1
|
Yang Y, Dong L, Li Y, Huang Y, Zeng X. Summary data-based Mendelian randomization and single-cell RNA sequencing analyses identify immune associations with low-level LGALS9 in sepsis. J Cell Mol Med 2024; 28:e18559. [PMID: 39044269 PMCID: PMC11265992 DOI: 10.1111/jcmm.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Sepsis is one of the major challenges in intensive care units, characterized by the complexity of the host immune status. To gain a deeper understanding of the pathogenesis of sepsis, it is crucial to study the phenotypic changes in immune cells and their underlying molecular mechanisms. We conducted Summary data-based Mendelian randomization analysis by integrating genome-wide association studies data for sepsis with expression quantitative trait locus data, revealing a significant decrease in the expression levels of 17 biomarkers in sepsis patients. Furthermore, based on single-cell RNA sequencing data, we elucidated potential molecular mechanisms at single-cell resolution and identified that LGALS9 inhibition in sepsis patients leads to the activation and differentiation of monocyte and T-cell subtypes. These findings are expected to assist researchers in gaining a more in-depth understanding of the immune dysregulation in sepsis.
Collapse
Affiliation(s)
- Yongsan Yang
- Intensive Care Unit and West China Biomedical Big Data CenterWest China Hospital, Sichuan UniversityChengduChina
- Med‐X Center for InformaticsSichuan UniversityChengduChina
| | - Lei Dong
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo UniversityNingboChina
| | - Ye Huang
- Department of Emergency MedicineXiyuan Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Xiaoxi Zeng
- Med‐X Center for InformaticsSichuan UniversityChengduChina
- West China Biomedical Big Data CenterWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Xu Y, Li X, Cheng F, Zhao B, Fang M, Li Z, Meng S. Heat shock protein gp96 drives natural killer cell maturation and anti-tumor immunity by counteracting Trim28 to stabilize Eomes. Nat Commun 2024; 15:1106. [PMID: 38321029 PMCID: PMC10847424 DOI: 10.1038/s41467-024-45426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The maturation process of natural killer (NK) cells, which is regulated by multiple transcription factors, determines their functionality, but few checkpoints specifically targeting this process have been thoroughly studied. Here we show that NK-specific deficiency of glucose-regulated protein 94 (gp96) leads to decreased maturation of NK cells in mice. These gp96-deficient NK cells exhibit undermined activation, cytotoxicity and IFN-γ production upon stimulation, as well as weakened responses to IL-15 for NK cell maturation, in vitro. In vivo, NK-specific gp96-deficient mice show increased tumor growth. Mechanistically, we identify Eomes as the downstream transcription factor, with gp96 binding to Trim28 to prevent Trim28-mediated ubiquitination and degradation of Eomes. Our study thus suggests the gp96-Trim28-Eomes axis to be an important regulator for NK cell maturation and cancer surveillance in mice.
Collapse
Affiliation(s)
- Yuxiu Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Bao Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zihai Li
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
4
|
Luo C, Luo F, Che L, Zhang H, Zhao L, Zhang W, Man X, Bu Q, Luan H, Zhou B, Zhou H, Xu Y. Mesenchymal stem cells protect against sepsis-associated acute kidney injury by inducing Gal-9/Tim-3 to remodel immune homeostasis. Ren Fail 2023; 45:2187229. [PMID: 36883358 PMCID: PMC10013538 DOI: 10.1080/0886022x.2023.2187229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE The present study investigated the specific mechanism by which mesenchymal stem cells (MSCs) protect against sepsis-associated acute kidney injury (SA-AKI). METHODS Male C57BL/6 mice underwent cecal ligation and puncture surgery to induce sepsis and then received either normal IgG or MSCs (1 × 106 cells, intravenously) plus Gal-9 or soluble Tim-3 3 h after surgery. RESULTS After cecal ligation and puncture surgery, the mice injected with Gal-9 or MSCs plus Gal-9 had a higher survival rate than the mice in the IgG treatment group. Treatment with MSCs plus Gal-9 decreased serum creatinine and blood urea nitrogen levels, improved tubular function recovery, reduced IL-17 and RORγt levels and induced IL-10 and FOXP3 expression. Additionally, the Th17/Treg cell balance was altered. However, when soluble Tim-3 was used to block the Gal-9/Tim-3 pathway, the septic mice developed kidney injury and exhibited increased mortality. Treatment with MSCs plus soluble Tim-3 blunted the therapeutic effect of MSCs, inhibited the induction of Tregs, and suppressed the inhibition of differentiation into Th17 cells. CONCLUSION Treatment with MSCs significantly reversed the Th1/Th2 balance. Thus, the Gal-9/Tim-3 pathway may be an important mechanism of MSC-mediated protection against SA-AKI.
Collapse
Affiliation(s)
- Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Feng Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wei Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Quandong Bu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hong Luan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Haiyan Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- CONTACT Yan Xu Department of Nephrology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
5
|
Du L, Bouzidi MS, Gala A, Deiter F, Billaud JN, Yeung ST, Dabral P, Jin J, Simmons G, Dossani ZY, Niki T, Ndhlovu LC, Greenland JR, Pillai SK. Human galectin-9 potently enhances SARS-CoV-2 replication and inflammation in airway epithelial cells. J Mol Cell Biol 2023; 15:mjad030. [PMID: 37127426 PMCID: PMC10668544 DOI: 10.1093/jmcb/mjad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a β-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. In this study, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including immortalized AECs and primary AECs cultured at the air-liquid interface. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an angiotensin-converting enzyme 2 (ACE2)-dependent manner, enhancing the binding of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs, including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Li Du
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Akshay Gala
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Fred Deiter
- Department of Medicine, University of California, San Francisco, CA 94143-0410, USA
- Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | | | - Stephen T Yeung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Prerna Dabral
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Jing Jin
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Zain Y Dossani
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kagawa 760-0016, Japan
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, CA 94143-0410, USA
- Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| |
Collapse
|
6
|
Tim-3 Blockade Decreases the Apoptosis of CD8 + T Cells and Reduces the Severity of Sepsis in Mice. J Surg Res 2022; 279:8-16. [PMID: 35716447 DOI: 10.1016/j.jss.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/05/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The T cell immunoglobulin and mucin domain 3 (Tim-3) mediated immunosuppressive pathway has been shown to play an essential role in the development of sepsis. However, the influence of Tim-3 blockade during sepsis and the possible effects on T cells' function remains largely unknown. Our study investigates the role of Tim-3 in cecal ligation and puncture (CLP)-induced sepsis in mice. METHODS Sepsis was induced in C57BL/6 male mice via CLP. The expression of Tim-3 in CD8+ T cells after CLP challenge was measured. A dose of 50 μg anti-Tim-3 antibodies was injected intraperitoneally 30 min after surgery. Postoperative survival, bacterial clearance in the blood and peritoneal lavage fluid, cytokine secretion in the blood, and lung and liver histology were evaluated. In addition, the apoptosis of immune cells in the spleen and thymus was examined, respectively. RESULTS Tim-3 expression was elevated in the splenic CD8+ T cells of septic mice. At the early stage of CLP-induced sepsis, blocking Tim-3 with anti-Tim-3 antibodies reduced the severity of sepsis. The anti-Tim-3 antibodies alleviated the morphology of lung and liver injuries in septic mice. The anti-Tim-3 antibodies also reduced the severity of the inflammatory responses and lymphocyte apoptosis in septic mice. CONCLUSIONS Anti-Tim-3 antibodies might be a potential therapeutic strategy for sepsis.
Collapse
|
7
|
Du L, Bouzidi MS, Gala A, Deiter F, Billaud JN, Yeung ST, Dabral P, Jin J, Simmons G, Dossani Z, Niki T, Ndhlovu LC, Greenland JR, Pillai SK. Human Galectin-9 Potently Enhances SARS-CoV-2 Replication and Inflammation in Airway Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.18.484956. [PMID: 35378763 PMCID: PMC8978940 DOI: 10.1101/2022.03.18.484956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a β-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induce the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection. Importance COVID-19 continues to have a major global health and economic impact. Identifying host molecular determinants that modulate SARS-CoV-2 infectivity and pathology is a key step in discovering novel therapeutic approaches for COVID-19. Several recent studies have revealed that plasma concentrations of the human β-galactoside-binding protein galectin-9 (Gal-9) are highly elevated in COVID-19 patients. In this study, we investigated the impact of Gal-9 on SARS-CoV-2 pathogenesis ex vivo in airway epithelial cells (AECs), the critical initial targets of SARS-CoV-2 infection. Our findings reveal that Gal-9 potently enhances SARS-CoV-2 replication in AECs, interacting with glycans to enhance the binding between viral particles and entry receptors on the target cell surface. Moreover, we determined that Gal-9 accelerates and exacerbates several virus-induced pro-inflammatory programs in AECs that are established signature characteristics of COVID-19 disease and SARS-CoV-2-induced acute respiratory distress syndrome (ARDS). Our findings suggest that Gal-9 is a promising pharmacological target for COVID-19 therapies.
Collapse
|
8
|
Baicalein Attenuates Severe Polymicrobial Sepsis via lleviating Immune Dysfunction of T Lymphocytes and Inflammation. Chin J Integr Med 2022; 28:711-718. [PMID: 35355199 DOI: 10.1007/s11655-022-3510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of baicalein on polymicrobial sepsis-induced immune dysfunction and organ injury. METHODS A sepsis model was induced in Sprague-Dawley rats via caecal ligation and puncture (CLP). Specific pathogen free rats were randomly divided into a sham group, CLP group and CLP + baicalein (Bai) group (n=16 each). Rats in the CLP + Bai group were intravenously injected with baicalein (20 mg/kg) at 1 and 10 h after CLP. Survival rate, bacterial load, and organ damage were assessed. Then each group was evaluated at 6, 12, and 24 h to investigate the effect of baicalein on immune cells and inflammatory cytokines in septic rats. RESULTS Baicalein treatment significantly improved the survival of septic rats, decreased the bacterial burden, and moderated tissue damage (spleen, liver, and lung), as observed by haematoxylin and eosin staining. Septic rats treated with baicalein had strikingly increased proportions of CD3+CD4+ T cells and ratios of CD4+/CD8+ T cells in the peripheral blood and spleen (all P<0.05). Moreover, baicalein treatment decreased the apoptotic rate of whole white blood cells and spleen cells at 24 h after surgery (P<0.05). Baicalein significantly reduced the levels of tumor necrosis factor α and interleukin-6 (IL-6) and increased IL-10, and the expression levels of galectin 9 were also raised in the spleen (P<0.01). CONCLUSION Baicalein may be an effective immunomodulator that attenuates overwhelming inflammatory responses in severe abdominal sepsis.
Collapse
|
9
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
10
|
Onishi K, Fu HY, Sofue T, Tobiume A, Moritoki M, Saiga H, Ohmura-Hoshino M, Hoshino K, Minamino T. Galectin-9 deficiency exacerbates lipopolysaccharide-induced hypothermia and kidney injury. Clin Exp Nephrol 2021; 26:226-233. [PMID: 34698914 DOI: 10.1007/s10157-021-02152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Galectin-9 (Gal-9) is a multifunctional lectin that moderates inflammation and organ damage. In this study, we tested whether Gal-9 has a protective role in the pathogenesis of endotoxemic acute kidney injury. METHODS We examined the levels of Gal-9 in control mice after lipopolysaccharide (LPS) administration. We developed Gal-9 knockout (KO) mice that lack Gal-9 systemically and evaluated the role of Gal-9 in LPS-induced proinflammatory cytokines, vascular permeability, and renal injury. RESULTS Gal-9 levels were increased in the plasma, kidney, and spleen within 4 h after LPS administration to wild-type mice. Gal-9 deficiency did not affect the LPS-induced increase in plasma tumor necrosis factor-α levels at 1 h or vascular permeability at 6 h. Lower urine volume and reduced creatinine clearance were observed in Gal-9-KO mice compared with wild-type mice after LPS administration. Gal-9-KO mice had limited improvement in urine volume after fluid resuscitation compared with wild-type mice. LPS reduced the body temperature 12 h after its administration. Hypothermia had disappeared in wild-type mice by 24 h, whereas it was sustained until 24 h in Gal-9-KO mice. Importantly, maintaining body temperature in Gal-9-KO mice improved the response of urine flow to fluid resuscitation. CONCLUSION Deficiency in Gal-9 worsened LPS-induced hypothermia and kidney injury in mice. The accelerated hypothermia induced by Gal-9 deficiency contributed to the blunted response to fluid resuscitation.
Collapse
Affiliation(s)
- Keisuke Onishi
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Hai Ying Fu
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tadashi Sofue
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Atsushi Tobiume
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Masahiro Moritoki
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hiroyuki Saiga
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Mari Ohmura-Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.,Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, 1200 Kayo-cho, Yokkaichi, Mie, 512-8045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tetsuo Minamino
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| |
Collapse
|
11
|
Catafal-Tardos E, Baglioni MV, Bekiaris V. Inhibiting the Unconventionals: Importance of Immune Checkpoint Receptors in γδ T, MAIT, and NKT Cells. Cancers (Basel) 2021; 13:cancers13184647. [PMID: 34572874 PMCID: PMC8467786 DOI: 10.3390/cancers13184647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary All conventional major histocompatibility complex (MHC)-restricted T cells transiently express immune checkpoint/inhibitory receptors (ICRs) following activation as a means to counter-regulate overactivation. However, tumors promote chronic ICR expression rendering T cells chronically unresponsive or “exhausted”. Checkpoint inhibitor (CPI) therapy targets and blocks ICRs, restoring T cell activation and anti-tumor immunity. However, CPI therapy often fails, partly because of the tumor’s many abilities to inhibit MHC-driven T cell responses. In this regard, our immune system contains an arsenal of unconventional non-MHC-restricted T cells, whose importance in anti-tumor immunity is rapidly gaining momentum. There is currently little knowledge as to whether unconventional T cells can get exhausted and how CPI therapy affects them. In this article we review the current understanding of the role of ICRs in unconventional T cell biology and discuss the importance of targeting these unique immune cell populations for CPI therapy. Abstract In recent years, checkpoint inhibitor (CPI) therapy has shown promising clinical responses across a broad range of cancers. However, many patients remain unresponsive and there is need for improvement. CPI therapy relies on antibody-mediated neutralization of immune inhibitory or checkpoint receptors (ICRs) that constitutively suppress leukocytes. In this regard, the clinical outcome of CPI therapy has primarily been attributed to modulating classical MHC-restricted αβ T cell responses, yet, it will inevitably target most lymphoid (and many myeloid) populations. As such, unconventional non-MHC-restricted gamma delta (γδ) T, mucosal associated invariant T (MAIT) and natural killer T (NKT) cells express ICRs at steady-state and after activation and may thus be affected by CPI therapies. To which extent, however, remains unclear. These unconventional T cells are polyfunctional innate-like lymphocytes that play a key role in tumor immune surveillance and have a plethora of protective and pathogenic immune responses. The robust anti-tumor potential of γδ T, MAIT, and NKT cells has been established in a variety of preclinical cancer models and in clinical reports. In contrast, recent studies have documented a pro-tumor effect of innate-like T cell subsets that secrete pro-inflammatory cytokines. Consequently, understanding the mechanisms that regulate such T cells and their response to CPI is critical in designing effective cancer immunotherapies that favor anti-tumor immunity. In this Review, we will discuss the current understanding regarding the role of immune checkpoint regulation in γδ T, MAIT, and NKT cells and its importance in anti-cancer immunity.
Collapse
|
12
|
Zhang L, Zhang JP, Liu Y, Wang H, Cheng Y, Wang JH, Zhang WJ, Li ZZ, Guo JR. Plasma Transfusion Promoted Reprogramming CD4 + T Lymphocytes Immune Response in Severe Sepsis Mice Model Through Modulating the Exosome Protein Galectin 9. Cell Transplant 2021; 29:963689720947347. [PMID: 32907380 PMCID: PMC7784505 DOI: 10.1177/0963689720947347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening disease that results in excessive stimulation of the host's immune cells. In the animal study, the purpose was to investigate the roles of fresh frozen plasma (FFP) transfusion in shaping the CD4+ T lymphocytes immune response through modulating the secreted exosome protein Galectin-9 in mice with severe sepsis. By using Western blot analysis, we first identified that the protein Galectin-9 is highly accumulated in the blood plasma of severe sepsis mice, and with transmission electron microscopy (TEM) and protein analysis, we found that Galectin-9 is a secreted exosome protein. Thereafter, we treated the severe sepsis mice with the antibiotic Cefuroxime Axetil; one group of mice received FFP transfusion and the other group of mice received normal saline. Surprisingly, the FFP transfusion reduced the secretion of exosome protein Galectin-9 and there was crosstalking between the exosome protein Galectin-9 and CD4+ T lymphocytes in mice with severe sepsis. Results showed that the proliferation of T helper (Th) cells (Th1 and Th17) was promoted, and regulatory T (Treg) cells' maintenance was inhibited in the sepsis mice after receiving FFP transfusion. Correspondingly, this immune reprogrammed activity shaped the inflammatory cytokine secretion with an increase in the interleukin (IL)-1β, IL-6, and interferon-gamma levels, while it decreased IL-10 levels. Taken together, it was suggested that FFP transfusion promoted reprogramming of CD4+ T lymphocytes' immune response through inhibiting the secretion of exosome protein Galectin-9 in mice with severe sepsis to relieve immunosuppression.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Burn Surgery, First Hospital, Jilin University, Changchun, Jilin, P. R. China
| | - Jian-Ping Zhang
- Division of Life Sciences and Medicine, Department of Anesthesiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yang Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Huan Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Yong Cheng
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Jin-Huo Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Wen-Jie Zhang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Zhen-Zhou Li
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P. R. China
| | - Jian-Rong Guo
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China.,Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P. R. China
| |
Collapse
|
13
|
Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock 2020; 55:723-741. [PMID: 33021569 DOI: 10.1097/shk.0000000000001675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
Collapse
|
14
|
Different Expression Pattern of TIM-3 and Galectin-9 Molecules by Peripheral and Peritoneal Lymphocytes in Women with and without Endometriosis. Int J Mol Sci 2020; 21:ijms21072343. [PMID: 32231038 PMCID: PMC7177301 DOI: 10.3390/ijms21072343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a gynecological condition that is associated with chronic pelvic inflammation, pain, and infertility. Although substantial evidence supports that immunological alterations contribute to its pathogenesis and we previously posed a pivotal role of Galectin-9 (Gal-9) in this disorder, the involvement of the TIM-3/Gal-9 pathway in the development of endometriosis-associated immunological abnormalities is not yet known. In the present study, multicolor flow cytometry was used to compare the immunophenotype and cell surface expression of TIM-3 and Gal-9 molecules on peripheral blood (PB) and peritoneal fluid (PF) lymphocytes of women with and without endometriosis. We found an altered distribution of different lymphocyte subpopulations, a markedly decreased TIM-3 labeling on all T and NK subsets and a significantly increased Gal-9 positivity on peripheral CD4+ T and Treg cells of the affected cohort. Furthermore, a significantly increased TIM-3 expression on CD4+T-cells and elevated Gal-9 labeling on all T and NK subsets was also revealed in the PF of the examined patients. In conclusion, our results suggest a persistent activation and disturbed TIM-3/Gal-9-dependent regulatory function in endometriosis, which may be involved in the impaired immune surveillance mechanisms, promotes the survival of ectopic lesions, and aids the evolution of reproductive failures in endometriosis.
Collapse
|
15
|
Kim EY, Oldham WM. Innate T cells in the intensive care unit. Mol Immunol 2019; 105:213-223. [PMID: 30554082 PMCID: PMC6331274 DOI: 10.1016/j.molimm.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Rapid onset of acute inflammation is a hallmark of critical illnesses that bring patients to the intensive care unit (ICU). In critical illness, innate T cells rapidly reach full activation and drive a robust acute inflammatory response. As "cellular adjuvants," innate T cells worsen inflammation and mortality in several common critical illnesses including sepsis, ischemia-reperfusion injury, stroke, and exacerbations of respiratory disease. Interestingly, innate T cell subsets can also promote a protective and anti-inflammatory response in sepsis, ischemia-reperfusion injury, and asthma. Therapies that target innate T cells have been validated in several models of critical illness. Here, we review the role of natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells in clinical and experimental critical illness.
Collapse
Affiliation(s)
- Edy Yong Kim
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States.
| | - William M Oldham
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
16
|
Yu A, Zhang X, Li M, Ye P, Duan H, Zhang T, Yang Z. Tim-3 enhances brain inflammation by promoting M1 macrophage polarization following intracerebral hemorrhage in mice. Int Immunopharmacol 2018; 53:143-148. [PMID: 29107214 DOI: 10.1016/j.intimp.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Macrophage polarization contributes to brain inflammation following spontaneous intracerebral hemorrhage (ICH). T cell immunoglobulin and mucin domain-3 (Tim-3) has been identified to induce macrophage mediated inflammation following ICH. However, the regulation of Tim-3 on macrophage polarization following ICH has not been fully studied. In current experiment, we explored Tim-3 expression, macrophage polarization, brain water content and neurological function in WT and Tim-3-/- ICH mice. In addition, downstream transcriptional factor TRIF and IRF3 were also analyzed. We found that ICH promoted Tim-3 expression and M1 polarization in the perihematomal region of WT mice, leading to increased brain water content and neurological impairment. However, deletion of Tim-3 expression attenuated M1 polarization, decreased rain water content and improved neurological function of ICH mice. Furthermore, Tim-3 signal promoted transcriptional factors TRIF and IRF3 levels, regulating macrophage polarization. The data suggested that Tim-3 played a crucial role in the macrophage polarization and brain inflammation following ICH, and might represent a promising way in ICH therapy.
Collapse
Affiliation(s)
- Anyong Yu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Xiaojun Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Mo Li
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Peng Ye
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Haizhen Duan
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Tianxi Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
17
|
Xu Y, Wang Z, Du X, Liu Y, Song X, Wang T, Tan S, Liang X, Gao L, Ma C. Tim-3 blockade promotes iNKT cell function to inhibit HBV replication. J Cell Mol Med 2018; 22:3192-3201. [PMID: 29602251 PMCID: PMC5980221 DOI: 10.1111/jcmm.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Increased expression of T cell immunoglobulin and mucin domain-3 (Tim-3) on invariant natural killer T (iNKT) cells is reported in chronic hepatitis B virus (HBV) infection. However, whether Tim-3 regulates iNKT cells in chronic HBV condition remains unclear. In this study, our results showed that the expression of Tim-3 was up-regulated on hepatic iNKT cells from HBV-transgenic (Tg) mice or iNKT cells stimulated with α-galactosylceramide (α-Galcer). Compared with Tim-3- iNKT cells, Tim-3+ iNKT cells expressed more IFN-γ, IL-4 and CD107a, indicating a strong relationship between Tim-3 and iNKT cell activation. Constantly, treatment of Tim-3 blocking antibodies significantly enhanced the production of IFN-γ, TNF-α, IL-4 and CD107a in iNKT cells both in vivo and in vitro. This Tim-3- mediated suppression of iNKT cells was further confirmed in Tim-3 knockout (KO) mice. Moreover, Tim-3 blockade promoted α-Galcer-triggered inhibition of HBV replication, displaying as the decreased HBV DNA and HBsAg level in serum, and down-regulated pgRNA expression in liver tissues. Collectively, our data, for the first time, demonstrated the potential role of Tim-3 blockade in promoting iNKT cell-mediated HBV inhibition. Therefore, combination of α-Galcer with Tim-3 blockade might be a promising approach in chronic hepatitis B therapy.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Xianhong Du
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Yuan Liu
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| |
Collapse
|
18
|
Liang CC, Li CS, Weng IC, Chen HY, Lu HH, Huang CC, Liu FT. Galectin-9 Is Critical for Mucosal Adaptive Immunity through the T Helper 17-IgA Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1225-1235. [PMID: 29458010 DOI: 10.1016/j.ajpath.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 01/20/2023]
Abstract
Impairment of the intestinal mucosal immunity significantly increases the risk of acute and chronic diseases. IgA plays a major role in humoral mucosal immunity to provide protection against pathogens and toxins in the gut. Here, we investigated the role of endogenous galectin-9, a tandem repeat-type β-galactoside-binding protein, in intestinal mucosal immunity. By mucosal immunization of Lgals9-/- and littermate control mice, it was found that lack of galectin-9 impaired mucosal antigen-specific IgA response in the gut. Moreover, Lgals9-/- mice were more susceptible to developing watery diarrhea and more prone to death in response to high-dose cholera toxin. The results indicate the importance of galectin-9 in modulating intestinal adaptive immunity. Furthermore, bone marrow chimera mice were established, and galectin-9 in hematopoietic cells was found to be critical for adaptive IgA response. In addition, immunized Lgals9-/- mice exhibited lower expression of Il17 and fewer T helper 17 (Th17) cells in the lamina propria, implying that the Th17-IgA axis is involved in this mechanism. Taken together, these findings suggest that galectin-9 plays a role in mucosal adaptive immunity through the Th17-IgA axis. By manipulating the expression or activity of galectin-9, intestinal mucosal immune response can be altered and may benefit the development of mucosal vaccination.
Collapse
Affiliation(s)
- Chih-Chia Liang
- Ph.D. Program in Translational Medicine, China Medical University and Academia Sinica, Taichung, Taiwan; Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chi-Shan Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiu-Ching Huang
- Ph.D. Program in Translational Medicine, China Medical University and Academia Sinica, Taichung, Taiwan; Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Tong Liu
- Ph.D. Program in Translational Medicine, China Medical University and Academia Sinica, Taichung, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, California.
| |
Collapse
|
19
|
Simvastatin Ameliorates PAK4 Inhibitor-Induced Gut and Lung Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2017:8314276. [PMID: 29445744 PMCID: PMC5763212 DOI: 10.1155/2017/8314276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
P21 activated kinase 4 (PAK4), a key regulator of cytoskeletal rearrangement and endothelial microparticles (EMPs), is released after lipopolysaccharide (LPS) stimulation. In addition, it participates in LPS-induced lung injury. In this study, forty-eight Sprague Dawley (SD) rats were divided into two groups, including PAK4 inhibitor (P) and PAK4 inhibitor + simvastatin (P + S) treatment groups. All rats were given PAK4 inhibitor (15 mg/kg/d) orally. Immediately after PAK4 inhibitor administration, simvastatin was injected intraperitoneally to P + S group animals at 20 mg/kg/day. Then, treatment effects on the intestinal mucosal barrier and lung injury caused by PAK4 inhibitor and simvastatin were assessed. The results showed that gut Zonula Occludens- (ZO-) 1, PAK4, mitogen-activated protein kinase 4 (MPAK4), and CD11c protein levels were reduced, while plasma endotoxin levels were increased after administration of PAK4 inhibitor. Furthermore, compared with normal rats, wet-to-dry (W/D) values of lung tissues and circulating EMP levels were increased in the treatment group, while PAK4 and CD11c protein amounts were reduced. Therefore, in this lung injury process induced by PAK4 inhibitor, the protective effects of simvastatin were reflected by intestinal mucosal barrier protection, inflammatory response regulation via CD11c+ cells, and cytoskeleton stabilization. In summary, PAK4 is a key regulator in the pathophysiological process of acute lung injury (ALI) and can be a useful target for ALI treatment.
Collapse
|
20
|
Zhang X, Gu J, Zhou L, Mi QS. TIM-4 is expressed on invariant NKT cells but dispensable for their development and function. Oncotarget 2018; 7:71099-71111. [PMID: 27662666 PMCID: PMC5340118 DOI: 10.18632/oncotarget.12153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
T cell immunoglobulin and mucin-4 (TIM-4), mainly expressed on antigen presenting cells, plays a versatile role in immunoregulation. CD1d-restricted invariant natural killer T (iNKT) cells are potent cells involved in the diverse immune responses. It was recently reported that recombinant TIM-4 (rTIM-4) alone enhanced cytokine production in NKT hybridoma, DN32.D3 cells. Hence, we hypothesized that TIM-4 might regulate iNKT cell biology, especially their function of cytokine secretion. For the first time, we identified that TIM-4 was expressed in thymus iNKT cells, and its expression increased upon iNKT cell migration to the secondary lymphoid organs, especially in lymph nodes. Using TIM-4-deficient mice, we found that lack of TIM-4 did not disturb iNKT cell development, maturation, peripheral homeostasis and cytokine secretion. Moreover, TIM-4 deficiency did not alter the polarization of iNKT sublineages, including NKT1, NKT2 and NKT17. Finally, the mixed bone marrow transfer experiments further confirmed normal iNKT cell development and function from TIM-4-deficient bone marrow. In conclusion, our data suggest that TIM-4 is expressed on iNKT cells but dispensable for their development and function.
Collapse
Affiliation(s)
- Xilin Zhang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America.,Department of Immunology and Microbiology, Wayne State University School of Medicine, MI, United States of America
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America.,Department of Immunology and Microbiology, Wayne State University School of Medicine, MI, United States of America
| |
Collapse
|
21
|
Horio Y, Ichiyasu H, Kojima K, Saita N, Migiyama Y, Iriki T, Fujii K, Niki T, Hirashima M, Kohrogi H. Protective effect of Galectin-9 in murine model of lung emphysema: Involvement of neutrophil migration and MMP-9 production. PLoS One 2017; 12:e0180742. [PMID: 28704475 PMCID: PMC5507541 DOI: 10.1371/journal.pone.0180742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and pulmonary emphysema. Persistent inflammation and remodeling of the lungs and airways result in reduced lung function and a lower quality of life. Galectin (Gal)-9 plays a crucial role as an immune modulator in various diseases. However, its role in the pathogenesis of pulmonary emphysema is unknown. This study investigates whether Gal-9 is involved in pulmonary inflammation and changes in emphysema in a porcine pancreatic elastase (PPE)-induced emphysema model. Materials and methods Gal-9 was administered to mice subcutaneously once daily from 1 day before PPE instillation to day 5. During the development of emphysema, lung tissue and bronchoalveolar lavage fluid (BALF) were collected. Histological and cytological findings, concentrations of chemokines and matrix metalloproteinases (MMPs) in the BALF, and the influence of Gal-9 treatment on neutrophils were analyzed. Results Gal-9 suppressed the pathological changes of PPE-induced emphysema. The mean linear intercept (Lm) of Gal-9-treated emphysema mice was significantly lower than that of PBS-treated emphysema mice (66.1 ± 3.3 μm vs. 118.8 ± 14.8 μm, respectively; p < 0.01). Gal-9 decreased the number of neutrophils and levels of MMP-9, MMP-2 and tissue inhibitor of metalloproteinases (TIMP)-1 in the BALF. The number of neutrophils in the BALF correlated significantly with MMPs levels. Interestingly, Gal-9 pretreatment in vitro inhibited the chemotactic activity of neutrophils and MMP-9 production from neutrophils. Furthermore, in Gal-9-deficient mice, PPE-induced emphysema progressed significantly compared with that in wild–type (WT) mice (108.7 ± 6.58 μm vs. 77.19 ± 6.97 μm, respectively; p < 0.01). Conclusions These results suggest that Gal-9 protects PPE-induced inflammation and emphysema by inhibiting the infiltration of neutrophils and decreasing MMPs levels. Exogenous Gal-9 could be a potential therapeutic agent for COPD.
Collapse
Affiliation(s)
- Yuko Horio
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidenori Ichiyasu
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Kojima
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Saita
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Migiyama
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toyohisa Iriki
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Fujii
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
23
|
Hiraishi Y, Nambu A, Shibui A, Nakanishi W, Yamaguchi S, Morita H, Iikura M, McKenzie AN, Matsumoto K, Sudo K, Yamasoba T, Nagase T, Nakae S. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens. Allergol Int 2016; 65:459-465. [PMID: 27209052 PMCID: PMC5074363 DOI: 10.1016/j.alit.2016.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background T cell immunoglobulin domain and mucin domain-containing molecule 3 (TIM-3), which is preferentially expressed on Th1 cells rather than Th2 cells, is considered to be a negative regulator of Th1 cell function. This suggests that TIM-3 indirectly enhances Th2-type immune responses by suppressing Th1 cell function. Methods To investigate TIM-3's possible involvement in Th2-type acute and chronic airway inflammation, wild-type and TIM-3-deficient (TIM-3−/−) mice were sensitized and challenged with a house dust mite (HDM) extract. Airway inflammation and the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) in the mice were determined by histological analysis and with a hemocytometer, respectively. Expression of mRNA in the lungs was determined by quantitative PCR, while the levels of cytokines in the BALFs and IgE in sera were determined by ELISA. Results Despite constitutive expression of TIM-3 mRNA in the lungs, the number of eosinophils in bronchoalveolar lavage fluids (BALFs) and the score of pulmonary inflammation were comparable between wild-type and TIM-3−/− mice during both acute and chronic HDM-induced airway inflammation. On the other hand, the number of lymphocytes in the BALFs of TIM-3−/− mice was significantly increased compared with wild-type mice during HDM-induced chronic, but not acute, airway inflammation, while the levels of Th2 cytokines in the BALFs and HDM-specific IgG1 and IgG2a and total IgE in the sera were comparable in both groups. Conclusions Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.
Collapse
|
24
|
Hirao H, Uchida Y, Kadono K, Tanaka H, Niki T, Yamauchi A, Hata K, Watanabe T, Terajima H, Uemoto S. The protective function of galectin-9 in liver ischemia and reperfusion injury in mice. Liver Transpl 2015; 21:969-81. [PMID: 25931247 PMCID: PMC4744675 DOI: 10.1002/lt.24159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Galectin-9 (Gal-9) has gained attention as a multifaceted player in adaptive and innate immunity. To elucidate the role of Gal-9, we used a mouse model of partial liver ischemia/reperfusion injury (IRI) with wild type (WT) and Gal-9 knockout (KO) mice as well as a recombinant galectin-9 (reGal-9) protein. We found that the expression of Gal-9 was enhanced endogenously in the liver especially by hepatocytes and Kupffer cells during warm IRI for a mouse liver, which causes massive destruction of liver tissue. Gal-9 was released into the extracellular space in the liver and the highest levels in the plasma at 1 hour after reperfusion. The present study elucidates a novel role of Gal-9 signaling in mouse liver IRI, by using Gal-9-deficient mice and a stable form of reGal-9 protein. In the circumstance of Gal-9 absence, liver damage due to ischemia/reperfusion (IR) exacerbated the severity as compared with WT. On the other hand, exogenously administered reGal-9 significantly ameliorated hepatocellular damage. It decreased the local infiltration of the inflammatory cells such as T cells, neutrophils, and macrophages, and it reduced the expression of proinflammatory cytokines/chemokines; then, it strongly suppressed the apoptosis of the liver cells. Interestingly, severe liver damage due to IR in Gal-9 KO mice was improved by the administration of reGal-9. In conclusion, Gal-9 engagement ameliorated local inflammation and liver damage induced by IR, and the present study suggests a significant role of Gal-9 in the maintenance of hepatic homeostasis. In conclusion, targeting Gal-9 represents a novel approach to protect from inflammation such as liver IRI. Exogenous Gal-9 treatment will be a new therapeutic strategy against innate immunity-dominated liver tissue damage.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Departments of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Yoichiro Uchida
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Departments of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Kentaro Kadono
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Departments of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan.,GalPharma Co., Ltd., Kagawa, Japan
| | | | - Koichiro Hata
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Watanabe
- Department of Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Hiroaki Terajima
- Departments of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Shinji Uemoto
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
The Immunoprotective Activity of Baicalin in Mouse Model of Cecal Ligation and Puncture-Induced Sepsis. Cell Biochem Biophys 2014; 71:543-7. [DOI: 10.1007/s12013-014-0232-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 723] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
27
|
Zhao Z, Jiang X, Kang C, Xiao Y, Hou C, Yu J, Wang R, Xiao H, Zhou T, Wen Z, Feng J, Chen G, Ma Y, Shen B, Li Y, Han G. Blockade of the T cell immunoglobulin and mucin domain protein 3 pathway exacerbates sepsis-induced immune deviation and immunosuppression. Clin Exp Immunol 2014; 178:279-91. [PMID: 24945079 DOI: 10.1111/cei.12401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 01/07/2023] Open
Abstract
Sepsis is a life-threatening condition, but the pathophysiological basis and biomarkers for the monitoring of sepsis and as targets for therapy remain to be determined. We have shown previously that T cell immunoglobulin and mucin domain protein 3 (Tim-3), a negative immune regulator, is involved in the physiopathology of sepsis, but the underlying mechanisms remain unclear. In the present study, we showed that Tim-3 signalling modulated the response patterns of both macrophages and T helper cells in sepsis. Blockade of the Tim-3 pathway exacerbated sepsis-induced proinflammatory macrophage responses and lymphocyte apoptosis during the early phase of sepsis, and enhanced the shift to anti-inflammatory responses for both macrophages and T helper cells during the late phase of sepsis. Tim-3 signalling was found to regulate CD80 and CD86 expression on macrophages both in vivo and in vitro. Co-culture of T cells with Tim-3 knock-down macrophages led to a biased T helper type 2 (Th2) response, partially explaining how Tim-3 signalling shapes inflammation patterns in vivo. Further studies on this pathway might shed new light on the pathogenesis of sepsis and suggest new approaches for intervention.
Collapse
Affiliation(s)
- Z Zhao
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, China; Institute of Immunology, Medical School of Henan University, Kaifeng, China; Department of Pathology, Zhengzhou People's Hospital, YIHE Hospital, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|