1
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
2
|
Roy P, Kandel R, Sawant N, Singh KP. Estrogen-induced reactive oxygen species, through epigenetic reprogramming, causes increased growth in breast cancer cells. Mol Cell Endocrinol 2024; 579:112092. [PMID: 37858609 DOI: 10.1016/j.mce.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Despite the progress made in cancer diagnosis and treatment, breast cancer remains the second leading cause of cancer-related death among the women. Exposure to elevated levels of endogenous estrogen or environmental estrogenic chemicals is an important risk factor for breast cancer. Estrogen metabolites and ROS generated during estrogen metabolism are known to play a critical role in estrogen carcinogenesis. However, the molecular mechanisms through which estrogen-induced ROS regulate gene expression is not clear. Epigenetic changes of DNA methylation and histone modifications are known to regulate genes expression. Therefore, the objective of this study was to evaluate whether estrogen-induced ROS, through aberrant expression of epigenetic regulatory genes and epigenetic reprogramming, causes growth of breast cancer cells. Estrogen responsive MCF-7 and T47D human breast cancer cells were exposed to natural estrogen 17 beta-estradiol (E2) and synthetic estrogen Diethylstilbestrol (DES) both alone and in combination with antioxidant N-acetyl cysteine. Effects of NAC-mediated scavenging of estrogen-induced ROS on cell growth, gene expression, and histone modifications were measured. The result of MTT and cell cycle analysis revealed significant abrogation of E2 and DES-induced growth by scavenging ROS through NAC. E2 and DES caused significant changes in expression of epigenetic regulatory genes for DNA methylation and histone modifications as well as changes in both gene activating and repressive marks in the Histone H3. NAC restored the expression of epigenetic regulatory genes and changes in histone marks. Novel findings of this study suggest that estrogen can induce growth of breast cancer cells through ROS-dependent regulation of epigenetic regulatory genes and epigenetic reprogramming of histone marks.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ramji Kandel
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Sawant
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
3
|
Al-Shami K, Awadi S, Khamees A, Alsheikh AM, Al-Sharif S, Ala’ Bereshy R, Al-Eitan SF, Banikhaled SH, Al-Qudimat AR, Al-Zoubi RM, Al Zoubi MS. Estrogens and the risk of breast cancer: A narrative review of literature. Heliyon 2023; 9:e20224. [PMID: 37809638 PMCID: PMC10559995 DOI: 10.1016/j.heliyon.2023.e20224] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In female mammals, the development and regulation of the reproductive system and non-reproductive system are significantly influenced by estrogens (oestrogens). In addition, lipid metabolism is another physiological role of estrogens. Estrogens act through different types of receptors to introduce signals to the target cell by affecting many estrogen response elements. Breast cancer is considered mostly a hormone-dependent disease. Approximately 70% of breast cancers express progesterone receptors and/or estrogen receptors, and they are a good marker for cancer prognosis. This review will discuss estrogen metabolism and the interaction of estrogen metabolites with breast cancer. The carcinogenic role of estrogen is discussed in light of both conventional and atypical cancers susceptible to hormones, such as prostate, endometrial, and lung cancer, as we examine how estrogen contributes to the formation and activation of breast cancer. In addition, this review will discuss other factors that can be associated with estrogen-driven breast cancer.
Collapse
Affiliation(s)
- Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
- Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan
| | | | - Sumaiya Al-Sharif
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Sharaf F. Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Ahmad R. Al-Qudimat
- Department of Public Health, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | | |
Collapse
|
4
|
Pedersen JE, Hansen J. Parental occupational exposure to chemicals and risk of breast cancer in female offspring. ENVIRONMENTAL RESEARCH 2023; 227:115817. [PMID: 37011793 DOI: 10.1016/j.envres.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES Parental exposure to chemicals at work has been hypothesized to be a potential predisposing factor for breast cancer in next generations. The objective of the present nationwide nested case-control study was to contribute with evidence to this area. METHODS Women with primary breast cancer were identified using the Danish Cancer Registry and they were required to have information on either maternal or paternal employment history, which resulted in the inclusion of 5587 cases. For each case, 20 female cancer free controls were matched on year of birth using the Danish Civil Registration System. Employment history was linked to job exposure matrices to assess specific occupational chemical exposures. RESULTS For maternal exposures, we observed an association between ever exposure to diesel exhaust (OR = 1.13, 95% CI: 1.01-1.27) and exposure to bitumen fumes in the perinatal period (OR = 1.51, 95% CI: 1.00-2.26) and breast cancer in female offspring. Highest cumulative exposure to benzo(a)pyrene, diesel exhaust, gasoline and bitumen fumes was further indicated to increase the risk. Results further indicated a stronger association between diesel exhaust (OR = 1.23, 95% CI: 1.01-1.50) and benzo(a)pyrene exposure (OR = 1.23, 95% CI: 0.96-1.57) and estrogen receptor negative tumors than tumors with ER expression, while bitumen fumes seemed to elevate the risk of both hormonal subtypes. For paternal exposures, the main results did not indicate any associations with breast cancer in female offspring. CONCLUSIONS Our study suggests an elevated breast cancer risk in daughters of women occupational exposed to some occupational pollutants, including diesel exhaust, benzo(a)pyrene and bitumen fumes. These findings need to be confirmed in future large-scale studies before any firm conclusions can be reached.
Collapse
Affiliation(s)
| | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
5
|
Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals. J Ginseng Res 2023; 47:193-198. [PMID: 36926605 PMCID: PMC10014227 DOI: 10.1016/j.jgr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.
Collapse
|
6
|
Ramathebane MM, Sooro MA, Kabuya RM, Sayed AR. Knowledge and attitudes relating to cervical and breast cancer among women in Maseru, Lesotho. Afr J Prim Health Care Fam Med 2022; 14:e1-e8. [PMID: 36546486 PMCID: PMC9772699 DOI: 10.4102/phcfm.v14i1.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/12/2022] [Accepted: 09/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cancer has remained one of the leading causes of death worldwide. In Lesotho, breast and cervical cancers contribute about 43% of all the cancer cases annually. AIM This study is aimed at comparing knowledge, attitudes, and practices between breast and cervical cancers among females in Maseru. SETTINGS This study consists of women residing in five study sites which have clinics that offer cervical and breast cancer-screening services. METHODS A cross-sectional study was conducted in June 2021 in Maseru, the Capital city of Lesotho. The participants were interviewed using a pre-tested questionnaire, through which their knowledge, practices about, and attitudes towards breast and cervical cancers were assessed. RESULTS A total of 228 women aged 15-75 years participated in the study and the majority were aged 30 years and above. Of the women interviewed for cervical cancer, 89.5% had heard of it, 11.8% had heard of its screening, and 7.4% had at least one examination. Similarly, for breast cancer, 77.6% of women who had heard of it, 72.9% had heard of screening, and 40.1% of women did at least one examination. CONCLUSION The majority of women were more knowledgeable about cervical cancer than breast cancer. However, more women had heard about breast cancer screening than cervical cancer screening. Therefore, there is a need for awareness campaigns related to cervical cancers' screening.Contribution: There is an urgent need to intensify awareness about cervical and breast cancer screening and availability of services at the nearby clinics.
Collapse
Affiliation(s)
- Maseabata M. Ramathebane
- Department of Pharmacy, Faculty of Health Sciences, National University of Lesotho, Maseru, Lesotho
| | - Mopa A. Sooro
- Department of Pharmacy, Faculty of Health Sciences, National University of Lesotho, Maseru, Lesotho
| | | | | |
Collapse
|
7
|
Li YZ, Wu ZY, Zhu BQ, Wang YX, Kan YQ, Zeng HC. The BDNF-TrkB-CREB Signalling Pathway Is Involved in Bisphenol S-Induced Neurotoxicity in Male Mice by Regulating Methylation. TOXICS 2022; 10:toxics10080413. [PMID: 35893846 PMCID: PMC9331819 DOI: 10.3390/toxics10080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
Bisphenol S (BPS), the most common substitute for bisphenol A in manufacturing, is associated with neurotoxicity, but its molecular mechanisms are unclear. Here, we studied the role of the BDNF-TrkB-CREB (brain-derived neurotrophic factor-tropomyosin-related kinase B-CAMP response element-binding protein) signalling pathway in bisphenol S-induced neurotoxicity via methylation regulation in male C57BL/6 mice. The mice were treated with sesame oil or 2, 20 and 200 mg/kg body weight BPS for 28 consecutive days, and the hippocampus was extracted. We recorded the body weight, organ index, and hippocampal pathology and ultrastructure of the mice. The BDNF, TrkB, CREB, phosphorylated (p)-CREB, DNMTs (DNA methyltransferases) levels were determined by qRT-PCR and/or Western blotting. BDNF promoter IV methylation level was detected by bisulfite sequencing PCR. BPS damaged the mouse hippocampus ultrastructure and reduced the number of synapses. Further, it increased the methylation rate of BDNF promoter IV; downregulated BDNF, CREB, p-CREB/CREB and DNMT1 expression; and upregulated DNMT3a and DNMT3b expression. Therefore, we speculate that the BDNF-TrkB-CREB pathway may be involved in BPS-induced neurotoxicity in male mice by regulating methylation.
Collapse
Affiliation(s)
- Yi-Zhou Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Bi-Qi Zhu
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China;
| | - Yu-Xiao Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ya-Qi Kan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; (Y.-Z.L.); (Z.-Y.W.); (Y.-X.W.); (Y.-Q.K.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin 541199, China
- Department of Environmental and Occupational Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Correspondence:
| |
Collapse
|
8
|
Nicolella HD, de Assis S. Epigenetic Inheritance: Intergenerational Effects of Pesticides and Other Endocrine Disruptors on Cancer Development. Int J Mol Sci 2022; 23:4671. [PMID: 35563062 PMCID: PMC9102839 DOI: 10.3390/ijms23094671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Parental environmental experiences affect disease susceptibility in the progeny through epigenetic inheritance. Pesticides are substances or mixtures of chemicals-some of which are persistent environmental pollutants-that are used to control pests. This review explores the evidence linking parental exposure to pesticides and endocrine disruptors to intergenerational and transgenerational susceptibility of cancer in population studies and animal models. We also discuss the impact of pesticides and other endocrine disruptors on the germline epigenome as well as the emerging evidence for how epigenetic information is transmitted between generations. Finally, we discuss the importance of this mode of inheritance in the context of cancer prevention and the challenges ahead.
Collapse
Affiliation(s)
- Heloiza Diniz Nicolella
- Georgetown University Medical Center, Washington, DC 20057, USA;
- Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Sonia de Assis
- Georgetown University Medical Center, Washington, DC 20057, USA;
- Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| |
Collapse
|
9
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
10
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
11
|
Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front Mol Biosci 2022; 9:836417. [PMID: 35145999 PMCID: PMC8824427 DOI: 10.3389/fmolb.2022.836417] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a kind of breast cancer that lacks estrogen, progesterone, and human epidermal growth factor receptor 2. This cancer is responsible for more than 15-20% of all breast cancers and is of particular research interest as it is therapeutically challenging mainly because of its low response to therapeutics and highly invasive nature. The non-availability of specific treatment options for TNBC is usually managed by conventional therapy, which often leads to relapse. The focus of this review is to provide up-to-date information related to TNBC epidemiology, risk factors, metastasis, different signaling pathways, and the pathways that can be blocked, immune suppressive cells of the TNBC microenvironment, current and investigation therapies, prognosis, and the role of artificial intelligence in TNBC diagnosis. The data presented in this paper may be helpful for researchers working in the field to obtain general and particular information to advance the understanding of TNBC and provide suitable disease management in the future.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| |
Collapse
|
12
|
Zamora-León P. Are the Effects of DES Over? A Tragic Lesson from the Past. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10309. [PMID: 34639609 PMCID: PMC8507770 DOI: 10.3390/ijerph181910309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Diethylstilbestrol (DES), a transplacental endocrine-disrupting chemical, was prescribed to pregnant women for several decades. The number of women who took DES is hard to know precisely, but it has been estimated that over 10 million people have been exposed around the world. DES was classified in the year 2000 as carcinogenic to humans. The deleterious effects induced by DES are very extensive, such as abnormalities or cancers of the genital tract and breast, neurodevelopmental alterations, problems associated with socio-sexual behavior, and immune, pancreatic and cardiovascular disorders. Not only pregnant women but also their children and grandchildren have been affected. Epigenetic alterations have been detected, and intergenerational effects have been observed. More cohort follow-up studies are needed to establish if DES effects are transgenerational. Even though DES is not currently in use, its effects are still present, and families previously exposed and their later generations deserve the continuity of the research studies.
Collapse
Affiliation(s)
- Pilar Zamora-León
- Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
13
|
Li J, Wan Y, Zheng Z, Zhang H, Li Y, Guo X, Li K, Li D. Maternal n-3 polyunsaturated fatty acids restructure gut microbiota of offspring mice and decrease their susceptibility to mammary gland cancer. Food Funct 2021; 12:8154-8168. [PMID: 34291263 DOI: 10.1039/d1fo00906k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our previous studies have revealed that a maternal diet rich in n-3 polyunsaturated fatty acids (PUFAs) is associated with decreased mammary cancer risk in offspring. However, the underlying mechanism remains unclear. The present study aimed to investigate the possible mechanism by which maternal n-3 PUFAs decrease the mammary cancer risk of offspring in terms of gut microbiota. C57BL/6 pregnant mice were fed a control standard chow (CON), fish oil supplemented diet (n-3 Sup-FO), flaxseed oil supplemented diet (n-3 Sup-FSO) or n-3 PUFA deficient diet (n-3 Def) (n = 10) throughout gestation and lactation. After weaning, all offspring were fed a AIN-93G diet. The tumor incidence and volume were significantly increased in n-3 Def offspring compared with the other groups. Maternal n-3 PUFA supplementation resulted in a significantly increased α-diversity of the gut microbiota in n-3 Sup-FO and n-3 Sup-FSO offspring compared with that in n-3 Def offspring. The relative abundances of Akkermansia, Lactobacillus and Mucispirillum observed in adult offspring of both the n-3 Sup-FO and n-3 Sup-FSO groups were higher than those observed in the control group, whereas the maternal n-3 Def diet was associated with decreased abundances of Lactobacillus, Bifidobacterium and Barnesiella in 7-week-old offspring. The levels of the pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly lower in n-3 PUFA supplemented offspring than in n-3 Def offspring. In addition, the abundance of Mucispirillum was positively associated with the concentration of the anti-inflammatory factor IL-10, whereas the abundances of Bifidobacterium and Akkermansia were negatively associated with IL-1β and IL-6, respectively. Based on the bacterial composition of the gut microbiota, metabolites were predicted and the results showed that arachidonic acid metabolism and the MAPK signaling pathways were more enriched, while the butyric acid metabolic pathway was less enriched in offspring of the n-3 Def group than in those of the other three groups. Our findings suggest that decreased pro-inflammatory factors and changed gut microbiota are associated with the protective effects of maternal n-3 PUFAs against offspring's mammary tumorigenesis.
Collapse
Affiliation(s)
- Jiaomei Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021; 13:cancers13174287. [PMID: 34503097 PMCID: PMC8428369 DOI: 10.3390/cancers13174287] [Citation(s) in RCA: 544] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most common cancer among women. It is estimated that 2.3 million new cases of BC are diagnosed globally each year. Based on mRNA gene expression levels, BC can be divided into molecular subtypes that provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. This review addresses the overview on the BC epidemiology, risk factors, classification with an emphasis on molecular types, prognostic biomarkers, as well as possible treatment modalities. Abstract Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.
Collapse
Affiliation(s)
- Sergiusz Łukasiewicz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Robert Sitarz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| | - Andrzej Stanisławek
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Oncology, Chair of Oncology and Environmental Health, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
15
|
Sahay D, Lloyd SE, Rivera JA, Jezioro J, McDonald JD, Pitiranggon M, Yan B, Szabolcs M, Terry MB, Miller RL. Prenatal polycyclic aromatic hydrocarbons, altered ERα pathway-related methylation and expression, and mammary epithelial cell proliferation in offspring and grandoffspring adult mice. ENVIRONMENTAL RESEARCH 2021; 196:110961. [PMID: 33675803 PMCID: PMC8119355 DOI: 10.1016/j.envres.2021.110961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Airborne polycyclic aromatic hydrocarbons (PAH) possess carcinogenic and endocrine disrupting properties linked to mammary tumorigenesis. These effects may be initiated during a prenatal period of susceptibility to PAH activation of the aryl hydrocarbon receptor (Ahr) and through downstream effects on estrogen receptor (Er) α. PURPOSE We hypothesized prenatal airborne PAH exposure induces sustained effects in female adult wild type BALB/cByj mice detected in the offspring (F1) and grandoffspring (F2) generation. We hypothesized these effects would include altered expression and epigenetic regulation of Erα and altered expression of aryl hydrocarbon receptor repressor (Ahrr, Ahrr/aryl hydrocarbon receptor nuclear translocator (Arnt), and breast cancer type 1 susceptibility (Brca1). Further, we hypothesized that PAH would induce precancerous outcomes such as epithelial cell proliferation and epithelial cell hyperplasia in mammary glands of adult female offspring and grandoffspring. RESULTS Prenatal ambient PAH exposure lowered Erα mRNA expression (F1 and F2: p<0.001 for each) and induced methylation in the Erα promoter in mammary tissue in offspring and grandoffspring mice on postnatal day (PND) 60. Prenatal PAH lowered Brca1 mRNA (F1: p=0.002, F2: p=0.02); Erα mRNA was correlated with Brca1 (F1: r=0.42, p=0.02; F2: r=0.53, p=0.005). Prenatal PAH lowered Ahrr (F1: p=0.03, F2: p=0.009) and raised Arnt mRNA expression (F1: p=0.01, F2: p=0.03). Alterations in Erα mRNA (F2: p<0.0001) and Ahrr (F2: p=0.02) in the grandoffspring mice also occured by PND 28, and similarly occurred in the dam on postpartum day (PPD) 28. Finally, prenatal PAH was associated with higher mammary epithelial cell proliferation in the offspring (p=0.02), but not grandoffspring mice, without differences in the frequency of mammary cell hyperplasia. These results did not differ after adjustment by each candidate gene expression level. CONCLUSIONS Prenatal PAH exposure induces DNA methylation and alters gene expression in the Erα-mediated pathway across generations, and suggests that functional outcomes such as mammary cell proliferation also may occur in offspring as a result.
Collapse
Affiliation(s)
- Debashish Sahay
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Susan E Lloyd
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States
| | - Janelle A Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Jacqueline Jezioro
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Jacob D McDonald
- Department of Toxicology, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Masha Pitiranggon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Matthias Szabolcs
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York City, NY, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, United States.
| |
Collapse
|
16
|
Singh V, Reddy R, Sinha A, Marturi V, Panditharadyula SS, Bala A. A Review on Phytopharmaceuticals having Concomitant Experimental Anti-diabetic and Anti-cancer Effects as Potential Sources for Targeted Therapies Against Insulin-mediated Breast Cancer Cell Invasion and Migration. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999200831113335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes and breast cancer are pathophysiologically similar and clinically established
diseases that co-exist with a wider complex similar molecular signalling and having a similar set of
risk factors. Insulin plays a pivotal role in the invasion and migration of breast cancer cells. Several
ethnopharmacological evidences shed light on the concomitant anti-diabetic and anti-cancer activity
of medicinal plant and phytochemicals against breast tumors of patients with diabetes. This present
article reviewed the findings on medicinal plants and phytochemicals with concomitant antidiabetic
and anti-cancer effects reported in scientific literature to facilitate the development of dual-
acting therapies against diabetes and breast cancer. The schematic tabular form of published literature
on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals
against diabetes and breast tumors that could be explored further for the discovery of therapies
for controlling of breast cancer cell invasion and migration in patients with diabetes.
Collapse
Affiliation(s)
- Vibhavana Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Rakesh Reddy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Venkatesh Marturi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Shravani S. Panditharadyula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Asis Bala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| |
Collapse
|
17
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
18
|
Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J Mol Sci 2020; 21:ijms21062078. [PMID: 32197344 PMCID: PMC7139481 DOI: 10.3390/ijms21062078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Puberty is the process of physical changes between childhood and adulthood during which adolescents reach sexual maturity and become capable of reproduction. It is considered one of the main temporal windows of susceptibility for the influence of the endocrine-disrupting chemicals (EDCs). EDCs may act as single chemical agents or as chemical mixtures; they can be pubertal influencers, accelerating and anticipating the processing of maturation of secondary sexual characteristics. Moreover, recent studies have started to point out how exposure to EDCs during puberty may predispose to breast cancer later in life. In fact, the estrogen-mimicking endocrine disruptors (EEDs) may influence breast tissue development during puberty in two main ways: the first is the action on the proliferation of the breast stromal cells, the second concerns epigenetic mechanisms. The aim of this mini-review was to better highlight what is new and what is not completely known regarding the role of EDCs during puberty.
Collapse
|
19
|
Belitskiy GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention. BIOCHEMISTRY (MOSCOW) 2020; 85:S79-S107. [PMID: 32087055 DOI: 10.1134/s0006297920140059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The review summarizes the data on the role of metabolic and repair systems in the mechanisms of therapy-related carcinogenesis and the effect of their polymorphism on the cancer development risk. The carcinogenic activity of different types of drugs, from the anticancer agents to analgesics, antipyretics, immunomodulators, hormones, natural remedies, and non-cancer drugs, is described. Possible approaches for the prevention of drug-related cancer induction at the initiation and promotion stages are discussed.
Collapse
Affiliation(s)
- G A Belitskiy
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia. .,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - E A Lesovaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
20
|
Guo JY, Wang MZ, Wang MS, Sun T, Wei FH, Yu XT, Wang C, Xu YY, Wang L. The Undervalued Effects of Polychlorinated Biphenyl Exposure on Breast Cancer. Clin Breast Cancer 2020; 20:12-18. [DOI: 10.1016/j.clbc.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
|
21
|
Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020493. [PMID: 31941024 PMCID: PMC7013753 DOI: 10.3390/ijerph17020493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
During puberty, a woman’s breasts are vulnerable to environmental damage (“window of vulnerability”). Early exposure to environmental carcinogens, endocrine disruptors, and unhealthy foods (refined sugar, processed fats, food additives) are hypothesized to promote molecular damage that increases breast cancer risk. However, prospective human studies are difficult to perform and effective interventions to prevent these early exposures are lacking. It is difficult to prevent environmental exposures during puberty. Specifically, young women are repeatedly exposed to media messaging that promotes unhealthy foods. Young women living in disadvantaged neighborhoods experience additional challenges including a lack of access to healthy food and exposure to contaminated air, water, and soil. The purpose of this review is to gather information on potential exposures during puberty. In future directions, this information will be used to help elementary/middle-school girls to identify and quantitate environmental exposures and develop cost-effective strategies to reduce exposures.
Collapse
|
22
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, Malecki KMC, Martin MB, Miller RL, Neuhausen SL, Silk K, Trentham-Dietz A. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res 2019; 21:96. [PMID: 31429809 PMCID: PMC6701090 DOI: 10.1186/s13058-019-1168-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention. Main text Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland’s structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers. Conclusions An integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1611, New York, NY, 10032, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Drive South, CHS 71-254, Los Angeles, CA, 90095, USA
| | | | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road A-1039F, Bethesda, MD, 20814, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA, 91010, USA
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute and Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant St., Amherst, MA, 01003, USA
| | - Kristen M C Malecki
- Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 605, Madison, WI, 53726, USA
| | - Mary Beth Martin
- Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University Medical Center, E411 New Research Building, Washington, DC, 20057, USA
| | - Rachel L Miller
- Departments of Medicine, Pediatrics, Environmental Health Sciences; Vagelos College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, PH8E-101B, 630 W. 168th St, New York, NY, 10032, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Kami Silk
- Department of Communication, University of Delaware, 250 Pearson Hall, 125 Academy St, Newark, DE, 19716, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 307, Madison, WI, 53726, USA.
| | | |
Collapse
|
24
|
Vulimiri SV, Olivero O. Introduction: Special Issue on Transplacental/Transgenerational Mutagenesis and Carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:392-394. [PMID: 30951218 PMCID: PMC8168685 DOI: 10.1002/em.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Suryanarayana V. Vulimiri
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia
| | - Ofelia Olivero
- Intramural Diversity Workforce Branch (IDWB), Center for Cancer Training, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
25
|
Tweats D, Eastmond DA, Lynch AM, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M. Role of aneuploidy in the carcinogenic process: Part 3 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403032. [PMID: 31699349 DOI: 10.1016/j.mrgentox.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | |
Collapse
|
26
|
Auner AW, Tasneem KM, Markov DA, McCawley LJ, Hutson MS. Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices. LAB ON A CHIP 2019; 19:864-874. [PMID: 30720811 PMCID: PMC6512955 DOI: 10.1039/c8lc00796a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic organ-on-chip devices constructed from polydimethylsiloxane (PDMS) have proven useful in studying both beneficial and adverse effects of drugs, supplements, and potential toxicants. Despite multiple advantages, one clear drawback of PDMS-based devices is binding of hydrophobic chemicals to their exposed surfaces. Chemical binding to PDMS can change the timing and extent of chemical delivery to cells in such devices, potentially altering dose-response curves. Recent efforts have quantified PDMS binding for selected chemicals. Here, we test a wider set of nineteen chemicals using UV-vis or infrared spectroscopy to characterize loss of chemical from solution in two setups with different PDMS-surface-to-solution-volume ratios. We find discernible PDMS binding for eight chemicals and show that PDMS binding is strongest for chemicals with a high octanol-water partition coefficient (log P > 1.85) and low H-bond donor number. Further, by measuring depletion and return of chemical from solution over tens to hundreds of hours and fitting these results to a first order model of binding kinetics, we characterize partitioning into PDMS in terms of binding capacities per unit surface area and both forward and reverse rate constants. These fitted parameters were used to model the impact of PDMS binding on chemical transport and bioavailability under realistic flow conditions and device geometry. The models predict that PDMS binding could alter in-device cellular exposures for both continuous and bolus dosing schemes by up to an order of magnitude compared to nominal input doses.
Collapse
Affiliation(s)
- Alexander W Auner
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
27
|
Gillette R, Son MJ, Ton L, Gore AC, Crews D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 2018; 13:1106-1126. [PMID: 30444163 DOI: 10.1080/15592294.2018.1543506] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
All animals have body burdens of polychlorinated biphenyls (PCBs) despite their ban decades ago. These and modern endocrine-disrupting chemicals (EDCs) such as the fungicide vinclozolin (VIN) perturb hormone signaling and lead to dysfunctions following prenatal exposures. Beyond direct exposures, transgenerational disease phenotypes can persist for multiple generations without subsequent exposure. The mechanisms of action of these EDCs differ: VIN is anti-androgenic while the PCB mixture Aroclor 1221 (A1221) is weakly estrogenic. Based on limited evidence for the inheritance of epimutations in germline, we measured DNA methylation in brain and sperm of rats. Pregnant dams were exposed from day 8-18 of gestation to low dosages of VIN, A1221, or the vehicle. To produce paternal lineages, exposed F1 males were bred with untreated females, creating the F2 and subsequently F3 generations. In adult F1 and F3 males, mature sperm was collected, and brain nuclei involved in anxiety and social behaviors (CA3 of the hippocampus; central amygdala) were selected for assays of epimutations in CpG islands using reduced representation bisulfite sequencing. In F1 sperm, VIN and PCBs induced differential methylation in 215 and 284 CpG islands, respectively, compared to vehicle. The majority of effects were associated with hypermethylation. Fewer epimutations were detected in the brain. A subset of differentially methylated regions were retained from the F1 to the F3 generation, suggesting a common mechanism of EDC and germline epigenome interaction. Thus, EDCs can cause heritable epimutations in the sperm that may embody the future phenotype of brain-behavior disorders caused by direct or transgenerational exposures.
Collapse
Affiliation(s)
- Ross Gillette
- a Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , TX , USA
| | - Min Ji Son
- b Section of Integrative Biology , The University of Texas at Austin , Austin , TX , USA
| | - Lexi Ton
- b Section of Integrative Biology , The University of Texas at Austin , Austin , TX , USA
| | - Andrea C Gore
- a Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , TX , USA.,c Division of Pharmacology and Toxicology, College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - David Crews
- a Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , TX , USA.,b Section of Integrative Biology , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
28
|
Perrot-Applanat M, Kolf-Clauw M, Michel C, Beausoleil C. Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol 2018; 475:29-53. [PMID: 30048677 DOI: 10.1016/j.mce.2018.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
The development and function of the mammary gland are endocrine-dependent processes, depending on the stage of development. Foetal and/or postnatal exposure to low doses of BPA alters tissue organisation through epithelial proliferation and stroma-epithelial interactions. BPA also alters the expression of E2-dependent epithelial and stroma transcriptomes. Several signalling pathways are consistent with the observed phenotype: proliferation and apoptosis, a focal adhesion pathway indicating changes in biomechanical properties of the extracellular matrix, and immune function. Some of BPA's effects are reversed by oestrogen and/or GPER inhibitors. BPA also alters the expression of epigenetic marks (EZH2, HOTAIR), which would explain the delayed effect of foetal BPA exposure. In conclusion, experimental evidence shows that pre- or postnatal BPA exposure consistently causes endocrine modifications in the mammary tissue of different animal species, disrupting stromal-epithelial interactions and ultimately increasing its susceptibility to carcinogens. An interspecies comparison highlights why and how these effects apply to humans.
Collapse
Affiliation(s)
| | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 chemin des Capelles, BP 87614, F 310176, Toulouse Cedex 3, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France.
| | | |
Collapse
|
29
|
Strohsnitter WC, Bertrand KA, Troisi R, Scott CG, Cheville AL, Hoover RN, Palmer JR, Vachon CM. Prenatal diethylstilbestrol exposure and mammographic density. Int J Cancer 2018; 143:1374-1378. [PMID: 29658110 DOI: 10.1002/ijc.31524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/07/2022]
Abstract
In a prospective cohort study of the health effects associated with prenatal Diethylstilbestrol (DES) exposure, DES was associated with an increased breast cancer risk after 40 years of age. It is unknown whether it is associated with greater mammographic density, which strongly predicts breast cancer risk. A cohort of DES-exposed and unexposed women was assembled at the Mayo Clinic in 1975, and followed through 2012 as part of the National Cancer Institute's DES follow-up study. Mammographic density from 3,637 mammograms for 332 (222 DES-exposed, 110 unexposed) women in this cohort screened at the Mayo Clinic, Rochester between 1996 and 2015 was determined clinically using the Breast Imaging Reporting and Data System (BI-RADS). Any effect of prenatal DES exposure on mammographic density was estimated using repeated measures logistic regression. There was no association between prenatal DES exposure and high mammographic density for either premenopausal [Odds ratios (OR) = 0.92 (95% Confidence Interval (CI): 0.50, 1.7] or postmenopausal women (OR = 0.90; 95% CI: 0.54, 1.5). Among premenopausal women, associations differed by body mass index (BMI), with ORs of 1.47 (0.70, 3.1) for women with BMI above the median and 0.53 (0.23, 1.3) for those with BMI below the median (pinteraction = 0.05). Overall, however, prenatal DES exposure was not associated with high mammographic density in this sample of DES Study participants. Consequently, this study does not provide evidence that high mammographic density is involved with the influence of DES on breast cancer risk.
Collapse
Affiliation(s)
- William C Strohsnitter
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | | | - Rebecca Troisi
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD
| | | | - Andrea L Cheville
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Robert N Hoover
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Abstract
Diethylstilbestrol (DES) is a synthetic estrogen given to pregnant women to prevent miscarriages and preterm labor; the drug was used between 1941 and 1971 in the United States and into the 1980s in other countries. DES exposure is associated with significant long-term health effects, including increased risk for breast cancer, cervical and vaginal clear cell adenocarcinoma, reproductive tract abnormalities, infertility, poor pregnancy outcomes, and early menopause. This article reviews the potential health risks associated with DES exposure, how to assess which patients are at risk, and management recommendations for patients exposed to DES.
Collapse
|
31
|
LaPlante CD, Bansal R, Dunphy KA, Jerry DJ, Vandenberg LN. Oxybenzone Alters Mammary Gland Morphology in Mice Exposed During Pregnancy and Lactation. J Endocr Soc 2018; 2:903-921. [PMID: 30057971 PMCID: PMC6057512 DOI: 10.1210/js.2018-00024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
Hormones and endocrine-disrupting chemicals are generally thought to have permanent “organizational” effects when exposures occur during development but not adulthood. Yet, an increasing number of studies have shown that pregnant females are disrupted by endocrine-disrupting chemical exposures, with some effects that are permanent. Here, we examined the long-term effects of exposure to oxybenzone, an estrogenic chemical found in sunscreen and personal care products, on the morphology of the mammary gland in mice exposed during pregnancy and lactation. Female mice were exposed to vehicle or 30, 212, or 3000 µg oxybenzone/kg/d, from pregnancy day 0 until weaning. A nulliparous group, receiving vehicle treatment, was also evaluated. Mammary glands were collected 5 weeks after involution for whole-mount, histological, immunohistochemical, and molecular analyses. Exposure to 3000 µg oxybenzone/kg/d induced permanent changes to ductal density that was significantly different from both the nulliparous and vehicle groups. The two highest doses of oxybenzone similarly induced an intermediate phenotype for expression of progesterone receptor. A monotonic, dose-dependent increase in cell proliferation was also observed in the oxybenzone-treated females, becoming statistically significant at the highest dose. Finally, oxybenzone exposure induced an intermediate phenotype for Esr1 expression in all oxybenzone-treated groups. These data suggest that oxybenzone, at doses relevant to human exposures, produces long-lasting alterations to mammary gland morphology and function. Further studies are needed to determine if exposure to this chemical during pregnancy and lactation will interfere with the known protection that pregnancy provides against breast cancer.
Collapse
Affiliation(s)
- Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Karen A Dunphy
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - D Joseph Jerry
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
32
|
Xin F, Smith LM, Susiarjo M, Bartolomei MS, Jepsen KJ. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy002. [PMID: 29732168 PMCID: PMC5920333 DOI: 10.1093/eep/dvy002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals.
Collapse
Affiliation(s)
- Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Smith
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY14642, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Fontelles CC, da Cruz RS, Hilakivi-Clarke L, de Assis S, Ong TP. Developmental Origins of Breast Cancer: A Paternal Perspective. Methods Mol Biol 2018; 1735:91-103. [PMID: 29380308 DOI: 10.1007/978-1-4939-7614-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The developmental origins of breast cancer have been considered predominantly from a maternal perspective. Although accumulating evidence suggests a paternal programming effect on metabolic diseases, the potential impact of fathers' experiences on their daughters' breast cancer risk has received less attention. In this chapter, we focus on the developmental origins of breast cancer and examine the emerging evidence for a role of fathers' experiences.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Sonia de Assis
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
34
|
Yip KY, Wan MLY, Wong AST, Korach KS, El-Nezami H. Combined low-dose zearalenone and aflatoxin B1 on cell growth and cell-cycle progression in breast cancer MCF-7 cells. Toxicol Lett 2017; 281:139-151. [PMID: 28965971 DOI: 10.1016/j.toxlet.2017.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) has long been recognized as a xenoestrogen, while the endocrine disrupting effects of aflatoxin B1 (AFB1) have been identified recently. Due to co-occurrence and endocrine disrupting potentials of ZEA and AFB1, it was hypothesized that co-exposure to ZEA and AFB1 might affect breast cancer cell growth. Consequently, the aim of this study was to evaluate the combined effects of ZEA and AFB1 (1nM-100nM) on cell growth and cell cycle progression, using a human breast cancer cell line MCF-7. Our results showed that ZEA and AFB1 produced significant interactive effects on cell growth, DNA synthesis and cell cycle progression. While ZEA promoted growth, DNA synthesis and cell cycle progression, AFB1 was cytotoxic and counteracted the effects of ZEA. ZEA altered the expression of several breast cancer related genes, whereas AFB1 had minimal effects on gene expression. With the use of specific inhibitors, ERα, GPER and MAPK pathways were found to be responsible for ZEA's effects on cell growth; while MAPK pathways might be involved in cytotoxic effects by AFB1. This study is first to report the effects of co-exposure of ZEA and AFB1 on breast cancer cell growth, possibly through ER dependent pathway. This suggested that endocrine-disrupting mycotoxins that co-occur in human food can interact and influence human health. Future work on interactive effects of endocrine-disrupting mycotoxins or other xenoestrogens is warranted, which will contribute to improved risk assessments.
Collapse
Affiliation(s)
- Ka Yiu Yip
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Alice Sze Tsai Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Kenneth S Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
35
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
36
|
Tournaire M, Devouche É, Epelboin S. Answer to UCB letter to the editor concerning “cancer risk in women exposed to diethylstilbestrol in utero”. Therapie 2017; 72:514-515. [DOI: 10.1016/j.therap.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
|
37
|
Al Jishi T, Sergi C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod Toxicol 2017; 71:71-77. [DOI: 10.1016/j.reprotox.2017.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
|
38
|
White AJ, D'Aloisio AA, Nichols HB, DeRoo LA, Sandler DP. Breast cancer and exposure to tobacco smoke during potential windows of susceptibility. Cancer Causes Control 2017; 28:667-675. [PMID: 28523418 DOI: 10.1007/s10552-017-0903-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE An association between smoking and breast cancer is unresolved, although a higher risk from exposure during windows of susceptibility has been proposed. The objective of this prospective study was to evaluate the association between tobacco smoke and breast cancer with a focus on timing of exposure, especially during early life. METHODS Sister study participants (n = 50,884) aged 35-74 were enrolled from 2003 to 2009. Women in the United States and Puerto Rico were eligible if they were breast cancer-free but had a sister with breast cancer. Participants completed questionnaires on smoking and environmental tobacco smoke (ETS) exposure. Cox regression was used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (95% CIs) for breast cancer risk. RESULTS During follow-up (mean = 6.4 years), 1,843 invasive breast cancers were diagnosed. Neither active smoking nor adult ETS was associated with breast cancer risk. However, never smoking women exposed to ETS throughout their childhood had a 17% higher risk of breast cancer (95% CI 1.00-1.36) relative to those with no exposure. In utero ETS exposure was also associated with breast cancer (HR = 1.16, 95% CI 1.01-1.32) and the HR was most elevated for women born in earlier birth cohorts (<1940, HR = 1.44, 95% CI 1.02-2.02; 1940-1949, HR = 1.28, 95% CI 1.01-1.62). CONCLUSION In utero ETS and ETS exposure during childhood and adolescence were associated with increased risk of breast cancer and associations varied by birth cohort.
Collapse
Affiliation(s)
- Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA.
| | - Aimee A D'Aloisio
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA.,Social & Scientific Systems, Inc., Durham, NC, 27703, USA
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lisa A DeRoo
- Department of Global Public Health & Primary Care, University of Bergen, Bergen, Norway
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA
| |
Collapse
|
39
|
Xu Z, Liu J, Wu X, Huang B, Pan X. Nonmonotonic responses to low doses of xenoestrogens: A review. ENVIRONMENTAL RESEARCH 2017; 155:199-207. [PMID: 28231547 DOI: 10.1016/j.envres.2017.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 05/21/2023]
Abstract
Xenoestrogens (XEs) mimic or block the synthesis, metabolism and transport of normal endogenous hormones, disturbing normal endocrine function. The available data on the nonmonotonic estrogenic effects of low doses of many XEs are reviewed, covering in vitro, in vivo and epidemiological studies. The observed nonmonotonic patterns of the dose-response curves are discussed, along with possible underlying mechanisms. This review is intended to provide guidance for harm predication and to suggest prevention measures.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xinhao Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
40
|
Safe S, Li X. Endocrine disruption: Relevance of experimental studies in female animals to human studies. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhang D, Zhou L, Lei Y, Zhou Z, Zhou J, Chen S. Investigation of diethylstilbestrol residue level in human urine samples by a specific monoclonal antibody. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7042-7050. [PMID: 28092005 DOI: 10.1007/s11356-017-8405-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Diethylstilbestrol (DES) is used as a kind of animal feed additive and affects people's health through the food chain. The purpose of this study is to detect the residue level of DES in 576 human urine samples directly. DES-BSA was used to immunize Balb/c mice. The monoclonal antibody was produced by hybridoma that was screened through cell fusion techniques. Finally, we developed the indirect competitive ELISA method to analyze 576 human urine samples from Zhejiang Province, China. The IC50 of this method was 3.33 ng/mL. The LOD and LOQ were 0.16 and 0.54 ng/mL. Linear range of the standard curve was from LOD to 12.50 ng/mL. There was no cross-reactivity with two kinds of estrogens and two structural analogs with DES. Five hundred seventy-six urine samples were analyzed by the indirect competitive ELISA method, and the detection rate was 98.78%. The mean concentration and geometric mean were 4.70 and 3.50 ng/mL. The indirect competitive ELISA method based on monoclonal antibody was sensitive and reliable for the detection of DES in human urine samples. The results warned us to pay more attention to human health and food safety.
Collapse
Affiliation(s)
- Dai Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Lifang Zhou
- Hangzhou EPIE Bio-detection Technology Limited, Hangzhou, 310051, China
| | - Yajing Lei
- Hangzhou EPIE Bio-detection Technology Limited, Hangzhou, 310051, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Jie Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China.
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
42
|
Perinatal Exposure to Bisphenol A or Diethylstilbestrol Increases the Susceptibility to Develop Mammary Gland Lesions After Estrogen Replacement Therapy in Middle-Aged Rats. Discov Oncol 2017; 8:78-89. [DOI: 10.1007/s12672-016-0282-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022] Open
|
43
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
44
|
Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer. Reprod Biol 2016; 16:243-254. [PMID: 27692877 DOI: 10.1016/j.repbio.2016.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes).
Collapse
|
45
|
Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: A review on the major concerns. ACTA ACUST UNITED AC 2016; 108:224-242. [PMID: 27653964 DOI: 10.1002/bdrc.21137] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
There is a widespread exposure of general population, including pregnant women and developing fetuses, to the endocrine disrupting chemicals (EDCs). These chemicals have been reported to be present in urine, blood serum, breast milk, and amniotic fluid. Endocrine disruptions induced by environmental toxicants have placed a heavy burden on society, since environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life-a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical, and cellular events. Humans may encounter EDCs daily and during all stages of life, from conception and fetal development through adulthood and senescence. Nevertheless, prenatal and early postnatal windows are the most critical for proper development, due to rapid changes in system growth. Although there are still gaps in our knowledge, currently available data support the urgent need for health and environmental policies aimed at protecting the public and, in particular, the developing fetus and women of reproductive age. Birth Defects Research (Part C) 108:224-242, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddalena Mallozzi
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Giulia Bordi
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Chiara Garo
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Donatella Caserta
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza.
| |
Collapse
|
46
|
Hilakivi-Clarke L, Wärri A, Bouker KB, Zhang X, Cook KL, Jin L, Zwart A, Nguyen N, Hu R, Cruz MI, de Assis S, Wang X, Xuan J, Wang Y, Wehrenberg B, Clarke R. Effects of In Utero Exposure to Ethinyl Estradiol on Tamoxifen Resistance and Breast Cancer Recurrence in a Preclinical Model. J Natl Cancer Inst 2016; 109:2905688. [PMID: 27609189 DOI: 10.1093/jnci/djw188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background Responses to endocrine therapies vary among patients with estrogen receptor (ER+) breast cancer. We studied whether in utero exposure to endocrine-disrupting compounds might explain these variations. Methods We describe a novel ER+ breast cancer model to study de novo and acquired tamoxifen (TAM) resistance. Pregnant Sprague Dawley rats were exposed to 0 or 0.1 ppm ethinyl estradiol (EE2), and the response of 9,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors to 15 mg/kg TAM, with (n = 17 tumors in the controls and n = 20 tumors in EE2 offspring) or without 1.2 g/kg valproic acid and 5 mg/kg hydralazine (n = 24 tumors in the controls and n = 32 tumors in EE2 offspring) in the female offspring, was assessed. One-sided Chi2 tests were used to calculate P values. Comparisons of differentially expressed genes between mammary tumors in in utero EE2-exposed and control rats, and between anti-estrogen-resistant LCC9 and -sensitive LCC1 human breast cancer cells, were also performed. Results In our preclinical model, 54.2% of mammary tumors in the control rats exhibited a complete response to TAM, of which 23.1% acquired resistance with continued anti-estrogen treatment and recurred. Mammary tumors in the EE2 offspring were statistically significantly less likely to respond to TAM (P = .047) and recur (P = .007). In the EE2 offspring, but not in controls, adding valproic acid and hydralazine to TAM prevented recurrence (P < .001). Three downregulated and hypermethylated genes (KLF4, LGALS3, MICB) and one upregulated gene (ETV4) were identified in EE2 tumors and LCC9 breast cancer cells, and valproic acid and hydralazine normalized the altered expression of all four genes. Conclusions Resistance to TAM may be preprogrammed by in utero exposure to high estrogen levels and mediated through reversible epigenetic alterations in genes associated with epithelial-mesenchymal transition and tumor immune responses.
Collapse
Affiliation(s)
| | - Anni Wärri
- Department of Oncology, Georgetown University, Washington, DC.,Institute of Biomedicine, University of Turku Medical Faculty, Turku, Finland
| | - Kerrie B Bouker
- Department of Oncology, Georgetown University, Washington, DC
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, DC
| | - Katherine L Cook
- Department of Oncology, Georgetown University, Washington, DC.,Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - Lu Jin
- Department of Oncology, Georgetown University, Washington, DC
| | - Alan Zwart
- Department of Oncology, Georgetown University, Washington, DC
| | - Nguyen Nguyen
- Department of Oncology, Georgetown University, Washington, DC
| | - Rong Hu
- Department of Oncology, Georgetown University, Washington, DC
| | - M Idalia Cruz
- Department of Oncology, Georgetown University, Washington, DC
| | - Sonia de Assis
- Department of Oncology, Georgetown University, Washington, DC
| | - Xiao Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | - Jason Xuan
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | | | - Robert Clarke
- Department of Oncology, Georgetown University, Washington, DC
| |
Collapse
|
47
|
Developmental Exposure to Environmental Chemicals and Metabolic Changes in Children. Curr Probl Pediatr Adolesc Health Care 2016; 46:255-85. [PMID: 27401018 DOI: 10.1016/j.cppeds.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of childhood obesity, type 2 diabetes, and other forms of metabolic disease have been rising over the past several decades. Although diet and physical activity play important roles in these trends, other environmental factors also may contribute to this significant public health issue. In this article, we discuss the possibility that widespread exposure to endocrine-disrupting chemicals (EDCs) may contribute to the development of metabolic diseases in children. We summarize the epidemiological evidence on exposure to environmental chemicals during early development and metabolic outcomes in infants and children. Prenatal exposure to EDCs, particularly the persistent organic pollutant DDT and its metabolite DDE, may influence growth patterns during infancy and childhood. The altered growth patterns associated with EDCs vary according to exposure level, sex, exposure timing, pubertal status, and age at which growth is measured. Early exposure to air pollutants also is linked to impaired metabolism in infants and children. As a result of these and other studies, professional health provider societies have called for a reduction in environmental chemical exposures. We summarize the resources available to health care providers to counsel patients on how to reduce chemical exposures. We conclude with a discussion of environmental policies that address chemical exposures and ultimately aim to improve public health.
Collapse
|
48
|
Sieppi E, Vähäkangas K, Rautio A, Ietta F, Paulesu L, Myllynen P. The xenoestrogens, bisphenol A and para-nonylphenol, decrease the expression of the ABCG2 transporter protein in human term placental explant cultures. Mol Cell Endocrinol 2016; 429:41-9. [PMID: 27036933 DOI: 10.1016/j.mce.2016.03.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/25/2016] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
Many endogenous and xenobiotic compounds are substrates and regulators of human placental ABC transporters. ABCG2 is protecting fetus against foreign chemicals. Environmental xenoestrogens, like bisphenol A (BPA) and p-nonylphenol (p-NP), mimic natural estrogens and can affect hormonal systems. Effects of BPA, p-NP, DES (diethylstilbestrol) and estradiol (E2), on ABCG2 expression were studied using human first trimester and term placental explants. Role of estrogen receptors (ER) in the effects of chemicals was studied by ER antagonist. Term placenta expressed less ABCG2 protein. In term placentas BPA (p < 0.05), p-NP (p < 0.01) and E2 (p < 0.05) decreased the ABCG2 protein expression after 48 h exposure while after 24 h exposure, only E2 decreased the expression (p < 0.05). The chemicals did not affect ABCG2 in first trimester placentas. The ER antagonist affected differently the responses of chemicals. In conclusion, environmental xenoestrogens downregulate placental ABCG2 protein expression depending on gestational age.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Benzhydryl Compounds/toxicity
- Cells, Cultured
- Chorionic Villi/drug effects
- Chorionic Villi/metabolism
- Diethylstilbestrol/toxicity
- Down-Regulation/drug effects
- Estrogens/toxicity
- Female
- Humans
- Phenols/toxicity
- Placenta/drug effects
- Placenta/metabolism
- Pregnancy
- Pregnancy Trimester, First/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
Collapse
Affiliation(s)
- E Sieppi
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Centre for Arctic Medicine, Thule Institute, University of Oulu, P.O. Box 7300, 90014, University of Oulu, Oulu, Finland.
| | - K Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - A Rautio
- Centre for Arctic Medicine, Thule Institute, University of Oulu, P.O. Box 7300, 90014, University of Oulu, Oulu, Finland.
| | - F Ietta
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - L Paulesu
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - P Myllynen
- Centre for Arctic Medicine, Thule Institute, University of Oulu, P.O. Box 7300, 90014, University of Oulu, Oulu, Finland; Nordlab Oulu, P.O. Box 500, 90029, OYS, Oulu, Finland.
| |
Collapse
|
49
|
Borrow AP, Stranahan AM, Suchecki D, Yunes R. Neuroendocrine Regulation of Anxiety: Beyond the Hypothalamic-Pituitary-Adrenal Axis. J Neuroendocrinol 2016; 28. [PMID: 27318180 DOI: 10.1111/jne.12403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
The central nervous system regulates and responds to endocrine signals, and this reciprocal relationship determines emotional processing and behavioural anxiety. Although the hypothalamic-pituitary-adrenal (HPA) axis remains the best-characterised system for this relationship, other steroid and peptide hormones are increasingly recognised for their effects on anxiety-like behaviour and reward. The present review examines recent developments related to the role of a number of different hormones in anxiety, including pregnane neurosteroids, gut peptides, neuropeptides and hormonal signals derived from fatty acids. Findings from both basic and clinical studies suggest that these alternative systems may complement or occlude stress-induced changes in anxiety and anxiety-like behaviour. By broadening the scope of mechanisms for depression and anxiety, it may be possible to develop novel strategies to attenuate stress-related psychiatric conditions. The targets for these potential therapies, as discussed in this review, encompass multiple circuits and systems, including those outside of the HPA axis.
Collapse
Affiliation(s)
- A P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - D Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R Yunes
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Mendoza, Mendoza, Argentina
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
50
|
Fontelles CC, Carney E, Clarke J, Nguyen NM, Yin C, Jin L, Cruz MI, Ong TP, Hilakivi-Clarke L, de Assis S. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci Rep 2016; 6:28602. [PMID: 27339599 PMCID: PMC4919621 DOI: 10.1038/srep28602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
While many studies have shown that maternal weight and nutrition in pregnancy affects offspring's breast cancer risk, no studies have investigated the impact of paternal body weight on daughters' risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father's germ-line and modulate their daughters' birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm. Daughters of overweight fathers had higher rates of carcinogen-induced mammary tumors which were associated with delayed mammary gland development and alterations in mammary miRNA expression. The hypoxia signaling pathway, targeted by miRNAs down-regulated in daughters of overweight fathers, was activated in their mammary tissues and tumors. This study provides evidence that paternal peri-conceptional body weight may affect daughters' mammary development and breast cancer risk and warrants further studies in other animal models and humans.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Elissa Carney
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Johan Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Nguyen M Nguyen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Chao Yin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Thomas Prates Ong
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Leena Hilakivi-Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|