1
|
Ji K, Schwenkel GJ, Mattingly RR, Sundararaghavan HG, Zhang ZG, Chopp M. A Fibroblast-Derived Secretome Stimulates the Growth and Invasiveness of 3D Plexiform Neurofibroma Spheroids. Cancers (Basel) 2024; 16:2498. [PMID: 39061138 PMCID: PMC11274591 DOI: 10.3390/cancers16142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Plexiform neurofibromas (PNs) occur in about a half of neurofibromatosis type 1 (NF1) patients and have garnered significant research attention due to their capacity for growth and potential for malignant transformation. NF1 plexiform neurofibroma (pNF1) is a complex tumor composed of Schwann cell-derived tumor cells (Nf1-/-) and the tumor microenvironment (TME). Although it has been widely demonstrated that the TME is involved in the formation of neurofibromas, little is known about the effects of the TME on the subsequent progression of human pNF1. Elucidating the molecular interactions between tumor cells and the TME may provide new therapeutic targets to reduce the progression of pNF1. In the present study, we focused on the contributions of fibroblasts, the most abundant cell types in the TME, to the growth of pNF1. To simulate the TME, we used a three-dimensional (3D) coculture model of immortalized pNF1 tumor cells (Nf1-/-) and primary fibroblasts (Nf1+/-) derived from pNF1 patients. We performed live-cell imaging of 3D/4D (3D in real-time) cultures through confocal microscopy followed by 3D quantitative analyses using advanced imaging software. The growth of pNF1 spheroids in 3D cocultures with fibroblasts was significantly greater than that of pNF1 spheroids in 3D monocultures. An increase in the growth of pNF1 spheroids also occurred when they were cultured with conditioned media (CM) from fibroblasts. Moreover, fibroblast-derived CM increased the invasive outgrowth and further local invasion of pNF1 spheroids. Interestingly, when small extracellular vesicles (sEVs) were depleted from the fibroblast-derived CM, the stimulation of the growth of pNF1 spheroids was lost. Our results suggest that fibroblast-derived sEVs are a therapeutic target for reducing the growth of pNF1.
Collapse
Affiliation(s)
- Kyungmin Ji
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
| | - George J. Schwenkel
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
| | - Raymond R. Mattingly
- Department of Pharmacology and Toxicology, Brody Medical School at East Carolina University, Greenville, NC 27834, USA;
| | | | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA; (G.J.S.); (Z.G.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
2
|
Miller JL, Reddy A, Harman RM, Van de Walle GR. A xenotransplantation mouse model to study physiology of the mammary gland from large mammals. PLoS One 2024; 19:e0298390. [PMID: 38416747 PMCID: PMC10901318 DOI: 10.1371/journal.pone.0298390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
Although highly conserved in structure and function, many (patho)physiological processes of the mammary gland vary drastically between mammals, with mechanisms regulating these differences not well understood. Large mammals display variable lactation strategies and mammary cancer incidence, however, research into these variations is often limited to in vitro analysis due to logistical limitations. Validating a model with functional mammary xenografts from cryopreserved tissue fragments would allow for in vivo comparative analysis of mammary glands from large and/or rare mammals and would improve our understanding of postnatal development, lactation, and premalignancy across mammals. To this end, we generated functional mammary xenografts using mammary tissue fragments containing mammary stroma and parenchyma isolated via an antibody-independent approach from healthy, nulliparous equine and canine donor tissues to study these species in vivo. Cryopreserved mammary tissue fragments were xenotransplanted into de-epithelialized fat pads of immunodeficient mice and resulting xenografts were structurally and functionally assessed. Preimplantation of mammary stromal fibroblasts was performed to promote ductal morphogenesis. Xenografts recapitulated mammary lobule architecture and contained donor-derived stromal components. Mammatropic hormone stimulation resulted in (i) upregulation of lactation-associated genes, (ii) altered proliferation index, and (iii) morphological changes, indicating functionality. Preimplantation of mammary stromal fibroblasts did not promote ductal morphogenesis. This model presents the opportunity to study novel mechanisms regulating unique lactation strategies and mammary cancer induction in vivo. Due to the universal applicability of this approach, this model serves as proof-of-concept for developing mammary xenografts for in vivo analysis of virtually any mammals, including large and rare mammals.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandra Reddy
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Saemundsson SA, Ganguly S, Curry SD, Goodwin AP, Cha JN. Controlling Cell Organization in 3D Coculture Spheroids Using DNA Interactions. ACS Biomater Sci Eng 2023. [PMID: 37155244 DOI: 10.1021/acsbiomaterials.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The role of stromal and immune cells in transforming the tumor microenvironment is a key consideration in understanding tumor cell behavior and anticancer drug development. To better model these systems in vitro, 3D coculture tumor spheroids have been engineered using a variety of techniques including centrifugation to microwells, hanging drop, low adhesion cultures, and culture of cells in a microfluidic platform. Aside from using bioprinting, however, it has remained more challenging to direct the spatial organization of heterotypic cells in standalone 3D spheroids. To address this, we present an in vitro 3D coculture tumor model where we modulated the interactions between cancer cells and fibroblasts through DNA hybridization. When native heterotypic cells are simply mixed, the cell aggregates typically show cell sorting behavior to form phase separated structures composed of single cell types. In this work, we demonstrate that when MDA-MB-468 breast cancer and NIH/3T3 fibroblasts are directed to associate via complementary DNA, a uniform distribution of the two cell types within a single spheroid was observed. In contrast, in the absence of specific DNA interactions between the cancer cells and fibroblasts, individual clusters of the NIH/3T3 cells formed in each spheroid due to cell sorting. To better understand the effect of heterotypic cell organization on either cell-cell contacts or matrix protein production, the spheroids were further stained with anti-E-cadherin and antifibronectin antibodies. While the amounts of E-cadherin appeared to be similar between the spheroids, a significantly higher amount of fibronectin secretion was observed in the coculture spheroids with uniform mixing of two cell types. This result showed that different heterotypic cell distributions within 3D architecture can influence the ECM protein production that can again alter the properties of the tumor or tumor microenvironment. The present study thus describes the use of DNA templating to direct the organization of cells in coculture spheroids, which can provide mechanistic biological insight into how heterotypic distribution in tumor spheroids can influence tumor progression, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Sven A Saemundsson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Saheli Ganguly
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
- Biomedical Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80303, United States
| |
Collapse
|
4
|
Al-Nasrallah HK, Al-Ansari MM, Aboussekhra A. Osteoprotegerin (OPG) Upregulation Activates Breast Stromal Fibroblasts and Enhances Their Pro-Carcinogenic Effects through the STAT3/IL-6 Signaling. Cells 2022; 11:3369. [PMID: 36359766 PMCID: PMC9655455 DOI: 10.3390/cells11213369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Breast carcinomas are composed of cancer cells surrounded by various types of non-cancer cells such as fibroblasts. While active cancer-associated fibroblasts (CAFs) support tumor initiation and progression, quiescent breast stromal fibroblasts (BSFs) inhibit these effects through various cytokines such as osteoprotegerin (OPG). We showed here that OPG is upregulated in CAFs as compared to their adjacent normal tumor counterpart fibroblasts. Interestingly, breast cancer cells can upregulate OPG in BSFs in an IL-6-dependent manner through the IL-6/STAT3 pathway. When upregulated by ectopic expression, OPG activated BSFs through the NF-κB/STAT3/AUF1 signaling pathway and promoted their paracrine pro-carcinogenic effects in an IL-6-dependent manner. In addition, this increase in the OPG level enhanced the potential of BSFs to promote the growth of humanized orthotopic tumors in mice. However, specific OPG knock-down suppressed active CAFs and their paracrine pro-carcinogenic effects. Similar effects were observed when CAF cells were exposed to the pure recombinant OPG (rOPG) protein. Together, these findings show the importance of OPG in the activation of stromal fibroblasts and the possible use of rOPG or inhibitors of the endogenous protein to target CAFs as precision cancer therapeutics.
Collapse
Affiliation(s)
- Huda K. Al-Nasrallah
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mysoon M. Al-Ansari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Microbiology, Faculty of Science and Medical Studies, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Doryab A, Taskin MB, Stahlhut P, Groll J, Schmid O. Real-Time Measurement of Cell Mechanics as a Clinically Relevant Readout of an In Vitro Lung Fibrosis Model Established on a Bioinspired Basement Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205083. [PMID: 36030365 DOI: 10.1002/adma.202205083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lung fibrosis, one of the major post-COVID complications, is a progressive and ultimately fatal disease without a cure. Here, an organ- and disease-specific in vitro mini-lung fibrosis model equipped with noninvasive real-time monitoring of cell mechanics is introduced as a functional readout. To establish an intricate multiculture model under physiologic conditions, a biomimetic ultrathin basement (biphasic elastic thin for air-liquid culture conditions, BETA) membrane (<1 µm) is developed with unique properties, including biocompatibility, permeability, and high elasticity (<10 kPa) for cell culturing under air-liquid interface and cyclic mechanical stretch conditions. The human-based triple coculture fibrosis model, which includes epithelial and endothelial cell lines combined with primary fibroblasts from idiopathic pulmonary fibrosis patients established on the BETA membrane, is integrated into a millifluidic bioreactor system (cyclic in vitro cell-stretch, CIVIC) with dose-controlled aerosolized drug delivery, mimicking inhalation therapy. The real-time measurement of cell/tissue stiffness (and compliance) is shown as a clinical biomarker of the progression/attenuation of fibrosis upon drug treatment, which is confirmed for inhaled Nintedanib-an antifibrosis drug. The mini-lung fibrosis model allows the combined longitudinal testing of pharmacodynamics and pharmacokinetics of drugs, which is expected to enhance the predictive capacity of preclinical models and hence facilitate the development of approved therapies for lung fibrosis.
Collapse
Affiliation(s)
- Ali Doryab
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| |
Collapse
|
6
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
7
|
Alraouji NN, Hendrayani SF, Ghebeh H, Al-Mohanna FH, Aboussekhra A. Osteoprotegerin (OPG) mediates the anti-carcinogenic effects of normal breast fibroblasts and targets cancer stem cells through inhibition of the β-catenin pathway. Cancer Lett 2021; 520:374-384. [PMID: 34416336 DOI: 10.1016/j.canlet.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023]
Abstract
Normal breast fibroblasts (NBFs) support and maintain the architecture of the organ, and can also suppress tumorigenesis. However, the mechanisms involved are not fully understood. We have shown here that NBFs suppress breast carcinogenesis through secretion of osteoprotegerin (OPG), a soluble decoy receptor for the Receptor Activator of NF-κB ligand (RANKL). Indeed, NBFs and human recombinant OPG (rOPG), suppressed breast cancer cells proliferation and motility through inhibition of the epithelial-to-mesenchymal transition (EMT) process both in vitro and in vivo. Additionally, rOPG inhibited the IL-6/STAT3 and NF-κB pathways as well as the OPG gene, which turned out to be STAT3-regulated. This was confirmed using denosumab, a RANKL-targeted antibody, which also inhibited NF-κB, down-regulated OPG and repressed EMT in breast cancer cells grown in 2D and 3D. Importantly, both rOPG and denosumab targeted cancer stem cells (CSCs). This was mediated through inhibition of the CSC-related pathway β-catenin. Moreover, rOPG reduced tumor growth and inhibited breast CSC biomarkers in orthotopic humanized breast tumors. Therefore, normal mammary fibroblasts can suppress carcinogenesis through OPG, which constitutes great potential as preventive and/or therapeutic molecule for breast carcinomas.
Collapse
Affiliation(s)
- Noura N Alraouji
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Siti-Fauziah Hendrayani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
8
|
Fuller AM, Yang L, Hamilton AM, Pirone JR, Oldenburg AL, Troester MA. Epithelial p53 Status Modifies Stromal-Epithelial Interactions During Basal-Like Breast Carcinogenesis. J Mammary Gland Biol Neoplasia 2021; 26:89-99. [PMID: 33439408 PMCID: PMC8715550 DOI: 10.1007/s10911-020-09477-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Basal-like breast cancers (BBC) exhibit subtype-specific phenotypic and transcriptional responses to stroma, but little research has addressed how stromal-epithelial interactions evolve during early BBC carcinogenesis. It is also unclear how common genetic defects, such as p53 mutations, modify these stromal-epithelial interactions. To address these knowledge gaps, we leveraged the MCF10 progression series of breast cell lines (MCF10A, MCF10AT1, and MCF10DCIS) to develop a longitudinal, tissue-contextualized model of p53-deficient, pre-malignant breast. Acinus asphericity, a morphogenetic correlate of cell invasive potential, was quantified with optical coherence tomography imaging, and gene expression microarrays were performed to identify transcriptional changes associated with p53 depletion and stromal context. Co-culture with stromal fibroblasts significantly increased the asphericity of acini derived from all three p53-deficient, but not p53-sufficient, cell lines, and was associated with the upregulation of 38 genes. When considered as a multigene score, these genes were upregulated in co-culture models of invasive BBC with increasing stromal content, as well as in basal-like relative to luminal breast cancers in two large human datasets. Taken together, stromal-epithelial interactions during early BBC carcinogenesis are dependent upon epithelial p53 status, and may play important roles in the acquisition of an invasive morphologic phenotype.
Collapse
Affiliation(s)
- Ashley M Fuller
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Penn Sarcoma Program, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Lin Yang
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jason R Pirone
- School of Pharmacy, The University of North Carolina, Chapel Hill, NC, 27599, USA
- Nuventra Pharma Sciences, Durham, NC, 27713, USA
| | - Amy L Oldenburg
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Debnath S, Mukherjee A, Saha D, Dash J, Chatterjee TK. Poly-l-Lysine inhibits VEGF and c-Myc mediated tumor-angiogenesis and induces apoptosis in 2D and 3D tumor microenvironment of both MDA-MB-231 and B16F10 induced mice model. Int J Biol Macromol 2021; 183:528-548. [PMID: 33892042 DOI: 10.1016/j.ijbiomac.2021.04.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022]
Abstract
Cancer is a widespread disease that has shown promising mortality worldwide. Our previous study has been shown the efficacy of Poly-l-lysine (PLL) as a promising cytotoxic effect against cancer cells. However, exact-mechanism of PLL in 3D physiological relevant tumor-microenvironment and against tumor-angiogenesis has never been analysed. In this study, we have investigated apoptotic efficacy of PLL, if any in opposition to proliferative aggressive cancer cell MDA-MB-231 both 2D and-3D cell culture conditions. Furthermore, PLL was administered in B16F10 murine melanoma cells induced BALB/c mice model. The study has been designed through transcription and translation level of PLL-induced tumor-angiogenesis and apoptotic gene-expression modulation level and various relevant histological studies in comparison with untreated control. Studies have shown anti-proliferative and anti-tumor angiogenic efficacy of PLL better in in-vitro 3D tumor-microenvironment against MDA-MB-231 breast cancer cells. Furthermore, in-vivo model, PLL was found to suppress tumorigenesis process at minimum dose. PLL found to induce apoptosis through-upregulation of cytosolic-cytochrome-C, caspase-3 and PARP activations when administered in B16F10 induced in-vivo tumor. In blocking proliferation and tumor-angiogenesis, PLL was found to be effective as it significantly downregulated activity of VEGF, VEGFR2, Ki-67 and c-Myc expression. As PLL blocked tumor progression and induced DNA-break, also upregulated apoptotic process and recovered tissue architecture as revealed from histological study in comparison with untreated control. Overall PLL was found to be a promising anti-tumor angiogenic and anti-proliferative drug that was effective both in in-vitro breast cancer 3D tumor-microenvironment and in-vivo metastatic-mice-model.
Collapse
Affiliation(s)
- Souvik Debnath
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St, West Lafayette, IN-47907, USA; Division of Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur-700032, India.
| | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata-700029, India
| | - Dhananjoy Saha
- Deputy Director, Technical Education, West Bengal State Council & Technical Education, Bikas Bhavan, Saltlake, Kolkata, West Bengal, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tapan Kumar Chatterjee
- Division of Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur-700032, India; Department of Pharmaceutical Science and Technology, JIS University, Kolkata, India; and Former Professor, Division of Pharmacology, Department of Pharmaceutical Technology, Former Director, Clinical Research Centre, Jadavpur University, Kolkata, India.
| |
Collapse
|
10
|
Pourbagher R, Ghorbani H, Akhavan-Niaki H, Jorsaraei SGA, Fattahi S, Ghooran S, Abedian Z, Ghasemi M, Saeedi F, Jafari N, Kalali B, Mostafazadeh A. Downregulation of Stemness Genes and Induction of Necrosis in Rat LA7 Cancer Stem Cells Induced Tumors Treated with Starved Fibroblasts Culture Supernatant. Rep Biochem Mol Biol 2021; 10:105-118. [PMID: 34277874 PMCID: PMC8279721 DOI: 10.52547/rbmb.10.1.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 04/11/2023]
Abstract
BACKGROUND Stem cell differentiation therapy is a promising strategy in cancer treatment. we show that protein cocktail prepared from serum starved fibroblasts has therapeutic potential based on this strategy. METHODS The condition medium was prepared from foreskin isolated fibroblasts and analyzed by Liquid chromatography electrospray ionization mass spectrometry-mass spectrometry (LC-ESI-MS/MS). LA7 mammary gland cancer stem cells originated tumors were induced in Sprague Dawley rats. The rats treated subcutaneously with DMEM (group A), condition medium (group B), or normal saline (group C) once daily for 7 days. Then the tumors were removed and divided into the two parts, one part was used to quantify gene expression by stem-loop RT-qPCR assay and the other part was used for Hematoxylin & Eosin (H & E), Giemsa, and immunohistochemistry (IHC) staining. RESULTS All induced tumors appeared as sarcomatoid carcinoma (SC). Immunohistochemistry staining confirmed this conclusion by recognizing the tumor as Ki67+, cytokeratin+, vimentine+, and estrogen receptor negative SC. RT-qPCR analysis revealed that Oct4-, Sox-2, Nanog- gene expression was much reduced in the condition medium treated tumors versus proper controls (p< 0.05). Tissue necrosis was more prevalent in this group while tumors volume was diminished almost by 40%. The LC-ESI-MS/MS analysis unrevealed the stemness reducing and the cell death inducing proteins such as, pigment epithelium-derived factor (PEDF), insulin like growth factor binding protein-5 (IGFBP-5) and -7 (IGFBP-7) in the condition medium. CONCLUSION This study showed that the substances released from starved human fibroblasts were able to down-regulate the stemness-related genes and induce necrosis in LA7 derived tumors.
Collapse
Affiliation(s)
- Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Hossein Ghorbani
- Department of Pathology, Rohani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Seyed Gholam Ali Jorsaraei
- Fatemeh Zahra Infertility and Reproductive Health Research Centre, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sahar Ghooran
- Department of Pathology, Rohani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Zeinab Abedian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Dental Materials Research Center, Dental Faculty, Babol University of Medical Sciences, Babol, Iran.
| | - Masoumeh Ghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Fatemeh Saeedi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Negar Jafari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Behnam Kalali
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
11
|
Mao S, Pang Y, Liu T, Shao Y, He J, Yang H, Mao Y, Sun W. Bioprinting of in vitro tumor models for personalized cancer treatment: a review. Biofabrication 2020; 12:042001. [PMID: 32470967 DOI: 10.1088/1758-5090/ab97c0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studying biological characteristics of tumors and evaluating the treatment effects require appropriate in vitro tumor models. However, the occurrence, progression, and migration of tumors involve spatiotemporal changes, cell-microenvironment and cell-cell interactions, and signal transmission in cells, which makes the construction of in vitro tumor models extremely challenging. In the past few years, advances in biomaterials and tissue engineering methods, especially development of the bioprinting technology, have paved the way for innovative platform technologies for in vitro cancer research. Bioprinting can accurately control the distribution of cells, active molecules, and biomaterials. Furthermore, this technology recapitulates the key characteristics of the tumor microenvironment and constructs in vitro tumor models with bionic structures and physiological systems. These models can be used as robust platforms to study tumor initiation, interaction with the microenvironment, angiogenesis, motility and invasion, as well as intra- and extravasation. Bioprinted tumor models can also be used for high-throughput drug screening and validation and provide the possibility for personalized cancer treatment research. This review describes the basic characteristics of the tumor and its microenvironment and focuses on the importance and relevance of bioprinting technology in the construction of tumor models. Research progress in the bioprinting of monocellular, multicellular, and personalized tumor models is discussed, and comprehensive application of bioprinting in preclinical drug screening and innovative therapy is reviewed. Finally, we offer our perspective on the shortcomings of the existing models and explore new technologies to outline the direction of future development and application prospects of next-generation tumor models.
Collapse
Affiliation(s)
- Shuangshuang Mao
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, People's Republic of China. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, People's Republic of China. 'Biomanufacturing and Engineering Living Systems' 111 -Innovation International Talents Base, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Barros da Silva P, Coelho M, Bidarra SJ, Neves SC, Barrias CC. Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels. Front Bioeng Biotechnol 2020; 8:494. [PMID: 32596217 PMCID: PMC7300215 DOI: 10.3389/fbioe.2020.00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Breast tissue consists of an epithelial parenchyma embedded in stroma, of heterogeneous and complex composition, undergoing several morphological and functional alterations throughout females' lifespan. Improved knowledge on the crosstalk between parenchymal and stromal mammary cells should provide important insights on breast tissue dynamics, both under healthy and diseased states. Here, we describe an advanced 3D in vitro model of breast tissue, combining multiple components, namely stromal cells and their extracellular matrix (ECM), as well as parenchymal epithelial cells, in a hybrid system. To build the model, porous scaffolds were produced by extrusion 3D printing of peptide-modified alginate hydrogels, and then populated with human mammary fibroblasts. Seeded fibroblasts were able to adhere, spread and produce endogenous ECM, providing adequate coverage of the scaffold surface, without obstructing the pores. On a second stage, a peptide-modified alginate pre-gel laden with mammary gland epithelial cells was used to fill the scaffold's pores, forming a hydrogel in situ by ionic crosslinking. Throughout time, epithelial cells formed prototypical mammary acini-like structures, in close proximity with fibroblasts and their ECM. This generated a heterotypic 3D model that partially recreates both stromal and parenchymal compartments of breast tissue, promoting cell-cell and cell-matrix crosstalk. Furthermore, the hybrid system could be easily dissolved for cell recovery and subsequent analysis by standard cellular/molecular assays. In particular, we show that retrieved cell populations could be discriminated by flow cytometry using cell-type specific markers. This integrative 3D model stands out as a promising in vitro platform for studying breast stroma-parenchyma interactions, both under physiological and pathological settings.
Collapse
Affiliation(s)
- Patrícia Barros da Silva
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Mariana Coelho
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sílvia Joana Bidarra
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Carvalheira Neves
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Carvalho Barrias
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials 2020; 234:119756. [PMID: 31954229 DOI: 10.1016/j.biomaterials.2020.119756] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
It is known cancer cells secrete cytokines inducing normal fibroblasts (NFs) to become carcinoma-associated fibroblasts (CAFs). However, it is not clear how the CAF-promoting cytokines can effectively navigate the dense ECM, a diffusion barrier, in the tumor microenvironment to reach NFs during the early stages of cancer development. In this study, we devised a 3D coculture system to investigate the possible mechanism of CAF induction at early stages of breast cancer. We found that in a force-dependent manner, ECM fibrils are radially aligned relative to the tumor spheroid. The fibril alignment enhances the diffusion of exosomes containing CAF-promoting cytokines towards NFs. Suppression of force generation or ECM remodeling abolishes the enhancement of exosome diffusion and the subsequent CAF induction. In summary, our finding suggests that early-stage, pre-metastatic cancer cells can generate high forces to align the ECM fibrils, thereby enhancing the diffusion of CAF-promoting exosomes to reach the stroma and induce CAFs.
Collapse
|
14
|
Pinto C, Estrada MF, Brito C. In Vitro and Ex Vivo Models - The Tumor Microenvironment in a Flask. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:431-443. [PMID: 32130713 DOI: 10.1007/978-3-030-34025-4_23] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experimental tumor modeling has long supported the discovery of fundamental mechanisms of tumorigenesis and tumor progression, as well as provided platforms for the development of novel therapies. Still, the attrition rates observed today in clinical translation could be, in part, mitigated by more accurate recapitulation of environmental cues in research and preclinical models. The increasing understanding of the decisive role that tumor microenvironmental cues play in the outcome of drug response urges its integration in preclinical tumor models. In this chapter we review recent developments concerning in vitro and ex vivo approaches.
Collapse
Affiliation(s)
- Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
15
|
Mangukiya HB, Negi H, Merugu SB, Sehar Q, Mashausi DS, Yunus FUN, Wu Z, Li D. Paracrine signalling of AGR2 stimulates RhoA function in fibroblasts and modulates cell elongation and migration. Cell Adh Migr 2019; 13:332-344. [PMID: 31710263 PMCID: PMC6844563 DOI: 10.1080/19336918.2019.1685928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The most prominent cancer-associated fibroblasts (CAFs) in tumor stroma is known to form a protective structure to support tumor growth. Anterior gradient-2 (AGR2), a tumor secretory protein is believed to play a pivotal role during tumor microenvironment (TME) development. Here, we report that extracellular AGR2 enhances fibroblasts elongation and migration significantly. The early stimulation of RhoA showed the association of AGR2 by upregulation of G1-S phase-regulatory protein cyclin D1 and FAK phosphorylation through fibroblasts growth factor receptor (FGFR) and vascular endothelial growth factor receptor (VEGFR). Our finding indicates that secretory AGR2 alters fibroblasts elongation, migration, and organization suggesting the secretory AGR2 as a potential molecular target that might be responsible to alter fibroblasts infiltration to support tumor growth.
Collapse
Affiliation(s)
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Qudsia Sehar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Mano Y, Yoshio S, Shoji H, Tomonari S, Aoki Y, Aoyanagi N, Okamoto T, Matsuura Y, Osawa Y, Kimura K, Yugawa K, Wang H, Oda Y, Yoshizumi T, Maehara Y, Kanto T. Bone morphogenetic protein 4 provides cancer-supportive phenotypes to liver fibroblasts in patients with hepatocellular carcinoma. J Gastroenterol 2019; 54:1007-1018. [PMID: 30941514 DOI: 10.1007/s00535-019-01579-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are essential constituents of cancer-supportive microenvironments. The high incidence of hepatocellular carcinoma (HCC) in advanced fibrosis patients implies that fibroblasts have a promoting effect on HCC development. We aimed to explore the regulators of phenotypes and function of CAFs in the liver. METHODS We established primary cancer-associated fibroblasts (CAFs) and non-cancerous liver fibroblasts (NFs) from 15 patients who underwent HCC resection. We compared phenotypes, capacity of cytokine/chemokine production and gene expression profiles between pairs of CAFs and NFs from the same donors. We examined resected tissue from additional 50 patients with HCC for immunohistochemical analyses. RESULTS The CAFs expressed more ACTA2 and COL1A1 than the NFs, suggesting that CAFs are more activated phenotype. The CAFs produced larger amounts of IL-6, IL-8 and CCL2 than the NFs, which led to invasiveness of HuH7 in vitro. We found that Bone Morphogenetic Protein-4 (BMP4) is up-regulated in CAFs compared to NFs. The CAF phenotype and function were gained by BMP4 over-expression or recombinant BMP4 given to fibroblasts, all of which decreased with BMP4 knockdown. In tissues obtained from the patients, BMP4-positive cells are mainly observed in encapsulated fibrous lesions and HCC. Positive expression of BMP4 in HCC in resected tissues, not in fibroblasts, was associated with poorer postoperative overall survival in patients with HCC. CONCLUSION Endogenous and exogenous BMP4 activate liver fibroblasts to gain capacity of secreting cytokines and enhancing invasiveness of cancer cells in the liver. BMP4 is one of the regulatory factors of CAFs functioning in the microenvironment of HCC.
Collapse
Affiliation(s)
- Yohei Mano
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Hirotaka Shoji
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Shimagaki Tomonari
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Aoki
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Nobuyoshi Aoyanagi
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Huanlin Wang
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| |
Collapse
|
17
|
Hapach LA, Mosier JA, Wang W, Reinhart-King CA. Engineered models to parse apart the metastatic cascade. NPJ Precis Oncol 2019; 3:20. [PMID: 31453371 PMCID: PMC6704099 DOI: 10.1038/s41698-019-0092-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
While considerable progress has been made in studying genetic and cellular aspects of metastasis with in vitro cell culture and in vivo animal models, the driving mechanisms of each step of metastasis are still relatively unclear due to their complexity. Moreover, little progress has been made in understanding how cellular fitness in one step of the metastatic cascade correlates with ability to survive other subsequent steps. Engineered models incorporate tools such as tailored biomaterials and microfabrication to mimic human disease progression, which when coupled with advanced quantification methods permit comparisons to human patient samples and in vivo studies. Here, we review novel tools and techniques that have been recently developed to dissect key features of the metastatic cascade using primary patient samples and highly representative microenvironments for the purposes of advancing personalized medicine and precision oncology. Although improvements are needed to increase tractability and accessibility while faithfully simulating the in vivo microenvironment, these models are powerful experimental platforms for understanding cancer biology, furthering drug screening, and facilitating development of therapeutics.
Collapse
Affiliation(s)
- Lauren A. Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Jenna A. Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Cynthia A. Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
18
|
Klimov S, Miligy IM, Gertych A, Jiang Y, Toss MS, Rida P, Ellis IO, Green A, Krishnamurti U, Rakha EA, Aneja R. A whole slide image-based machine learning approach to predict ductal carcinoma in situ (DCIS) recurrence risk. Breast Cancer Res 2019; 21:83. [PMID: 31358020 PMCID: PMC6664779 DOI: 10.1186/s13058-019-1165-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background Breast ductal carcinoma in situ (DCIS) represent approximately 20% of screen-detected breast cancers. The overall risk for DCIS patients treated with breast-conserving surgery stems almost exclusively from local recurrence. Although a mastectomy or adjuvant radiation can reduce recurrence risk, there are significant concerns regarding patient over-/under-treatment. Current clinicopathological markers are insufficient to accurately assess the recurrence risk. To address this issue, we developed a novel machine learning (ML) pipeline to predict risk of ipsilateral recurrence using digitized whole slide images (WSI) and clinicopathologic long-term outcome data from a retrospectively collected cohort of DCIS patients (n = 344) treated with lumpectomy at Nottingham University Hospital, UK. Methods The cohort was split case-wise into training (n = 159, 31 with 10-year recurrence) and validation (n = 185, 26 with 10-year recurrence) sets. The sections from primary tumors were stained with H&E, then digitized and analyzed by the pipeline. In the first step, a classifier trained manually by pathologists was applied to digital slides to annotate the areas of stroma, normal/benign ducts, cancer ducts, dense lymphocyte region, and blood vessels. In the second step, a recurrence risk classifier was trained on eight select architectural and spatial organization tissue features from the annotated areas to predict recurrence risk. Results The recurrence classifier significantly predicted the 10-year recurrence risk in the training [hazard ratio (HR) = 11.6; 95% confidence interval (CI) 5.3–25.3, accuracy (Acc) = 0.87, sensitivity (Sn) = 0.71, and specificity (Sp) = 0.91] and independent validation [HR = 6.39 (95% CI 3.0–13.8), p < 0.0001;Acc = 0.85, Sn = 0.5, Sp = 0.91] cohorts. Despite the limitations of our cohorts, and in some cases inferior sensitivity performance, our tool showed superior accuracy, specificity, positive predictive value, concordance, and hazard ratios relative to tested clinicopathological variables in predicting recurrences (p < 0.0001). Furthermore, it significantly identified patients that might benefit from additional therapy (validation cohort p = 0.0006). Conclusions Our machine learning-based model fills an unmet clinical need for accurately predicting the recurrence risk for lumpectomy-treated DCIS patients. Electronic supplementary material The online version of this article (10.1186/s13058-019-1165-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey Klimov
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.,Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Islam M Miligy
- Department of Cellular Pathology, University of Nottingham, Nottingham, UK
| | - Arkadiusz Gertych
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Michael S Toss
- Department of Cellular Pathology, University of Nottingham, Nottingham, UK
| | - Padmashree Rida
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Ian O Ellis
- Department of Cellular Pathology, University of Nottingham, Nottingham, UK
| | - Andrew Green
- Department of Cellular Pathology, University of Nottingham, Nottingham, UK
| | | | - Emad A Rakha
- Department of Cellular Pathology, University of Nottingham, Nottingham, UK. .,Division of Cancer and Stem Cells School of Medicine, University of Nottingham City Hospital Campus, Nottingham, NG5 1PB, UK.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
19
|
Chatterjee S, Bhat V, Berdnikov A, Liu J, Zhang G, Buchel E, Safneck J, Marshall AJ, Murphy LC, Postovit LM, Raouf A. Paracrine Crosstalk between Fibroblasts and ER + Breast Cancer Cells Creates an IL1β-Enriched Niche that Promotes Tumor Growth. iScience 2019; 19:388-401. [PMID: 31419632 PMCID: PMC6706609 DOI: 10.1016/j.isci.2019.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/16/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
Breast cancer-induced activated fibroblasts support tumor progression. However, the role of normal fibroblasts in tumor progression remains controversial. In this study, we used modified patient-derived organoid cultures and demonstrate that constitutively secreted cytokines from normal breast fibroblasts initiate a paracrine signaling mechanism with estrogen receptor-positive (ER+) breast cancer cells, which results in the creation of an interleukin (IL)-1β-enriched microenvironment. We found that this paracrine signaling mechanism is shared between normal and activated fibroblasts. Interestingly, we observed that in reconstructed tumor microenvironment containing autologous ER+ breast cancer cells, activated fibroblasts, and immune cells, tamoxifen is more effective in reducing tumor cell proliferation when this paracrine signaling is blocked. Our findings then suggest that ER+ tumor cells could create a growth-promoting environment without activating stromal fibroblasts and that in breast-conserving surgeries, normal fibroblasts could be a significant modulator of tumor recurrence by enhancing the proliferation of residual breast cancer cells in the tumor-adjacent breast tissue. Normal fibroblast-cancer cell interaction promotes tumor progression Paracrine signaling common to normal and activated fibroblasts promotes drug resistance Fibroblast-secreted factors create an IL1β-enriched niche for ER+ breast cancer cell growth
Collapse
Affiliation(s)
- Sumanta Chatterjee
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Research Institute of Oncology & Hematology, CancerCareManitoba, Winnipeg, MB R3E 0V9, Canada
| | - Vasudeva Bhat
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Research Institute of Oncology & Hematology, CancerCareManitoba, Winnipeg, MB R3E 0V9, Canada
| | - Alexei Berdnikov
- Department of Surgery, Section of Plastic Surgery, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1M5, Canada
| | - Jiahui Liu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Guihua Zhang
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edward Buchel
- Department of Surgery, Section of Plastic Surgery, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1M5, Canada
| | - Janice Safneck
- Department of Pathology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Aaron J Marshall
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Leigh C Murphy
- Research Institute of Oncology & Hematology, CancerCareManitoba, Winnipeg, MB R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Research Institute of Oncology & Hematology, CancerCareManitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
20
|
Briem E, Ingthorsson S, Traustadottir GA, Hilmarsdottir B, Gudjonsson T. Application of the D492 Cell Lines to Explore Breast Morphogenesis, EMT and Cancer Progression in 3D Culture. J Mammary Gland Biol Neoplasia 2019; 24:139-147. [PMID: 30684066 DOI: 10.1007/s10911-018-09424-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
The human female breast gland is composed of branching epithelial ducts that extend from the nipple towards the terminal duct lobular units (TDLUs), which are the functional, milk-producing units of the gland and the site of origin of most breast cancers. The epithelium of ducts and TDLUs is composed of an inner layer of polarized luminal epithelial cells and an outer layer of contractile myoepithelial cells, separated from the vascular-rich stroma by a basement membrane. The luminal- and myoepithelial cells share an origin and in recent years, there has been increasing understanding of how these cell types interact and how they contribute to breast cancer. Accumulating evidence links stem/or progenitor cells in the mammary/breast gland to breast cancer. In that regard, much knowledge has been gained from studies in mice due to specific strains that have allowed for gene knock out/in studies and lineage tracing of cellular fates. However, there is a large histologic difference between the human female breast gland and the mouse mammary gland that necessitates that research needs to be done on human material where primary cultures are important due to their close relation to the tissue of origin. However, due to difficulties of long-term cultures and lack of access to material, human cell lines are of great importance to bridge the gap between studies on mouse mammary gland and human primary breast cells. In this review, we describe D492, a breast epithelial progenitor cell line that can generate both luminal- and myoepithelial cells in culture, and in 3D culture it forms branching ducts similar to TDLUs. We have applied D492 and its daughter cell lines to explore cellular and molecular mechanisms of branching morphogenesis and cellular plasticity including EMT and MET. In addition to discussing the application of D492 in studying normal morphogenesis, we will also discuss how this cell line has been used to study breast cancer progression.
Collapse
Affiliation(s)
- Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Bylgja Hilmarsdottir
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavík, Iceland.
| |
Collapse
|
21
|
|
22
|
Li Y, Pan Y, Liu Z. Multiclass Nonnegative Matrix Factorization for Comprehensive Feature Pattern Discovery. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:615-629. [PMID: 30010601 DOI: 10.1109/tnnls.2018.2849932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this big data era, interpretable machine learning models are strongly demanded for the comprehensive analytics of large-scale multiclass data. Characterizing all features from such data is a key but challenging step to understand the complexity. However, existing feature selection methods do not meet this need. In this paper, to address this problem, we propose a Bayesian multiclass nonnegative matrix factorization (MC-NMF) model with structured sparsity that is able to discover ubiquitous and class-specific features. Variational update rules were derived for efficient decomposition. In order to relieve the need of model selection and stably describe feature patterns, we further propose MC-NMF with stability selection, an ensemble method that collectively detects feature patterns from many runs of MC-NMF using different hyperparameter values and training subsets. We assessed our models on both simulated count data and multitumor ribonucleic acid-seq data. The experiments revealed that our models were able to recover predefined feature patterns from the simulated data and identify biologically meaningful patterns from the pan-cancer data.
Collapse
|
23
|
Effects of phthalates on normal human breast cells co-cultured with different fibroblasts. PLoS One 2018; 13:e0199596. [PMID: 29940022 PMCID: PMC6016934 DOI: 10.1371/journal.pone.0199596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Whether or not phthalates play a role in breast carcinogenesis remains to be determined. The goal of this study was to explore the effects of phthalates on the growth of normal MCF-10A breast cells modulated by breast fibroblasts. Fibroblasts were derived from normal mammary tissue adjacent to both estrogen receptor (ER) positive and negative primary breast cancers, which were grown separately from nontumorigenic MCF-10A epithelial cells. MCF-10A co-culture cells were treated with 10 nM 17β-estradiol (E2), Butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(20ethylhexyl) phthalate (DEHP) (10 and 100 nM). After incubation for 120 hours, the cells were harvested and extracted for MTT assay. Western blot analysis was used to evaluate the proliferative pathway proteins and the effects on ER α. Only fibroblasts from ER (+) breast cancer significantly stimulated proliferation of MCF-10A cells. Exposure of the co-culture to E2, BBP, DBP, DEHP, and E2 combined with one of these phthalates resulted in significantly increased cell proliferation, as well as proliferating cell nuclear antigen (PCNA) and ER α expressions. The present study demonstrates that phthalates express a significant influence in fibroblast–epithelial interactions, similarly to the effects of E2 on breast cells. The effects of phthalates on normal breast cells depend upon ER modulating actions. In breast carcinogenesis, phthalates should be considered as having endocrine disrupting potential, even at low concentrations.
Collapse
|
24
|
Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater 2018; 73:236-249. [PMID: 29679778 DOI: 10.1016/j.actbio.2018.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/14/2023]
Abstract
Tumor and microenvironmental heterogeneity hinders the study of breast cancer biology and the assessment of therapeutic strategies, being associated with high variability and drug resistance. In this context, it is mandatory to develop three-dimensional breast tumor models able to reproduce this heterogeneity and the dynamic interaction occurring between tumor cells and microenvironment. Here we show a new breast cancer microtissue model (T-µTP) uniquely able to present intra-tumor morphological heterogeneity in a dynamic and responsive endogenous matrix. T-µTP consists of adenocarcinoma cells, endothelial cells and stromal fibroblasts. These three kinds of cells are totally embedded into an endogenous matrix which is rich in collagen and hyaluronic acid and it is directly produced by human fibroblasts. In this highly physiologically relevant environment, tumor cells evolve in different cluster morphologies recapitulating tumor spatiotemporal heterogeneity. Moreover they activate the desmoplastic and vascular reaction with affected collagen content, assembly and organization and the presence of aberrant capillary-like structures (CLS). Thus, T-µTP allows to outline main crucial events involved in breast cancer progression into a single model overcoming the limit of artificial extra cellular matrix surrogates. We strongly believe that T-µTP is a suitable model for the study of breast cancer and for drug screening assays following key parameters of clinical interest. STATEMENT OF SIGNIFICANCE Tumor and microenvironmental heterogeneity makes very hurdle to find a way to study and treat breast cancer. Here we develop an innovative 3D tumor microtissue model recapitulating in vitro tumor heterogeneity. Tumor microtissues are characterized by the activation of the stromal and vascular reaction too. We underline the importance to mimic different microenvironmental tumor features in the same time and in a single tissue in order to obtain a model of spatiotemporal tumor genesis and progression, suitable for the study of tumor treatment and resistance.
Collapse
|
25
|
Varan G, Patrulea V, Borchard G, Bilensoy E. Cellular Interaction and Tumoral Penetration Properties of Cyclodextrin Nanoparticles on 3D Breast Tumor Model. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E67. [PMID: 29373490 PMCID: PMC5853699 DOI: 10.3390/nano8020067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 01/29/2023]
Abstract
Amphiphilic cyclodextrins are biocompatible oligosaccharides that can be used for drug delivery especially for the delivery of drugs with solubility problems thanks to their unique molecular structures. In this paper, Paclitaxel was used as a model anticancer drug to determine the inclusion complex properties of amphiphilic cyclodextrins with different surface charge. Paclitaxel-loaded cyclodextrin nanoparticles were characterized in terms of mean particle diameter, zeta potential, encapsulation efficacy, drug release profile and cell culture studies. It was determined that the nanoparticles prepared from the inclusion complex according to characterization studies have a longer release profile than the conventionally prepared nanoparticles. In order to mimic the tumor microenvironment, breast cancer cells and healthy fibroblast cells were used in 3-dimensional (3D) cell culture studies. It was determined that the activities of nanoparticles prepared by conventional methods behave differently in 2-dimensional (2D) and 3D cell cultures. In addition, it was observed that the nanoparticles prepared from the inclusion complex have a stronger anti-tumoral activity in the 3D multicellular tumor model than the drug solution. Furthermore, polycationic amphiphilic cyclodextrin nanoparticles can diffuse and penetrate through multilayer cells in a 3D tumor model, which is crucial for an eventual antitumor effect.
Collapse
Affiliation(s)
- Gamze Varan
- Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Ankara, Turkey.
- School of Pharmaceutical Sciences, University of Geneva-University of Lausanne, 1211 Geneva, Switzerland.
| | - Viorica Patrulea
- School of Pharmaceutical Sciences, University of Geneva-University of Lausanne, 1211 Geneva, Switzerland.
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva-University of Lausanne, 1211 Geneva, Switzerland.
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
26
|
Ham SL, Thakuri PS, Plaster M, Li J, Luker KE, Luker GD, Tavana H. Three-dimensional tumor model mimics stromal - breast cancer cells signaling. Oncotarget 2017; 9:249-267. [PMID: 29416611 PMCID: PMC5787462 DOI: 10.18632/oncotarget.22922] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor stroma is a major contributor to the biological aggressiveness of cancer cells. Cancer cells induce activation of normal fibroblasts to carcinoma-associated fibroblasts (CAFs), which promote survival, proliferation, metastasis, and drug resistance of cancer cells. A better understanding of these interactions could lead to new, targeted therapies for cancers with limited treatment options, such as triple negative breast cancer (TNBC). To overcome limitations of standard monolayer cell cultures and xenograft models that lack tumor complexity and/or human stroma, we have developed a high throughput tumor spheroid technology utilizing a polymeric aqueous two-phase system to conveniently model interactions of CAFs and TNBC cells and quantify effects on signaling and drug resistance of cancer cells. We focused on signaling by chemokine CXCL12, a hallmark molecule secreted by CAFs, and receptor CXCR4, a driver of tumor progression and metastasis in TNBC. Using three-dimensional stromal-TNBC cells cultures, we demonstrate that CXCL12 – CXCR4 signaling significantly increases growth of TNBC cells and drug resistance through activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. Despite resistance to standard chemotherapy, upregulation of MAPK and PI3K signaling sensitizes TNBC cells in co-culture spheroids to specific inhibitors of these kinase pathways. Furthermore, disrupting CXCL12 – CXCR4 signaling diminishes drug resistance of TNBC cells in co-culture spheroid models. This work illustrates the capability to identify mechanisms of drug resistance and overcome them using our engineered model of tumor-stromal interactions.
Collapse
Affiliation(s)
- Stephanie Lemmo Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Madison Plaster
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Jun Li
- Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
| | - Kathryn E Luker
- Department of Radiology, Microbiology and Immunology, Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Department of Radiology, Microbiology and Immunology, Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
27
|
Miret N, Rico-Leo E, Pontillo C, Zotta E, Fernández-Salguero P, Randi A. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling. Toxicol Appl Pharmacol 2017; 334:192-206. [DOI: 10.1016/j.taap.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
|
28
|
Methods to Evaluate Cell Growth, Viability, and Response to Treatment in a Tissue Engineered Breast Cancer Model. Sci Rep 2017; 7:14167. [PMID: 29074857 PMCID: PMC5658356 DOI: 10.1038/s41598-017-14326-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023] Open
Abstract
The use of in vitro, engineered surrogates in the field of cancer research is of interest for studies involving mechanisms of growth and metastasis, and response to therapeutic intervention. While biomimetic surrogates better model human disease, their complex composition and dimensionality make them challenging to evaluate in a real-time manner. This feature has hindered the broad implementation of these models, particularly in drug discovery. Herein, several methods and approaches for the real-time, non-invasive analysis of cell growth and response to treatment in tissue-engineered, three-dimensional models of breast cancer are presented. The tissue-engineered surrogates used to demonstrate these methods consist of breast cancer epithelial cells and fibroblasts within a three dimensional volume of extracellular matrix and are continuously perfused with nutrients via a bioreactor system. Growth of the surrogates over time was measured using optical in vivo (IVIS) imaging. Morphologic changes in specific cell populations were evaluated by multi-photon confocal microscopy. Response of the surrogates to treatment with paclitaxel was measured by optical imaging and by analysis of lactate dehydrogenase and caspase-cleaved cytokeratin 18 in the perfused medium. Each method described can be repeatedly performed during culture, allowing for real-time, longitudinal analysis of cell populations within engineered tumor models.
Collapse
|
29
|
Fontanil T, Álvarez-Teijeiro S, Villaronga MÁ, Mohamedi Y, Solares L, Moncada-Pazos A, Vega JA, García-Suárez O, Pérez-Basterrechea M, García-Pedrero JM, Obaya AJ, Cal S. Cleavage of Fibulin-2 by the aggrecanases ADAMTS-4 and ADAMTS-5 contributes to the tumorigenic potential of breast cancer cells. Oncotarget 2017; 8:13716-13729. [PMID: 28099917 PMCID: PMC5355132 DOI: 10.18632/oncotarget.14627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
Fibulin-2 participates in the assembly of extracellular matrix components through interactions with multiple ligands and promotes contacts between cells and their surrounding environment. Consequently, identification of processes that could lead to an altered Fibulin-2 could have a major impact not only in the maintenance of tissue architecture and morphogenesis but also in pathological situations including cancer. Herein, we have investigated the ability of the secreted metalloproteases ADAMTS-4 and ADAMTS-5 to digest Fibulin-2. Using in vitro approaches and cultured breast cancer cell lines we demonstrate that Fibulin-2 is a better substrate for ADAMTS-5 than it is for ADAMTS-4. Moreover, Fibulin-2 degradation is associated to an enhancement of the invasive potential of T47D, MCF-7 and SK-BR-3 cells. We have also found that conditioned medium from MCF-7 cells that simultaneously overexpress Fibulin-2 and ADAMTS-5 significantly induced the migratory and invasive ability of normal breast fibroblasts using 3D collagen matrices. Immunohistochemical analysis highlights the close proximity or partial overlap of both Fibulin-2 and ADAMTS-5 in breast tumor samples. Additionally, proteolytic products derived from a potential degradation of Fibulin-2 by ADAMTS-5 were also identified in these samples. Finally, we also show that the cleavage of Fibulin-2 by ADAMTS-5 is counteracted by ADAMTS-12, a metalloprotease that interacts with Fibulin-2. Overall, our results provide direct evidence indicating that Fibulin-2 is a novel substrate of ADAMTS-5 and that this proteolysis could alter the cellular microenvironment affecting the balance between protumor and antitumor effects associated to both Fibulin-2 and the ADAMTSs metalloproteases.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - M Ángeles Villaronga
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Laura Solares
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| | - Angela Moncada-Pazos
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - José A Vega
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Olivia García-Suárez
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Marcos Pérez-Basterrechea
- Unidad de Trasplantes, Terapia Celular y Medicina Regenerativa, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Hospital Universitario Central de Asturias, Universidad de Oviedo, Asturias, and CIBERONC, Madrid, Spain
| | - Alvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain.,Departamento de Biología Funcional, Area de Fisiología, Universidad de Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Asturias Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
30
|
Rijal G, Li W. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. SCIENCE ADVANCES 2017; 3:e1700764. [PMID: 28924608 PMCID: PMC5597314 DOI: 10.1126/sciadv.1700764] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/14/2017] [Indexed: 05/19/2023]
Abstract
Most of the anticancer drug candidates entering preclinical trials fail to be approved for clinical applications. The following are among the main causes of these failures: studying molecular mechanisms of cancer development, identifying therapeutic targets, and testing drug candidates using inappropriate tissue culture models, which do not recapitulate the native microenvironment where the cancer cells originate. It has become clear that three-dimensional (3D) cell cultures are more biologically and clinically relevant than 2D models. The spatial and mechanical conditions of 3D cultures enable the cancer cells to display heterogeneous growth, assume diverse phenotypes, express distinct gene and protein products, and attain metastatic potential and resistance to drugs that are reminiscent of tumors in humans. However, the current 3D culture systems using synthetic polymers or selected components of the extracellular matrix (ECM) are defective (particularly the biophysical and biochemical properties of the native ECM) and remain distant to optimally support the signaling cue-oriented cell survival and growth. We introduce a reconstitutable tissue matrix scaffold (TMS) system fabricated using native tissue ECM, with tissue-like architecture and resilience. The structural and compositional properties of TMS favor robust cell survival, proliferation, migration, and invasion in culture and vascularized tumor formation in animals. The combination of porous and hydrogel TMS allows compartmental culture of cancerous and stromal cells, which are distinguishable by biomarkers. The response of the cancer cells grown on TMS to drugs well reflects animal and clinical observations. TMS enables more biologically relevant studies and is suitable for preclinical drug screening.
Collapse
|
31
|
Liu H, Wang J, Ren G, Zhang Y, Dong F. The relationship between proteoglycan inhibition via xylosyltransferase II silencing and the implantation of salivary pleomorphic adenoma. J Oral Pathol Med 2017; 46:504-512. [PMID: 27732748 DOI: 10.1111/jop.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To study the relationship between proteoglycan inhibition and the implantation of salivary pleomorphic adenoma (SPA). METHODS SPA fresh tissue was primitively cultured and identified. The Ad-shRNA-XT-II adenovirus vector was constructed and transfected into SPA cells to silence the XT-II gene. The expression of the XT-II gene and protein was detected using real-time PCR and Western blotting, respectively. The proteoglycan content of the cells was determined 48 h after transfection. The invasion and migration of SPA cells were observed using Matrigel invasion and wound-healing assays. Fibroblasts from the tumour capsule of the same patient were obtained, cultured and seeded onto an acellular dermal matrix (ADM) scaffold. Tumour cells were seeded onto the scaffold with the fibroblasts and then transferred to BALB/C-nu nude mice and allowed to grow in vivo for 3 months. RESULTS The SPA cells cultures were positive for human calponin, S-100 protein, α-SMA and CK. XT-II gene and protein expression was decreased by 42.72% and 34%, respectively. The proteoglycan content was downregulated by 41.15%. XT-II gene silencing decreased the invasion and migration abilities of SPA cells. The assessment of SPA growth in nude mice indicated an absence of tumour growth in the SPA-XT-II group (in which the XT-II gene was silenced), whereas SPA growth was observed in the other two groups (in which the XT-II gene was not silenced), and the tumour tissue was positive for the human S-100 protein, α-SMA and CK8&18. CONCLUSION Proteoglycan inhibition induced via XT-II gene silencing inhibited the implantation of SPA.
Collapse
Affiliation(s)
- Huijuan Liu
- Department of Oral Pathology, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Jie Wang
- Department of Oral Pathology, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Guiyun Ren
- Department of Oral & Maxillofacial Surgery, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Yanning Zhang
- Department of Oral Pathology, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Fusheng Dong
- Department of Oral & Maxillofacial Surgery, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| |
Collapse
|
32
|
Roberts S, Speirs V. Advances in the development of improved animal-free models for use in breast cancer biomedical research. Biophys Rev 2017; 9:321-327. [PMID: 28748520 PMCID: PMC5578919 DOI: 10.1007/s12551-017-0276-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Through translational research, the outcomes for women (and men) diagnosed with breast cancer have improved significantly, with now over 80% of women surviving for at least 5 years post-diagnosis. Much of this success has been translated from the bench to the bedside using laboratory models. Here, we outline the types of laboratory models that have helped achieve this and discuss new approaches as we move towards animal-free disease modelling.
Collapse
Affiliation(s)
- Sophie Roberts
- Leeds Institute of Cancer & Pathology, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK
| | - Valerie Speirs
- Leeds Institute of Cancer & Pathology, University of Leeds, St James's University Hospital, Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK.
| |
Collapse
|
33
|
Brancato V, Comunanza V, Imparato G, Corà D, Urciuolo F, Noghero A, Bussolino F, Netti PA. Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer. Acta Biomater 2017; 49:152-166. [PMID: 27916739 DOI: 10.1016/j.actbio.2016.11.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Many of the existing three-dimensional (3D) cancer models in vitro fail to represent the entire complex tumor microenvironment composed of cells and extra cellular matrix (ECM) and do not allow a reliable study of the tumoral features and progression. In this paper we reported a strategy to produce 3D in vitro microtissues of pancreatic ductal adenocarcinoma (PDAC) for studying the desmoplastic reaction activated by the stroma-cancer crosstalk. Human PDAC microtissues were obtained by co-culturing pancreatic cancer cells (PT45) and normal or cancer-associated fibroblasts within biodegradable microcarriers in a spinner flask bioreactor. Morphological and histological analyses highlighted that the presence of fibroblasts resulted in the deposition of a stromal matrix rich in collagen leading to the formation of tumor microtissues composed of a heterotypic cell population embedded in their own ECM. We analyzed the modulation of expression of ECM genes and proteins and found that when fibroblasts were co-cultured with PT45, they acquired a myofibroblast phenotype and expressed the desmoplastic reaction markers. This PDAC microtissue, closely recapitulating key PDAC microenvironment characteristics, provides a valuable tool to elucidate the complex stroma-cancer interrelationship and could be used in a future perspective as a testing platform for anticancer drugs in tissue-on-chip technology. STATEMENT OF SIGNIFICANCE Tumor microenvironment is extremely complex and its organization is due to the interaction between different kind of cells and the extracellular matrix. Tissue engineering could give the answer to the increasing need of 3D culture model that better recapitulate the tumor features at cellular and extracellular level. We aimed in this work at developing a microtissue tumor model by mean of seeding together cancer cells and fibroblasts on gelatin microsphere in order to monitor the crosstalk between the two cell populations and the endogenous extracellular matrix deposition. Results are of particular interest because of the need of heterotypic cancer model that can replicate the complexity of the tumor microenvironment and could be used as drug screening platform.
Collapse
Affiliation(s)
- Virginia Brancato
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Davide Corà
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alessio Noghero
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples, Italy; Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples, Italy
| |
Collapse
|
34
|
Matà R, Palladino C, Nicolosi ML, Lo Presti AR, Malaguarnera R, Ragusa M, Sciortino D, Morrione A, Maggiolini M, Vella V, Belfiore A. IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget 2016; 7:7683-700. [PMID: 26655502 PMCID: PMC4884947 DOI: 10.18632/oncotarget.6524] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Discoidin Domain Receptor 1 (DDR1) is a collagen receptor tyrosine-kinase that contributes to epithelial-to-mesenchymal transition and enhances cancer progression. Our previous data indicate that, in breast cancer cells, DDR1 interacts with IGF-1R and positively modulates IGF-1R expression and biological responses, suggesting that the DDR1-IGF-IR cross-talk may play an important role in cancer. In this study, we set out to evaluate whether IGF-I stimulation may affect DDR1 expression. Indeed, in breast cancer cells (MCF-7 and MDA-MB-231) IGF-I induced significant increase of DDR1 protein expression, in a time and dose dependent manner. However, we did not observe parallel changes in DDR1 mRNA. DDR1 upregulation required the activation of the PI3K/AKT pathway while the ERK1/2, the p70/mTOR and the PKC pathways were not involved. Moreover, we observed that DDR1 protein upregulation was induced by translational mechanisms involving miR-199a-5p suppression through PI3K/AKT activation. This effect was confirmed by both IGF-II produced by cancer-associated fibroblasts from human breast cancer and by stable transfection of breast cancer cells with a human IGF-II expression construct. Transfection with a constitutively active form of AKT was sufficient to decrease miR-199a-5p and upregulate DDR1. Accordingly, IGF-I-induced DDR1 upregulation was inhibited by transfection with pre-miR-199a-5p, which also impaired AKT activation and cell migration and proliferation in response to IGF-I. These results demonstrate that, in breast cancer cells, a novel pathway involving AKT/miR-199a-5p/DDR1 plays a role in modulating IGFs biological responses. Therefore, this signaling pathway may represent an important target for breast cancers with over-activation of the IGF-IR axis.
Collapse
Affiliation(s)
- Roberta Matà
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Chiara Palladino
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Anna Rita Lo Presti
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences Biology, Genetics and BioInformatics Unit, University of Catania, Catania, Italy
| | - Daniela Sciortino
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Veronica Vella
- Motor Sciences, School of Human and Social Sciences, "Kore" University of Enna, Enna, Italy.,Department of Clinical and Molecular Bio-Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
35
|
Tsai CW, Young TH. CD44 expression trends of mesenchymal stem-derived cell, cancer cell and fibroblast spheroids on chitosan-coated surfaces. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractCD44, a cell-surface glycoprotein, plays an important role in cell proliferation, adhesion, migration, and other biological functions, which are related with the physiological and pathologic activities of cells. Especially, CD44 is extensively expressed within adult bone marrow and has been considered as an important marker for some cancer stem cells (CSCs) in various types of tumors. Therefore, it is essential to understand the variations in CD44 expression of stem cells and cancer cells for further clinical applications. In this paper, CD44 expression was assessed on a human colon cancer cell line (SW620), a human mesenchymal stem-like cell line (3A6), and a human foreskin fibroblast line (Hs68). We used chitosan to establish a suspension culture model to develop multicellular spheroids to mimic a three-dimension (3D) in vivo environment. Obviously, CD44 expression on 3A6 and SW620 cells was dynamic and diverse when they were in the aggregated state suspended on chitosan, while Hs68 cells were relatively stable. Furthermore, we discuss how to regulate CD44 expression of 3A6 and SW620 cells by the interactions between cell and cell, cell and chitosan, as well as cell and microenvironment. Finally, the possible mechanism of chitosan to control CD44 expression of cells is proposed, which may lead to the careful use of chitosan for potential clinical applications.
Collapse
Affiliation(s)
- Ching-Wen Tsai
- 1Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, Province of China
| | - Tai-Horng Young
- 1Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, Province of China
| |
Collapse
|
36
|
Morgan MM, Johnson BP, Livingston MK, Schuler LA, Alarid ET, Sung KE, Beebe DJ. Personalized in vitro cancer models to predict therapeutic response: Challenges and a framework for improvement. Pharmacol Ther 2016; 165:79-92. [PMID: 27218886 PMCID: PMC5439438 DOI: 10.1016/j.pharmthera.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Personalized cancer therapy focuses on characterizing the relevant phenotypes of the patient, as well as the patient's tumor, to predict the most effective cancer therapy. Historically, these methods have not proven predictive in regards to predicting therapeutic response. Emerging culture platforms are designed to better recapitulate the in vivo environment, thus, there is renewed interest in integrating patient samples into in vitro cancer models to assess therapeutic response. Successful examples of translating in vitro response to clinical relevance are limited due to issues with patient sample acquisition, variability and culture. We will review traditional and emerging in vitro models for personalized medicine, focusing on the technologies, microenvironmental components, and readouts utilized. We will then offer our perspective on how to apply a framework derived from toxicology and ecology towards designing improved personalized in vitro models of cancer. The framework serves as a tool for identifying optimal readouts and culture conditions, thus maximizing the information gained from each patient sample.
Collapse
Affiliation(s)
- Molly M Morgan
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P Johnson
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan K Livingston
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kyung E Sung
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.
| | - David J Beebe
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
37
|
Goliwas KF, Marshall LE, Ransaw EL, Berry JL, Frost AR. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth. J Tissue Eng 2016; 7:2041731416660739. [PMID: 27516850 PMCID: PMC4968110 DOI: 10.1177/2041731416660739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/26/2016] [Indexed: 12/11/2022] Open
Abstract
Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.
Collapse
Affiliation(s)
- Kayla F Goliwas
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren E Marshall
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Evette L Ransaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel L Berry
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andra R Frost
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Lim H, Moon A. Inflammatory fibroblasts in cancer. Arch Pharm Res 2016; 39:1021-31. [DOI: 10.1007/s12272-016-0787-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023]
|
39
|
Regier MC, Alarid ET, Beebe DJ. Progress towards understanding heterotypic interactions in multi-culture models of breast cancer. Integr Biol (Camb) 2016; 8:684-92. [PMID: 27097801 PMCID: PMC4993016 DOI: 10.1039/c6ib00001k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironments in primary tumors and metastases include multiple cell types whose dynamic and reciprocal interactions are central to progression of the disease. However, the literature involving breast cancer studied in vitro is dominated by cancer cells in mono-culture or co-cultured with one other cell type. For in vitro studies of breast cancer the inclusion of multiple cell types has led to models that are more representative of in vivo behaviors and functions as compared to more traditional monoculture. Here, we review foundational co-culture techniques and their adaptation to multi-culture (including three or more cell types). Additionally, while macroscale methods involving conditioned media, direct contact, and indirect interactions have been informative, we examined many advances that have been made more recently using microscale systems with increased control over cellular and structural complexity. Throughout this discussion we consider the benefits and limitations of current multi-culture methods and the significant results they have produced.
Collapse
Affiliation(s)
- Mary C Regier
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
40
|
Alexander J, Cukierman E. Stromal dynamic reciprocity in cancer: intricacies of fibroblastic-ECM interactions. Curr Opin Cell Biol 2016; 42:80-93. [PMID: 27214794 DOI: 10.1016/j.ceb.2016.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Stromal dynamic reciprocity (SDR) consists of the biophysical and biochemical interplay between connective tissue elements that regulate and maintain organ homeostasis. In epithelial cancers, chronic alterations of SDR result in the once tumor-restrictive stroma evolving into a 'new' tumor-permissive environment. This altered stroma, known as desmoplasia, is initiated and maintained by cancer associated fibroblasts (CAFs) that remodel the extracellular matrix (ECM). Desmoplasia fuels a vicious cycle of stromal dissemination enriching both CAFs and desmoplastic ECM. Targeting specific drivers of desmoplasia, such as CAFs, either enhances or halts tumor growth and progression. These conflicting effects suggest that stromal interactions are not fully understood. This review highlights known fibroblastic-ECM interactions in an effort to encourage therapies that will restore cancer-restrictive stromal cues.
Collapse
Affiliation(s)
- Jennifer Alexander
- Fox Chase Cancer Center, Cancer Biology, Temple Health, 333 Cottman Ave, Philadelphia, PA 19111, USA; Drexel University College of Medicine, Department of Molecular Biology and Biochemistry, 245 N 15(th) St, Philadelphia, PA 19102, USA
| | - Edna Cukierman
- Fox Chase Cancer Center, Cancer Biology, Temple Health, 333 Cottman Ave, Philadelphia, PA 19111, USA.
| |
Collapse
|
41
|
Goliwas KF, Miller LM, Marshall LE, Berry JL, Frost AR. Preparation and Analysis of In Vitro Three Dimensional Breast Carcinoma Surrogates. J Vis Exp 2016. [PMID: 27214165 DOI: 10.3791/54004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Three dimensional (3D) culture is a more physiologically relevant method to model cell behavior in vitro than two dimensional culture. Carcinomas, including breast carcinomas, are complex 3D tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix (ECM). Yet most in vitro models of breast carcinoma consist only of cancer epithelial cells, omitting the stroma and, therefore, the 3D architecture of a tumor in vivo. Appropriate 3D modeling of carcinoma is important for accurate understanding of tumor biology, behavior, and response to therapy. However, the duration of culture and volume of 3D models is limited by the availability of oxygen and nutrients within the culture. Herein, we demonstrate a method in which breast carcinoma epithelial cells and stromal fibroblasts are incorporated into ECM to generate a 3D breast cancer surrogate that includes stroma and can be cultured as a solid 3D structure or by using a perfusion bioreactor system to deliver oxygen and nutrients. Following setup and an initial growth period, surrogates can be used for preclinical drug testing. Alternatively, the cellular and matrix components of the surrogate can be modified to address a variety of biological questions. After culture, surrogates are fixed and processed to paraffin, in a manner similar to the handling of clinical breast carcinoma specimens, for evaluation of parameters of interest. The evaluation of one such parameter, the density of cells present, is explained, where ImageJ and CellProfiler image analysis software systems are applied to photomicrographs of histologic sections of surrogates to quantify the number of nucleated cells per area. This can be used as an indicator of the change in cell number over time or the change in cell number resulting from varying growth conditions and treatments.
Collapse
Affiliation(s)
- Kayla F Goliwas
- Department of Pathology, University of Alabama at Birmingham
| | - Lindsay M Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Lauren E Marshall
- Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Andra R Frost
- Department of Pathology, University of Alabama at Birmingham;
| |
Collapse
|
42
|
Tran TB, Baek C, Min J. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell-Fibroblasts Interaction. PLoS One 2016; 11:e0153813. [PMID: 27088611 PMCID: PMC4835071 DOI: 10.1371/journal.pone.0153813] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined.
Collapse
Affiliation(s)
- Trong Binh Tran
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Hao W, Friedman A. Serum uPAR as Biomarker in Breast Cancer Recurrence: A Mathematical Model. PLoS One 2016; 11:e0153508. [PMID: 27078836 PMCID: PMC4831695 DOI: 10.1371/journal.pone.0153508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
There are currently over 2.5 million breast cancer survivors in the United States and, according to the American Cancer Society, 10 to 20 percent of these women will develop recurrent breast cancer. Early detection of recurrence can avoid unnecessary radical treatment. However, self-examination or mammography screening may not discover a recurring cancer if the number of surviving cancer cells is small, while biopsy is too invasive and cannot be frequently repeated. It is therefore important to identify non-invasive biomarkers that can detect early recurrence. The present paper develops a mathematical model of cancer recurrence. The model, based on a system of partial differential equations, focuses on tissue biomarkers that include the plasminogen system. Among them, only uPAR is known to have significant correlation to its concentration in serum and could therefore be a good candidate for serum biomarker. The model includes uPAR and other associated cytokines and cells. It is assumed that the residual cancer cells that survived primary cancer therapy are concentrated in the same location within a region with a very small diameter. Model simulations establish a quantitative relation between the diameter of the growing cancer and the total uPAR mass in the cancer. This relation is used to identify uPAR as a potential serum biomarker for breast cancer recurrence.
Collapse
Affiliation(s)
- Wenrui Hao
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States of America
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
44
|
Puttipanyalears C, Kitkumthorn N, Buranapraditkun S, Keelawat S, Mutirangura A. Breast cancer upregulating genes in stromal cells by LINE-1 hypermethylation and micrometastatic detection. Epigenomics 2016; 8:475-86. [PMID: 27035076 DOI: 10.2217/epi-2015-0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Changes in the methylation level of genes containing LINE-1 alter host gene regulation. AIM This study demonstrates that paracrine signaling of breast cancer influences the epigenetic regulation of stromal cells. METHODS We proved in vitro and in vivo breast cancer promoted LINE-1 methylation exists exclusively in female stromal cells. RESULTS Genes containing LINE-1 of breast cancer stromal cells were upregulated. Furthermore, one of the genes, MUC-1, was demonstrated to have expression in plasma cells from the lymph nodes of patients with lymph node metastasis or micrometastasis. CONCLUSION Breast cancer sends a paracrine signal to stroma cells causing LINE-1 epigenetic regulation. Moreover, the regulated genes in stroma cells are potential biomarkers for detecting breast cancer micrometastasis.
Collapse
Affiliation(s)
- Charoenchai Puttipanyalears
- Inter-Department Program of BioMedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Molecular Genetics of Cancer & Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy & Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer & Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
45
|
Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials 2016; 81:135-156. [DOI: 10.1016/j.biomaterials.2015.12.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/15/2022]
|
46
|
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1168-1180. [DOI: 10.1016/j.msec.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
|
47
|
Buchsbaum RJ, Oh SY. Breast Cancer-Associated Fibroblasts: Where We Are and Where We Need to Go. Cancers (Basel) 2016; 8:cancers8020019. [PMID: 26828520 PMCID: PMC4773742 DOI: 10.3390/cancers8020019] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 02/04/2023] Open
Abstract
Cancers are heterogeneous tissues comprised of multiple components, including tumor cells and microenvironment cells. The tumor microenvironment has a critical role in tumor progression. The tumor microenvironment is comprised of various cell types, including fibroblasts, macrophages and immune cells, as well as extracellular matrix and various cytokines and growth factors. Fibroblasts are the predominant cell type in the tumor microenvironment. However, neither the derivation of tissue-specific cancer-associated fibroblasts nor markers of tissue-specific cancer-associated fibroblasts are well defined. Despite these uncertainties it is increasingly apparent that cancer-associated fibroblasts have a crucial role in tumor progression. In breast cancer, there is evolving evidence showing that breast cancer-associated fibroblasts are actively involved in breast cancer initiation, proliferation, invasion and metastasis. Breast cancer-associated fibroblasts also play a critical role in metabolic reprogramming of the tumor microenvironment and therapy resistance. This review summarizes the current understanding of breast cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Molecular Oncology Research Institute and Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center, Boston, MA 02111, USA.
| | - Sun Young Oh
- Department of Medicine, Division of Medical Oncology, Montefiore Medical Center, New York, NY 10467, USA.
| |
Collapse
|
48
|
Zang C, Eucker J, Habbel P, Neumann C, Schulz CO, Bangemann N, Kissner L, Riess H, Liu H. Targeting multiple tyrosine kinase receptors with Dovitinib blocks invasion and the interaction between tumor cells and cancer-associated fibroblasts in breast cancer. Cell Cycle 2016; 14:1291-9. [PMID: 25714853 DOI: 10.4161/15384101.2014.995050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.
Collapse
Affiliation(s)
- Chuanbing Zang
- a Division of Hematology and Oncology ; Charité-University Medicine; Charitéplatz 1 ; Berlin , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Curran S, Vantangoli MM, Boekelheide K, Morgan JR. Architecture of Chimeric Spheroids Controls Drug Transport. CANCER MICROENVIRONMENT 2015; 8:101-9. [PMID: 26239082 DOI: 10.1007/s12307-015-0171-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
It is well-established that upregulation of drug efflux pumps leads to multi-drug resistance. Less is known about the role of the architecture of the tumor microenvironment in this process: how the location of pump expressing cells influences drug exposure to cancerous as well as non-cancerous cells. Here, we report a 3D in vitro model of spheroids with mixtures of cells expressing high and low levels of ABCG2, quantifying pump activity by the ability to reject the fluorescent dye Hoechst 33342. With respect to the organization of the mixed spheroids, three different architectures were observed: 1) high-expressing ABCG2 cells located in the spheroid core surrounded by low-expressing cells, 2) high-expressing ABCG2 cells intermixed with low-expressing cells and 3) high-expressing ABCG2 cells surrounding a core of low-expressing cells. When high-expressing ABCG2 cells were in the core or intermixed, Hoechst uptake was directly proportional to the percentage of ABCG2 cells. When high-expressing ABCG2 cell formed an outer coating surrounding spheroids, small numbers of ABCG2 cells were disproportionately effective at inhibiting uptake. Specific inhibitors of the ABCG2 transporter eliminated the effect of this coating. Confocal microscopy of spheroids revealed the location of high- and low-expressing cells, and Hoechst fluorescence revealed that the ABCG2-dependant drug concentration in the cancer microenvironment is influenced by pump expression level and distribution among the cells within a tissue. In addition to providing a 3D model for further investigation into multicellular drug resistance, these data show that the location of ABCG2-expressing cells can control drug exposure within the tumor microenvironment.
Collapse
Affiliation(s)
- Sean Curran
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
50
|
Qu Y, Han B, Yu Y, Yao W, Bose S, Karlan BY, Giuliano AE, Cui X. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLoS One 2015; 10:e0131285. [PMID: 26147507 PMCID: PMC4493126 DOI: 10.1371/journal.pone.0131285] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/01/2015] [Indexed: 01/16/2023] Open
Abstract
Breast cancer is the most common cancer in women and a leading cause of cancer-related deaths for women worldwide. Various cell models have been developed to study breast cancer tumorigenesis, metastasis, and drug sensitivity. The MCF10A human mammary epithelial cell line is a widely used in vitro model for studying normal breast cell function and transformation. However, there is limited knowledge about whether MCF10A cells reliably represent normal human mammary cells. MCF10A cells were grown in monolayer, suspension (mammosphere culture), three-dimensional (3D) “on-top” Matrigel, 3D “cell-embedded” Matrigel, or mixed Matrigel/collagen I gel. Suspension culture was performed with the MammoCult medium and low-attachment culture plates. Cells grown in 3D culture were fixed and subjected to either immunofluorescence staining or embedding and sectioning followed by immunohistochemistry and immunofluorescence staining. Cells or slides were stained for protein markers commonly used to identify mammary progenitor and epithelial cells. MCF10A cells expressed markers representing luminal, basal, and progenitor phenotypes in two-dimensional (2D) culture. When grown in suspension culture, MCF10A cells showed low mammosphere-forming ability. Cells in mammospheres and 3D culture expressed both luminal and basal markers. Surprisingly, the acinar structure formed by MCF10A cells in 3D culture was positive for both basal markers and the milk proteins β-casein and α-lactalbumin. MCF10A cells exhibit a unique differentiated phenotype in 3D culture which may not exist or be rare in normal human breast tissue. Our results raise a question as to whether the commonly used MCF10A cell line is a suitable model for human mammary cell studies.
Collapse
Affiliation(s)
- Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Yi Yu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Weiwu Yao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, China
| | - Shikha Bose
- Department of Pathology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Armando E. Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|