1
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
2
|
Samus M, Rot A. Atypical chemokine receptors in cancer. Cytokine 2024; 176:156504. [PMID: 38266462 DOI: 10.1016/j.cyto.2024.156504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Atypical chemokine receptors (ACKRs) are a group of seven-transmembrane spanning serpentine receptors that are structurally homologous to classical G-protein-coupled receptors and bind cognate chemokines with high affinities but do not signal via G-proteins or mediate cell migration. However, ACKRs efficiently modify the availability and function of chemokines in defined microanatomical environments, can signal via intracellular effectors other than G-proteins, and play complex roles in physiology and disease, including in cancer. In this review, we summarize the findings on the diverse contributions of individual ACKRs to cancer development, progression, and tumor-host interactions. We discuss how changes in ACKR expression within tumor affect cancer growth, tumor vascularization, leukocyte infiltration, and metastasis formation, ultimately resulting in differential disease outcomes. Across many studies, ACKR3 expression was shown to support tumor growth and dissemination, whereas ACKR1, ACKR2, and ACKR4 in tumors were more likely to contribute to tumor suppression. With few notable exceptions, the insights on molecular and cellular mechanisms of ACKRs activities in cancer remain sparse, and the intricacies of their involvement are not fully appreciated. This is particularly true for ACKR1, ACKR2 and ACKR4. A better understanding of how ACKR expression and functions impact cancer should pave the way for their future targeting by new and effective therapies.
Collapse
Affiliation(s)
- Maryna Samus
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich 80336, Germany.
| |
Collapse
|
3
|
Jang BY, Shin MK, Han DH, Sung JS. Curcumin Disrupts a Positive Feedback Loop between ADMSCs and Cancer Cells in the Breast Tumor Microenvironment via the CXCL12/CXCR4 Axis. Pharmaceutics 2023; 15:2627. [PMID: 38004606 PMCID: PMC10675183 DOI: 10.3390/pharmaceutics15112627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue has a significant impact on breast cancer initiation and progression owing to its substantial proportion in the breast. Adipose-derived mesenchymal stem cells (ADMSCs) are major players in the breast tumor microenvironment (TME) as they interact with cancer cells. The intricate interaction between ADMSCs and cancer cells not only drives the differentiation of ADMSCs into cancer-associated fibroblasts (CAFs) but also the metastasis of cancer cells, which is attributed to the CXCL12/CXCR4 axis. We investigated the effects of curcumin, a flavonoid known for CXCL12/CXCR4 axis inhibition, on breast TME by analyzing whether it can disrupt the ADMSC-cancer positive loop. Using MCF7 breast cancer cell-derived conditioned medium (MCF7-CM), we induced ADMSC transformation and verified that curcumin diminished the phenotypic change, inhibiting CAF marker expression. Additionally, curcumin suppressed the CXCL12/CXCR4 axis and its downstream signaling both in ADMSCs and MCF7 cells. The CM from ADMSCs, whose ADMSC-to-CAF transformation was repressed by the curcumin treatment, inhibited the positive feedback loop between ADMSCs and MCF7 as well as epithelial-mesenchymal transition in MCF7. Our study showed that curcumin is a potent anti-cancer agent that can remodel the breast TME, thereby restricting the ADMSC-cancer positive feedback loop associated with the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
| | | | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (B.-Y.J.); (M.K.S.); (D.-H.H.)
| |
Collapse
|
4
|
Wei C. The multifaceted roles of matrix metalloproteinases in lung cancer. Front Oncol 2023; 13:1195426. [PMID: 37766868 PMCID: PMC10520958 DOI: 10.3389/fonc.2023.1195426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Though the matrix metalloproteinases (MMPs) are widely investigated in lung cancer (LC), however, almost no review systematically clarify their multi-faced roles in LC. Methods We investigated the expression of MMPs and their effects on survival of patients with LC, the resistance mechanisms of MMPs in anti-tumor therapy, the regulatory networks of MMPs involved, the function of MMPs inducing CSCLs, MMPs-related tumor immunity, and effects of MMP polymorphisms on risk of LC. Results High expression of MMPs was mainly related to poor survival, high clinical stages and cancer metastasis. Role of MMPs in LC are multi-faced. MMPs are involved in drug resistance, induced CSCLs, participated in tumor immunity. Besides, MMPs polymorphisms may increase risk of LC. Conclusions MMPs might be promising targets to restore the anti-tumor immune response and enhance the killing function of nature immune cells in LC.
Collapse
Affiliation(s)
- Cui Wei
- Department of Emergency, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
5
|
Gritsina G, Fong KW, Lu X, Lin Z, Xie W, Agarwal S, Lin D, Schiltz GE, Beltran H, Corey E, Morrissey C, Wang Y, Zhao JC, Hussain M, Yu J. Chemokine receptor CXCR7 activates Aurora Kinase A and promotes neuroendocrine prostate cancer growth. J Clin Invest 2023; 133:e166248. [PMID: 37347559 PMCID: PMC10378179 DOI: 10.1172/jci166248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
CXCR7 is an atypical chemokine receptor that recruits β-arrestin (ARRB2) and internalizes into clathrin-coated intracellular vesicles where the complex acts as a scaffold for cytoplasmic kinase assembly and signal transduction. Here, we report that CXCR7 was elevated in the majority of prostate cancer (PCa) cases with neuroendocrine features (NEPC). CXCR7 markedly induced mitotic spindle and cell cycle gene expression. Mechanistically, we identified Aurora Kinase A (AURKA), a key regulator of mitosis, as a novel target that was bound and activated by the CXCR7-ARRB2 complex. CXCR7 interacted with proteins associated with microtubules and golgi, and, as such, the CXCR7-ARRB2-containing vesicles trafficked along the microtubules to the pericentrosomal golgi apparatus, where the complex interacted with AURKA. Accordingly, CXCR7 promoted PCa cell proliferation and tumor growth, which was mitigated by AURKA inhibition. In summary, our study reveals a critical role of CXCR7-ARRB2 in interacting and activating AURKA, which can be targeted by AURKA inhibitors to benefit a subset of patients with NEPC.
Collapse
Affiliation(s)
- Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhuoyuan Lin
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqing Xie
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shivani Agarwal
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gary E. Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Human Genetics and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maha Hussain
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Human Genetics and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Łukaszewicz-Zając M, Zajkowska M, Pączek S, Kulczyńska-Przybik A, Safiejko K, Juchimiuk M, Kozłowski L, Mroczko B. The Significance of CXCL1 and CXCR1 as Potential Biomarkers of Colorectal Cancer. Biomedicines 2023; 11:1933. [PMID: 37509572 PMCID: PMC10377230 DOI: 10.3390/biomedicines11071933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The CXCL1/CXCR2 and CXCL8-CXCR1/CXCR2 axes are under intensive investigation as they appear to regulate the progression and invasion of colorectal cancer (CRC). Growing evidence demonstrates the elevated expression of these proteins in CRC. However, a majority of relevant studies have been performed on CRC tissues using immunohistochemical techniques. Our study is the first to evaluate the diagnostic significance of serum CXCL1 and CXCR1 levels in CRC patients in comparison to well-established tumor markers, such as the carcinoembryonic antigen (CEA), and markers of inflammation, such as C-reactive protein (CRP). Thus, the aim of our study was to assess whether circulating serum levels of CXCL1 and CXCR1 might be candidates for novel biomarkers in the diagnosis and progression of CRC. The study was performed on 76 subjects, including patients with CRC and healthy volunteers as a control group. Serum concentrations of CXCL1, CXCR1, and the classical tumor marker (CEA) were measured using immunoenzyme assays, while CRP levels were assessed with the immunoturbidimetric method. Serum CXCL1 levels were statistically significantly increased in CRC patients when compared to healthy subjects, and similar results were found for CEA and CRP levels. The percentage of elevated concentrations of CXCL1 and CXCR1 was higher than that of the classical tumor biomarker and increased in the combined measurement of these proteins with CEA. In addition, among all proteins tested, serum CXCL1 seems to be the best indicator in the differentiation between CRC patients with nodal involvement and patients without the presence of lymph node metastasis. Our preliminary results indicate the role of serum CXCL1 and CXCR1 in the diagnosis of CRC, particularly in the combined measurement with CEA.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
| | - Agnieszka Kulczyńska-Przybik
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | | | | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
7
|
Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 Axis in Cancer: from Mechanisms to Clinical Applications. Int J Biol Sci 2023; 19:3341-3359. [PMID: 37497001 PMCID: PMC10367567 DOI: 10.7150/ijbs.82317] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 07/28/2023] Open
Abstract
Cancer is a multi-step disease caused by the accumulation of genetic mutations and/or epigenetic changes, and is the biggest challenge around the world. Cytokines, including chemokines, exhibit expression changes and disorders in all human cancers. These cytokine abnormalities can disrupt homeostasis and immune function, and make outstanding contributions to various stages of cancer development such as invasion, metastasis, and angiogenesis. Chemokines are a superfamily of small molecule chemoattractive cytokines that mediate a variety of cellular functions. Importantly, the interactions of chemokine members CXCL12 and its receptors CXCR4 and CXCR7 have a broad impact on tumor cell proliferation, survival, angiogenesis, metastasis, and tumor microenvironment, and thus participate in the onset and development of many cancers including leukemia, breast cancer, lung cancer, prostate cancer and multiple myeloma. Therefore, this review aims to summarize the latest research progress and future challenges regarding the role of CXCL12-CXCR4/CXCR7 signaling axis in cancer, and highlights the potential of CXCL12-CXCR4/CXCR7 as a biomarker or therapeutic target for cancer, providing essential strategies for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Yaru Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayan Li
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Haiying Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Yanqing Liu
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huanle Yan
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yifan Tian
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Shulin Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Weng J, Huang Z, Li Q, Huang Y, Chen S. A novel prognostic signature of chemokines for survival and immune infiltration in kidney renal clear cell carcinoma. Int J Med Sci 2023; 20:1046-1059. [PMID: 37484803 PMCID: PMC10357446 DOI: 10.7150/ijms.84940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Objective: Studies have revealed the alteration of chemokines in the tumour microenvironment in renal clear cell carcinoma (KIRC), which is closely related with immune infiltration and the prognosis of patients with KIRC. This research aims to comprehensively clarify the signature of chemokines in KIRC and the correlation between chemokines and immune infiltration in the TME of KIRC. Methods: The chemokine expression in KIRC were investigated by using multiple multiomics and bioinformatics tools. Hub-chemokines that were significantly related with the cancer stage and survival were identified. The role of hub-chemokines in the tumor microenvironment of KIRC was further assessed by using enrichment analysis, cancer-related pathway and immune infiltration analysis. Results: A total of 20 chemokines were significantly elevated in KIRC. Based on the correlation with KIRC stages and survival, 13 hub-chemokines were identified. Among the hub-chemokines, the high expression of CXCL2, CXCL5 and CXCL13 were related with worse survival of KIRC patients. The hub-chemokines were associated with the activation of multiple cancer-related signaling pathways. The functions of hub-chemokines were mainly enriched in chemokine-mediated signaling pathway, immunocytes chemotaxis and chemokine activity. CCL4, CCL5, CXCL9, CXCL10 and CXCL11 were related with various types immune infiltration such as CD8+T cell, neutrophil, B cell and dendritic cell. Using the hub-chemokine CXCL10, multiple immune checkpoints including LAG3, CTLA-4 and PD-1 were identified. Conclusion: Our research sheds light on the chemokines and their important role in promoting the tumor microenvironment of KIRC. The findings could provide more data about the prognosis prediction and treatment targets for KIRC.
Collapse
Affiliation(s)
- Jianming Weng
- ✉ Corresponding author: Jianming Weng, E-mail: ; Department of Pathology, ZhangZhou Affiliated Hospital of FuJian Medical University, Zhangzhou city, Fujian Province 363000, China
| | | | | | | | | |
Collapse
|
9
|
Adinew GM, Messeha S, Taka E, Mochona B, Redda KK, Soliman KFA. Thymoquinone Inhibition of Chemokines in TNF-α-Induced Inflammatory and Metastatic Effects in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:9878. [PMID: 37373025 PMCID: PMC10298461 DOI: 10.3390/ijms24129878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The lack of identifiable molecular targets or biomarkers hinders the development of treatment options in triple-negative breast cancer (TNBC). However, natural products offer a promising alternative by targeting inflammatory chemokines in the tumor microenvironment (TME). Chemokines are crucial in promoting breast cancer growth and metastasis and correlate to the altered inflammatory process. In the present study, we evaluated the anti-inflammatory and antimetastatic effects of the natural product thymoquinone (TQ) on TNF-α-stimulated TNBC cells (MDA-MB-231 and MDA-MB-468) to study the cytotoxic, antiproliferative, anticolony, antimigratory, and antichemokine effects using enzyme-linked immunosorbent assays, quantitative real-time reverse transcription-polymerase chain reactions, and Western blots were used in sequence to validate the microarray results further. Four downregulated inflammatory cytokines were identified, CCL2 and CCL20 in MDA-MB-468 cells and CCL3 and CCL4 in MDA-MB-231 cells. Furthermore, when TNF-α-stimulated MDA-MB-231 cells were compared with MDA-MB-468 cells, the two cells were sensitive to TQ's antichemokine and antimetastatic effect in preventing cell migration. It was concluded from this investigation that genetically different cell lines may respond to TQ differently, as TQ targets CCL3 and CCL4 in MDA-MB-231 cells and CCL2 and CCL20 in MDA-MB-468 cells. Therefore, the results indicate that TQ may be recommended as a component of the therapeutic strategy for TNBC treatment. These outcomes stem from the compound's capacity to suppress the chemokine. Even though these findings support the usage of TQ as part of a therapy strategy for TNBC associated with the identified chemokine dysregulations, additional in vivo studies are needed to confirm these in vitro results.
Collapse
Affiliation(s)
- Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Bereket Mochona
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Kinfe K. Redda
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| |
Collapse
|
10
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
11
|
Zhao X, Liu J, Jin D, Ren C, Yang L, Zhu Y, Huang C, Ding L, Wu Z, Shen K, Zhang Z, Chen H, Wang N. EphA2 Promotes the Development of Cervical Cancer through the CXCL11/PD-L1 Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4886907. [PMID: 36478746 PMCID: PMC9722304 DOI: 10.1155/2022/4886907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 10/29/2023]
Abstract
Erythropoietin-producing hepatoma receptor A2 (EphA2), receptor tyrosine kinase, the most widespread member of the largest receptor tyrosine kinase family, plays a critical role in physiological and pathological conditions. In recent years, the role of EphA2 in the occurrence and development of cancer has become a research hotspot and is considered a promising potential target. Our previous studies have shown that EphA2 has an indisputable cancer-promoting role in cervical cancer, but its related mechanism requires further research. In this study, high-throughput sequencing was performed on EphA2 knockdown cervical cancer cells and the control group. An analysis of differentially expressed genes revealed that EphA2 may exert its cancer-promoting effect through C-X-C motif chemokine ligand 11 (CXCL11). In addition, we found that EphA2 could further regulate programmed cell death ligand 1 (PD-L1) through CXCL11. This has also been further demonstrated in in vivo experiments. Our study demonstrated that EphA2 plays a tumor-promoting role in cervical carcinoma through the CXCL11/PD-L1 pathway, providing new guidance for the targeted therapy and combination therapy of cervical carcinoma.
Collapse
Affiliation(s)
- Xinyue Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Cervical Disease, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaxi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongdong Jin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Cervical Disease, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Cervical Disease, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changhao Huang
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, China
| | - Leilei Ding
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zimeng Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen'an Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, Chand HS, Santamaria-Barria JA, Batra SK, Nasser MW. Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Semin Cancer Biol 2022; 86:914-930. [PMID: 34968667 PMCID: PMC9234104 DOI: 10.1016/j.semcancer.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023]
Abstract
Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
13
|
Hu LT, Deng WJ, Chu ZS, Sun L, Zhang CB, Lu SZ, Weng JR, Ren QS, Dong XY, Li WD, Li XB, Du YT, Li Y, Wang WQ. Comprehensive analysis of CXCR family members in lung adenocarcinoma with prognostic values. BMC Pulm Med 2022; 22:259. [PMID: 35768814 PMCID: PMC9245315 DOI: 10.1186/s12890-022-02051-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background The expression profiles and molecular mechanisms of CXC chemokine receptors (CXCRs) in Lung adenocarcinoma (LUAD) have been extensively explored. However, the comprehensive prognostic values of CXCR members in LUAD have not yet been clearly identified. Methods Multiple available datasets, including Oncomine datasets, the cancer genome atlas (TCGA), HPA platform, GeneMANIA platform, DAVID platform and the tumor immune estimation resource (TIMER) were used to detect the expression of CXCRs in LUAD, as well as elucidate the significance and value of novel CXCRs-associated genes and signaling pathways in LUAD.
Results The mRNA and/or protein expression of CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCR6 displayed predominantly decreased in LUAD tissues as compared to normal tissues. On the contrary, compared with the normal tissues, the expression of CXCR7 was significantly increased in LUAD tissues. Subsequently, we constructed a network including CXCR family members and their 20 related genes, and the related GO functions assay showed that CXCRs connected with these genes participated in the process of LUAD through several signal pathways including Chemokine signaling pathway, Cytokine-cytokine receptor interaction and Neuroactive ligand-receptor interaction. TCGA and Timer platform revealed that the mRNA expression of CXCR family members was significantly related to individual cancer stages, cancer subtypes, patient’s gender and the immune infiltration level. Finally, survival analysis showed that low mRNA expression levels of CXCR2 (HR = 0.661, and Log-rank P = 1.90e−02), CXCR3 (HR = 0.674, and Log-rank P = 1.00e−02), CXCR4 (HR = 0.65, and Log-rank P = 5.01e−03), CXCR5 (HR = 0.608, and Log-rank P = 4.80e−03) and CXCR6 (HR = 0.622, and Log-rank P = 1.85e−03) were significantly associated with shorter overall survival (OS), whereas high CXCR7 mRNA expression (HR = 1.604, and Log-rank P = 4.27e−03) was extremely related with shorter OS in patients.
Conclusion Our findings from public databases provided a unique insight into expression characteristics and prognostic values of CXCR members in LUAD, which would be benefit for the understanding of pathogenesis, diagnosis, prognosis prediction and targeted treatment in LUAD.
Collapse
Affiliation(s)
- Lian-Tao Hu
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Wen-Jun Deng
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Zhen-Sheng Chu
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Luo Sun
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Chun-Bin Zhang
- Department of Medical Technology, Collaborative Innovation Center for Translation Medical Testing and Application Technology Zhangzhou, Zhang Zhou Health Vocational College, Zhangzhou, 363000, Fujian Province, China
| | - Shi-Zhen Lu
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Jin-Ru Weng
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Qiao-Sheng Ren
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Xin-Yu Dong
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Wei-Dong Li
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Xue-Bin Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Yun-Ting Du
- Department of Laboratory, Cancer Hospital of China Medical University, Shenyang,, Liaoning Province, China
| | - Yue Li
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China. .,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.
| | - Wei-Qun Wang
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China. .,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
14
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
15
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
16
|
Mehraj U, Mushtaq U, Mir MA, Saleem A, Macha MA, Lone MN, Hamid A, Zargar MA, Ahmad SM, Wani NA. Chemokines in Triple-Negative Breast Cancer Heterogeneity: New Challenges for Clinical Implications. Semin Cancer Biol 2022; 86:769-783. [PMID: 35278636 DOI: 10.1016/j.semcancer.2022.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15% to 20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the door for developing difficult-to-treat TNBC treatment options.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Umer Mushtaq
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Manzoor A Mir
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Afnan Saleem
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology Awantipora, Jammu & Kashmir, India
| | - Mohammad Nadeem Lone
- Department of Chemistry, School of Physical & Chemical Sciences, Central University of Kashmir, Ganderbal J & K, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
17
|
Wu D, Liu X, Mu J, Yang J, Wu F, Zhou H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022; 12:biom12030392. [PMID: 35327584 PMCID: PMC8945446 DOI: 10.3390/biom12030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angiogenesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner. Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein markers, while simultaneously having unique transcriptional features, which makes the proteins expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-dependent target strategies were developed with the aim of either reducing the numbers of TAMs or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs associated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In this review, we systematically summarize these current studies to fully illustrate the TAM-associated protein targets and their inhibitors, and we highlight the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.
Collapse
Affiliation(s)
- Deyang Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| |
Collapse
|
18
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Joo M, Heo J, Kim S, Kim N, Jeon H, An Y, Song GY, Kim JM, Lee H. Decursin inhibits tumor progression in head and neck squamous cell carcinoma by downregulating CXCR7 expression in vitro. Oncol Rep 2021; 47:39. [PMID: 34958113 PMCID: PMC8759107 DOI: 10.3892/or.2021.8250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/06/2022] Open
Abstract
CXC chemokine receptor 7 (CXCR7) is frequently overexpressed in cancer and plays a significant role in tumor growth and metastasis. Consequently, inhibition of CXCR7 is important for treatment strategies. However, little is known concerning the biological role of CXCR7 and its underlying mechanisms in head and neck squamous cell carcinoma (HNSCC). The present study investigated the role of CXCR7 in HNSCC, as well as the effects of decursin, a pyranocoumarin compound isolated from Angelica gigas Nakai, on CXCR7 and its downstream signaling. Expression levels of CXCR7 in HNSCC cells were examined using flow cytometry, reverse transcriptase PCR, western blot analysis, and immunofluorescence. The effects of CXCR7 on cell proliferation, migration, and invasion were studied using CCK-8, gap closure, and transwell assays. The results revealed that decursin significantly reduced CXCR7 expression and inhibited cell proliferation, migration, and invasion of human HNSCC cell lines. In addition, decursin induced G0/G1 cell cycle arrest in CXCR7-overexpressing cells and decreased the levels of cyclin A, cyclin E, and CDK2. Furthermore, CXCR7 promoted cancer progression via the STAT3/c-Myc pathway in HNSCC; suppression of CXCR7 with decursin prevented this effect. These results suggest that CXCR7 promotes cancer progression through the STAT3/c-Myc pathway and that the natural compound decursin targets CXCR7 and may be valuable in the treatment of HNSCC.
Collapse
Affiliation(s)
- Mina Joo
- Department of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jong Heo
- College of Pharmacy, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Solbi Kim
- Department of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Nayoung Kim
- Department of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Heung Jeon
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Yueun An
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Hyo Lee
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
20
|
Shi A, Wang T, Jia M, Dong L, Shi H. Effects of SDF-1/CXCR7 on the Migration, Invasion and Epithelial-Mesenchymal Transition of Gastric Cancer Cells. Front Genet 2021; 12:760048. [PMID: 34858476 PMCID: PMC8630678 DOI: 10.3389/fgene.2021.760048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
We found that SDF-1/CXCR7 axis played an important role in the growth and proliferation of gastric cancer in the previous studies. The objectives of this study were to explore the effects of SDF-1/CXCR7 on the metastatic ability of gastric cancer cells and the possible mechanisms. CXCR7 expression in SGC-7901 gastric cancer cells was stably knocked down via lentiviral vectors. The cell migration and invasion abilities were detected by transwell migration and invasion assays. The expressions of matrix metalloproteinase 2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), epithelial-mesenchymal transition (EMT) markers and Akt phosphorylation were detected with real-time PCR and/or western blot. We found that SDF-1 markedly enhanced the migration and invasion abilities of SGC-7901 gastric cancer cells; CXCR7 knockdown inhibited these effects. SDF-1/CXCR7 increased the expressions of MMP-2, MMP-9 and VEGF. SDF-1/CXCR7 also downregulated E-cadherin expression but upregulated N-cadherin, vimentin and Snail expressions, suggesting that SDF-1/CXCR7 could promote the development of EMT in gastric cancer cells. Furthermore, SDF-1/CXCR7 could promote Akt phosphorylation. Our results indicated that SDF-1/CXCR7 enhanced the migration, invasion and EMT of gastric cancer cells and thus CXCR7 supression may be a strategy for inhibiting gastric cancer metastasis.
Collapse
Affiliation(s)
- Ameng Shi
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miao Jia
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Ahirwar DK, Charan M, Mishra S, Verma AK, Shilo K, Ramaswamy B, Ganju RK. Slit2 Inhibits Breast Cancer Metastasis by Activating M1-Like Phagocytic and Antifibrotic Macrophages. Cancer Res 2021; 81:5255-5267. [PMID: 34400395 DOI: 10.1158/0008-5472.can-20-3909] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are heterogeneous in nature and comprise antitumor M1-like (M1-TAM) or pro-tumor M2-like (M2-TAM) TAMs. M2-TAMs are a major component of stroma in breast tumors and enhance metastasis by reducing their phagocytic ability and increasing tumor fibrosis. However, the molecular mechanisms that regulate phenotypic plasticity of TAMs are not well known. Here we report a novel tumor suppressor Slit2 in breast cancer by regulating TAMs in the tumor microenvironment. Slit2 reduced the in vivo growth and metastasis of spontaneous and syngeneic mammary tumor and xenograft breast tumor models. Slit2 increased recruitment of M1-TAMs to the tumor and enhanced the ability of M1-TAMs to phagocytose tumor cells in vitro and in vivo. This Slit2-mediated increase in M1-TAM phagocytosis occurred via suppression of IL6. Slit2 was also shown to diminish fibrosis in breast cancer mouse models by increasing the expression of matrix metalloproteinase 13 in M1-TAMs. Analysis of patient samples showed high Slit2 expression strongly associated with better patient survival and inversely correlated with the abundance of CD163+ TAMs. Overall, these studies define the role of Slit2 in inhibiting metastasis by activating M1-TAMs and depleting tumor fibrosis. Furthermore, these findings suggest that Slit2 can be a promising immunotherapeutic agent to redirect TAMs to serve as tumor killers for aggressive and metastatic breast cancers. In addition, Slit2 expression along with CD163+ TAMs could be used as an improved prognostic biomarker in patients with breast cancer. SIGNIFICANCE: This study provides evidence that the antitumor effect of Slit2 in breast cancer occurs by activating the phagocytic activity of M1-like tumor-associated macrophages against tumor cells and diminishing fibrosis.
Collapse
Affiliation(s)
- Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Manish Charan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio. .,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
22
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
23
|
Wang Y, Liu Y, Xiang L, Han L, Yao X, Hu Y, Wu F. Cyclin D1b induces changes in the macrophage phenotype resulting in promotion of tumor metastasis. Exp Biol Med (Maywood) 2021; 246:2559-2569. [PMID: 34514884 DOI: 10.1177/15353702211038511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In breast cancer, tumor-associated macrophages with activated phenotypes promote tumor invasion and metastasis. The more aggressive mesenchymal-like breast cancer cells have a selective advantage, skewing macrophages toward the more immunosuppressive subtype. However, the mechanism underlying this shift is poorly understood. Cyclin D1b is a highly oncogenic variant of cyclin D1. Our previous study showed that non-metastatic epithelial-like breast cancer cells were highly metastatic in vivo when cyclin D1b was overexpressed. The present study determined whether cyclin D1b contributed to the interaction between breast cancer cells and macrophages. The results showed that cyclin D1b promoted the invasion of breast cancer cells in vitro. Specifically, through overexpression of cyclin D1b, breast cancer cells regulated the differentiation of macrophages into a more immunosuppressive M2 phenotype. Notably, tumor cells overexpressing cyclin D1b activated macrophages and induced migration of breast cancer cells. Further investigations indicated that SDF-1 mediated macrophage activation through breast cancer cells overexpressing cyclin D1b. These results revealed a previously unknown link between aggressive breast cancer cells and Tumor-associated macrophages, and highlighted the importance of cyclin D1b activity in the breast cancer microenvironment.
Collapse
Affiliation(s)
- Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yi Liu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lei Xiang
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lintao Han
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Yao
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yibing Hu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Fenghua Wu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| |
Collapse
|
24
|
Ashley RL, Runyan CL, Maestas MM, Trigo E, Silver G. Inhibition of the C-X-C Motif Chemokine 12 (CXCL12) and Its Receptor CXCR4 Reduces Utero-Placental Expression of the VEGF System and Increases Utero-Placental Autophagy. Front Vet Sci 2021; 8:650687. [PMID: 34485423 PMCID: PMC8415452 DOI: 10.3389/fvets.2021.650687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
The placenta, a unique organ that only develops during pregnancy, is essential for nutrient, oxygen, and waste exchange between offspring and mother. Yet, despite its importance, the placenta remains one of the least understood organs and knowledge of early placental formation is particularly limited. Abnormalities in placental development result in placental dysfunction or insufficiency whereby normal placental physiology is impaired. Placental dysfunction is a frequent source of pregnancy loss in livestock, inflicting serious economic impact to producers. Though the underlying causes of placental dysfunction are not well-characterized, initiation of disease is thought to occur during establishment of functional fetal and placental circulation. A comprehensive understanding of the mechanisms controlling placental growth and vascularization is necessary to improve reproductive success in livestock. We propose chemokine C-X-C motif ligand 12 (CXCL12) signaling through its receptor CXCR4 functions as a chief coordinator of vascularization through direct actions on fetal trophoblast and maternal endometrial and immune cells. To investigate CXCL12–CXCR4 signaling on uteroplacental vascular remodeling at the fetal–maternal interface, we utilized a CXCR4 antagonist (AMD3100). On day 12 post-breeding in sheep, osmotic pumps were surgically installed and delivered either AMD3100 or saline into the uterine lumen ipsilateral to the corpus luteum for 14 days. On day 35 of ovine pregnancy, fetal/placental and endometrial tissues were collected, snap-frozen in liquid nitrogen, and uterine horn cross sections were preserved for immunofluorescent analysis. Suppressing CXCL12–CXCR4 at the fetal–maternal interface during initial placental vascularization resulted in diminished abundance of select angiogenic factors in fetal and maternal placenta on day 35. Compared to control, less vascular endothelial growth factor (VEGF) and VEFG receptor 2 (KDR) were observed in endometrium when CXCL12–CXCR4 was diminished. Less VEGF was also evident in fetal placenta (cotyledons) in ewes receiving AMD3100 infusion compared to control. Suppressing CXCL12–CXCR4 at the fetal–maternal interface also resulted in greater autophagy induction in fetal and maternal placenta compared to control, suggestive of CXCL12–CXCR4 impacting cell survival. CXCL12–CXCR4 signaling may govern placental homeostasis by serving as a critical upstream mediator of vascularization and cell viability, thereby ensuring appropriate placental development.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Cheyenne L Runyan
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Marlie M Maestas
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Elisa Trigo
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Gail Silver
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
25
|
Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-Alvarado JB, Reyes-Leyva J, Aguilar-Alonso P, Rodriguez-Sosa M, Maycotte P. Autophagy inhibition in breast cancer cells induces ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal 2021; 86:110075. [PMID: 34229086 DOI: 10.1016/j.cellsig.2021.110075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Oscar Nieto-Yañez
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Guadalupe Rojas-Sanchez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José Benito Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
26
|
Shams R, Matsukawa A, Ochi Y, Ito Y, Miyatake H. In Silico and In Cell Hybrid Selection of Nonrapalog Ligands to Allosterically Inhibit the Kinase Activity of mTORC1. J Med Chem 2021; 65:1329-1341. [PMID: 34191518 DOI: 10.1021/acs.jmedchem.1c00536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer-specific metabolic alterations hyperactivate the kinase activity of the mammalian/mechanistic target of rapamycin (mTOR) for overcoming stressful environments. Rapalogs, which allosterically inhibit mTOR complex 1 (mTORC1), have been approved as anticancer agents. However, the immunosuppressive side effect of these compounds results in the promotion of tumor metastasis, thereby limiting their therapeutic efficacy. We first report a nonrapalog inhibitor, WRX606, identified by a hybrid strategy of in silico and in cell selections. Our studies showed that WRX606 formed a ternary complex with FK506-binding protein-12 (FKBP12) and FKBP-rapamycin-binding (FRB) domain of mTOR, resulting in the allosteric inhibition of mTORC1. WRX606 inhibited the phosphorylation of not only the ribosomal protein S6 kinase 1 (S6K1) but also eIF4E-binding protein-1 (4E-BP1). Hence, WRX606 efficiently suppressed tumor growth in mice without promotion of metastasis. These results suggest that WRX606 is a potent lead compound for developing anticancer drugs discovered by in silico and in cell methods.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan.,Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama 338-8570, Japan
| | - Akihiro Matsukawa
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata, Kita-ku, 700-8558 Okayama, Japan
| | - Yukari Ochi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata, Kita-ku, 700-8558 Okayama, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan.,Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Saitama 338-8570, Japan.,Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G, Scala S. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 2021; 11:591386. [PMID: 33937018 PMCID: PMC8082172 DOI: 10.3389/fonc.2021.591386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors (GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression, targeting cell proliferation and migration, while orchestrating the recruitment of immune and stromal cells within the TME. CXCL12 excludes T cells from TME through a concentration gradient that inhibits immunoactive cells access and promotes tumor vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer components. CXCR4/CXCR7 antagonism should prevent the development of metastases by interfering with tumor cell growth, migration and chemotaxis and favoring the frequency of T cells in TME. Herein, we discuss the current understanding on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In addition, we consider emerging approaches that coordinately target both immune checkpoints and CXCL12/CXCR4/CXCR7 axis.
Collapse
Affiliation(s)
- Sara Santagata
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Caterina Ieranò
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Trotta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Capiluongo
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Federica Auletta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppe Guardascione
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| |
Collapse
|
28
|
Richard-Bildstein S, Aissaoui H, Pothier J, Schäfer G, Gnerre C, Lindenberg E, Lehembre F, Pouzol L, Guerry P. Discovery of the Potent, Selective, Orally Available CXCR7 Antagonist ACT-1004-1239. J Med Chem 2020; 63:15864-15882. [PMID: 33314938 DOI: 10.1021/acs.jmedchem.0c01588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chemokine receptor CXCR7, also known as ACKR3, is a seven-transmembrane G-protein-coupled receptor (GPCR) involved in various pathologies such as neurological diseases, autoimmune diseases, and cancers. By binding and scavenging the chemokines CXCL11 and CXCL12, CXCR7 regulates their extracellular levels. From an original high-throughput screening campaign emerged hit 3 among others. The hit-to-lead optimization led to the discovery of a novel chemotype series exemplified by the trans racemic compound 11i. This series provided CXCR7 antagonists that block CXCL11- and CXCL12-induced ß-arrestin recruitment. Further structural modifications on the trisubstituted piperidine scaffold of 11i yielded compounds with high CXCR7 antagonistic activities and balanced ADMET properties. The effort described herein culminated in the discovery of ACT-1004-1239 (28f). Biological characterization of ACT-1004-1239 demonstrated that it is a potent, insurmountable antagonist. Oral administration of ACT-1004-1239 in mice up to 100 mg/kg led to a dose-dependent increase of plasma CXCL12 concentration.
Collapse
Affiliation(s)
- Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Hamed Aissaoui
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Gabriel Schäfer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Eleanor Lindenberg
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Laetitia Pouzol
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Philippe Guerry
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| |
Collapse
|
29
|
Shi Y, Riese DJ, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020; 11:574667. [PMID: 33363463 PMCID: PMC7753359 DOI: 10.3389/fphar.2020.574667] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
30
|
Russo E, Santoni A, Bernardini G. Tumor inhibition or tumor promotion? The duplicity of CXCR3 in cancer. J Leukoc Biol 2020; 108:673-685. [PMID: 32745326 DOI: 10.1002/jlb.5mr0320-205r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor tissue includes cancer cells and normal stromal cells such as vascular endothelial cells, connective tissue cells (cancer associated fibroblast, mesenchymal stem cell), and immune cells (tumor-infiltrating lymphocytes or TIL, dendritic cells, eosinophils, basophils, mast cells, tumor-associated macrophages or TAM, myeloid-derived suppressor cells or MDSC). Anti-tumor activity is mainly mediated by infiltration of NK cells, Th1 and CD8+ T cells, and correlates with expression of NK cell and T cell attracting chemokines. Nevertheless, cancer cells hijack tissue homeostasis through secretion of cytokines and chemokines that mediate not only the induction of an inflamed status that supports cancer cell survival and growth, but also the recruitment and/or activation of immune suppressive cells. CXCL9, CXCL10, and CXCL11 are known for their tumor-inhibiting properties, but their overexpression in several hematologic and solid tumors correlates with disease severity, suggesting a role in tumor promotion. The dichotomous nature of CXCR3 ligands activity mainly depends on several molecular mechanisms induced by cancer cells themselves able to divert immune responses and to alter the whole local environment. A deep understanding of the nature of such phenomenon may provide a rationale to build up a CXCR3/ligand axis targeting strategy. In this review, we will discuss the role of CXCR3 in cancer progression and in regulation of anti-tumor immune response and immunotherapy.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy.,IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| |
Collapse
|
31
|
Liu H, Cheng Q, Xu DS, Wang W, Fang Z, Xue DD, Zheng Y, Chang AH, Lei YJ. Overexpression of CXCR7 accelerates tumor growth and metastasis of lung cancer cells. Respir Res 2020; 21:287. [PMID: 33129326 PMCID: PMC7603767 DOI: 10.1186/s12931-020-01518-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background Under physiological conditions, CXCL12 modulates cell proliferation, survival, angiogenesis, and migration mainly through CXCR4. Interestingly, the newly discovered receptor CXCR7 for CXCL12 is highly expressed in many tumor cells as well as tumor-associated blood vessels, although the level of CXCR7 in normal cells is low. Recently, many studies have suggested that CXCR7 promotes cell growth and metastasis in more than 20 human malignancies, among which lung cancer is the leading cause of cancer-associated deaths worldwide. Thus, the mechanism of CXCR7 in the progression of lung cancer is urgently needed. Methods First, we explored CXCR4 and CXCR7 expression in human lung cancer specimens and cell lines by immunohistochemistry, western blot and flow cytometry. Then, we chose the human lung adenocarcinoma cell line A549 that stably overexpressed CXCR7 through the way of lentivirus-mediated transduction. Next, “wound healing” assay and transwell assay were applied to compare the cell migration and invasion ability, and stripe assay was used to evaluate the cell polarization. Last, our team established a mouse xenograft model of human lung cancer and monitored tumor proliferation and metastasis by firefly luciferase bioluminescence imaging in SCID/Beige mice. Results In clinical lung cancer samples, CXCR7 expression was almost not detected in normal tissue but upregulated in lung tumor tissue, whereas, CXCR4 was highly expressed in both normal and tumor tissues. Furthermore, overexpression of CXCR7 enhanced A549 cell migration and polarization in vitro. Besides, mouse xenograft model of human lung cancer showed that CXCR7 promoted primary lung tumor’s growth and metastasis to the second organ, such as liver or bone marrow in SCID/Beige mice in vivo. Conclusions This study describes the multiple functions of CXCR7 in lung cancer. Thus, these results suggest that CXCR7 may be a malignancy marker and may provide a novel target for anticancer therapy.
Collapse
Affiliation(s)
- Huan Liu
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, China.,Department of Immunology and Microbiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qian Cheng
- Department of Anesthesiology, Cancer Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Dong-Sheng Xu
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Fang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China
| | - Alex H Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200438, China.
| | - Yan-Jun Lei
- Department of Immunology and Microbiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
32
|
Goulet DR, Foster JP, Zawistowski JS, Bevill SM, Noël MP, Olivares-Quintero JF, Sciaky N, Singh D, Santos C, Pattenden SG, Davis IJ, Johnson GL. Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer. Mol Cancer Res 2020; 18:1685-1698. [PMID: 32753473 DOI: 10.1158/1541-7786.mcr-19-1011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant in vitro model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.
Collapse
Affiliation(s)
- Daniel R Goulet
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joseph P Foster
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha M Bevill
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Mélodie P Noël
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - José F Olivares-Quintero
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Noah Sciaky
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Darshan Singh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Charlene Santos
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha G Pattenden
- Eshelman School of Pharmacy, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ian J Davis
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
33
|
Ma Y, Xia Z, Ye C, Lu C, Zhou S, Pan J, Liu C, Zhang J, Liu T, Hu T, Xie L, Wu G, Zhao Y. AGTR1 promotes lymph node metastasis in breast cancer by upregulating CXCR4/SDF-1α and inducing cell migration and invasion. Aging (Albany NY) 2020; 11:3969-3992. [PMID: 31219799 PMCID: PMC6628987 DOI: 10.18632/aging.102032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
The angiotensin II type I receptor (AGTR1) has a strong influence on tumor growth, angiogenesis, inflammation and immunity. However, the role of AGTR1 on lymph node metastasis (LNM) in breast cancer, which correlates with tumor progression and patient survival, has not been examined. AGTR1 was highly expressed in lymph node-positive tumor tissues, which was confirmed by the Oncomine database. Next, inhibition of AGTR1 reduced tumor growth and LNM in orthotopic xenografts by bioluminescence imaging (BLI). Losartan, an AGTR1-specific inhibitor, decreased the chemokine pair CXCR4/SDF-1α levels in vivo and inhibited AGTR1-induced cell migration and invasion in vitro. Finally, the molecular mechanism of AGTR1-induced cell migration and LNM was assessed by knocking down AGTR1 in normal cells or CXCR4 in AGTR1high cells. AGTR1-silenced cells treated with losartan showed lower CXCR4 expression. AGTR1 overexpression caused the upregulation of FAK/RhoA signaling molecules, while knocking down CXCR4 in AGTR1high cells downregulated these molecules. Collectively, AGTR1 promotes LNM by increasing the chemokine pair CXCR4/SDF-1α and tumor cell migration and invasion. The potential mechanism of AGTR1-mediated cell movement relies on activating the FAK/RhoA pathway. Our study indicated that inhibiting AGTR1 may be a potential therapeutic target for LNM in early-stage breast cancer.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihan Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunmei Ye
- Department of Breast Surgery, Wuhan Women and Children's Health Care Center, Wuhan 430022, China
| | - Chong Lu
- Department of Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jieying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Linka Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020; 21:ijms21124365. [PMID: 32575507 PMCID: PMC7352275 DOI: 10.3390/ijms21124365] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.
Collapse
|
35
|
CXCR7 Inhibits Fibrosis via Wnt/ β-Catenin Pathways during the Process of Angiogenesis in Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216926. [PMID: 32566651 PMCID: PMC7293734 DOI: 10.1155/2020/1216926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Although SDF-1/CXCR7 plays an important role in angiogenesis, the function and the pathway of the SDF-1/CXCR7 axis might depend on the cell type or tissue origin and not fully understood. In this study, we investigated the effect of CXCR7 in SDF-1-induced proliferation, migration, apoptosis, tube formation, and endothelial-to-mesenchymal transition (EndMT) of human umbilical vein endothelial cells (HUVECs), and the potential pathway of SDF-1/CXCR7. We confirmed that the silencing of CXCR7 inhibited the proliferation of HUVECs and contributed the apoptosis, while overexpressed CXCR7 increased SDF-1-induced HUVECs migration and tube formation. However, upregulated CXCR7 inhibited the expression of α-SMA, suggesting that CXCR7 might attenuate EndMT. In addition, overexpressed CXCR7 activated AKT and ERK signaling pathways but suppressed Wnt/β-catenin pathways in HUVECs. The inhibition of Wnt/β-catenin pathways decreased the expression of α-SMA. Altogether, these results suggest that CXCR7 might inhibit fibrosis via Wnt/β-catenin pathways during the process of angiogenesis.
Collapse
|
36
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Li X, Wang X, Li Z, Liu Y, Sang L, Zhang Z, Zhang Y. Expression and regulation effects of chemokine receptor 7 in colon cancer cells. Oncol Lett 2020; 20:226-234. [PMID: 32565949 PMCID: PMC7285870 DOI: 10.3892/ol.2020.11561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
In China the incidence and mortality rates of colon cancer have been increasing annually. Studies have revealed that CXCR7 is expressed in many tumors. The aim of the present study was to investigate the function of CXCR7 in colon cancer. The expression level of chemokine receptor 7 (CXCR7) in Caco-2 and HCT116 cells was investigated to elucidate the effect of CXCR7 on cell biological behavior. Reverse transcription-quantitative PCR and western blot analysis were used to detect the expression level of CXCR7 in Caco-2 and HCT116 cells after transfection with small interfering (si)RNA. To analyze the in vitro biological function of CXCR7, cell proliferation was measured using a Cell Counting Kit-8 assay, and cell invasion and migration were measured using Matrigel, and Transwell and wound healing assays. siRNAs were successfully transfected into Caco-2 and HCT116 cells and resulted in a decrease in CXCR7 protein and mRNA expression. Downregulation of CXCR7 inhibited Caco-2 and HCT116 cell proliferation, invasion, and migration. Regulation of CXCR7 expression may affect the biological behavior of Caco-2 and HCT116 cells, suggesting that CXCR7 has a potential role in molecular therapy in colon cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuemei Wang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zitao Li
- Department of Orthopedic Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanjun Liu
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Liang Sang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhen Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yixia Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Liu H, Yang Z, Lu W, Chen Z, Chen L, Han S, Wu X, Cai T, Cai Y. Chemokines and chemokine receptors: A new strategy for breast cancer therapy. Cancer Med 2020; 9:3786-3799. [PMID: 32253815 PMCID: PMC7286460 DOI: 10.1002/cam4.3014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chemokines and chemokine receptors not only participate in the development of tissue differentiation, hematopoiesis, inflammation, and immune regulation but also play an important role in the process of tumor development. The role of chemokines and chemokine receptors in tumors has been emphasized in recent years. More and more studies have shown that chemokines and chemokine receptors are closely related to the occurrence, angiogenesis, metastasis, drug resistance, and immunity of breast cancer. Here, we review recent progression on the roles of chemokines and chemokine receptors in breast cancer, and discuss the possible mechanism in breast cancer that might facilitate the development of new therapies by targeting chemokines as well as chemokine receptors. Chemokines and chemokine receptors play an important role in the occurrence and development of breast cancer. In-depth study of chemokines and chemokine receptors can provide intervention targets for breast cancer biotherapy. The regulation of chemokines and chemokine receptors may become a new strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenping Lu
- Guangan' Men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, China.,Cancer Research Institute of Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Ghouse SM, Nguyen HM, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front Oncol 2020; 10:384. [PMID: 32266155 PMCID: PMC7105799 DOI: 10.3389/fonc.2020.00384] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a difficult-to-treat disease with high rates of local recurrence, distant metastasis, and poor overall survival with existing therapies. Thus, there is an unmet medical need to develop new treatment regimen(s) for TNBC patients. An oncolytic herpes simplex virus encoding a master anti-tumor cytokine, interleukin 12, (designated G47Δ-mIL12) selectively kills cancer cells while inducing anti-tumor immunity. G47Δ-mIL12 efficiently infected and killed murine (4T1 and EMT6) and human (HCC1806 and MDA-MB-468) mammary tumor cells in vitro. In vivo in the 4T1 syngeneic TNBC model, it significantly reduced primary tumor burden and metastasis, both at early and late stages of tumor development. The virus-induced local and abscopal effects were confirmed by significantly increased infiltration of CD45+ leukocytes and CD8+ T cells, and reduction of granulocytic and monocytic MDSCs in tumors, both treated and untreated contralateral, and in the spleen. Significant trafficking of dendritic cells (DCs) were only observed in spleens of virus-treatment group, indicating that DCs are primed and activated in the tumor-microenvironment following virotherapy, and trafficked to lymphoid organs for activation of immune cells, such as CD8+ T cells. DC priming/activation could be associated with virally enhanced expression of several antigen processing/presentation genes in the tumor microenvironment, as confirmed by NanoString gene expression analysis. Besides DC activation/priming, G47Δ-mIL12 treatment led to up-regulation of CD8+ T cell activation markers in the tumor microenvironment and inhibition of tumor angiogenesis. The anti-tumor effects of G47Δ-mIL12 treatment were CD8-dependent. These studies illustrate the ability of G47Δ-mIL12 to immunotherapeutically treat TNBC.
Collapse
Affiliation(s)
- Shanawaz M Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Praveen K Bommareddy
- School of Graduate Studies, Rutgers University, New Brunswick, NJ, United States
| | - Kirsten Guz-Montgomery
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
40
|
Sjöberg E, Meyrath M, Chevigné A, Östman A, Augsten M, Szpakowska M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv Cancer Res 2020; 145:99-138. [PMID: 32089166 DOI: 10.1016/bs.acr.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemokines regulate directed cell migration, proliferation and survival and are key components in cancer biology. They exert their functions by interacting with seven-transmembrane domain receptors that signal through G proteins (GPCRs). A subgroup of four chemokine receptors known as the atypical chemokine receptors (ACKRs) has emerged as essential regulators of the chemokine functions. ACKRs play diverse and complex roles in tumor biology from tumor initiation to metastasis, including cancer cell proliferation, adherence to endothelium, epithelial-mesenchymal transition (EMT), extravasation from blood vessels, tumor-associated angiogenesis or protection from immunological responses. This chapter gives an overview on the established and emerging roles that the atypical chemokine receptors ACKR1, ACKR2, ACKR3 and ACKR4 play in the different phases of cancer development and dissemination, their clinical relevance, as well as on the hurdles to overcome in ACKRs targeting as cancer therapy.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
41
|
Wang Y, Zhao L, Han X, Wang Y, Mi J, Wang C, Sun D, Fu Y, Zhao X, Guo H, Wang Q. Saikosaponin A Inhibits Triple-Negative Breast Cancer Growth and Metastasis Through Downregulation of CXCR4. Front Oncol 2020; 9:1487. [PMID: 32047724 PMCID: PMC6997291 DOI: 10.3389/fonc.2019.01487] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Due to a lack of recognized molecular targets for therapy, patients with triple-negative breast cancer (TNBC), unlike other subtypes of breast cancers, generally have not benefited from the advances made with targeted agents. The CXCR4/SDF-1 axis is involved in tumor growth and metastasis of TNBC. Therefore, down-regulation of the expression of CXCR4 in cancer cells is a potential therapeutic strategy for inhibiting primary tumor growth and metastasis of TNBC. In order to identify bioactive compounds that inhibit the expression of CXCR4 in traditional Chinese medicines, we investigated the capacity of saikosaponin A (SSA), one of the active ingredients isolated from Radix bupleuri, to affect CXCR4 expression and function in TNBC cells. Methods: Analyses of cell growth, migration, invasion, and protein expression were performed. Knockdowns by small interfering RNA (siRNA) and non-invasive bioluminescence were also used. Results: SSA reduced proliferation and colony formation of SUM149 and MDA-MB-231 cells. SSA inhibited migration and invasion of TNBC cells. For mice, SSA inhibited primary tumor growth and reduced lung metastasis of highly metastatic, triple-negative 4T1-luc cells. SSA inhibited CXCR4 expression but did not regulate CXCR7 expression in vitro and in vivo. The inhibitory effects on the migration and invasion of TNBC cells were reversed by down-regulation of CXCR4 expression. In addition, SSA inactivated the Akt/mTOR signaling pathway and inhibited MMP-9 and MMP-2 expression. Conclusions: The results show that SSA exerts an anti-TNBC effect through the inhibition of CXCR4 expression and thus has the potential to be a candidate therapeutic agent for TNBC patients.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yahui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxia Mi
- Science and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Yunfei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Zhao
- Department of Pathology, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, China
| | - Haidong Guo
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiangli Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Lokeshwar BL, Kallifatidis G, Hoy JJ. Atypical chemokine receptors in tumor cell growth and metastasis. Adv Cancer Res 2020; 145:1-27. [PMID: 32089162 DOI: 10.1016/bs.acr.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atypical chemokine receptors (ACKRs) are seven-transmembrane cell surface protein receptors expressed in immune cells, normal mesenchymal cells, and several tumor cells. As of this writing, six ACKRs have been characterized by diverse activities. They bind both cysteine-cysteine (CC) type and cysteine-X-cysteine (CXC)-type chemokines, either alone, or together with a ligand bound-functional G-protein coupled (typical) chemokine receptor. The major structural difference between ACKRs and typical chemokine receptors is the substituted DRYLAIV amino acid motif in the second intracellular loop of the ACKR. Due to this substitution, these receptors cannot bind Gαi-type G-proteins responsible for intracellular calcium mobilization and cellular chemotaxis. Although initially characterized as non-signaling transmembrane receptors (decoy receptors) that attenuate ligand-induced signaling by GPCRs, studies of all ACKRs have shown ligand-independent and ligand-dependent transmembrane signaling in both non-tumor and tumor cells. The precise function and mechanism of the differential expression of ACKRs in many tumors are not understood well. The use of antagonists of ACKRs ligands has shown limited antitumor potential; however, depleting ACKR expression resulted in a reduction in experimental tumor growth and metastasis. The ACKRs represent a unique class of transmembrane signaling proteins that regulate growth, survival, and metastatic processes in tumor cells, affecting multiple pathways of tumor growth. Therefore, closer investigations of ACKRs have a high potential for identifying therapeutics which affect the intracellular signaling, preferentially via the ligand-independent mechanism.
Collapse
Affiliation(s)
- Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA, United States; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States.
| | - Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA, United States; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States; Department of Biological Sciences, Augusta University, Augusta, GA, United States
| | - James J Hoy
- LCMB Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
43
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
44
|
CXCR7 regulates epileptic seizures by controlling the synaptic activity of hippocampal granule cells. Cell Death Dis 2019; 10:825. [PMID: 31672961 PMCID: PMC6823462 DOI: 10.1038/s41419-019-2052-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
C–X–C motif chemokine receptor 7 (CXCR7), which mediates the immune response in the brain, was recently reported to regulate neurological functions. However, the role of CXCR7 in epilepsy remains unclear. Here, we found that CXCR7 was upregulated in the hippocampal dentate gyrus (DG) of mice subjected to kainic acid (KA)-induced epilepsy and in the brain tissues of patients with temporal lobe epilepsy. Silencing CXCR7 in the hippocampal DG region exerted an antiepileptic effect on the KA-induced mouse model of epilepsy, whereas CXCR7 overexpression produced a seizure-aggravating effect. Mechanistically, CXCR7 selectively regulated N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic neurotransmission in hippocampal dentate granule cells by modulating the cell membrane expression of the NMDAR subunit2A, which requires the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Thus, CXCR7 may regulate epileptic seizures and represents a novel target for antiepileptic treatments.
Collapse
|
45
|
Qi YL, Li Y, Man XX, Sui HY, Zhao XL, Zhang PX, Qu XS, Zhang H, Wang BX, Li J, Qi SF, Jia LL, Luan HY, Zhang CB, Wang WQ. CXCL3 overexpression promotes the tumorigenic potential of uterine cervical cancer cells via the MAPK/ERK pathway. J Cell Physiol 2019; 235:4756-4765. [PMID: 31667838 DOI: 10.1002/jcp.29353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
CXCL3 belongs to the CXC-type chemokine family and is known to play a multifaceted role in various human malignancies. While its clinical significance and mechanisms of action in uterine cervical cancer (UCC) remain unclear. This investigation demonstrated that the UCC cell line HeLa expressed CXCL3, and strong expression of CXCL3 was detected in UCC tissues relative to nontumor tissues. In addition, CXCL3 expression was strongly correlated with CXCL5 expression in UCC tissues. In vitro, HeLa cells overexpressing CXCL3, HeLa cells treated with exogenous CXCL3 or treated with conditioned medium from WPMY cells overexpressing CXCL3, exhibited enhanced proliferation and migration activities. In agreement with these findings, CXCL3 overexpression was also associated with the generation of HeLa cell tumor xenografts in athymic nude mice. Subsequent mechanistic studies demonstrated that CXCL3 overexpressing influenced the expression of extracellular signal-regulated kinase (ERK) signaling pathway associated genes, including ERK1/2, Bcl-2, and Bax, whereas the CXCL3-induced proliferation and migration effects were attenuated by exogenous administration of the ERK1/2 blocker PD98059. The data of the current investigation support that CXCL3 appears to hold promise as a potential tumor marker and interference target for UCC.
Collapse
Affiliation(s)
- Ya-Ling Qi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,Department of Histology and Embryology, Hainan Medical College, Haikou, Hainan, China
| | - Yue Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xia-Xia Man
- Department of Oncologic Gynecology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong-Yu Sui
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiao-Lian Zhao
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Peng-Xia Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiu-Sheng Qu
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Bai-Xin Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jing Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shu-Fang Qi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lin-Lin Jia
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hai-Yan Luan
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chun-Bin Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei-Qun Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
46
|
Recent Advances in Nuclear Imaging of Receptor Expression to Guide Targeted Therapies in Breast Cancer. Cancers (Basel) 2019; 11:cancers11101614. [PMID: 31652624 PMCID: PMC6826563 DOI: 10.3390/cancers11101614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer remains the most frequent cancer in women with different patterns of disease progression and response to treatments. The identification of specific biomarkers for different breast cancer subtypes has allowed the development of novel targeting agents for imaging and therapy. To date, patient management depends on immunohistochemistry analysis of receptor status on bioptic samples. This approach is too invasive, and in some cases, not entirely representative of the disease. Nuclear imaging using receptor tracers may provide whole-body information and detect any changes of receptor expression during disease progression. Therefore, imaging is useful to guide clinicians to select the best treatments for each patient and to evaluate early response thus reducing unnecessary therapies. In this review, we focused on the development of novel tracers that are ongoing in preclinical and/or clinical studies as promising tools to lead treatment decisions for breast cancer management.
Collapse
|
47
|
Yang S, Liu H, Zhu L, Li X, Liu D, Song X, Yokota H, Zhang P. Ankle loading ameliorates bone loss from breast cancer-associated bone metastasis. FASEB J 2019; 33:10742-10752. [PMID: 31266364 PMCID: PMC8793785 DOI: 10.1096/fj.201900306rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2019] [Indexed: 02/15/2024]
Abstract
Breast cancer is a serious health problem that preferentially metastasizes to bone. We have previously shown that bone loss can be prevented by mechanical loading, but the efficacy of ankle loading for metastasis-linked bone loss has not been investigated. This study showed that body weight was decreased after inoculation of tumor cells, but ankle loading restored a rapid weight loss. The nonloading group exhibited a decrease in bone volume/tissue volume (BV/TV), trabecular thickness, and trabecular number (all P < 0.01) as well as an increase in trabecular separation (P < 0.001). However, ankle loading improved those changes (all P < 0.05). Furthermore, although the nonloading group increased the tumor bearing as well as expression of IL-8 and matrix metalloproteinase 9, ankle loading decreased them. Induction of tumor in the bone elevated the osteoclast number (P < 0.05) as well as the levels of nuclear factor of activated T-cells cytoplasmic 1, NF-κB ligand, cathepsin K, and serum tartrate-resistant acid phosphatase type 5b, but ankle loading reduced osteoclast activity and those levels (all P < 0.05). Tumor bearing was positively correlated with the osteoclast number (P < 0.01) and negatively correlated with BV/TV and the osteoblast number (both P < 0.01). Collectively, these findings demonstrate that ankle loading suppresses tumor growth and osteolysis by inhibiting bone resorption and enhancing bone formation.-Yang, S., Liu, H., Zhu, L., Li, X., Liu, D., Song, X., Yokota, H., Zhang, P. Ankle loading ameliorates bone loss from breast cancer-associated bone metastasis.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Anatomy and HistologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Key Laboratory of Hormones and Development, Ministry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjinChina
| | - Hong Liu
- Key Laboratory of Cancer Prevention and Therapy, Ministry of EducationTianjin Medical UniversityTianjinChina
- Department of Breast SurgeryTianjin Medical UniversityCancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear MedicineNational Clinical Research Center for CancerTianjin Medical UniversityCancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Xinle Li
- Department of Anatomy and HistologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Key Laboratory of Hormones and Development, Ministry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjinChina
| | - Daquan Liu
- Department of Anatomy and HistologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Key Laboratory of Hormones and Development, Ministry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjinChina
| | - Xiaomeng Song
- Department of Anatomy and HistologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hiroki Yokota
- Department of Biomedical EngineeringIndiana University-Purdue University IndianapolisIndianapolisIndianaUSA
| | - Ping Zhang
- Department of Anatomy and HistologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Key Laboratory of Hormones and Development, Ministry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Spine and Spinal CordTianjin Medical UniversityTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
48
|
Li X, Wang X, Li Z, Zhang Z, Zhang Y. Chemokine receptor 7 targets the vascular endothelial growth factor via the AKT/ERK pathway to regulate angiogenesis in colon cancer. Cancer Med 2019; 8:5327-5340. [PMID: 31348616 PMCID: PMC6718596 DOI: 10.1002/cam4.2426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Studies have shown that CXCR7 is expressed in many tumors. The aim of the present study was to investigate the function of CXCR7 in colon cancer. Although evidence indicates that CXCR7 promotes angiogenesis in colon cancer, the mechanism involved in this process remains unclear. Methods The expression of CXCR7 in colon cancer was evaluated by quantitative reverse‐transcription polymerase chain reaction and western blotting. After transfection, cell proliferation, migration, and lumen formation were measured in vitro. Immunohistochemistry and western blotting were used to identify the functional target of CXCR7 in vivo and in vitro. Results In this study, CXCR7 was differentially expressed in four colon cancer cell lines. The proliferation and migration experiments showed that overexpression of CXCR7 enhanced cell growth and migration. Moreover, the tube formation assays showed that co‐culture of colon cancer cells overexpressing CXCR7 with human umbilical vein endothelial cells significantly promoted tube formation in the latter cells. Conversely, the stable knockdown of CXCR7 significantly reduced this malignant activity. In addition, we found that CXCR7 activates the AKT and ERK pathways in colon cancer cells. The phosphorylation of AKT and ERK, as well as the expression of the vascular endothelial growth factor, can be inhibited using the LY294002 and U0126 inhibitors. Furthermore, the angiogenic ability of CXCR7‐induced colon cancer cells was eliminated. Conclusion Expression of CXCR7 contributes to colon cancer growth and angiogenesis, by activating the AKT and ERK pathways. CXCR7 provides a potential therapeutic target against colon cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xuemei Wang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Zitao Li
- Department of Orthopedic Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China
| | - Zhen Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yixia Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
49
|
Bazzichetto C, Conciatori F, Falcone I, Cognetti F, Milella M, Ciuffreda L. Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:5373580. [PMID: 31191652 PMCID: PMC6525927 DOI: 10.1155/2019/5373580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Cytokines are a family of soluble factors (Growth Factors (GFs), chemokines, angiogenic factors, and interferons), which regulate a wide range of mechanisms in both physiological and pathological conditions, such as tumor cell growth and progression, angiogenesis, and metastasis. In recent years, the growing interest in developing new cancer targeted therapies has been accompanied by the effort to characterize Tumor Microenvironment (TME) and Tumor-Stroma Interactions (TSI). The connection between tumor and stroma is now well established and, in the last decade, evidence from genetic, pharmacological, and epidemiological data supported the importance of microenvironment in tumor progression. However, several of the mechanisms behind TSI and their implication in tumor progression remain still unclear and it is crucial to establish their potential in determining pharmacological response. Many studies have demonstrated that cytokines network can profoundly affect TME, thus displaying potential therapeutic efficacy in both preclinical and clinical models. The goal of this review is to give an overview of the most relevant cytokines involved in colorectal and pancreatic cancer progression and their implication in drug response.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
50
|
Liu B, Song S, Setroikromo R, Chen S, Hu W, Chen D, van der Wekken AJ, Melgert BN, Timens W, van den Berg A, Saber A, Haisma HJ. CX Chemokine Receptor 7 Contributes to Survival of KRAS-Mutant Non-Small Cell Lung Cancer upon Loss of Epidermal Growth Factor Receptor. Cancers (Basel) 2019; 11:cancers11040455. [PMID: 30935067 PMCID: PMC6520904 DOI: 10.3390/cancers11040455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
KRAS-driven non-small cell lung cancer (NSCLC) patients have no effective targeted treatment. In this study, we aimed to investigate targeting epidermal growth factor receptor (EGFR) as a therapeutic approach in KRAS-driven lung cancer cells. We show that ablation of EGFR significantly suppressed tumor growth in KRAS-dependent cells and induced significantly higher expression of CX chemokine receptor 7 (CXCR7) and activation of MAPK (ERK1/2). Conversely, rescue of EGFR led to CXCR7 downregulation in EGFR−/− cells. Dual EGFR and CXCR7 inhibition led to substantial reduction of MAPK (pERK) and synergistic inhibition of cell growth. Analysis of two additional EGFR knockout NSCLC cell lines using CRISPR/Cas9 revealed genotype dependency of CXCR7 expression. In addition, treatment of different cells with gefitinib increased CXCR7 expression in EGFRwt but decreased it in EGFRmut cells. CXCR7 protein expression was detected in all NSCLC patient samples, with higher levels in adenocarcinoma as compared to squamous cell lung carcinoma and healthy control cases. In conclusion, EGFR and CXCR7 have a crucial interaction in NSCLC, and dual inhibition may be a potential therapeutic option for NSCLC patients.
Collapse
Affiliation(s)
- Bin Liu
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Shanshan Song
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
- Toxicology and Targeting Groningen Research Institute for Pharmacy, Department of Pharmacokinetics, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Rita Setroikromo
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Siwei Chen
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Wenteng Hu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Deng Chen
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Anthonie J van der Wekken
- Department of Pulmonary Diseases, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Barbro N Melgert
- Toxicology and Targeting Groningen Research Institute for Pharmacy, Department of Pharmacokinetics, University of Groningen, 9713 AV Groningen, The Netherlands.
- GRIAC- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Ali Saber
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Hidde J Haisma
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|