1
|
Neis M, Groß T, Schneider H, Schneider PM, Courts C. Comprehensive body fluid identification and contributor assignment by combining targeted sequencing of mRNA and coding region SNPs. Forensic Sci Int Genet 2024; 73:103125. [PMID: 39182373 DOI: 10.1016/j.fsigen.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Forensic genetic analyses aim to retrieve as much information as possible from biological trace material recovered from crime scenes. While standard short tandem repeat (STR) profiling is essential to individualize biological traces, its significance is diminished in crime scenarios where the presence of a suspect's DNA is acknowledged by all parties. In such cases, forensic (m)RNA analysis can provide crucial contextualizing information on the source level about a trace's composition, i.e., body fluids/tissues, and has therefore emerged as a powerful tool for modern forensic investigations. However, the question which of several suspects contributed a specific component (body fluid) to a mixed trace cannot be answered by RNA analysis using conventional methods. This individualizing information is stored within the sequence of the mRNA transcripts. Massively parallel sequencing (MPS) represents a promising alternative, offering not only higher multiplex capacity, but also the typing of individual coding region SNPs (cSNPs) to enable the assignment of contributors to mixture components, thereby reducing the risk of association fallacies. Herein, we describe the development of an extensive mRNA/cSNP panel for targeted sequencing on the IonTorrent S5 platform. Our panel comprises 30 markers for the detection of six body fluids/tissues (blood, saliva, semen, skin, vaginal and menstrual secretion), along with 70 linkage-controlled cSNPs for contributor assignment. It exhibited high reliable detection sensitivity with RNA inputs down to 0.75 ng and a conservatively calculated probability of identity of 0.03 - 6 % for individual body fluid-specific cSNP profiles. Limitations and areas for future work include RNA-related allele imbalances, inclusion of markers to correctly identify rectal mucosa and the optimization of specific markers. In summary, our new panel is intended to be a major step forward to interpret biological evidence at sub-source and source level based on cSNP attribution of a body fluid component to a suspect and victim, respectively.
Collapse
Affiliation(s)
- Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Theresa Groß
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Harald Schneider
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Cornelius Courts
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Behera P, Baidya S, Sahoo J, Jaiswal K, Singh DP, Pradhan S, Saini DK, Agasti SS, De M. Multistep Array-Based Sensing of Bioanalytes Using Modified MoS 2, Fluorescence Proteins, and Cucurbituril. ACS APPLIED BIO MATERIALS 2024; 7:6371-6381. [PMID: 39321472 DOI: 10.1021/acsabm.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
One pot sensor by multiplexing in the array is an attractive system for rapid discrimination of multiple analytes. Multiplexing can be achieved in two ways, i.e., using multiple signal transducers or adding sequential agents to the sensor media. Herein, we have used a combination of both multichannel and sequential ON-OFF strategies for the discrimination of different bioanalytes. The sensor array was constructed by implementing positively charged MoS2 as a receptor and different fluorescent proteins possessing distinguishable emission profiles as signal transducers. The sensing setup was constructed with the interaction between oppositely charged MoS2 and the host-guest combination between a cationic headgroup of MoS2 and Cucurbit [7] uril (CB7) to alter the fluorescence of signal transducers in situ noncovalently. Electrodynamic analysis and optical assays suggest that the electrostatic interaction played a major role in the modulation of the fluorescence outcomes in the array. Both cationic and anionic proteins were discriminated at a 50 nM concentration. The detection limit of the sensor array by using β-gal protein was found to be 1 nM. The sensor array was further implemented for the discrimination of normal and diseased cell lines and lysates, which indicates the versatile detection ability of this reported sensor array.
Collapse
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sourav Baidya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Komal Jaiswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Devendra Pratap Singh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Soumen Pradhan
- New Chemistry Unit, Chemistry & Physics of Materials Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Deepak Kumar Saini
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sarit S Agasti
- New Chemistry Unit, Chemistry & Physics of Materials Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Kwait R, Pinsky ML, Gignoux‐Wolfsohn S, Eskew EA, Kerwin K, Maslo B. Impact of putatively beneficial genomic loci on gene expression in little brown bats ( Myotis lucifugus, Le Conte, 1831) affected by white-nose syndrome. Evol Appl 2024; 17:e13748. [PMID: 39310794 PMCID: PMC11413065 DOI: 10.1111/eva.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024] Open
Abstract
Genome-wide scans for selection have become a popular tool for investigating evolutionary responses in wildlife to emerging diseases. However, genome scans are susceptible to false positives and do little to demonstrate specific mechanisms by which loci impact survival. Linking putatively resistant genotypes to observable phenotypes increases confidence in genome scan results and provides evidence of survival mechanisms that can guide conservation and management efforts. Here we used an expression quantitative trait loci (eQTL) analysis to uncover relationships between gene expression and alleles associated with the survival of little brown bats (Myotis lucifugus) despite infection with the causative agent of white-nose syndrome. We found that 25 of the 63 single-nucleotide polymorphisms (SNPs) associated with survival were related to gene expression in wing tissue. The differentially expressed genes have functional annotations associated with the innate immune system, metabolism, circadian rhythms, and the cellular response to stress. In addition, we observed differential expression of multiple genes with survival implications related to loci in linkage disequilibrium with focal SNPs. Together, these findings support the selective function of these loci and suggest that part of the mechanism driving survival may be the alteration of immune and other responses in epithelial tissue.
Collapse
Affiliation(s)
- Robert Kwait
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Evan A. Eskew
- Institute for Interdisciplinary Data SciencesUniversity of IdahoMoscowIdahoUSA
| | - Kathleen Kerwin
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
4
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae015. [PMID: 38262701 PMCID: PMC11021028 DOI: 10.1093/g3journal/jkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- School of Biological Sciences, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Stuart J Macdonald
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548746. [PMID: 37503205 PMCID: PMC10370140 DOI: 10.1101/2023.07.12.548746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes also respond to other non-essential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the response to heavy metal stress. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource (DSPR) using a combination of differential expression analysis and expression quantitative trait locus (eQTL) mapping. Differential expression analysis revealed clear patterns of tissue-specific expression, primarily driven by a more pronounced gene expression response in gut tissue. eQTL mapping of gene expression under control and copper conditions as well as for the change in gene expression following copper exposure (copper response eQTL) revealed hundreds of genes with tissue-specific local cis-eQTL and many distant trans-eQTL. eQTL associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited genotype by environment effects on gene expression under copper stress, illuminating several tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight many candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 730 Van Vleet Oval, University of Oklahoma, Biology, Norman, OK 73019, USA
| | - Stuart J Macdonald
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 1200 Sunnyside Ave, University of Kansas, Center for Computational Biology, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Zhou W, Jie Q, Pan T, Shi J, Jiang T, Zhang Y, Ding N, Xu J, Ma Y, Li Y. Single-cell RNA binding protein regulatory network analyses reveal oncogenic HNRNPK-MYC signalling pathway in cancer. Commun Biol 2023; 6:82. [PMID: 36681772 PMCID: PMC9867709 DOI: 10.1038/s42003-023-04457-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players of gene expression and perturbations of RBP-RNA regulatory network have been observed in various cancer types. Here, we propose a computational method, RBPreg, to identify the RBP regulators by integration of single cell RNA-Seq (N = 233,591) and RBP binding data. Pan-cancer analyses suggest that RBP regulators exhibit cancer and cell specificity and perturbations of RBP regulatory network are involved in cancer hallmark-related functions. We prioritize an oncogenic RBP-HNRNPK, which is highly expressed in tumors and associated with poor prognosis of patients. Functional assays performed in cancer cells reveal that HNRNPK promotes cancer cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic investigations further demonstrate that HNRNPK promotes tumorigenesis and progression by directly binding to MYC and perturbed the MYC targets pathway in lung cancer. Our results provide a valuable resource for characterizing RBP regulatory networks in cancer, yielding potential biomarkers for precision medicine.
Collapse
Affiliation(s)
- Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Clinical Research Center for Thalassemia, Reproductive Medical Center, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease", The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Tao Pan
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Ya Zhang
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Clinical Research Center for Thalassemia, Reproductive Medical Center, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease", The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Clinical Research Center for Thalassemia, Reproductive Medical Center, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease", The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Linsky JMJ, Dunlop RA, Noad MJ, McMichael LA. A mammalian messenger RNA sex determination method from humpback whale ( Megaptera novaeangliae) blubber biopsies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220556. [PMID: 36016912 PMCID: PMC9399696 DOI: 10.1098/rsos.220556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The large size of free-ranging mysticetes, such as humpback whales (Megaptera novaeangliae), make capture and release health assessments unfeasible for conservation research. However, individual energetic condition or reproductive health may be assessed from the gene expression of remotely biopsied tissue. To do this, researchers must reliably extract RNA and interpret gene expression measurements within the context of an individual's sex. Here, we outline an RNA extraction protocol from blubber tissue and describe a novel mammalian RNA sex determination method. Our method consists of a duplex reverse transcription-quantitative (real-time) polymerase chain reaction (RT-qPCR) with primer sets for a control gene (ACTB) and the X-chromosome inactivation gene (XIST). Products of each RT-qPCR had distinct melting temperature profiles based on the presence (female) or absence (male) of the XIST transcript. Using high-resolution melt analysis, reactions were sorted into one of two clusters (male/female) based on their melting profiles. We validated the XIST method by comparing results with a standard DNA-based method. With adequate quantities of RNA (minimum of approx. 9 ng µl-1), the XIST sex determination method shows 100% agreement with traditional DNA sex determination. Using the XIST method, future cetacean health studies can interpret gene expression within the context of an individual's sex, all from a single extraction.
Collapse
Affiliation(s)
- Jacob M. J. Linsky
- School of Biological Sciences The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Marine Science, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rebecca A. Dunlop
- School of Biological Sciences The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Marine Science, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Michael J. Noad
- Centre for Marine Science, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Lee A. McMichael
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
8
|
Figueiredo RQ, Del Ser SD, Raschka T, Hofmann-Apitius M, Kodamullil AT, Mubeen S, Domingo-Fernández D. Elucidating gene expression patterns across multiple biological contexts through a large-scale investigation of transcriptomic datasets. BMC Bioinformatics 2022; 23:231. [PMID: 35705903 PMCID: PMC9202106 DOI: 10.1186/s12859-022-04765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Distinct gene expression patterns within cells are foundational for the diversity of functions and unique characteristics observed in specific contexts, such as human tissues and cell types. Though some biological processes commonly occur across contexts, by harnessing the vast amounts of available gene expression data, we can decipher the processes that are unique to a specific context. Therefore, with the goal of developing a portrait of context-specific patterns to better elucidate how they govern distinct biological processes, this work presents a large-scale exploration of transcriptomic signatures across three different contexts (i.e., tissues, cell types, and cell lines) by leveraging over 600 gene expression datasets categorized into 98 subcontexts. The strongest pairwise correlations between genes from these subcontexts are used for the construction of co-expression networks. Using a network-based approach, we then pinpoint patterns that are unique and common across these subcontexts. First, we focused on patterns at the level of individual nodes and evaluated their functional roles using a human protein-protein interactome as a referential network. Next, within each context, we systematically overlaid the co-expression networks to identify specific and shared correlations as well as relations already described in scientific literature. Additionally, in a pathway-level analysis, we overlaid node and edge sets from co-expression networks against pathway knowledge to identify biological processes that are related to specific subcontexts or groups of them. Finally, we have released our data and scripts at https://zenodo.org/record/5831786 and https://github.com/ContNeXt/ , respectively and developed ContNeXt ( https://contnext.scai.fraunhofer.de/ ), a web application to explore the networks generated in this work.
Collapse
Affiliation(s)
- Rebeca Queiroz Figueiredo
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Sara Díaz Del Ser
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany.,Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany.,Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757, Sankt Augustin, Germany. .,Fraunhofer Center for Machine Learning, Sankt Augustin, Germany. .,Enveda Biosciences, Boulder, CO, 80301, USA.
| |
Collapse
|
9
|
Wu LR, Dai P, Wang MX, Chen SX, Cohen EN, Jayachandran G, Zhang JX, Serrano AV, Xie NG, Ueno NT, Reuben JM, Barcenas CH, Zhang DY. Ensemble of nucleic acid absolute quantitation modules for copy number variation detection and RNA profiling. Nat Commun 2022; 13:1791. [PMID: 35379811 PMCID: PMC8979981 DOI: 10.1038/s41467-022-29487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
Current gold standard for absolute quantitation of a specific DNA sequence is droplet digital PCR (ddPCR), which has been applied to copy number variation (CNV) detection. However, the number of quantitation modules in ddPCR is limited by fluorescence channels, which thus limits the CNV sensitivity due to sampling error following Poisson distribution. Here we develop a PCR-based molecular barcoding NGS approach, quantitative amplicon sequencing (QASeq), for accurate absolute quantitation scalable to over 200 quantitation modules. By attaching barcodes to individual target molecules with high efficiency, 2-plex QASeq exhibits higher and more consistent conversion yield than ddPCR in absolute molecule count quantitation. Multiplexed QASeq improves CNV sensitivity allowing confident distinguishment of 2.05 ploidy from normal 2.00 ploidy. We apply multiplexed QASeq to serial longitudinal plasma cfDNA samples from patients with metastatic ERBB2+ (HER2+ ) breast cancer seeking association with tumor progression. We further show an RNA QASeq panel for targeted expression profiling.
Collapse
Affiliation(s)
- Lucia Ruojia Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Peng Dai
- Department of Bioengineering, Rice University, Houston, TX, USA
- NuProbe USA, Houston, TX, USA
| | | | - Sherry Xi Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
- NuProbe USA, Houston, TX, USA
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gitanjali Jayachandran
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Nina Guanyi Xie
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos H Barcenas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
10
|
Banerjee SM, Stoll JA, Allen CD, Lynch JM, Harris HS, Kenyon L, Connon RE, Sterling EJ, Naro-Maciel E, McFadden K, Lamont MM, Benge J, Fernandez NB, Seminoff JA, Benson SR, Lewison RL, Eguchi T, Summers TM, Hapdei JR, Rice MR, Martin S, Jones TT, Dutton PH, Balazs GH, Komoroske LM. Species and population specific gene expression in blood transcriptomes of marine turtles. BMC Genomics 2021; 22:346. [PMID: 33985425 PMCID: PMC8117300 DOI: 10.1186/s12864-021-07656-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms' responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. RESULTS We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. CONCLUSIONS Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles.
Collapse
Affiliation(s)
- Shreya M Banerjee
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Jamie Adkins Stoll
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Camryn D Allen
- Marine Turtle Biology and Assessment Program, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA.,Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Jennifer M Lynch
- Chemical Sciences Division, National Institute of Standards and Technology, Hawai'i Pacific University, Waimanalo, HI, USA
| | - Heather S Harris
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Lauren Kenyon
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Eleanor J Sterling
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | | | - Kathryn McFadden
- School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Margaret M Lamont
- United States Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA
| | - James Benge
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nadia B Fernandez
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Jeffrey A Seminoff
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Scott R Benson
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, CA, 95039, USA.,Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Rebecca L Lewison
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Tomoharu Eguchi
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | | | - Jessy R Hapdei
- Jessy's Tag Services, Saipan, Commonwealth of the Northern Mariana Islands, USA
| | - Marc R Rice
- Hawai'i Preparatory Academy, Kamuela, HI, USA
| | - Summer Martin
- Marine Turtle Biology and Assessment Program, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - T Todd Jones
- Marine Turtle Biology and Assessment Program, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Peter H Dutton
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | | | - Lisa M Komoroske
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA. .,Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA.
| |
Collapse
|
11
|
Abstract
Phylogenomics, the study of phylogenetic relationships among taxa based on their genome sequences, has emerged as the preferred phylogenetic method because of the wealth of phylogenetic information contained in genome sequences. Genome sequencing, however, can be prohibitively expensive, especially for taxa with huge genomes and when many taxa need sequencing. Consequently, the less costly phylotranscriptomics has seen an increased use in recent years. Phylotranscriptomics reconstructs phylogenies using DNA sequences derived from transcriptomes, which are often orders of magnitude smaller than genomes. However, in the absence of corresponding genome sequences, comparative analyses of transcriptomes can be challenging and it is unclear whether phylotranscriptomics is as reliable as phylogenomics. Here, we respectively compare the phylogenomic and phylotranscriptomic trees of 22 mammals and 15 plants that have both sequenced nuclear genomes and publicly available RNA sequencing data from multiple tissues. We found that phylotranscriptomic analysis can be sensitive to orthologous gene identification. When a rigorous method for identifying orthologs is employed, phylogenomic and phylotranscriptomic trees are virtually identical to each other, regardless of the tissue of origin of the transcriptomes and whether the same tissue is used across species. These findings validate phylotranscriptomics, brighten its prospect, and illustrate the criticality of reliable ortholog detection in such practices.
Collapse
Affiliation(s)
- Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Domitrovic T, Moreira MH, Carneiro RL, Ribeiro-Alves M, Palhano FL. Natural variation of the cardiac transcriptome in humans. RNA Biol 2020; 18:1374-1381. [PMID: 33258390 DOI: 10.1080/15476286.2020.1857508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We investigated the gene-expression variation among humans by analysing previously published mRNA-seq and ribosome footprint profiling of heart left-ventricles from healthy donors. We ranked the genes according to their coefficient of variation values and found that the top 5% most variable genes had special features compared to the rest of the genome, such as lower mRNA levels and shorter half-lives coupled to increased translation efficiency. We observed that these genes are mostly involved with immune response and have a pleiotropic effect on disease phenotypes, indicating that asymptomatic conditions contribute to the gene expression diversity of healthy individuals.
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana H Moreira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Rodolfo L Carneiro
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
14
|
Liu Z, Gao Z, Wang J, Shi J, Liu J, Chen D, Li W, Guo J, Cheng X, Hao T, Li Z, Li Y, Yan J, Zhang G. A method of identifying the blood contributor in mixture stains through detecting blood‐specific mRNA polymorphism. Electrophoresis 2020; 41:1364-1373. [DOI: 10.1002/elps.202000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Zidong Liu
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Zhe Gao
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jiaqi Wang
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jie Shi
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jinding Liu
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Deqing Chen
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Wenyan Li
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jiangling Guo
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Xiaojuan Cheng
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Ting Hao
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Zeqin Li
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Yanhua Li
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jiangwei Yan
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Gengqian Zhang
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| |
Collapse
|
15
|
Collins M, Tills O, Turner LM, Clark MS, Spicer JI, Truebano M. Moderate reductions in dissolved oxygen may compromise performance in an ecologically-important estuarine invertebrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133444. [PMID: 31362229 DOI: 10.1016/j.scitotenv.2019.07.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Coastal ecosystems, including estuaries, are increasingly pressured by expanding hypoxic regions as a result of human activities such as increased release of nutrients and global warming. Hypoxia is often defined as oxygen concentrations below 2 mL O2 L-1. However, taxa vary markedly in their sensitivity to hypoxia and can be affected by a broad spectrum of low oxygen levels. To better understand how reduced oxygen availability impacts physiological and molecular processes in invertebrates, we investigated responses of an estuarine amphipod to an ecologically-relevant level of moderate hypoxia (~2.6 mL O2 L-1) or severe hypoxia (~1.3 mL O2 L-1). Moderate hypoxia elicited a reduction in aerobic scope, and widespread changes to gene expression, including upregulation of metabolic genes and stress proteins. Under severe hypoxia, a marked hyperventilatory response associated with maintenance of aerobic performance was accompanied by a muted transcriptional response. This included a return of metabolic genes to baseline levels of expression and downregulation of transcripts involved in protein synthesis, most of which indicate recourse to hypometabolism and/or physiological impairment. We conclude that adverse ecological effects may occur under moderate hypoxia through compromised individual performance and, therefore, even modest declines in future oxygen levels may pose a significant challenge to coastal ecosystems.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lucy M Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
16
|
Developmental validation of an enhanced mRNA-based multiplex system for body fluid and cell type identification. Sci Justice 2019; 59:217-227. [DOI: 10.1016/j.scijus.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/16/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
|
17
|
Present and future invasion perspectives of an alien shrimp in South Atlantic coastal waters: an experimental assessment of functional biomarkers and thermal tolerance. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Hassan FM, Razik HAA, Wadie MS, Abdelfattah DS. XIST and RPS4Y1 long non-coding RNA transcriptome as sex biomarkers in different body fluids. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2019. [DOI: 10.1186/s41935-019-0122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Matos I, Machado MP, Schartl M, Coelho MM. Allele-specific expression variation at different ploidy levels in Squalius alburnoides. Sci Rep 2019; 9:3688. [PMID: 30842567 PMCID: PMC6403402 DOI: 10.1038/s41598-019-40210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.
Collapse
Affiliation(s)
- Isa Matos
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany
| | - Miguel P Machado
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany.,Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manfred Schartl
- University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany. .,Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany. .,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA.
| | - Maria Manuela Coelho
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
20
|
Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sánchez-Vallet A. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol 2018; 16:78. [PMID: 30012138 PMCID: PMC6047131 DOI: 10.1186/s12915-018-0543-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fungal plant pathogens pose major threats to crop yield and sustainable food production if they are highly adapted to their host and the local environment. Variation in gene expression contributes to phenotypic diversity within fungal species and affects adaptation. However, very few cases of adaptive regulatory changes have been reported in fungi and the underlying mechanisms remain largely unexplored. Fungal pathogen genomes are highly plastic and harbor numerous insertions of transposable elements, which can potentially contribute to gene expression regulation. In this work, we elucidated how transposable elements contribute to variation in melanin accumulation, a quantitative trait in fungi that affects survival under stressful conditions. RESULTS We demonstrated that differential transcriptional regulation of the gene encoding the transcription factor Zmr1, which controls expression of the genes in the melanin biosynthetic gene cluster, is responsible for variation in melanin accumulation in the fungal plant pathogen Zymoseptoria tritici. We show that differences in melanin levels between two strains of Z. tritici are due to two levels of transcriptional regulation: (1) variation in the promoter sequence of Zmr1 and (2) an insertion of transposable elements upstream of the Zmr1 promoter. Remarkably, independent insertions of transposable elements upstream of Zmr1 occurred in 9% of Z. tritici strains from around the world and negatively regulated Zmr1 expression, contributing to variation in melanin accumulation. CONCLUSIONS Our studies identified two levels of transcriptional control that regulate the synthesis of melanin. We propose that these regulatory mechanisms evolved to balance the fitness costs associated with melanin production against its positive contribution to survival in stressful environments.
Collapse
Affiliation(s)
- Parvathy Krishnan
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Xin Ma
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Fanny E Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris Saclay, Orsay, France
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Christie L, van Aerle R, Paley RK, Verner-Jeffreys DW, Tidbury H, Green M, Feist SW, Cano I. The skin immune response of rainbow trout, Oncorhynchus mykiss (Walbaum), associated with puffy skin disease (PSD). FISH & SHELLFISH IMMUNOLOGY 2018; 78:355-363. [PMID: 29709592 DOI: 10.1016/j.fsi.2018.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1β and T-bet and down-regulation of TGFβ and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis.
Collapse
Affiliation(s)
- Lyndsay Christie
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Richard K Paley
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - David W Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Hannah Tidbury
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Matthew Green
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Stephen W Feist
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Irene Cano
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
22
|
Derycke S, Kéver L, Herten K, Van den Berge K, Van Steenberge M, Van Houdt J, Clement L, Poncin P, Parmentier E, Verheyen E. Neurogenomic Profiling Reveals Distinct Gene Expression Profiles Between Brain Parts That Are Consistent in Ophthalmotilapia Cichlids. Front Neurosci 2018; 12:136. [PMID: 29593484 PMCID: PMC5855355 DOI: 10.3389/fnins.2018.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
The detection of external and internal cues alters gene expression in the brain which in turn may affect neural networks that underly behavioral responses. Previous studies have shown that gene expression profiles differ between major brain regions within individuals and between species with different morphologies, cognitive abilities and/or behaviors. A detailed description of gene expression in all macroanatomical brain regions and in species with similar morphologies and behaviors is however lacking. Here, we dissected the brain of two cichlid species into six macroanatomical regions. Ophthalmotilapia nasuta and O. ventralis have similar morphology and behavior and occasionally hybridize in the wild. We use 3′ mRNA sequencing and a stage-wise statistical testing procedure to identify differential gene expression between females that were kept in a social setting with other females. Our results show that gene expression differs substantially between all six brain parts within species: out of 11,577 assessed genes, 8,748 are differentially expressed (DE) in at least one brain part compared to the average expression of the other brain parts. At most 16% of these DE genes have |log2FC| significantly higher than two. Functional differences between brain parts were consistent between species. The majority (61–79%) of genes that are DE in a particular brain part were shared between both species. Only 32 genes show significant differences in fold change across brain parts between species. These genes are mainly linked to transport, transmembrane transport, transcription (and its regulation) and signal transduction. Moreover, statistical equivalence testing reveals that within each comparison, on average 89% of the genes show an equivalent fold change between both species. The pronounced differences in gene expression between brain parts and the conserved patterns between closely related species with similar morphologies and behavior suggest that unraveling the interactions between genes and behavior will benefit from neurogenomic profiling of distinct brain regions.
Collapse
Affiliation(s)
- Sofie Derycke
- Operational Direction Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Brussels, Belgium.,Department of Biology, Ghent University, Ghent, Belgium
| | - Loic Kéver
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium.,Behavioural Biology Unit, Ethology and Animal Psychology, University of Liège, Liège, Belgium
| | - Koen Herten
- Department of Human Genetics, Genomics Core Facility, KU Leuven, Leuven, Belgium
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Maarten Van Steenberge
- Operational Direction Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Brussels, Belgium.,Section Vertebrates, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Jeroen Van Houdt
- Department of Human Genetics, Genomics Core Facility, KU Leuven, Leuven, Belgium
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Pascal Poncin
- Behavioural Biology Unit, Ethology and Animal Psychology, University of Liège, Liège, Belgium
| | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Erik Verheyen
- Operational Direction Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Brussels, Belgium
| |
Collapse
|
23
|
Götting M, Nikinmaa M. In vitro study on the regulation of cellular mRNA levels by changes in transcription rate and transcript stability in fish red blood cells. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:35-44. [DOI: 10.1016/j.cbpb.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
|
24
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
25
|
Passow CN, Brown AP, Arias-Rodriguez L, Yee MC, Sockell A, Schartl M, Warren WC, Bustamante C, Kelley JL, Tobler M. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae). Mol Ecol 2017; 26:4211-4225. [PMID: 28598519 PMCID: PMC5731456 DOI: 10.1111/mec.14198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments.
Collapse
Affiliation(s)
| | - Anthony P. Brown
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
- Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
26
|
Ferreira MS, Alves PC, Callahan CM, Marques JP, Mills LS, Good JM, Melo‐Ferreira J. The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Mol Ecol 2017; 26:4173-4185. [DOI: 10.1111/mec.14177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mafalda S. Ferreira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
| | - Paulo C. Alves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
- Wildlife Biology Program University of Montana Missoula MT USA
| | - Colin M. Callahan
- Division of Biological Sciences University of Montana Missoula MT USA
| | - João P. Marques
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
| | - L. Scott Mills
- Wildlife Biology Program University of Montana Missoula MT USA
- Department of Forestry and Environmental Resources Fisheries, Wildlife and Conservation Biology Program North Carolina State University Raleigh NC USA
| | - Jeffrey M. Good
- Division of Biological Sciences University of Montana Missoula MT USA
| | - José Melo‐Ferreira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
| |
Collapse
|
27
|
Genetic architecture of gene transcription in two Atlantic salmon (Salmo salar) populations. Heredity (Edinb) 2017; 119:117-124. [PMID: 28467401 DOI: 10.1038/hdy.2017.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 01/19/2023] Open
Abstract
Gene expression regulation has an important role in short-term acclimation and long-term adaptation to changing environments. However, the genetic architecture of gene expression has received much less attention than that of traditional phenotypic traits. In this study, we used a 5 × 5 full-factorial breeding design within each of two Atlantic salmon (Salmo salar) populations to characterize the genetic architecture of gene transcription. The two populations (LaHave and Sebago) are being used for reintroduction efforts into Lake Ontario, Canada. We used high-throughput quantitative real-time PCR to measure gene transcription levels for 22 genes in muscle tissue of Atlantic salmon fry. We tested for population differences in gene transcription and partitioned the transcription variance into additive genetic, non-additive genetic and maternal effects within each population. Interestingly, average additive genetic effects for gene transcription were smaller than those reported for traditional phenotypic traits in salmonids, suggesting that the evolutionary potential of gene transcription is lower than that of traditional traits. Contrary to expectations for early life stage traits, maternal effects were small. In general, the LaHave population had higher additive genetic effects for gene transcription than the Sebago population had, indicating that the LaHave fish have a higher adaptive potential to respond to the novel selection pressures associated with reintroduction into a novel environment. This study highlights not only the profound variation in gene transcription possible among salmonid populations but also the among-population variation in the underlying genetic architecture of such traits.
Collapse
|
28
|
Jimenez AG, Jayawardene S, Alves S, Dallmer J, Dowd WW. Micro-scale environmental variation amplifies physiological variation among individual mussels. Proc Biol Sci 2017; 282:20152273. [PMID: 26645201 DOI: 10.1098/rspb.2015.2273] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Sarah Jayawardene
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Shaina Alves
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Jeremiah Dallmer
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - W Wesley Dowd
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| |
Collapse
|
29
|
Hambright WS, Deng J, Tiedje JM, Brettar I, Rodrigues JLM. Shewanella baltica Ecotypes Have Wide Transcriptional Variation under the Same Growth Conditions. mSphere 2016; 1:e00158-16. [PMID: 27777983 PMCID: PMC5071532 DOI: 10.1128/msphere.00158-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022] Open
Abstract
In bacterial populations, subtle expressional differences may promote ecological specialization through the formation of distinct ecotypes. In a barrier-free habitat, this process most likely precedes population divergence and may predict speciation events. To examine this, we used four sequenced strains of the bacterium Shewanella baltica, OS155, OS185, OS195, and OS223, as models to assess transcriptional variation and ecotype formation within a prokaryotic population. All strains were isolated from different depths throughout a water column of the Baltic Sea, occupying different ecological niches characterized by various abiotic parameters. Although the genome sequences are nearly 100% conserved, when grown in the laboratory under standardized conditions, all strains exhibited different growth rates, suggesting significant expressional variation. Using the Ecotype Simulation algorithm, all strains were considered to be discrete ecotypes when compared to 32 other S. baltica strains isolated from the same water column, suggesting ecological divergence. Next, we employed custom microarray slides containing oligonucleotide probes representing the core genome of OS155, OS185, OS195, and OS223 to detect natural transcriptional variation among strains grown under identical conditions. Significant transcriptional variation was noticed among all four strains. Differentially expressed gene profiles seemed to coincide with the metabolic signatures of the environment at the original isolation depth. Transcriptional pattern variations such as the ones highlighted here may be used as indicators of short-term evolution emerging from the formation of bacterial ecotypes. IMPORTANCE Eukaryotic studies have shown considerable transcriptional variation among individuals from the same population. It has been suggested that natural variation in eukaryotic gene expression may have significant evolutionary consequences and may explain large-scale phenotypic divergence of closely related species, such as humans and chimpanzees (M.-C. King and A. C. Wilson, Science 188:107-116, 1975, http://dx.doi.org/10.1126/science.1090005; M. F. Oleksiak, G. A. Churchill, and D. L. Crawford, Nat Genet 32:261-266, 2002, http://dx.doi.org/10.1038/ng983). However, natural variation in gene expression is much less well understood in prokaryotic organisms. In this study, we used four sequenced strains of the marine bacterium Shewanella baltica to better understand the natural transcriptional divergence of a stratified prokaryotic population. We found substantial low-magnitude expressional variation among the four S. baltica strains cultivated under identical laboratory conditions. Collectively, our results indicate that transcriptional variation is an important factor for ecological speciation.
Collapse
Affiliation(s)
- W. S. Hambright
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jie Deng
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Ingrid Brettar
- Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Jorge L. M. Rodrigues
- Department of Land, Water and Air Resources, University of California, Davis, Davis, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
30
|
Rey S, Ribas L, Morera Capdevila D, Callol A, Huntingford FA, Pilarczyk M, Kadri S, MacKenzie S. Differential responses to environmental challenge by common carp Cyprinus carpio highlight the importance of coping style in integrative physiology. JOURNAL OF FISH BIOLOGY 2016; 88:1056-69. [PMID: 26762295 DOI: 10.1111/jfb.12877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
Common carp Cyprinus carpio displaying proactive or reactive stress coping styles were acclimated to two environmental regimes (low oxygen and low temperature), and selected groups were tested for response to an inflammatory challenge (Escherichia coli lipopolysaccharide, LPS). Plasma glucose and lactate levels were measured, as were selected C. carpio-specific messenger (m)RNA transcript abundance, including cortisol receptor (CR), enolase (ENO), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and interleukin-1-beta (IL1β) was measured in individual whole brain samples. Basal levels (in sham injected fish held in normoxic conditions at 25° C) of plasma lactate and glucose differed between coping styles, being significantly lower in proactive individuals. Both variables increased in response to LPS challenge, with the exception of plasma glucose in reactive fish held in hypoxia. Baseline levels of gene expression under control conditions were significantly different for GAPDH between behavioural phenotypes. The responses to experimental challenge were sometimes diametrically opposed between stress-coping styles in a transcript-specific manner. For CR and GAPDH, for example, the response to LPS injection in hypoxia were opposite between proactive and reactive animals. Proactive fish showed decreased CR and increased GAPDH, whereas reactive showed the opposite response. These results further highlight that screening for stress-coping styles prior to experiments in adaptive physiology can significantly affect the interpretation of data obtained. Further, this leads to a more finely tuned analytical output providing an improved understanding of variation in individual responses to both environmental and inflammatory challenge.
Collapse
Affiliation(s)
- S Rey
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, FK9 4LA, U.K
| | - L Ribas
- Institut de Ciencies del Mar, Renewable Marine Resources Department, E-08003, Barcelona, Spain
| | - D Morera Capdevila
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
| | - A Callol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
| | - F A Huntingford
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - M Pilarczyk
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture, Zaborze ul. Kalinowa2, 43-520, Chybie, Poland
| | - S Kadri
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - S MacKenzie
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, FK9 4LA, U.K
| |
Collapse
|
31
|
Bahamonde PA, Feswick A, Isaacs MA, Munkittrick KR, Martyniuk CJ. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:20-35. [PMID: 26771350 DOI: 10.1002/etc.3218] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/16/2015] [Accepted: 08/20/2015] [Indexed: 05/22/2023]
Abstract
Scientific reviews and studies continue to describe omics technologies as the next generation of tools for environmental monitoring, while cautioning that there are limitations and obstacles to overcome. However, omics has not yet transitioned into national environmental monitoring programs designed to assess ecosystem health. Using the example of the Canadian Environmental Effects Monitoring (EEM) program, the authors describe the steps that would be required for omics technologies to be included in such an established program. These steps include baseline collection of omics endpoints across different species and sites to generate a range of what is biologically normal within a particular ecosystem. Natural individual variability in the omes is not adequately characterized and is often not measured in the field, but is a key component to an environmental monitoring program, to determine the critical effect size or action threshold for management. Omics endpoints must develop a level of standardization, consistency, and rigor that will allow interpretation of the relevance of changes across broader scales. To date, population-level consequences of routinely measured endpoints such as reduced gonad size or intersex in fish is not entirely clear, and the significance of genome-wide molecular, proteome, or metabolic changes on organism or population health is further removed from the levels of ecological change traditionally managed. The present review is not intended to dismiss the idea that omics will play a future role in large-scale environmental monitoring studies, but rather outlines the necessary actions for its inclusion in regulatory monitoring programs focused on assessing ecosystem health.
Collapse
Affiliation(s)
- Paulina A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Meghan A Isaacs
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
32
|
Trumbić Ž, Bekaert M, Taggart JB, Bron JE, Gharbi K, Mladineo I. Development and validation of a mixed-tissue oligonucleotide DNA microarray for Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758). BMC Genomics 2015; 16:1007. [PMID: 26607231 PMCID: PMC4659210 DOI: 10.1186/s12864-015-2208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. RESULTS We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. CONCLUSIONS Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, Split, Croatia.
| | - Michaël Bekaert
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, Scotland, UK.
| | - Ivona Mladineo
- Institute of Oceanography and Fisheries, Split, Croatia.
| |
Collapse
|
33
|
He L, Wang YL, Li Q, Yang HD, Duan ZL, Wang Q. Profiling microRNAs in the testis during sexual maturation stages in Eriocheir sinensis. Anim Reprod Sci 2015; 162:52-61. [DOI: 10.1016/j.anireprosci.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
|
34
|
Linnstaedt SD, Walker MG, Parker JS, Yeh E, Sons RL, Zimny E, Lewandowski C, Hendry PL, Damiron K, Pearson C, Velilla MA, O'Neil BJ, Jones J, Swor R, Domeier R, Hammond S, McLean SA. MicroRNA circulating in the early aftermath of motor vehicle collision predict persistent pain development and suggest a role for microRNA in sex-specific pain differences. Mol Pain 2015; 11:66. [PMID: 26498117 PMCID: PMC4619556 DOI: 10.1186/s12990-015-0069-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Molecular mediators influencing the transition from acute to persistent musculoskeletal pain following common stress exposures such as motor vehicle collision (MVC) remain poorly understood. In this exploratory, proof of concept study, we compared circulating microRNA (miRNA) expression profiles in the early aftermath of MVC among individuals who did and did not subsequently develop persistent pain. Blood RNA samples were obtained from African American individuals (n = 53) who presented to the emergency department after MVC and were discharged to home after evaluation. The presence or absence of severe pain in the axial region, the most common and morbid region in which post-MVC pain occurs, was assessed 6 weeks following MVC via standardized questionnaire. miRNA expression was determined using miRNA-sequencing; nonparametric analyses were used to compare miRNA expression levels among individuals with and without persistent pain. RESULTS Thirty-two mature miRNA were differentially expressed (p < 0.05) in those with and without severe axial pain at 6 weeks. miR-135a-5p, a regulator of the serotonin receptor that is known to be stress-responsive, differed most significantly between groups (p = 3 × 10(-4)). This miRNA, and miR-3613-3p (p = 0.001) survived correction for multiple testing (FDR = 0.15) in this small sample. Interestingly, differentially expressed miRNA were enriched for X chromosome location. In secondary analyses, the eight X chromosome miRNA were (a) more significantly associated with axial pain in women than men, (b) expressed more highly in the peripheral blood of women than men, and (c) predicted in pathway analyses (DIANA miRPath v 2.0) to regulate neuronal and neuroendocrine pathways previously implicated in various pain pathologies. CONCLUSIONS These results show that circulating miRNA predict persistent severe axial pain after MVC and suggest that they may be involved in the pathogenesis of post-traumatic musculoskeletal pain. However, further studies are needed to determine if these miRNA play a direct causal role.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
| | - Margaret G Walker
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Eunice Yeh
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
| | - Robert L Sons
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| | - Erin Zimny
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, USA.
| | | | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Gainesville, FL, USA.
| | - Kathia Damiron
- Department of Emergency Medicine, Albert Einstein Medical Center, Philadelphia, PA, USA.
| | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, MI, USA.
| | | | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit, MI, USA.
- The Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Jeffrey Jones
- Department of Emergency Medicine, Spectrum Health Butterworth Campus, Grand Rapids, MI, USA.
| | - Robert Swor
- Department of Emergency Medicine, William Beaumont Hospital, Troy, MI, USA.
| | - Robert Domeier
- Department of Emergency Medicine, St Joseph Mercy Health System, Ypsilanti, MI, USA.
| | - Scott Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| | - Samuel A McLean
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Peck LS, Thorne MAS, Hoffman JI, Morley SA, Clark MS. Variability among individuals is generated at the gene expression level. Ecology 2015; 96:2004-14. [PMID: 26378322 DOI: 10.1890/14-0726.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Selection acts on individuals, specifically on their differences. To understand adaptation and responses to change therefore requires knowledge of how variation is generated and distributed across traits. Variation occurs on different biological scales, from genetic through physiological to morphological, yet it is unclear which of these carries the most variability. For example, if individual variation is mainly generated by differences in gene expression, variability should decrease progressively from coding genes to morphological traits, whereas if post-translational and epigenetic effects increase variation, the opposite should occur. To test these predictions, we compared levels of variation among individuals in various measures of gene expression, physiology (including activity), and morphology in two abundant and geographically widespread Antarctic molluscs, the clam Laternula elliptica and the limpet Nacella concinna. Direct comparisons among traits as diverse as heat shock protein QPCR assays, whole transcription profiles, respiration rates, burying rate, shell length, and ash-free dry mass were made possible through the novel application of an established metric, the Wentworth Scale. In principle, this approach could be extended to analyses of populations, communities, or even entire ecosystems. We found consistently greater variation in gene expression than morphology, with physiological measures falling in between. This suggests that variability is generated at the gene expression level. These findings have important implications for refining current biological models and predictions of how biodiversity may respond to climate change.
Collapse
|
36
|
Song F, Luo H, Hou Y. Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population. J Forensic Leg Med 2015; 35:73-80. [PMID: 26311108 DOI: 10.1016/j.jflm.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
In forensic casework, identification the cellular origin from a biological sample is crucial to the case investigation and reconstruction in crime scene. DNA/RNA co-extraction for STR typing and human body fluids identification has been proposed as an efficient and comprehensive assay for forensic analysis. Several cell-specific messenger RNA (mRNA) markers for identification of the body fluids have been proposed by previous studies. In this study, a novel multiplex mRNA profiling system included 19 markers was developed and performed by reverse transcription endpoint polymerase chain reaction (RT-PCR). The multiplex combined 3 housekeeping gene markers and 16 cell-specific markers that have been used to identify five types of human body fluids: peripheral blood, semen, saliva, vaginal secretions and menstrual blood. The specificity, sensitivity, stability and detectability of the mixture were explored in our study. Majority of the cell-specific mRNA markers showed high specificity, although cross-reactivity was observed sporadically. Specific profiling for per body fluid was obtained. Moreover, the interpretation guidelines for inference of body fluid types were performed according to the A. Lindenbergh et al. The scoring guidelines can be applied to any RNA multiplex, which was based on six different scoring categories (observed, observed and fits, sporadically observed and fits, not observed, sporadically observed, not reliable, and non-specific due to high input). The simultaneous extraction of DNA showed positive full or partial profiling results of all samples. It demonstrated that the approach of combined STR-profiling and RNA profiling was suitable and reliable to detect the donor and origin of human body fluids in Chinese Han population.
Collapse
Affiliation(s)
- Feng Song
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China.
| |
Collapse
|
37
|
Larsen AM, Bullard SA, Womble M, Arias CR. Community Structure of Skin Microbiome of Gulf Killifish, Fundulus grandis, Is Driven by Seasonality and Not Exposure to Oiled Sediments in a Louisiana Salt Marsh. MICROBIAL ECOLOGY 2015; 70:534-44. [PMID: 25704317 DOI: 10.1007/s00248-015-0578-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/28/2015] [Indexed: 05/25/2023]
Abstract
Mucus of fish skin harbors complex bacterial communities that likely contribute to fish homeostasis. When the equilibrium between the host and its external bacterial symbionts is disrupted, bacterial diversity decreases while opportunistic pathogen prevalence increases, making the onset of pathogenic bacterial infection more likely. Because of that relationship, documenting temporal and spatial microbial community changes may be predictive of fish health status. The 2010 Deepwater Horizon oil spill was a potential stressor to the Gulf of Mexico's coastal ecosystem. Ribosomal intergenic spacer analysis (RISA) and pyrosequencing were used to analyze the bacterial communities (microbiome) associated with the skin and mucus of Gulf killifish (Fundulus grandis) that were collected from oiled and non-oiled salt marsh sites in Barataria Bay, LA. Water samples and fin clips were collected to examine microbiome structure. The microbiome of Gulf killifish was significantly different from that of the surrounding water, mainly attributable to shifts in abundances of Cyanobacteria and Proteobacteria. The Gulf killifish's microbiome was dominated by Gammaproteobacteria, specifically members of Pseudomonas. No significant difference was found between microbiomes of fish collected from oiled and non-oiled sites suggesting little impact of oil contamination on fish bacterial assemblages. Conversely, seasonality significantly influenced microbiome structure. Overall, the high similarity observed between the microbiomes of individual fish observed during this study posits that skin and mucus of Gulf killifish have a resilient core microbiome.
Collapse
Affiliation(s)
- Andrea M Larsen
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA,
| | | | | | | |
Collapse
|
38
|
Rodriguez-Palacios A, Kodani T, Kaydo L, Pietropaoli D, Corridoni D, Howell S, Katz J, Xin W, Pizarro TT, Cominelli F. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes. Nat Commun 2015; 6:7577. [PMID: 26154811 PMCID: PMC4510646 DOI: 10.1038/ncomms8577] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes ('cobblestones' versus 'villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals 'liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD.
Collapse
Affiliation(s)
- Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Tomohiro Kodani
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lindsey Kaydo
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Davide Pietropaoli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Daniele Corridoni
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Scott Howell
- Department of Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jeffry Katz
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Wei Xin
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Theresa T. Pizarro
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
39
|
High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:156584. [PMID: 26090382 PMCID: PMC4458272 DOI: 10.1155/2015/156584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 12/19/2022]
Abstract
The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45–50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD.
Collapse
|
40
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 months of aestivation in air or 1 day of arousal from 6 months of aestivation. PLoS One 2015; 10:e0121224. [PMID: 25822522 PMCID: PMC4378924 DOI: 10.1371/journal.pone.0121224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase) of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of aestivation in the liver of P. annectens.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
41
|
Zendehdel R, H. Shirazi F. Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:803-10. [PMID: 26330868 PMCID: PMC4518108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcinoma (A2780), Human lung adenocarcinoma (A549) and Human hepatocarcinoma (HepG2) cell lines in 20 individual samples for each cell lines were used for FTIR spectral measurements. Data dimension were reduced through principal component analysis (PCA) and then subjected to neural network and linear discrimination analysis to classify FTIR pattern in different cell lines. The results showed dramatic changes of FTIR spectra among different cell types. These appeared to be associated with changes in lipid bands from CH2 symmetric and asymmetric bands, as well as amide I and amid II bands of proteins. The PCA-ANN analysis provided over 90% accuracy for classifying the spectrum of lipid section in different cell lines. This work supports future study to establish the data bank of FTIR feature for different cells and move forward to tissues as more complex systems.
Collapse
Affiliation(s)
- Rezvan Zendehdel
- Department of Occupational Hygiene, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshad H. Shirazi
- SBMU Pharmaceutical Research Center, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran.,Corresponding author:
| |
Collapse
|
42
|
Avarre JC, Guinand B, Dugué R, Cosson J, Legendre M, Panfili J, Durand JD. Plasticity of gene expression according to salinity in the testis of broodstock and F1 black-chinned tilapia, Sarotherodon melanotheron heudelotii. PeerJ 2014; 2:e702. [PMID: 25548735 PMCID: PMC4273931 DOI: 10.7717/peerj.702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 11/20/2022] Open
Abstract
The black-chinned tilapia Sarotherodon melanotheron heudelotii Rüppell 1852 (Teleostei, Cichlidae) displays remarkable acclimation capacities. When exposed to drastic changes of salinity, which can be the case in its natural habitat, it develops quick physiological responses and keeps reproducing. The present study focused on the physiological impact of salinity on male reproductive capacities, using gene expression as a proxy of acclimation process. Two series of experimental fish were investigated: the first one was composed of fish maintained in freshwater for several generations and newly acclimated to salinities of 35 and 70, whereas the second one consisted of the descendants of the latter born and were raised under their native salinity. Expression patterns of 43 candidate genes previously identified from the testes of wild males was investigated in the three salinities and two generations. Twenty of them showed significant expression differences between salinities, and their predicted function revealed that most of them are involved in the osmotic tolerance of sperm cells and/or in the maintenance of sperm motility. A high level of expression variation was evidenced, especially for fish maintained in freshwater. In spite of this, gene expression patterns allowed the differentiation between fish raised in freshwater and those maintained in hypersaline water in both generations. Altogether, the results presented here suggest that this high variability of expression is likely to ensure the reproductive success of this species under varying salinities.
Collapse
Affiliation(s)
- Jean-Christophe Avarre
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Bruno Guinand
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Rémi Dugué
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Jacky Cosson
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice , Vodňany , Czech Republic
| | - Marc Legendre
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Jacques Panfili
- Ecologie des Systèmes Marins Côtiers , UMR 5119 IRD-UM2-CNRS-IFREMER, Montpellier , France
| | - Jean-Dominique Durand
- Ecologie des Systèmes Marins Côtiers , UMR 5119 IRD-UM2-CNRS-IFREMER, Montpellier , France
| |
Collapse
|
43
|
Jiang SY, Vanitha J, Bai Y, Ramachandran S. Identification and molecular characterization of tissue-preferred rice genes and their upstream regularly sequences on a genome-wide level. BMC PLANT BIOLOGY 2014; 14:331. [PMID: 25428432 PMCID: PMC4248441 DOI: 10.1186/s12870-014-0331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/11/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gene upstream regularly sequences (URSs) can be used as one of the tools to annotate the biological functions of corresponding genes. In addition, tissue-preferred URSs are frequently used to drive the transgene expression exclusively in targeted tissues during plant transgenesis. Although many rice URSs have been molecularly characterized, it is still necessary and valuable to identify URSs that will benefit plant transformation and aid in analyzing gene function. RESULTS In this study, we identified and characterized root-, seed-, leaf-, and panicle-preferred genes on a genome-wide level in rice. Subsequently, their expression patterns were confirmed through quantitative real-time RT-PCR (qRT-PCR) by randomly selecting 9candidate tissue-preferred genes. In addition, 5 tissue-preferred URSs were characterized by investigating the URS::GUS transgenic plants. Of these URS::GUS analyses, the transgenic plants harboring LOC_Os03g11350 URS::GUS construct showed the GUS activity only in young pollen. In contrast, when LOC_Os10g22450 URS was used to drive the reporter GUS gene, the GUS activity was detected only in mature pollen. Interestingly, the LOC_Os10g34360 URS was found to be vascular bundle preferred and its activities were restricted only to vascular bundles of leaves, roots and florets. In addition, we have also identified two URSs from genes LOC_Os02G15090 and LOC_Os06g31070 expressed in a seed-preferred manner showing the highest expression levels of GUS activities in mature seeds. CONCLUSION By genome-wide analysis, we have identified tissue-preferred URSs, five of which were further characterized using transgenic plants harboring URS::GUS constructs. These data might provide some evidence for possible functions of the genes and be a valuable resource for tissue-preferred candidate URSs for plant transgenesis.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Jeevanandam Vanitha
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Yanan Bai
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Srinivasan Ramachandran
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|
44
|
Brain Na+/K+-ATPase α-subunit isoforms and aestivation in the African lungfish, Protopterus annectens. J Comp Physiol B 2014; 184:571-87. [PMID: 24696295 DOI: 10.1007/s00360-014-0809-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
This study aimed to clone and sequence Na (+) / K (+)-ATPase (nka) α-subunit isoforms from, and to determine their mRNA expression levels and protein abundance in the brain of the African lungfish, Protopterus annectens during the induction, maintenance and arousal phases of aestivation in air. We obtained the full cDNA sequences of nkaα1, nkaα2 and nkaα3 from the brain of P. annectens. Phylogenetic analysis of their deduced amino acid sequences revealed that they are closer to the corresponding NKA α-subunits of tetrapods than to those of fishes. The mRNA expression of these three nkaα isoforms showed differential changes in the brain of P. annectens during the three phases of aestivation. After 12 days of aestivation, there was a significant increase in the protein abundance of Nkaα1 in the brain of P. annectens. This could be an important response to maintain cellular Na(+) and K(+) concentrations and regulate cell volume during the early maintenance phase of aestivation. On the other hand, the mRNA expression of nkaα2 decreased significantly in the brain of P. annectens after 6 months of aestivation, which could be a result of a suppression of transcriptional activities to reduce energy expenditure. The down-regulation of mRNA expression of nkaα1, nkaα2 and nkaα3 and the overall protein abundance of Nka α-subunit isoforms in the brain of P. annectens after 1 day of arousal from 6 months of aestivation were novel observations, and it could be an adaptive response to restore blood pressure and/or to prevent brain oedema.
Collapse
|
45
|
Whitehead A, Zhang S, Roach JL, Galvez F. Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish. Mol Ecol 2014; 22:3780-96. [PMID: 23841861 DOI: 10.1111/mec.12316] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 01/08/2023]
Abstract
Environmental salinity presents a key barrier to dispersal for most aquatic organisms, and adaptation to alternate osmotic environments likely enables species diversification. Little is known of the functional basis for derived tolerance to environmental salinity. We integrate comparative physiology and functional genomics to explore the mechanistic underpinnings of evolved variation in osmotic plasticity within and among two species of killifish; Fundulus majalis harbours the ancestral mainly salt-tolerant phenotype, whereas Fundulus heteroclitus harbours a derived physiology that retains extreme salt tolerance but with expanded osmotic plasticity towards the freshwater end of the osmotic continuum. Common-garden comparative hypo-osmotic challenge experiments show that F. heteroclitus is capable of remodelling gill epithelia more quickly and at more extreme osmotic challenge than F. majalis. We detect an unusual pattern of baseline transcriptome divergence, where neutral evolutionary processes appear to govern expression divergence within species, but patterns of divergence for these genes between species do not follow neutral expectations. During acclimation, genome expression profiling identifies mechanisms of acclimation-associated response that are conserved within the genus including regulation of paracellular permeability. In contrast, several responses vary among species including those putatively associated with cell volume regulation, and these same mechanisms are targets for adaptive physiological divergence along osmotic gradients within F. heteroclitus. As such, the genomic and physiological mechanisms that are associated with adaptive fine-tuning within species also contribute to macro-evolutionary divergence as species diversify across osmotic niches.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, 4138 Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
46
|
Rey S, Boltana S, Vargas R, Roher N, Mackenzie S. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function. Mol Ecol 2013; 22:6100-15. [PMID: 24118534 DOI: 10.1111/mec.12556] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/23/2013] [Indexed: 01/06/2023]
Abstract
Resolving phenotype variation within a population in response to environmental perturbation is central to understanding biological adaptation. Relating meaningful adaptive changes at the level of the transcriptome requires the identification of processes that have a functional significance for the individual. This remains a major objective towards understanding the complex interactions between environmental demand and an individual's capacity to respond to such demands. The interpretation of such interactions and the significance of biological variation between individuals from the same or different populations remain a difficult and under-addressed question. Here, we provide evidence that variation in gene expression between individuals in a zebrafish population can be partially resolved by a priori screening for animal personality and accounts for >9% of observed variation in the brain transcriptome. Proactive and reactive individuals within a wild-type population exhibit consistent behavioural responses over time and context that relates to underlying differences in regulated gene networks and predicted protein-protein interactions. These differences can be mapped to distinct regions of the brain and provide a foundation towards understanding the coordination of underpinning adaptive molecular events within populations.
Collapse
Affiliation(s)
- S Rey
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
47
|
Martyniuk CJ, Houlahan J. Assessing gene network stability and individual variability in the fathead minnow (Pimephales promelas) transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:283-91. [PMID: 24036207 DOI: 10.1016/j.cbd.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
Transcriptomics is increasingly used to assess biological responses to environmental stimuli and stressors such as aquatic pollutants. However, fundamental studies characterizing individual variability in mRNA levels are lacking, which currently limits the use of transcriptomics in environmental monitoring assessments. To address individual variability in transcript abundance, we performed a meta-analysis on 231 microarrays that were conducted in the fathead minnow (FHM), a widely used toxicological model. The mean variability for gene probes was ranked from most to least variable based upon the coefficient of variation. Transcripts that were the most variable in individual tissues included NADH dehydrogenase flavoprotein 1, GTPase IMAP family member 7-like and v-set domain-containing T-cell activation inhibitor 1-like while genes encoding ribosomal proteins (rpl24 and rpl36), basic transcription factor 3, and nascent polypeptide-associated complex alpha subunit were the least variable in individuals across a range of microarray experiments. Gene networks that showed high variability (based upon the variation in expression of individual members within the network) included cell proliferation, metabolism (steroid, lipids, and glucose), cell adhesion, vascularization, and regeneration while those that showed low variability (more stability) included mRNA and rRNA processing, regulation of translational fidelity, RNA splicing, and ribosome biogenesis. Real-time PCR was conducted on a subset of genes for comparison of variability collected from the microarrays. There was a significant positive relationship between the two methods when measuring individual variability, suggesting that variability detected in microarray data can be used to guide decisions on sample sizes for measuring transcripts in real-time PCR experiments. A power analysis revealed that measuring estrogen receptor ba (esrba) requires fewer biological replicates than that of estrogen receptor bb (esrbb) in the gonad and samples sizes required to detect a 50% change for reproductive-related transcripts is between 12 and 20. Characterizing individual variability at the molecular level will prove necessary as efforts are made toward integrating molecular tools into environmental risk assessments.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| | | |
Collapse
|
48
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the brain of the African lungfish, Protopterus annectens, after six days or six months of aestivation in air. PLoS One 2013; 8:e71205. [PMID: 23976998 PMCID: PMC3745453 DOI: 10.1371/journal.pone.0071205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the brain of P. annectens during the induction (6 days) and maintenance (6 months) phases of aestivation as compared with the freshwater control using suppression subtractive hybridization. During the induction phase of aestivation, the mRNA expression of prolactin (prl) and growth hormone were up-regulated in the brain of P. annectens, which indicate for the first time the possible induction role of these two hormones in aestivation. Also, the up-regulation of mRNA expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein γ polypeptide and the down-regulation of phosphatidylethanolamine binding protein, suggest that there could be a reduction in biological and neuronal activities in the brain. The mRNA expression of cold inducible RNA-binding protein and glucose regulated protein 58 were also up-regulated in the brain, probably to enhance their cytoprotective effects. Furthermore, the down-regulation of prothymosin α expression suggests that there could be a suppression of transcription and cell proliferation in preparation for the maintenance phase. In general, the induction phase appeared to be characterized by reduction in glycolytic capacity and metabolic activity, suppression of protein synthesis and degradation, and an increase in defense against ammonia toxicity. In contrast, there was a down-regulation in the mRNA expression of prl in the brain of P. annectens during the maintenance phase of aestivation. In addition, there could be an increase in oxidative defense capacity, and up-regulation of transcription, translation, and glycolytic capacities in preparation for arousal. Overall, our results signify the importance of reconstruction of protein structures and regulation of energy expenditure during the induction phase, and the needs to suppress protein degradation and conserve metabolic fuel stores during the maintenance phase of aestivation.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
49
|
Tingaud-Sequeira A, Lozano JJ, Zapater C, Otero D, Kube M, Reinhardt R, Cerdà J. A rapid transcriptome response is associated with desiccation resistance in aerially-exposed killifish embryos. PLoS One 2013; 8:e64410. [PMID: 23741328 PMCID: PMC3669298 DOI: 10.1371/journal.pone.0064410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 11/21/2022] Open
Abstract
Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ∼100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (∼70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. Interestingly, we found fast (0.5–1 h) transcriptional differences in representatives of classical “stress” proteins, such as some molecular chaperones, members of signalling pathways typically involved in the transduction of sensor signals to stress response genes, and oxidative stress-related proteins, similar to that described in other animals undergoing dormancy, diapause or desiccation. To our knowledge, these data represent the first transcriptional profiling of molecular processes associated with desiccation resistance during delayed hatching in non-mammalian vertebrates. The exceptional transcriptomic plasticity observed in killifish embryos provides an important insight as to how the embryos are able to rapidly adapt to non-lethal desiccation conditions.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Ip YK, Soh MML, Chen XL, Ong JLY, Chng YR, Ching B, Wong WP, Lam SH, Chew SF. Molecular characterization of branchial aquaporin 1aa and effects of seawater acclimation, emersion or ammonia exposure on its mRNA expression in the gills, gut, kidney and skin of the freshwater climbing perch, Anabas testudineus. PLoS One 2013; 8:e61163. [PMID: 23593418 PMCID: PMC3621907 DOI: 10.1371/journal.pone.0061163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
We obtained a full cDNA coding sequence of aquaporin 1aa (aqp1aa) from the gills of the freshwater climbing perch, Anabas testudineus, which had the highest expression in the gills and skin, suggesting an important role of Aqp1aa in these organs. Since seawater acclimation had no significant effects on the branchial and intestinal aqp1aa mRNA expression, and since the mRNA expression of aqp1aa in the gut was extremely low, it can be deduced that Aqp1aa, despite being a water channel, did not play a significant osmoregulatory role in A. testudineus. However, terrestrial exposure led to significant increases in the mRNA expression of aqp1aa in the gills and skin of A. testudineus. Since terrestrial exposure would lead to evaporative water loss, these results further support the proposition that Aqp1aa did not function predominantly for the permeation of water through the gills and skin. Rather, increased aqp1aa mRNA expression might be necessary to facilitate increased ammonia excretion during emersion, because A. testudineus is known to utilize amino acids as energy sources for locomotor activity with increased ammonia production on land. Furthermore, ammonia exposure resulted in significant decreases in mRNA expression of aqp1aa in the gills and skin of A. testudineus, presumably to reduce ammonia influx during ammonia loading. This corroborates previous reports on AQP1 being able to facilitate ammonia permeation. However, a molecular characterization of Aqp1aa from A. testudineus revealed that its intrinsic aquapore might not facilitate NH3 transport. Hence, ammonia probably permeated the central fifth pore of the Aqp1aa tetramer as suggested previously. Taken together, our results indicate that Aqp1aa might have a greater physiological role in ammonia excretion than in osmoregulation in A. testudineus.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|