Xu J, Cai Z, Guo J, Shao N, Lin Y. A Subpopulation of Luminal Progenitors Secretes Pleiotrophin to Promote Angiogenesis and Metastasis in Inflammatory Breast Cancer. Cancer Res 2024; 84:1781-1798. [PMID: 38507720 PMCID: PMC11148543 DOI: 10.1158/0008-5472.can-23-2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in patients with IBC, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for cross-talk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC. SIGNIFICANCE Nonmalignant luminal progenitor cells expressing pleiotrophin promote angiogenesis by activating NRP1 and induce a prometastatic tumor microenvironment in inflammatory breast cancer, providing potential therapeutic targets for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wendy Y Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Iwase T, Cohen EN, Gao H, Alexander A, Kai M, Chiv V, Wang X, Krishnamurthy S, Liu D, Shen Y, Kida K, Reuben A, Layman R, Ramirez D, Tripathy D, Moulder SL, Yam C, Valero V, Lim B, Reuben JM, Ueno NT. Maintenance Pembrolizumab Therapy in Patients with Metastatic HER2-negative Breast Cancer with Prior Response to Chemotherapy. Clin Cancer Res 2024; 30:2424-2432. [PMID: 38629963 PMCID: PMC11147689 DOI: 10.1158/1078-0432.ccr-23-2947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Accumulating toxicities hinder indefinite chemotherapy for many patients with metastatic/recurrent HER2-negative breast cancer. We conducted a phase II trial of pembrolizumab monotherapy following induction chemotherapy to determine the efficacy of maintenance immunotherapy in patients with metastatic HER2-negative inflammatory breast cancer (IBC) and non-IBC triple-negative breast cancer (TNBC) and a biomarker study. PATIENTS AND METHODS Patients with a complete response, partial response, or stable disease (SD) after at least three cycles of chemotherapy for HER2-negative breast cancer received pembrolizumab, regardless of programmed death-ligand 1 expression. Pembrolizumab (200 mg) was administered every 3 weeks until disease progression, intolerable toxicity, or 2 years of pembrolizumab exposure. The endpoints included the 4-month disease control rate (DCR), progression-free survival (PFS), overall survival, and response biomarkers in the blood. RESULTS Of 43 treated patients, 11 had metastatic IBC and 32 non-IBC TNBC. The 4-month DCR was 58.1% [95% confidence interval (CI), 43.4-72.9]. For all patients, the median PFS was 4.8 months (95% CI, 3.0-7.1 months). The toxicity profile was similar to the previous pembrolizumab monotherapy study. Patients with high T-cell clonality at baseline had a longer PFS with pembrolizumab treatment than did those with low T-cell clonality (10.4 vs. 3.6 months, P = 0.04). Patients who achieved SD also demonstrated a significant increase in T-cell clonality during therapy compared with those who did not achieve SD (20% vs. 5.9% mean increase, respectively; P = 0.04). CONCLUSIONS Pembrolizumab monotherapy achieved durable treatment responses. Patients with a high baseline T-cell clonality had prolonged disease control with pembrolizumab.
Collapse
MESH Headings
- Humans
- Female
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Middle Aged
- Receptor, ErbB-2/metabolism
- Aged
- Adult
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/administration & dosage
- Biomarkers, Tumor
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/mortality
- Neoplasm Metastasis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Maintenance Chemotherapy
Collapse
Affiliation(s)
- Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| | - Evan N. Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Gao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Alexander
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Megumi Kai
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Chiv
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kumiko Kida
- Department of Breast Surgery, St. Luke’s International Hospital, Tokyo, Japan
| | - Alexandre Reuben
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, Texas
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| |
Collapse
|
5
|
Hazra A, O’Hara A, Polyak K, Nakhlis F, Harrison BT, Giordano A, Overmoyer B, Lynce F. Copy Number Variation in Inflammatory Breast Cancer. Cells 2023; 12:cells12071086. [PMID: 37048158 PMCID: PMC10093603 DOI: 10.3390/cells12071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Identification of a unique genomic biomarker in de novo inflammatory breast cancer (IBC) may provide an insight into the biology of this aggressive disease. The goal of our study was to elucidate biomarkers associated with IBC. We examined breast biopsies collected from Dana–Farber Cancer Institute patients with IBC prior to initiating preoperative systemic treatment (30 samples were examined, of which 14 were eligible). Patients without available biopsies (n = 1), with insufficient tumor epithelial cells (n = 10), or insufficient DNA yield (n = 5) were excluded from the analysis. Molecular subtype and tumor grade were abstracted from a medical records’ review. Ten IBC tumors were estrogen-receptor-positive (ER+) and human epidermal growth factor receptor 2 (HER2)-negative (n = 10 out of 14). Sufficient RNA and DNA were simultaneously extracted from 14 biopsy specimens using the Qiagen AllPrep Kit. RNA was amplified using the Sensation kit and profiled using the Affymetrix Human Transcriptome Array 2.0. DNA was profiled for genome-wide copy number variation (CNV) using the Affymetrix OncoScan Array and analyzed using the Nexus Chromosome Analysis Suite. Among the 14 eligible samples, we first confirmed biological concordance and quality control metrics using replicates and gene expression data. Second, we examined CNVs and gene expression change by IBC subtype. We identified significant CNVs in IBC patients after adjusting for multiple comparisons. Next, to assess whether the CNVs were unique to IBC, we compared the IBC CNV data to fresh-frozen non-IBC CNV data from The Cancer Genome Atlas (n = 388). On chromosome 7p11.2, we identified significant CN gain located at position 58,019,983-58,025,423 in 8 ER+ IBC samples compared to 338 non-IBC ER+ samples (region length: 5440 bp gain and 69,039 bp, False Discovery Rate (FDR) p-value = 3.12 × 10−10) and at position 57,950,944–58,025,423 in 3 TN-IBC samples compared to 50 non-IBC TN samples (74,479 base pair, gain, FDR p-value = 4.27 × 10−5; near the EGFR gene). We also observed significant CN loss on chromosome 21, located at position 9,648,315–9,764,385 (p-value = 4.27 × 10−5). Secondarily, differential gene expression in IBC patients with 7p11.2 CN gain compared to SUM149 were explored after FDR correction for multiple testing (p-value = 0.0016), but the results should be interpreted with caution due to the small sample size. Finally, the data presented are hypothesis-generating. Validation of CNVs that contribute to the unique presentation and biological features associated with IBC in larger datasets may lead to the optimization of treatment strategies.
Collapse
Affiliation(s)
- Aditi Hazra
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Kornelia Polyak
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Faina Nakhlis
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Surgery, Division of Breast Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth T. Harrison
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio Giordano
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Overmoyer
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Filipa Lynce
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Morrow RJ, Allam AH, Yeo B, Deb S, Murone C, Lim E, Johnstone CN, Ernst M. Paracrine IL-6 Signaling Confers Proliferation between Heterogeneous Inflammatory Breast Cancer Sub-Clones. Cancers (Basel) 2022; 14:cancers14092292. [PMID: 35565421 PMCID: PMC9105876 DOI: 10.3390/cancers14092292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary This study provides novel mechanistic insights into the capacity of the inflammatory cytokine IL-6 and its associated STAT3-dependent signaling pathway to stimulate proliferation in trans between individual sub-clones in a model of heterogeneity in inflammatory breast cancer. The clinical relevance of this discovery is provided by our observation that proliferation of the IL-6 responsive subclone is sensitive to inhibition with the clinically approved anti-IL-6 receptor humanized monoclonal antibody Tocilizumab. These findings therefore provide a rationale for potentially repurposing Tocilizumab for the treatment of a subset of inflammatory breast cancer patients. Abstract Inflammatory breast cancer (IBC) describes a highly aggressive form of breast cancer of diverse molecular subtypes and clonal heterogeneity across individual tumors. Accordingly, IBC is recognized by its clinical signs of inflammation, associated with expression of interleukin (IL)-6 and other inflammatory cytokines. Here, we investigate whether sub-clonal differences between expression of components of the IL-6 signaling cascade reveal a novel role for IL-6 to mediate a proliferative response in trans using two prototypical IBC cell lines. We find that SUM149 and SUM 190 cells faithfully replicate differential expression observed in a subset of human IBC specimens between IL-6, the activated form of the key downstream transcription factor STAT3, and of the HER2 receptor. Surprisingly, the high level of IL-6 produced by SUM149 cells activates STAT3 and stimulates proliferation in SUM190 cells, but not in SUM149 cells with low IL-6R expression. Importantly, SUM149 conditioned medium or co-culture with SUM149 cells induced growth of SUM190 cells, and this effect was abrogated by the IL-6R neutralizing antibody Tocilizumab. The results suggest a novel function for inter-clonal IL-6 signaling in IBC, whereby IL-6 promotes in trans proliferation of IL-6R and HER2-expressing responsive sub-clones and, therefore, may provide a vulnerability that can be exploited therapeutically by repurposing of a clinically approved antibody.
Collapse
Affiliation(s)
- Riley J. Morrow
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Amr H. Allam
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Belinda Yeo
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Siddhartha Deb
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Carmel Murone
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Clinical Medicine, University of New South Wales, Randwick, NSW 2052, Australia
| | - Cameron N. Johnstone
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
- Correspondence: ; Tel.: +61-3-9496-9775
| |
Collapse
|
7
|
Rogic A, Pant I, Grumolato L, Fernandez-Rodriguez R, Edwards A, Das S, Sun A, Yao S, Qiao R, Jaffer S, Sachidanandam R, Akturk G, Karlic R, Skobe M, Aaronson SA. High endogenous CCL2 expression promotes the aggressive phenotype of human inflammatory breast cancer. Nat Commun 2021; 12:6889. [PMID: 34824220 PMCID: PMC8617270 DOI: 10.1038/s41467-021-27108-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory Breast Cancer (IBC) is a highly aggressive malignancy with distinct clinical and histopathological features whose molecular basis is unresolved. Here we describe a human IBC cell line, A3250, that recapitulates key IBC features in a mouse xenograft model, including skin erythema, diffuse tumor growth, dermal lymphatic invasion, and extensive metastases. A3250 cells express very high levels of the CCL2 chemokine and induce tumors enriched in macrophages. CCL2 knockdown leads to a striking reduction in macrophage densities, tumor proliferation, skin erythema, and metastasis. These results establish IBC-derived CCL2 as a key factor driving macrophage expansion, and indirectly tumor growth, with transcriptomic analysis demonstrating the activation of multiple inflammatory pathways. Finally, primary human IBCs exhibit macrophage infiltration and an enriched macrophage RNA signature. Thus, this human IBC model provides insight into the distinctive biology of IBC, and highlights potential therapeutic approaches to this deadly disease. Inflammatory breast cancer (IBC) is an aggressive form of breast cancer with a poor prognosis. Here the authors report the characterization of a human IBC cell line recapitulating the clinical and histopathological features of the human disease, and implicating its high level of CCL2 in macrophage infiltration and tumor progression.
Collapse
Affiliation(s)
- Anita Rogic
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ila Pant
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Grumolato
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
| | - Ruben Fernandez-Rodriguez
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Edwards
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Suvendu Das
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute of Advanced Research, Department of Biological Sciences and Biotechnology, Koba Institutional, Area, Gandhinagar 382 426, Gujarat, India
| | - Aaron Sun
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rui Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shabnam Jaffer
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Guray Akturk
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosa Karlic
- Bioinformatics group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mihaela Skobe
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
8
|
Gong Y, Nagarathinam R, Arisi MF, Gerratana L, Winn JS, Slifker M, Pei J, Cai KQ, Hasse Z, Obeid E, Noriega J, Sebastiano C, Ross E, Alpaugh K, Cristofanilli M, Fernandez SV. Genetic Variants and Tumor Immune Microenvironment: Clues for Targeted Therapies in Inflammatory Breast Cancer (IBC). Int J Mol Sci 2021; 22:ijms22168924. [PMID: 34445631 PMCID: PMC8396191 DOI: 10.3390/ijms22168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
To better understand the etiology of inflammatory breast cancer (IBC) and identify potential therapies, we studied genomic alterations in IBC patients. Targeted, next-generation sequencing (NGS) was performed on cell-free DNA (cfDNA) (n = 33) and paired DNA from tumor tissues (n = 29) from 32 IBC patients. We confirmed complementarity between cfDNA and tumor tissue genetic profiles. We found a high incidence of germline variants in IBC patients that could be associated with an increased risk of developing the disease. Furthermore, 31% of IBC patients showed deficiencies in the homologous recombination repair (HRR) pathway (BRCA1, BRCA2, PALB2, RAD51C, ATM, BARD1) making them sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. We also characterized the tumor-infiltrating lymphocytes (TILs) in tumor tissue biopsies by studying several markers (CD4, CD8, FoxP3, CD20, PD-1, and PD-L1) through immunohistochemistry (IHC) staining. In 7 of 24 (29%) patients, tumor biopsies were positive for PD-L1 and PD-1 expression on TILs, making them sensitive to PD-1/PD-L1 blocking therapies. Our results provide a rationale for considering PARP inhibitors and PD-1/PDL1 blocking immunotherapy in qualifying IBC patients.
Collapse
Affiliation(s)
- Yulan Gong
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
- Correspondence: (Y.G.); (R.N.); (S.V.F.); Tel.: +1-215-728-4767 (S.V.F.)
| | - Rajeswari Nagarathinam
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
- Correspondence: (Y.G.); (R.N.); (S.V.F.); Tel.: +1-215-728-4767 (S.V.F.)
| | - Maria F. Arisi
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.F.A.); (C.S.)
| | - Lorenzo Gerratana
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.G.); (M.C.)
| | - Jennifer S. Winn
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Michael Slifker
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Jianming Pei
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Kathy Q. Cai
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Zachary Hasse
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Elias Obeid
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Julio Noriega
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Christopher Sebastiano
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.F.A.); (C.S.)
| | - Eric Ross
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Katherine Alpaugh
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Massimo Cristofanilli
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.G.); (M.C.)
| | - Sandra V. Fernandez
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
- Correspondence: (Y.G.); (R.N.); (S.V.F.); Tel.: +1-215-728-4767 (S.V.F.)
| |
Collapse
|
9
|
Santiago-Sánchez GS, Noriega-Rivera R, Hernández-O’Farrill E, Valiyeva F, Quiñones-Diaz B, Villodre ES, Debeb BG, Rosado-Albacarys A, Vivas-Mejía PE. Targeting Lipocalin-2 in Inflammatory Breast Cancer Cells with Small Interference RNA and Small Molecule Inhibitors. Int J Mol Sci 2021; 22:8581. [PMID: 34445288 PMCID: PMC8395282 DOI: 10.3390/ijms22168581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory Breast Cancer (IBC) is an aggressive form of invasive breast cancer, highly metastatic, representing 2-4% of all breast cancer cases in the United States. Despite its rare nature, IBC is responsible for 7-10% of all breast cancer deaths, with a 5-year survival rate of 40%. Thus, targeted and effective therapies against IBC are needed. Here, we proposed Lipocalin-2 (LCN2)-a secreted glycoprotein aberrantly abundant in different cancers-as a plausible target for IBC. In immunoblotting, we observed higher LCN2 protein levels in IBC cells than non-IBC cells, where the LCN2 levels were almost undetectable. We assessed the biological effects of targeting LCN2 in IBC cells with small interference RNAs (siRNAs) and small molecule inhibitors. siRNA-mediated LCN2 silencing in IBC cells significantly reduced cell proliferation, viability, migration, and invasion. Furthermore, LCN2 silencing promoted apoptosis and arrested the cell cycle progression in the G0/G1 to S phase transition. We used in silico analysis with a library of 25,000 compounds to identify potential LCN2 inhibitors, and four out of sixteen selected compounds significantly decreased cell proliferation, cell viability, and the AKT phosphorylation levels in SUM149 cells. Moreover, ectopically expressing LCN2 MCF7 cells, treated with two potential LCN2 inhibitors (ZINC00784494 and ZINC00640089) showed a significant decrease in cell proliferation. Our findings suggest LCN2 as a promising target for IBC treatment using siRNA and small molecule inhibitors.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico; (G.S.S.-S.); (R.N.-R.); (B.Q.-D.)
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Ricardo Noriega-Rivera
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico; (G.S.S.-S.); (R.N.-R.); (B.Q.-D.)
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Eliud Hernández-O’Farrill
- Department of Pharmaceutical Sciences, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Fatma Valiyeva
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Blanca Quiñones-Diaz
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico; (G.S.S.-S.); (R.N.-R.); (B.Q.-D.)
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Emilly S. Villodre
- Department of Breast Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (B.G.D.)
| | - Bisrat G. Debeb
- Department of Breast Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (B.G.D.)
| | - Andrea Rosado-Albacarys
- Department of General Sciences, Rio Piedras Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico; (G.S.S.-S.); (R.N.-R.); (B.Q.-D.)
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico;
| |
Collapse
|
10
|
Garmpis N, Damaskos C, Garmpi A, Nikolettos K, Dimitroulis D, Diamantis E, Farmaki P, Patsouras A, Voutyritsa E, Syllaios A, Zografos CG, Antoniou EA, Nikolettos N, Kostakis A, Kontzoglou K, Schizas D, Nonni A. Molecular Classification and Future Therapeutic Challenges of Triple-negative Breast Cancer. In Vivo 2021; 34:1715-1727. [PMID: 32606140 DOI: 10.21873/invivo.11965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an extremely diverse group of breast tumors, with aggressive clinical behavior, higher rates of distant recurrence and worse overall survival compared to other types of breast cancers. The genetic, transcriptional histological and clinical heterogeneity of this disease has been an obstacle in the progression of targeted therapeutic approaches, as a ubiquitous TNBC marker has not yet been discerned. In terms of that, current studies focus on the classification of TNBC tumors in subgroups with similar characteristics in order to develop a treatment specialized for each group of patients. To date, a series of gene expression profiles analysis in order to identify the different molecular subtypes have been used. Complementary DNA microarrays, PAM50 assays, DNA and RNA sequencing as well as immunohistochemical analysis are some of the methods utilized to classify TNBC tumors. In 2012, the Cancer Genome Atlas (TCGA) Research Network conducted a major analysis of breast cancers using six different platforms, the genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays, in order to assort the tumors in homogenous subgroups. Since then, an increasing number of breast cancer data sets are being examined in an attempt to distinguish the classification with biological interpretation and clinical implementation. In this review, the progress in molecular subtyping of TNBC is discussed, providing a brief insight in novel TNBC biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Nikolettos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | - Paraskevi Farmaki
- First Department of Pediatrics, Agia Sofia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, Piraeus, Greece
| | - Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos G Zografos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios A Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Nikolettos
- Obstetric - Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Bertucci F, Boudin L, Finetti P, Van Berckelaer C, Van Dam P, Dirix L, Viens P, Gonçalves A, Ueno NT, Van Laere S, Birnbaum D, Mamessier E. Immune landscape of inflammatory breast cancer suggests vulnerability to immune checkpoint inhibitors. Oncoimmunology 2021; 10:1929724. [PMID: 34104544 PMCID: PMC8158040 DOI: 10.1080/2162402x.2021.1929724] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Anti-PD1/PDL1 immune checkpoint inhibitors (ICIs) showed promising results in breast cancer, and exploration of additional actionable immune checkpoints is ongoing. Inflammatory breast cancer (IBC) is an aggressive form of disease, the immune tumor microenvironment (TME) of which is poorly known. We aimed at providing the first comprehensive immune portrait of IBCs. Methods. From the gene expression profiles of 137 IBC and 252 non-IBC clinical samples, we measured the fractions of 22 immune cell types, expression of signatures associated with tertiary lymphoid structures (TLS) and with the response to ICIs (T cell-inflamed signature: TIS) and of 18 genes coding for major actionable immune checkpoints. The IBC/non-IBC comparison was adjusted upon the clinicopathological variables. Results. The immune profiles of IBCs were heterogeneous. CIBERSORT analysis showed profiles rich in macrophages, CD8+ and CD4 + T-cells, with remarkable similarity with melanoma TME. The comparison with non-IBCs showed significant enrichment in M1 macrophages, γδ T-cells, and memory B-cells. IBCs showed higher expression of TLS and TIS signatures. The TIS signature displayed values in IBCs close to those observed in other cancers sensitive to ICIs. Two-thirds of actionable immune genes (HAVCR2/TIM3, CD27, CD70, CTLA4, ICOS, IDO1, LAG3, PDCD1, TNFRSF9, PVRIG, CD274/PDL1, and TIGIT) were overexpressed in IBCs as compared to normal breast and two-thirds were overexpressed in IBCs versus non-IBCs, with very frequent co-overexpression. For most of them, the overexpression was associated with better pathological response to chemotherapy. Conclusion. Our results suggest the potential higher vulnerability of IBC to ICIs. Clinical trials.
Collapse
Affiliation(s)
- François Bertucci
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Laurys Boudin
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals & CORE, MIPRO, University of Antwerp, Antwerp, Belgium.,Department of Oncological Research, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Patrice Viens
- Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Anthony Gonçalves
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Naoto T Ueno
- Breast Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium.,Translational Cancer Research Unit, GZA Hospitals & CORE, MIPRO, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Li X, Kumar S, Harmanci A, Li S, Kitchen RR, Zhang Y, Wali VB, Reddy SM, Woodward WA, Reuben JM, Rozowsky J, Hatzis C, Ueno NT, Krishnamurthy S, Pusztai L, Gerstein M. Whole-genome sequencing of phenotypically distinct inflammatory breast cancers reveals similar genomic alterations to non-inflammatory breast cancers. Genome Med 2021; 13:70. [PMID: 33902690 PMCID: PMC8077918 DOI: 10.1186/s13073-021-00879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) has a highly invasive and metastatic phenotype. However, little is known about its genetic drivers. To address this, we report the largest cohort of whole-genome sequencing (WGS) of IBC cases. METHODS We performed WGS of 20 IBC samples and paired normal blood DNA to identify genomic alterations. For comparison, we used 23 matched non-IBC samples from the Cancer Genome Atlas Program (TCGA). We also validated our findings using WGS data from the International Cancer Genome Consortium (ICGC) and the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We examined a wide selection of genomic features to search for differences between IBC and conventional breast cancer. These include (i) somatic and germline single-nucleotide variants (SNVs), in both coding and non-coding regions; (ii) the mutational signature and the clonal architecture derived from these SNVs; (iii) copy number and structural variants (CNVs and SVs); and (iv) non-human sequence in the tumors (i.e., exogenous sequences of bacterial origin). RESULTS Overall, IBC has similar genomic characteristics to non-IBC, including specific alterations, overall mutational load and signature, and tumor heterogeneity. In particular, we observed similar mutation frequencies between IBC and non-IBC, for each gene and most cancer-related pathways. Moreover, we found no exogenous sequences of infectious agents specific to IBC samples. Even though we could not find any strongly statistically distinguishing genomic features between the two groups, we did find some suggestive differences in IBC: (i) The MAST2 gene was more frequently mutated (20% IBC vs. 0% non-IBC). (ii) The TGF β pathway was more frequently disrupted by germline SNVs (50% vs. 13%). (iii) Different copy number profiles were observed in several genomic regions harboring cancer genes. (iv) Complex SVs were more frequent. (v) The clonal architecture was simpler, suggesting more homogenous tumor-evolutionary lineages. CONCLUSIONS Whole-genome sequencing of IBC manifests a similar genomic architecture to non-IBC. We found no unique genomic alterations shared in just IBCs; however, subtle genomic differences were observed including germline alterations in TGFβ pathway genes and somatic mutations in the MAST2 kinase that could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaotong Li
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Yale Cancer Center, Breast Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, Rm133, New Haven, CT 06511 USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
| | - Arif Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center Houston, Houston, TX USA
| | - Shantao Li
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
| | - Robert R. Kitchen
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Yan Zhang
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH USA
- The Ohio State University Comprehensive Cancer Center (OSUCCC – James), Columbus, OH USA
| | - Vikram B. Wali
- Yale Cancer Center, Breast Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, Rm133, New Haven, CT 06511 USA
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wendy A. Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - James M. Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Joel Rozowsky
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
| | - Christos Hatzis
- Yale Cancer Center, Breast Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, Rm133, New Haven, CT 06511 USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lajos Pusztai
- Yale Cancer Center, Breast Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, Rm133, New Haven, CT 06511 USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Computer Science, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
- Department of Statistics and Data Science, Yale University, 266 Whitney Ave., Bass 432A, New Haven, CT 06520 USA
| |
Collapse
|
13
|
Ehmsen S, Ditzel HJ. Signaling pathways essential for triple-negative breast cancer stem-like cells. Stem Cells 2020; 39:133-143. [PMID: 33211379 DOI: 10.1002/stem.3301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
Since the discovery of breast cancer stem cells (CSCs), a significant effort has been made to identify and characterize these cells. It is a generally believe that CSCs play an important role in cancer initiation, therapy resistance, and progression of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor prognosis. Thus, therapies targeting these cells would be a valuable addition to standard treatments that primarily target more differentiated, rapidly dividing TNBC cells. Although several cell surface and intracellular proteins have been described as biomarkers for CSCs, none of these are specific to this population of cells. Recent research is moving toward cellular signaling pathways as targets and biomarkers for CSCs. The WNT pathway, the nuclear factor-kappa B (NF-κB) pathway, and the cholesterol biosynthesis pathway have recently been identified to play a key role in proliferation, survival, and differentiation of CSCs, including those of breast cancer. In this review, we assess recent findings related to these three pathways in breast CSC, with particular focus on TNBC CSCs, and discuss how targeting these pathways, in combination with current standard of care, might prove effective and improve the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Research Unit of Oncology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Research Unit of Oncology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
14
|
Faldoni FLC, Villacis RAR, Canto LM, Fonseca-Alves CE, Cury SS, Larsen SJ, Aagaard MM, Souza CP, Scapulatempo-Neto C, Osório CABT, Baumbach J, Marchi FA, Rogatto SR. Inflammatory Breast Cancer: Clinical Implications of Genomic Alterations and Mutational Profiling. Cancers (Basel) 2020; 12:cancers12102816. [PMID: 33007869 PMCID: PMC7650681 DOI: 10.3390/cancers12102816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Inflammatory breast cancer (IBC) is an aggressive disease with high mortality rates. Nowadays, there is no targeted treatment for this tumor type. Based on this context, we investigated the molecular profile of this disease by using well-established methodologies (high-resolution microarray platform, targeted next-generation sequencing, and immunohistochemistry) that have proven potential to unveil cancer biomarkers. We found alterations related to IBC aggressiveness and metastasis (gains of MDM4, losses of CHL1, and high homologous recombination deficiency scores), and worse overall survival (variants in HR and mismatch repair genes). We also compared the mutational profiling of our cases with literature data, which includes both non-IBC and IBC cases, validating our findings. Overall, we describe genetic alterations with the potential to be used as prognostic or predictive biomarkers and ultimately improve IBC patients’ care. Abstract Inflammatory breast cancer (IBC) is a rare and aggressive type of breast cancer whose molecular basis is poorly understood. We performed a comprehensive molecular analysis of 24 IBC biopsies naïve of treatment, using a high-resolution microarray platform and targeted next-generation sequencing (105 cancer-related genes). The genes more frequently affected by gains were MYC (75%) and MDM4 (71%), while frequent losses encompassed TP53 (71%) and RB1 (58%). Increased MYC and MDM4 protein expression levels were detected in 18 cases. These genes have been related to IBC aggressiveness, and MDM4 is a potential therapeutic target in IBC. Functional enrichment analysis revealed genes associated with inflammatory regulation and immune response. High homologous recombination (HR) deficiency scores were detected in triple-negative and metastatic IBC cases. A high telomeric allelic imbalance score was found in patients having worse overall survival (OS). The mutational profiling was compared with non-IBC (TCGA, n = 250) and IBC (n = 118) from four datasets, validating our findings. Higher frequency of TP53 and BRCA2 variants were detected compared to non-IBC, while PIKC3A showed similar frequency. Variants in mismatch repair and HR genes were associated with worse OS. Our study provided a framework for improved diagnosis and therapeutic alternatives for this aggressive tumor type.
Collapse
Affiliation(s)
- Flávia L. C. Faldoni
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Rolando A. R. Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, Brazil;
| | - Luisa M. Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu 18618-681, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-689, Brazil;
| | - Simon J. Larsen
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
| | - Mads M. Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Cristiano P. Souza
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14784-390, Brazil;
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos SP 14784-400, Brazil;
- Diagnósticos da América (DASA), Barueri 01525-001, Brazil
| | | | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Fabio A. Marchi
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
| | - Silvia R. Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
- Institute of Regional Health Research, University of Southern Denmark, 500 Odense, Denmark
- Correspondence:
| |
Collapse
|
15
|
Liubomirski Y, Ben-Baruch A. Notch-Inflammation Networks in Regulation of Breast Cancer Progression. Cells 2020; 9:cells9071576. [PMID: 32605277 PMCID: PMC7407628 DOI: 10.3390/cells9071576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Members of the Notch family and chronic inflammation were each separately demonstrated to have prominent malignancy-supporting roles in breast cancer. Recent investigations indicate that bi-directional interactions that exist between these two pathways promote the malignancy phenotype of breast tumor cells and of their tumor microenvironment. In this review article, we demonstrate the importance of Notch-inflammation interplays in malignancy by describing three key networks that act in breast cancer and their impacts on functions that contribute to disease progression: (1) Cross-talks of the Notch pathway with myeloid cells that are important players in cancer-related inflammation, focusing mainly on macrophages; (2) Cross-talks of the Notch pathway with pro-inflammatory factors, exemplified mainly by Notch interactions with interleukin 6 and its downstream pathways (STAT3); (3) Cross-talks of the Notch pathway with typical inflammatory transcription factors, primarily NF-κB. These three networks enhance tumor-promoting functions in different breast tumor subtypes and act in reciprocal manners, whereby Notch family members activate inflammatory elements and vice versa. These characteristics illustrate the fundamental roles played by Notch-inflammation interactions in elevating breast cancer progression and propose that joint targeting of both pathways together may provide more effective and less toxic treatment approaches in this disease.
Collapse
|
16
|
Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci Rep 2020; 10:8537. [PMID: 32444778 PMCID: PMC7244517 DOI: 10.1038/s41598-020-65250-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by metastasis, drug resistance and high rates of recurrence. With a lack or targeted therapies, TNBC is challenging to treat and carries a poor prognosis. Patients with TNBC tumors expressing high levels of ERK2 have a poorer prognosis than those with low ERK2-expressing tumors. The MAPK pathway is often found to be highly activated in TNBC, however the precise functions of the ERK isoforms (ERK1 and ERK2) in cancer progression have not been well defined. We hypothesized that ERK2, but not ERK1, promotes the cancer stem cell (CSC) phenotype and metastasis in TNBC. Stable knockdown clones of the ERK1 and ERK2 isoforms were generated in SUM149 and BT549 TNBC cells using shRNA lentiviral vectors. ERK2 knockdown significantly inhibited anchorage-independent colony formation and mammosphere formation, indicating compromised self-renewal capacity. This effect correlated with a reduction in migration and invasion. SCID-beige mice injected via the tail vein with ERK clones were employed to determine metastatic potential. SUM149 shERK2 cells had a significantly lower lung metastatic burden than control mice or mice injected with SUM149 shERK1 cells. The Affymetrix HGU133plus2 microarray platform was employed to identify gene expression changes in ERK isoform knockdown clones. Comparison of gene expression levels between SUM149 cells with ERK2 or ERK1 knockdown revealed differential and in some cases opposite effects on mRNA expression levels. Those changes associated with ERK2 knockdown predominantly altered regulation of CSCs and metastasis. Our findings indicate that ERK2 promotes metastasis and the CSC phenotype in TNBC.
Collapse
|
17
|
Bertucci F, Rypens C, Finetti P, Guille A, Adélaïde J, Monneur A, Carbuccia N, Garnier S, Dirix P, Gonçalves A, Vermeulen P, Debeb BG, Wang X, Dirix L, Ueno NT, Viens P, Cristofanilli M, Chaffanet M, Birnbaum D, Van Laere S. NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non-inflammatory breast cancers. Mol Oncol 2020; 14:504-519. [PMID: 31854063 PMCID: PMC7053236 DOI: 10.1002/1878-0261.12621] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most pro‐metastatic form of breast cancer. Better understanding of its pathophysiology and identification of actionable genetic alterations (AGAs) are crucial to improve systemic treatment. We aimed to define the DNA profiles of IBC vs noninflammatory breast cancer (non‐IBC) clinical samples in terms of copy number alterations (CNAs), mutations, and AGAs. We applied targeted next‐generation sequencing (tNGS) and array‐comparative genomic hybridization (aCGH) to 57 IBC and 50 non‐IBC samples and pooled these data with four public datasets profiled using NGS and aCGH, leading to a total of 101 IBC and 2351 non‐IBC untreated primary tumors. The respective percentages of each molecular subtype [hormone receptor‐positive (HR+)/HER2−, HER2+, and triple‐negative] were 68%, 15%, and 17% in non‐IBC vs 25%, 35%, and 40% in IBC. The comparisons were adjusted for both the molecular subtypes and the American Joint Committee on Cancer (AJCC) stage. The 10 most frequently altered genes in IBCs were TP53 (63%), HER2/ERBB2 (30%), MYC (27%), PIK3CA (21%), BRCA2 (14%), CCND1 (13%), GATA3 (13%), NOTCH1 (12%), FGFR1 (11%), and ARID1A (10%). The tumor mutational burden was higher in IBC than in non‐IBC. We identified 96 genes with an alteration frequency (p < 5% and q < 20%) different between IBC and non‐IBC, independently from the molecular subtypes and AJCC stage; 95 were more frequently altered in IBC, including TP53, genes involved in the DNA repair (BRCA2) and NOTCH pathways, and one (PIK3CA) was more frequently altered in non‐IBC. Ninety‐seven percent of IBCs displayed at least one AGA. This percentage was higher than in non‐IBC (87%), notably for drugs targeting DNA repair, NOTCH signaling, and CDK4/6, whose pathways were more frequently altered (DNA repair) or activated (NOTCH and CDK4/6) in IBC than in non‐IBC. The genomic landscape of IBC is different from that of non‐IBC. Enriched AGAs in IBC may explain its aggressiveness and provide clinically relevant targets.
Collapse
Affiliation(s)
- François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Rypens
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - José Adélaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Audrey Monneur
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Piet Dirix
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Anthony Gonçalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Bisrat G Debeb
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Dirix
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Naoto T Ueno
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Massimo Cristofanilli
- Division of Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Steven Van Laere
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| |
Collapse
|
18
|
Badr N, Berditchevski F, Shaaban A. The Immune Microenvironment in Breast Carcinoma: Predictive and Prognostic Role in the Neoadjuvant Setting. Pathobiology 2019; 87:61-74. [DOI: 10.1159/000504055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022] Open
|
19
|
Funakoshi Y, Wang Y, Semba T, Masuda H, Hout D, Ueno NT, Wang X. Comparison of molecular profile in triple-negative inflammatory and non-inflammatory breast cancer not of mesenchymal stem-like subtype. PLoS One 2019; 14:e0222336. [PMID: 31532791 PMCID: PMC6750603 DOI: 10.1371/journal.pone.0222336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive form of breast cancer. The triple-negative subtype of IBC (TN-IBC) is particularly aggressive. Identification of molecular differences between TN-IBC and TN-non-IBC may help clarify the unique clinical behaviors of TN-IBC. However, our previous study comparing gene expression between TN-IBC and TN-non-IBC did not identify any TN-IBC-specific molecular signature. Lehmann et al recently reported that the mesenchymal stem-like (MSL) TNBC subtype consisted of infiltrating tumor-associated stromal cells but not cancer cells. Therefore, we compared the gene expression profiles between TN-IBC and TN-non-IBC patient samples not of the MSL subtype. METHODS We classified 88 TNBC samples from the World IBC Consortium into subtypes according to the Vanderbilt classification and Insight TNBCtype, removed samples of MSL and unstable subtype, and compared gene expression profiles between the remaining TN-IBC and TN-non-IBC samples. RESULTS In the Vanderbilt analysis, we identified 75 genes significantly differentially expressed between TN-IBC and TN-non-IBC at an FDR of 0.2. In the Insight TNBCtype analysis, we identified 81 genes significantly differentially expressed between TN-IBC and TN-non-IBC at an FDR of 0.4. In both analyses, the top canonical pathway was "Fc Receptor-mediated Phagocytosis in Macrophages and Monocytes", and the top 10 differentially regulated genes included PADI3 and MCTP1, which were up-regulated, and CDC42EP3, SSR1, RSBN1, and ZC3H13, which were downregulated. CONCLUSIONS Our data suggest that the activity of macrophages might be enhanced in TN-IBC compared with TN-non-IBC. Further clinical and preclinical studies are needed to determine the cross-talk between macrophages and IBC cells.
Collapse
Affiliation(s)
- Yohei Funakoshi
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ying Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Takashi Semba
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hiroko Masuda
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Hout
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (NTU); (XW)
| | - Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (NTU); (XW)
| |
Collapse
|
20
|
Singh J, Asad S, Zhang Y, Nock W, Adams E, Damicis A, Ramaswamy B, Williams N, Parsons HA, Adalsteinsson VA, Winer EP, Lin NU, Partridge AH, Overmoyer B, Stover DG. Aggressive Subsets of Metastatic Triple Negative Breast Cancer. Clin Breast Cancer 2019; 20:e20-e26. [PMID: 31631016 DOI: 10.1016/j.clbc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/22/2019] [Accepted: 06/22/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Relative to other metastatic breast cancer subtypes, metastatic triple-negative breast cancer (mTNBC) has a shorter duration of response to therapy and worse overall survival. Among patients with mTNBC, it is hypothesized that inflammatory breast cancer (IBC) and young women have particularly aggressive phenotypes. We investigated clinical and cell-free DNA (cfDNA) characteristics of inflammatory-mTNBC and young-mTNBC. PATIENTS AND METHODS We evaluated 158 patients with mTNBC who were stratified into 3 groups: (1) IBC; (2) patients aged 45 years or younger at primary diagnosis without IBC (non-IBC young); and (3) patients over age 45 at diagnosis without IBC. We evaluated clinicopathologic characteristics, sites of metastasis, survival outcomes, and the fraction of DNA in circulation derived from tumor (TFx). RESULTS Analysis of metastatic sites revealed that young patients without IBC had the most frequent lung metastases (P = .002). cfDNA analyses of first sample showed that TFx was highest in the non-IBC young group but not elevated in the IBC group (analysis of variance P = .056 for first TFx). Individually, median overall survival from metastatic diagnosis for the IBC group was 15.2 months; for the non-IBC young group, 21.2 months, and for the non-IBC over 45 group, 31.2 months. Patients with IBC and young patients without IBC had worse prognosis relative to patients over 45 without IBC (log-rank P = .023). CONCLUSIONS Among patients with mTNBC in this single-institution cohort, patients with IBC and young patients without IBC had significantly worse overall survival compared with patients over 45 without IBC. Young patients without IBC had significantly higher cfDNA TFx, whereas patients with IBC did not have elevated TFx despite a poor prognosis. These findings demonstrate that further analyses of mTNBC subsets are warranted.
Collapse
Affiliation(s)
- Jasneet Singh
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH
| | - Sarah Asad
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yiqing Zhang
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - William Nock
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Elizabeth Adams
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Adrienne Damicis
- College of Public Health, Division of Biostatistics, Ohio State University, Columbus, OH
| | - Bhuvaneswari Ramaswamy
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH; Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Nicole Williams
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH; Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Heather A Parsons
- Department of Medical Oncology, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA
| | | | - Eric P Winer
- Department of Medical Oncology, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA
| | - Nancy U Lin
- Department of Medical Oncology, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA
| | - Ann H Partridge
- Department of Medical Oncology, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA
| | - Beth Overmoyer
- Department of Medical Oncology, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA
| | - Daniel G Stover
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH; Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH.
| |
Collapse
|
21
|
Provance OK, Lewis-Wambi J. Deciphering the role of interferon alpha signaling and microenvironment crosstalk in inflammatory breast cancer. Breast Cancer Res 2019; 21:59. [PMID: 31060575 PMCID: PMC6501286 DOI: 10.1186/s13058-019-1140-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory breast cancer (IBC) is the most rare and aggressive subtype of breast cancer characterized by clusters of tumor cells invading lymph vessels, high rates of metastasis, and resistance to systemic chemotherapy. While significant progress has been made in understanding IBC, survival among IBC patients is still only one half that among patients with non-IBC. A major limitation to the development of more specific and effective treatments for IBC is a lack of identifiable molecular alterations that are specific to IBC. Emerging evidence suggests that the aggressive nature of IBC is not specific to IBC cells but instead driven by the interplay between autonomous signaling and context-dependent cytokine networks from the surrounding tumor microenvironment. Recently, the type I interferon, specifically the interferon alpha signature, has been identified as a pathway upregulated in IBC but few studies have addressed its role. Activation of the interferon alpha signaling pathway has been shown to contribute to apoptosis and cellular senescence but is also attributed to increased migration and drug resistance depending on the interferon-stimulated genes transcribed. The mechanisms promoting the increase in interferon alpha expression and the role interferon alpha plays in IBC remain speculative. Current hypotheses suggest that immune and stromal cells in the local tumor microenvironment contribute to the interferon alpha signaling cascade within the tumor cell and that this activation may further alter the immune and stromal cells within the microenvironment. This review serves as an overview of the role of interferon alpha signaling in IBC. Ideally, future experiments should investigate the mechanistic interplay of interferons in IBC to develop more efficacious treatment strategies for IBC patients.
Collapse
Affiliation(s)
- Olivia K Provance
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Wahl Hall East 1031, Kansas City, KS, 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Wahl Hall East 1031, Kansas City, KS, 66160, USA. .,The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
22
|
Fujii T, Mason J, Chen A, Kuhn P, Woodward WA, Tripathy D, Newton PK, Ueno NT. Prediction of Bone Metastasis in Inflammatory Breast Cancer Using a Markov Chain Model. Oncologist 2019; 24:1322-1330. [PMID: 30952823 DOI: 10.1634/theoncologist.2018-0713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare yet aggressive variant of breast cancer with a high recurrence rate. We hypothesized that patterns of metastasis differ between IBC and non-IBC. We focused on the patterns of bone metastasis throughout disease progression to determine statistical differences that can lead to clinically relevant outcomes. Our primary outcome of this study is to quantify and describe this difference with a view to applying the findings to clinically relevant outcomes for patients. SUBJECTS, MATERIALS, AND METHODS We retrospectively collected data of patients with nonmetastatic IBC (n = 299) and non-IBC (n = 3,436). Probabilities of future site-specific metastases were calculated. Spread patterns were visualized to quantify the most probable metastatic pathways of progression and to categorize spread pattern based on their propensity to subsequent dissemination of cancer. RESULTS In patients with IBC, the probabilities of developing bone metastasis after chest wall, lung, or liver metastasis as the first site of progression were high: 28%, 21%, and 21%, respectively. For patients with non-IBC, the probability of developing bone metastasis was fairly consistent regardless of initial metastasis site. CONCLUSION Metastatic patterns of spread differ between patients with IBC and non-IBC. Selection of patients with IBC with known liver, chest wall, and/or lung metastasis would create a population in whom to investigate effective methods for preventing future bone metastasis. IMPLICATIONS FOR PRACTICE This study demonstrated that the patterns of metastasis leading to and following bone metastasis differ significantly between patients with inflammatory breast cancer (IBC) and those with non-IBC. Patients with IBC had a progression pattern that tended toward the development of bone metastasis if they had previously developed metastases in the liver, chest wall, and lung, rather than in other sites. Selection of patients with IBC with known liver, chest wall, and/or lung metastasis would create a population in whom to investigate effective methods for preventing future bone metastasis.
Collapse
Affiliation(s)
- Takeo Fujii
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeremy Mason
- Departments of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Angela Chen
- Departments of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Peter Kuhn
- Departments of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
- Departments of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul K Newton
- Mathematics, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
- Departments of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. JOURNAL OF RADIATION RESEARCH 2019; 60:150-157. [PMID: 30247662 PMCID: PMC6373667 DOI: 10.1093/jrr/rry077] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/21/2018] [Indexed: 05/27/2023]
Abstract
Recently, the concept of radiomics has emerged from radiation oncology. It is a novel approach for solving the issues of precision medicine and how it can be performed, based on multimodality medical images that are non-invasive, fast and low in cost. Radiomics is the comprehensive analysis of massive numbers of medical images in order to extract a large number of phenotypic features (radiomic biomarkers) reflecting cancer traits, and it explores the associations between the features and patients' prognoses in order to improve decision-making in precision medicine. Individual patients can be stratified into subtypes based on radiomic biomarkers that contain information about cancer traits that determine the patient's prognosis. Machine-learning algorithms of AI are boosting the powers of radiomics for prediction of prognoses or factors associated with treatment strategies, such as survival time, recurrence, adverse events, and subtypes. Therefore, radiomic approaches, in combination with AI, may potentially enable practical use of precision medicine in radiation therapy by predicting outcomes and toxicity for individual patients.
Collapse
Affiliation(s)
- Hidetaka Arimura
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Mazen Soufi
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, Japan
| | - Hidemi Kamezawa
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22, Misaki-machi, Omuta, Fukuoka, Japan
| | - Kenta Ninomiya
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masahiro Yamada
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
24
|
Harano K, Wang Y, Lim B, Seitz RS, Morris SW, Bailey DB, Hout DR, Skelton RL, Ring BZ, Masuda H, Rao AUK, Laere SV, Bertucci F, Woodward WA, Reuben JM, Krishnamurthy S, Ueno NT. Rates of immune cell infiltration in patients with triple-negative breast cancer by molecular subtype. PLoS One 2018; 13:e0204513. [PMID: 30312311 PMCID: PMC6193579 DOI: 10.1371/journal.pone.0204513] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
In patients with triple-negative breast cancer (TNBC), tumor-infiltrating lymphocytes (TILs) are associated with improved survival. Lehmann et al. identified 4 molecular subtypes of TNBC [basal-like (BL) 1, BL2, mesenchymal (M), and luminal androgen receptor (LAR)], and an immunomodulatory (IM) gene expression signature indicates the presence of TILs and modifies these subtypes. The association between TNBC subtype and TILs is not known. Also, the association between inflammatory breast cancer (IBC) and the presence of TILs is not known. Therefore, we studied the IM subtype distribution among different TNBC subtypes. We retrospectively analyzed patients with TNBC from the World IBC Consortium dataset. The molecular subtype and the IM signature [positive (IM+) or negative (IM-)] were analyzed. Fisher’s exact test was used to analyze the distribution of positivity for the IM signature according to the TNBC molecular subtype and IBC status. There were 88 patients with TNBC in the dataset, and among them 39 patients (44%) had IBC and 49 (56%) had non-IBC. The frequency of IM+ cases differed by TNBC subtype (p = 0.001). The frequency of IM+ cases by subtype was as follows: BL1, 48% (14/29); BL2, 30% (3/10); LAR, 18% (3/17); and M, 0% (0/21) (in 11 patients, the subtype could not be determined). The frequency of IM+ cases did not differ between patients with IBC and non-IBC (23% and 33%, respectively; p = 0.35). In conclusion, the IM signature representing the underlying molecular correlate of TILs in the tumor may differ by TNBC subtype but not by IBC status.
Collapse
Affiliation(s)
- Kenichi Harano
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pulmonology Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bora Lim
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert S. Seitz
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - Stephan W. Morris
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - Daniel B. Bailey
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - David R. Hout
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - Rachel L. Skelton
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
| | - Brian Z. Ring
- Insight Genetics, Inc., Nashville, Tennessee, United States of America
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Hiroko Masuda
- Department of Breast Surgical Oncology, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Arvind U. K. Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Steven Van Laere
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Francois Bertucci
- Predictive Oncology team, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Wendy A. Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James M. Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (SK); (NTU)
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (SK); (NTU)
| |
Collapse
|
25
|
Lim B, Woodward WA, Wang X, Reuben JM, Ueno NT. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer 2018; 18:485-499. [PMID: 29703913 DOI: 10.1038/s41568-018-0010-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive disease that accounts for ~2-4% of all breast cancers. However, despite its low incidence rate, IBC is responsible for 7-10% of breast cancer-related mortality in Western countries. Thus, the discovery of robust biological targets and the development of more effective therapeutics in IBC are crucial. Despite major international efforts to understand IBC biology, genomic studies have not led to the discovery of distinct biological mechanisms in IBC that can be translated into novel therapeutic strategies. In this Review, we discuss these molecular profiling efforts and highlight other important aspects of IBC biology. We present the intrinsic characteristics of IBC, including stemness, metastatic potential and hormone receptor positivity; the extrinsic features of the IBC tumour microenvironment (TME), including various constituent cell types; and lastly, the communication between these intrinsic and extrinsic components. We summarize the latest perspectives on the key biological features of IBC, with particular emphasis on the TME as an important contributor to the aggressive nature of IBC. On the basis of the current understanding of IBC, we hope to develop the next generation of translational studies, which will lead to much-needed survival improvements in patients with this deadly disease.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Slaoui M, Zoure AA, Mouh FZ, Bensouda Y, El Mzibri M, Bakri Y, Amrani M. Outcome of inflammatory breast cancer in Moroccan patients: clinical, molecular and pathological characteristics of 219 cases from the National Oncology Institute (INO). BMC Cancer 2018; 18:713. [PMID: 29976157 PMCID: PMC6034251 DOI: 10.1186/s12885-018-4634-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/25/2018] [Indexed: 01/04/2023] Open
Abstract
Background Usually misdiagnosed, Inflammatory Breast Cancer (IBC) is the most aggressive form of non-metastatic breast cancer. This orphan disease is more frequent in North Africa. Despite intensive treatment, the survival rate remains very low. Methods We have retrospectively studied all breast cancer cases diagnosed at the National Oncology Institute (INO), Rabat between 2005 and 2010. We have collected 219 cases of women with metastatic and non-metastatic IBC. Data have been obtained from patients’ personal medical files over a follow-up period of 5 years. We have described IBC’s clinicopathological features and analyzed its clinical outcome using SPSS software. HR (hazard Ratio) was calculated using Cox regression analysis. Results The frequency of IBC cases is 4.05%. The majority of our patients (65.3%) were under 50 years old. The most prevalent molecular subtype was Luminal A (38.7%) followed by Luminal B HER2+ (27.9%) and Triple negative (21.6%). During the follow-up period, 72 patients (32.9%) had recurrence and 40 patients (18.3%) died. The 3-year OS (Overall Survival) and EFS (Event Free Survival) of non-metastatic patients were 70.4 and 46.5% respectively, while in the metastatic disease, the 3-year OS was only 41.9%. In non-metastatic women, we observed a higher rate of EFS associated to Selective estrogen receptor modulation treatment (p = 0.01), and a lower rate EFS in triple negative breast cancer patients (p = 0.02). In univariate analysis, we found that EFS rate is lower in patients presenting Triple Negative tumors when compared to other molecular subtypes (HR: 3.54; 95%CI: 1.13–11.05; p = 0.02). We also found that Selective estrogen receptor modulation treatment is associated with higher EFS rate (HR: 0.48; 95%CI: 0.07–0.59; p = 0.01). Conclusions IBC in Morocco shows similar characteristics to those in North African countries; however, survival rates are still the highest when compared with neighboring countries. Collaborative studies with prospective aspects are warranted to establish the epidemiological profile and understand the high frequencies of IBC in North Africa. More studies on molecular markers are also needed to improve IBC patients’ management and eventually their survival rate.
Collapse
Affiliation(s)
- Meriem Slaoui
- Equipe de recherche ONCOGYMA, Faculty of Medicine and Pharmacy of Rabat, University Mohamed V Rabat, Avenue Mohammed Belarbi El Alaoui - Souissi - BP, 6203, Rabat, Morocco. .,Unité de Biologie et Recherche Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires, Rabat, Morocco.
| | - Abdou Azaque Zoure
- Pietro Annigoni Biomolecular Research Center (CERBA)/LABIOGENE, University of Ouaga 1 Joseph KI ZERBO, UFR/SVT, Ouagadougou, Burkina Faso.,Laboratory of Biochemistry and Immunology, Faculty of Sciences, University of Mohammed V-Rabat, Rabat, Morocco.,Institute of Health Sciences Research, (IRSS)/ Department of Biomedical and Public Health, Ouagadougou, Burkina Faso
| | - Fatima Zahra Mouh
- Equipe de recherche ONCOGYMA, Faculty of Medicine and Pharmacy of Rabat, University Mohamed V Rabat, Avenue Mohammed Belarbi El Alaoui - Souissi - BP, 6203, Rabat, Morocco.,Unité de Biologie et Recherche Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Youssef Bensouda
- Faculty of Medicine and Pharmacy of Rabat, University Mohamed V Rabat, Avenue Mohammed Belarbi El Alaoui - Souissi - BP, 6203, Rabat, Morocco
| | - Mohammed El Mzibri
- Unité de Biologie et Recherche Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Youssef Bakri
- Biochemistry-Immunology Laboratory, Faculty of Sciences Rabat, University Mohammed V - Agdal, Rabat, Morocco
| | - Mariam Amrani
- Equipe de recherche ONCOGYMA, Faculty of Medicine and Pharmacy of Rabat, University Mohamed V Rabat, Avenue Mohammed Belarbi El Alaoui - Souissi - BP, 6203, Rabat, Morocco
| |
Collapse
|
27
|
Raposo TP, Arias-Pulido H, Chaher N, Fiering SN, Argyle DJ, Prada J, Pires I, Queiroga FL. Comparative aspects of canine and human inflammatory breast cancer. Semin Oncol 2018. [PMID: 29526258 DOI: 10.1053/j.seminoncol.2017.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory breast cancer (IBC) in humans is the most aggressive form of mammary gland cancer and shares clinical, pathologic, and molecular patterns of disease with canine inflammatory mammary carcinoma (CIMC). Despite the use of multimodal therapeutic approaches, including targeted therapies, the prognosis for IBC/CIMC remains poor. The aim of this review is to critically analyze IBC and CIMC in terms of biology and clinical features. While rodent cancer models have formed the basis of our understanding of cancer biology, the translation of this knowledge into improved outcomes has been limited. However, it is possible that a comparative "one health" approach to research, using a natural canine model of the disease, may help advance our knowledge on the biology of the disease. This will translate into better clinical outcomes for both species. We propose that CIMC has the potential to be a useful model for developing and testing novel therapies for IBC. Further, this strategy could significantly improve and accelerate the design and establishment of new clinical trials to identify novel and improved therapies for this devastating disease in a more predictable way.
Collapse
Affiliation(s)
- Teresa P Raposo
- Division of Cancer and Stem Cells, Faculty of Medicine, University of Nottingham, United Kingdom
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Nabila Chaher
- Department of Pathology, Centre Pierre et Marie Curie, 1, Avenue Battendier, Place May 1st, Algiers, Algeria
| | - Steven N Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush Campus, Midlothian, University of Edinburgh, United Kingdom
| | - Justina Prada
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Animal and Veterinary research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Animal and Veterinary research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal; Center for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
28
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
29
|
Costa R, Santa-Maria CA, Rossi G, Carneiro BA, Chae YK, Gradishar WJ, Giles FJ, Cristofanilli M. Developmental therapeutics for inflammatory breast cancer: Biology and translational directions. Oncotarget 2017; 8:12417-12432. [PMID: 27926493 PMCID: PMC5355355 DOI: 10.18632/oncotarget.13778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America
| | - Cesar A Santa-Maria
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Giovanna Rossi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - William J Gradishar
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Francis J Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Massimo Cristofanilli
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| |
Collapse
|
30
|
Macrophages Enhance Migration in Inflammatory Breast Cancer Cells via RhoC GTPase Signaling. Sci Rep 2016; 6:39190. [PMID: 27991524 PMCID: PMC5171813 DOI: 10.1038/srep39190] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammatory breast cancer (IBC) is the most lethal form of breast cancer. All IBC patients have lymph node involvement and one-third of patients already have distant metastasis at diagnosis. This propensity for metastasis is a hallmark of IBC distinguishing it from less lethal non-inflammatory breast cancers (nIBC). Genetic profiling studies have been conducted to differentiate IBC from nIBC, but no IBC cancer-cell-specific gene signature has been identified. We hypothesized that a tumor-extrinsic factor, notably tumor-associated macrophages, promotes and contributes to IBC’s extreme metastatic phenotype. To this end, we studied the effect of macrophage-conditioned media (MCM) on IBC. We show that two IBC cell lines are hyper-responsive to MCM as compared to normal-like breast and aggressive nIBC cell lines. We further interrogated IBC’s hyper-responsiveness to MCM using a microfluidic migration device, which permits individual cell migration path tracing. We found the MCM “primes” the IBC cells’ cellular machinery to become extremely migratory in response to a chemoattractant. We determined that interleukins −6, −8, and −10 within the MCM are sufficient to stimulate this enhanced IBC migration effect, and that the known metastatic oncogene, RhoC GTPase, is necessary for the enhanced migration response.
Collapse
|
31
|
Singh B, Kinne HE, Milligan RD, Washburn LJ, Olsen M, Lucci A. Important Role of FTO in the Survival of Rare Panresistant Triple-Negative Inflammatory Breast Cancer Cells Facing a Severe Metabolic Challenge. PLoS One 2016; 11:e0159072. [PMID: 27390851 PMCID: PMC4938613 DOI: 10.1371/journal.pone.0159072] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice. We hypothesized that obesity-related molecular networks, which normally help in cellular and organismal survival under metabolic challenges, may help in the survival of MA cells. The fat mass and obesity-associated protein FTO is overexpressed in MA cells. Obesity-associated cis-acting elements in non-coding region of FTO regulate the expression of IRX3 gene, thus activating obesity networks. Here we found that IRX3 protein is significantly overexpressed in MA cells (5 to 6-fold) as compared to the parental SUM149 cell line, supporting our hypothesis. We also obtained evidence that additional key regulators of energy balance such as ARID5B, IRX5, and CUX1 P200 repressor could potentially help progenitor-like TNBC cells survive in glutamine-free medium. MO-I-500, a pharmacological inhibitor of FTO, significantly (>90%) inhibited survival and/or colony formation of SUM149-MA cells as compared to untreated cells or those treated with a control compound MO-I-100. Curiously, MO-I-500 treatment also led to decreased levels of FTO and IRX3 proteins in the SUM149 cells initially surviving in glutamine-free medium as compared to MO-I-100 treatment. Interestingly, MO-I-500 treatment had a relatively little effect on cell growth of either the SUM149 or SUM149-MA cell line when added to a complete medium containing glutamine that does not pose a metabolic challenge. Importantly, once selected and cultured in glutamine-free medium, SUM149-MA cells were no longer affected by MO-I-500 even in Gln-free medium. We conclude that panresistant MA cells contain interconnected molecular networks that govern developmental status and energy balance, and genetic and epigenetic alterations that are selected during cancer evolution.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hannah E. Kinne
- Department of Breast Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan D. Milligan
- Department of Breast Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laura J. Washburn
- Department of Breast Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy–Glendale, Midwestern University, Glendale, Arizona, United States of America
| | - Anthony Lucci
- Department of Breast Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Woodward WA. Inflammatory breast cancer: unique biological and therapeutic considerations. Lancet Oncol 2016; 16:e568-e576. [PMID: 26545845 DOI: 10.1016/s1470-2045(15)00146-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Through the concerted efforts of many patients, health-care providers, legislators, and other supporters, the past decade has seen the development of the first clinics dedicated to the care of patients with inflammatory breast cancer in the USA and other countries. Together with social networking, advocacy, and education, a few specialised centres have had substantial increases in patient numbers (in some cases ten times higher), which has further expanded the community of science and advocacy and increased the understanding of the disease process. Although inflammatory breast cancer is considered rare, constituting only 2-4% of breast cancer cases, poor prognosis means that patients with the disease account for roughly 10% of breast cancer mortality annually in the USA. I propose that the unique presentation of inflammatory breast cancer might require specific, identifiable changes in the breast parenchyma that occur before the tumour-initiating event. This would make the breast tissue itself a tumour-promoting medium that should be treated as a component of the pathology in multidisciplinary treatment and should be further studied for complementary targets to inhibit the pathobiology that is specific to inflammatory breast cancer.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology and MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2016; 2:15025. [PMID: 26998515 PMCID: PMC4794275 DOI: 10.1038/npjbcancer.2015.25] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Deleterious inflammation is a primary feature of breast cancer. Accumulating evidence demonstrates that macrophages, the most abundant leukocyte population in mammary tumors, have a critical role at each stage of cancer progression. Such tumor-associated macrophages facilitate neoplastic transformation, tumor immune evasion and the subsequent metastatic cascade. Herein, we discuss the dynamic process whereby molecular and cellular features of the tumor microenvironment act to license tissue-repair mechanisms of macrophages, fostering angiogenesis, metastasis and the support of cancer stem cells. We illustrate how tumors induce, then exploit trophic macrophages to subvert innate and adaptive immune responses capable of destroying malignant cells. Finally, we discuss compelling evidence from murine models of cancer and early clinical trials in support of macrophage-targeted intervention strategies with the potential to dramatically reduce breast cancer morbidity and mortality.
Collapse
Affiliation(s)
- Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Adam C Soloff
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
34
|
Aggarwal N, Santiago AM, Kessel D, Sloane BF. Photodynamic therapy as an effective therapeutic approach in MAME models of inflammatory breast cancer. Breast Cancer Res Treat 2015; 154:251-62. [PMID: 26502410 DOI: 10.1007/s10549-015-3618-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive, FDA-approved therapy for treatment of endobronchial and esophageal cancers that are accessible to light. Inflammatory breast cancer (IBC) is an aggressive and highly metastatic form of breast cancer that spreads to dermal lymphatics, a site that would be accessible to light. IBC patients have a relatively poor survival rate due to lack of targeted therapies. The use of PDT is underexplored for breast cancers but has been proposed for treatment of subtypes for which a targeted therapy is unavailable. We optimized and used a 3D mammary architecture and microenvironment engineering (MAME) model of IBC to examine the effects of PDT using two treatment protocols. The first protocol used benzoporphyrin derivative monoacid A (BPD) activated at doses ranging from 45 to 540 mJ/cm(2). The second PDT protocol used two photosensitizers: mono-L-aspartyl chlorin e6 (NPe6) and BPD that were sequentially activated. Photokilling by PDT was assessed by live-dead assays. Using a MAME model of IBC, we have shown a significant dose-response in photokilling by BPD-PDT. Sequential activation of NPe6 followed by BPD is more effective in photokilling of tumor cells than BPD alone. Sequential activation at light doses of 45 mJ/cm(2) for each agent resulted in >90 % cell death, a response only achieved by BPD-PDT at a dose of 360 mJ/cm(2). Our data also show that effects of PDT on a volumetric measurement of 3D MAME structures reflect efficacy of PDT treatment. Our study is the first to demonstrate the potential of PDT for treating IBC.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| | - Ann Marie Santiago
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
35
|
Fouad TM, Kogawa T, Liu DD, Shen Y, Masuda H, El-Zein R, Woodward WA, Chavez-MacGregor M, Alvarez RH, Arun B, Lucci A, Krishnamurthy S, Babiera G, Buchholz TA, Valero V, Ueno NT. Overall survival differences between patients with inflammatory and noninflammatory breast cancer presenting with distant metastasis at diagnosis. Breast Cancer Res Treat 2015; 152:407-16. [PMID: 26017070 DOI: 10.1007/s10549-015-3436-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022]
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive disease. Previous studies have shown that among patients with stage III breast cancer, IBC is associated with a worse prognosis than noninflammatory breast cancer (non-IBC). Whether this difference holds true among patients with stage IV breast cancer has not been studied. We tested the hypothesis that overall survival (OS) is worse in patients with IBC than in those with non-IBC among patients with distant metastasis at diagnosis (stage IV disease). We reviewed the records of 1504 consecutive patients with stage IV breast cancer (IBC: 206; non-IBC: 1298) treated at our institution from 1987 through 2012. Survival curves for IBC and non-IBC subcohorts were compared. The Cox proportional hazards model was used to determine predictors of OS. The median follow-up period was 4.7 years. IBC was associated with shorter median OS time than non-IBC (2.27 vs. 3.40 years; P = 0.0128, log-rank test). In a multicovariate Cox model that included 1389 patients, the diagnosis of IBC was a significant independent predictor of worse OS (hazard ratio = 1.431, P = 0.0011). Other significant predictors of worse OS included Black (vs. White) ethnicity, younger age at diagnosis, negative HER2 status, and visceral (vs. nonvisceral) site of metastasis. IBC is associated with shorter OS than non-IBC in patients with distant metastasis at diagnosis. The prognostic impact of IBC should be taken into consideration among patients with stage IV breast cancer.
Collapse
Affiliation(s)
- Tamer M Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer: Ligand-Mediated Mechanisms of Receptor Regulation and Potential for Clinical Targeting. Adv Cancer Res 2015; 127:253-81. [PMID: 26093903 DOI: 10.1016/bs.acr.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, there are no effective targeted therapies for triple-negative breast cancer (TNBC) indicating a critical unmet need for breast cancer patients. Tumors that fall into the triple-negative category of breast cancers do not respond to the targeted therapies currently approved for breast cancer treatment, such as endocrine therapy (tamoxifen, aromatase inhibitors) or human epidermal growth factor receptor-2 (HER2) inhibitors (trastuzumab, lapatinib), because these tumors lack the most common breast cancer markers: estrogen receptor, progesterone receptor, and HER2. While many patients with TNBC respond to chemotherapy, subsets of patients fare poorly and relapse very quickly. Studies indicate that epidermal growth factor receptor (EGFR) is frequently overrepresented in TNBC (>50%), suggesting EGFR could be used as a biomarker and target in breast cancer. While it is clear that this growth factor receptor plays an integral role in TNBC, little is known about the mechanisms of sustained EGFR activation and how to target this protein despite availability of EGFR-targeted inhibitors, suggesting that our understanding of EGFR deregulation in TNBC is incomplete.
Collapse
|
37
|
Stauder MC, Woodward WA. Local-Regional Treatment of the Patient With Inflammatory Breast Cancer. CURRENT BREAST CANCER REPORTS 2015. [DOI: 10.1007/s12609-014-0176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Ayala-Orozco C, Urban C, Bishnoi S, Urban A, Charron H, Mitchell T, Shea M, Nanda S, Schiff R, Halas N, Joshi A. Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J Control Release 2014; 191:90-97. [PMID: 25051221 PMCID: PMC4156921 DOI: 10.1016/j.jconrel.2014.07.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 12/18/2022]
Abstract
There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or necrotic regions. We report the performance advantages obtained by sub 100nm gold nanomatryushkas, comprising concentric gold-silica-gold layers compared to conventional ~150nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000mm(3)) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5× accumulation within large tumors results in superior therapy efficacy.
Collapse
Affiliation(s)
- Ciceron Ayala-Orozco
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Cordula Urban
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Mail: BCM 360, One Baylor Plaza, Houston, TX 77030, United States
| | - Sandra Bishnoi
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Alexander Urban
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Heather Charron
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Mail: BCM 360, One Baylor Plaza, Houston, TX 77030, United States
| | - Tamika Mitchell
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Naomi Halas
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Amit Joshi
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Mail: BCM 360, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
39
|
Singh B, Shamsnia A, Raythatha MR, Milligan RD, Cady AM, Madan S, Lucci A. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents. PLoS One 2014; 9:e109487. [PMID: 25279830 PMCID: PMC4184880 DOI: 10.1371/journal.pone.0109487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022] Open
Abstract
A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anna Shamsnia
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Milan R. Raythatha
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan D. Milligan
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amanda M. Cady
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Simran Madan
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony Lucci
- Department of Surgical Oncology, and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, Viens P, Van Laere S. Genomic profiling of inflammatory breast cancer: a review. Breast 2014; 23:538-45. [PMID: 24998451 DOI: 10.1016/j.breast.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer. Despite efforts in the past decade to delineate the molecular biology of IBC by applying high-throughput molecular profiling technologies to clinical samples, IBC remains insufficiently characterized. The reasons for that include limited sizes of the study population, heterogeneity with respect to the composition of the IBC and non-IBC control groups and technological differences across studies. In 2008, the World IBC Consortium was founded to foster collaboration between research groups focusing on IBC. One of the initial projects was to redefine the molecular profile of IBC using an unprecedented number of samples and search for gene signatures associated with survival and response to neo-adjuvant chemotherapy. Here, we provide an overview of all the molecular profiling studies that have been performed on IBC clinical samples to date.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France.
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Van Dam
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Patrice Viens
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|