1
|
Ríos-Anillo MR, Ahmad M, Acosta-López JE, Cervantes-Henríquez ML, Henao-Castaño MC, Morales-Moreno MT, Espitia-Almeida F, Vargas-Manotas J, Sánchez-Barros C, Pineda DA, Sánchez-Rojas M. Brain Volumetric Analysis Using Artificial Intelligence Software in Premanifest Huntington's Disease Individuals from a Colombian Caribbean Population. Biomedicines 2024; 12:2166. [PMID: 39457479 PMCID: PMC11504451 DOI: 10.3390/biomedicines12102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background and objectives: The premanifest phase of Huntington's disease (HD) is characterized by the absence of motor symptoms and exhibits structural changes in imaging that precede clinical manifestation. This study aimed to analyze volumetric changes identified through brain magnetic resonance imaging (MRI) processed using artificial intelligence (AI) software in premanifest HD individuals, focusing on the relationship between CAG triplet expansion and structural biomarkers. Methods: The study included 36 individuals descending from families affected by HD in the Department of Atlántico. Sociodemographic data were collected, followed by peripheral blood sampling to extract genomic DNA for quantifying CAG trinucleotide repeats in the Huntingtin gene. Brain volumes were evaluated using AI software (Entelai/IMEXHS, v4.3.4) based on MRI volumetric images. Correlations between brain volumes and variables such as age, sex, and disease status were determined. All analyses were conducted using SPSS (v. IBM SPSS Statistics 26), with significance set at p < 0.05. Results: The analysis of brain volumes according to CAG repeat expansion shows that individuals with ≥40 repeats evidence significant increases in cerebrospinal fluid (CSF) volume and subcortical structures such as the amygdalae and left caudate nucleus, along with marked reductions in cerebral white matter, the cerebellum, brainstem, and left pallidum. In contrast, those with <40 repeats show minimal or moderate volumetric changes, primarily in white matter and CSF. Conclusions: These findings suggest that CAG expansion selectively impacts key brain regions, potentially influencing the progression of Huntington's disease, and that AI in neuroimaging could identify structural biomarkers long before clinical symptoms appear.
Collapse
Affiliation(s)
- Margarita R. Ríos-Anillo
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
- Médico Residente de Neurología, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.C.H.-C.); (M.T.M.-M.)
| | - Mostapha Ahmad
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
| | - Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.L.C.-H.)
| | - Martha L. Cervantes-Henríquez
- Facultad de Ciencias Jurídicas y Sociales, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.L.C.-H.)
| | - Maria C. Henao-Castaño
- Médico Residente de Neurología, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.C.H.-C.); (M.T.M.-M.)
| | - Maria T. Morales-Moreno
- Médico Residente de Neurología, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.C.H.-C.); (M.T.M.-M.)
| | - Fabián Espitia-Almeida
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia;
| | - José Vargas-Manotas
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
| | - Cristian Sánchez-Barros
- Departamento de Neurofisiología Clínica Palma de Mallorca, Hospital Juaneda Miramar, 07001 Palma, Spain;
| | - David A. Pineda
- Grupo Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín 050021, Colombia;
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín 050010, Colombia
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
| |
Collapse
|
2
|
Dawson J, Kay C, Black HF, Bortnick S, Javier K, Xia Q, Sandhu A, Buchanan C, Hogg V, Chang FCF, Goto J, Arning L, Saft C, Bijlsma EK, Nguyen HP, Roxburgh R, Hayden MR. The frequency and clinical impact of synonymous HTT loss-of-interruption and duplication-of-interruption variants in a diverse HD cohort. Genet Med 2024; 26:101239. [PMID: 39140258 DOI: 10.1016/j.gim.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To determine the frequency and clinical impact of loss-of-interruption (LOI) and duplication-of-interruption modifier variants of the HTT CAG and CCG repeat in a cohort of individuals with Huntington disease (HD). METHODS We screened symptomatic HD participants from the UBC HD Biobank and 5 research sites for sequence variants. After variant identification, we examined the clinical impact and frequency in the reduced penetrance range. RESULTS Participants with CAG-CCG LOI and CCG LOI variants have a similar magnitude of earlier onset of HD, by 12.5 years. The sequence variants exhibit ancestry-specific differences. Participants with the CAG-CCG LOI variant also have a faster progression of Total Motor Score by 1.9 units per year. Symptomatic participants with the CAG-CCG LOI variant show enrichment in the reduced penetrance range. The CAG-CCG LOI variant explains the onset of 2 symptomatic HD participants with diagnostic repeats below the pathogenetic range. CONCLUSION Our findings have significant clinical implications for participants with the CAG-CCG LOI variant who receive inaccurate diagnoses near diagnostic cutoff ranges. Improved diagnostic testing approaches and clinical management are needed for these individuals. We present the largest and most diverse HTT CAG and CCG sequence variant cohort and emphasize their importance in clinical presentation in HD.
Collapse
Affiliation(s)
- Jessica Dawson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Stephanie Bortnick
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Kyla Javier
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Qingwen Xia
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Akshdeep Sandhu
- Research Informatics, BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Virginia Hogg
- Auckland City Hospital, Health New Zealand, Auckland, New Zealand
| | - Florence C F Chang
- Huntington Disease Unit, Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia; Sydney Medical School, Westmead Campus, University of Sydney, Sydney, Australia
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare, Ichikawa Hospital, Chiba, Japan
| | - Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Huu P Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Richard Roxburgh
- Auckland City Hospital, Health New Zealand, Auckland, New Zealand; Department of Medicine and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Griñán-Ferré C, Bellver-Sanchis A, Guerrero A, Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol Res 2024; 205:107247. [PMID: 38834164 DOI: 10.1016/j.phrs.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Belgrad J, Tang Q, Hildebrand S, Summers A, Sapp E, Echeverria D, O’Reilly D, Luu E, Bramato B, Allen S, Cooper D, Alterman J, Yamada K, Aronin N, DiFiglia M, Khvorova A. A programmable dual-targeting di-valent siRNA scaffold supports potent multi-gene modulation in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572404. [PMID: 38187561 PMCID: PMC10769306 DOI: 10.1101/2023.12.19.572404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Di-valent short interfering RNA (siRNA) is a promising therapeutic modality that enables sequence-specific modulation of a single target gene in the central nervous system (CNS). To treat complex neurodegenerative disorders, where pathogenesis is driven by multiple genes or pathways, di-valent siRNA must be able to silence multiple target genes simultaneously. Here we present a framework for designing unimolecular "dual-targeting" di-valent siRNAs capable of co-silencing two genes in the CNS. We reconfigured di-valent siRNA - in which two identical, linked siRNAs are made concurrently - to create linear di-valent siRNA - where two siRNAs are made sequentially attached by a covalent linker. This linear configuration, synthesized using commercially available reagents, enables incorporation of two different siRNAs to silence two different targets. We demonstrate that this dual-targeting di-valent siRNA is fully functional in the CNS of mice, supporting at least two months of maximal target silencing. Dual-targeting di-valent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g., Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting di-valent siRNAs against each gene. This work potentiates CNS modulation of virtually any pair of disease-related targets using a simple unimolecular siRNA.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Sam Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital; Boston, Massachusetts, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Dan O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Sarah Allen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
- Department of Medicine, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital; Boston, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Pradhan SS, R SS, Kanikaram SP, V M DD, Pargaonkar A, Dandamudi RB, Sivaramakrishnan V. Metabolic deregulation associated with aging modulates protein aggregation in the yeast model of Huntington's disease. J Biomol Struct Dyn 2023; 42:10521-10538. [PMID: 37732342 DOI: 10.1080/07391102.2023.2257322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Huntington's disease is associated with increased CAG repeat resulting in an expanded polyglutamine tract in the protein Huntingtin (HTT) leading to its aggregation resulting in neurodegeneration. Previous studies have shown that N-terminal HTT with 46Q aggregated in the stationary phase but not the logarithmic phase in the yeast model of HD. We carried out a metabolomic analysis of logarithmic and stationary phase yeast model of HD expressing different polyQ lengths attached to N-terminal HTT tagged with enhanced green fluorescent protein (EGFP). The results show significant changes in the metabolic profile and deregulated pathways in stationary phase cells compared to logarithmic phase cells. Comparison of metabolic pathways obtained from logarithmic phase 46Q versus 25Q with those obtained for presymptomatic HD patients from our previous study and drosophila model of HD showed considerable overlap. The arginine biosynthesis pathway emerged as one of the key pathways that is common in stationary phase yeast compared to logarithmic phase and HD patients. Treatment of yeast with arginine led to a significant decrease, while transfer to arginine drop-out media led to a significant increase in the size of protein aggregates in both logarithmic and stationary phase yeast model of HD. Knockout of arginine transporters in the endoplasmic reticulum and vacuole led to a significant decrease in mutant HTT aggregation. Overall our results highlight arginine as a critical metabolite that modulates the aggregation of mutant HTT and disease progression in HD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Swaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Phalguna Kanikaram
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru, Karnataka, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| |
Collapse
|
6
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
7
|
Pradhan SS, Thota SM, Rajaratnam S, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Phalguna KS, Dandamudi RB, Pargaonkar A, Joseph P, Joshy EV, Sivaramakrishnan V. Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation. Dis Model Mech 2022; 15:dmm049492. [PMID: 36052548 PMCID: PMC10655815 DOI: 10.1242/dmm.049492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease associated with polyglutamine expansion in the protein huntingtin (HTT). Although the length of the polyglutamine repeat correlates with age at disease onset and severity, psychological, cognitive and behavioral complications point to the existence of disease modifiers. Mitochondrial dysfunction and metabolic deregulation are both associated with the HD but, despite multi-omics characterization of patients and model systems, their mechanisms have remained elusive. Systems analysis of multi-omics data and its validation by using a yeast model could help to elucidate pathways that modulate protein aggregation. Metabolomics analysis of HD patients and of a yeast model of HD was, therefore, carried out. Our analysis showed a considerable overlap of deregulated metabolic pathways. Further, the multi-omics analysis showed deregulated pathways common in human, mice and yeast model systems, and those that are unique to them. The deregulated pathways include metabolic pathways of various amino acids, glutathione metabolism, longevity, autophagy and mitophagy. The addition of certain metabolites as well as gene knockouts targeting the deregulated metabolic and autophagy pathways in the yeast model system showed that these pathways do modulate protein aggregation. Taken together, our results showed that the modulation of deregulated pathways influences protein aggregation in HD, and has implications for progression and prognosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sai S. Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai M. Thota
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai K. S. Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sujith K. Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Kanikaram S. Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Rajesh B. Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515 134, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - Prasanth Joseph
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - E. V. Joshy
- Department of Neurology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka 560066, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| |
Collapse
|
8
|
Petracca M, Di Tella S, Solito M, Zinzi P, Lo Monaco MR, Di Lazzaro G, Calabresi P, Silveri MC, Bentivoglio AR. Clinical and genetic characteristics of late-onset Huntington's disease in a large European cohort. Eur J Neurol 2022; 29:1940-1951. [PMID: 35357736 PMCID: PMC9324106 DOI: 10.1111/ene.15340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Background and purpose Huntington's disease (HD) is an autosomal dominant condition caused by CAG‐triplet repeat expansions. CAG‐triplet repeat expansion is inversely correlated with age of onset in HD and largely determines the clinical features. The aim of this study was to examine the phenotypic and genotypic correlates of late‐onset HD (LoHD) and to determine whether LoHD is a more benign expression of HD. Methods This was a retrospective observational study of 5053 White European HD patients from the ENROLL‐HD database. Sociodemographic, genetic and phenotypic variables at baseline evaluation of subjects with LoHD, common‐onset HD (CoHD) and young‐onset HD (YoHD) were compared. LoHD subjects were compared with healthy subjects (HS) aged ≥60 years. Differences between the CoHD and LoHD groups were also explored in subjects with 41 CAG triplets, a repeat number in the lower pathological expansion range associated with wide variability in age at onset. Results Late‐onset HD presented predominantly as motor‐onset disease, with a lower prevalence of both psychiatric history and current symptomatology. Absent/unknown HD family history was significantly more common in the LoHD group (31.2%) than in the other groups. The LoHD group had more severe motor and cognitive deficits than the HS group. Subjects with LoHD and CoHD with 41 triplets in the larger allele were comparable with regard to cognitive impairment, but those with LoHD had more severe motor disorders, less problematic behaviors and more often an unknown HD family history. Conclusions It is likely that cognitive disorders and motor symptoms of LoHD are at least partly age‐related and not a direct expression of the disease. In addition to CAG‐triplet repeat expansion, future studies should investigate the role of other genetic and environmental factors in determining age of onset.
Collapse
Affiliation(s)
- M Petracca
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - S Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123, Milan
| | - M Solito
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - P Zinzi
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - M R Lo Monaco
- Geriatric Day-Hospital, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Medicine of the Ageing, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - G Di Lazzaro
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Department of Systems Medicine, University of Rome Tor Vergata, Rome
| | - P Calabresi
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Institute of Neurology, Università Cattolica del Sacro Cuore, Rome
| | - M C Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123, Milan.,Medicine of the Ageing, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - A R Bentivoglio
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Institute of Neurology, Università Cattolica del Sacro Cuore, Rome
| |
Collapse
|
9
|
da Silva IDS, Apolinário TA, de Andrade Agostinho L, Paiva CLA. Investigation of the Influence of TBP CAG/CAA Repeats in Conjunction with HTT CAG Repeats on Huntington's Disease Age at Onset in a Brazilian Sample. J Mol Neurosci 2022; 72:1116-1124. [PMID: 35275350 DOI: 10.1007/s12031-021-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative progressive and fatal disease characterized by motor disorder, cognitive impairment, and behavioral problems, caused by expanded repeats of CAG trinucleotides in the HTT gene. The aim of this study was to investigate the influence of TBP gene CAG/CAA repeats in conjunction with HTT gene CAG repeats, on the age at HD onset in Brazilian individuals. Individuals diagnosed as molecularly negative for HD presented 29-39 TBP CAG/CAA. Their most frequent allele had 36 repeats. In individuals diagnosed as molecularly positive for HD, a range of 25-40 TBP CAG/ CAA was found. The most frequent TBP allele had 38 repeats. We also conducted TBP direct Sanger sequencing of some samples which demonstrated other four TBP structures different from the basic TBP structure and others reported in the literature. The HTT expanded CAG and TBP CAG/CAA repeat sizes jointly explained 66% of the age at onset (AO) in our HD patients. The strongest variable in the model associated with AO was the number of expanded HTT CAG repeats. The difference between the association of HD AO with HTT expanded CAG together with TBP CAG/CAA and the association of HD AO with HTT expanded CAG was 0.001 (∆R2). Therefore, we found a weak association (0.1%) of TBP CAG/CAA repeats on HD AO, if any.
Collapse
Affiliation(s)
- Iane Dos Santos da Silva
- Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | | | - Luciana de Andrade Agostinho
- Programa de Pós-Graduação em Neurologia, (UNIRIO), Rio de Janeiro, RJ, Brazil.
- Centro Universitário UNIFAMINAS, Muriae, Minas Gerais, Brazil.
| | - Carmen Lucia Antão Paiva
- Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Neurologia, (UNIRIO), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Maj C, Salvi E, Citterio L, Borisov O, Simonini M, Glorioso V, Barlassina C, Glorioso N, Thijs L, Kuznetsova T, Cappuccio FP, Zhang ZY, Staessen JA, Cusi D, Lanzani C, Manunta P. Dissecting the Polygenic Basis of Primary Hypertension: Identification of Key Pathway-Specific Components. Front Cardiovasc Med 2022; 9:814502. [PMID: 35252394 PMCID: PMC8888857 DOI: 10.3389/fcvm.2022.814502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction and Objectives Genome-wide association studies have identified a high number of genetic loci associated with hypertension suggesting the presence of an underlying polygenic architecture. In this study, we aimed to dissect the polygenic component of primary hypertension searching also for pathway-specific components. Methods The polygenic risk score (PRS) models, based on the UK biobank genetic signals for hypertension status, were obtained on a target Italian case/control cohort including 561 cases and 731 hyper-normal controls from HYPERGENES, and were then applied to an independent validation cohort composed by multi-countries European-based samples including 1,284 cases and 960 hyper-normal controls. Results The resulting genome-wide PRS was capable of stratifying the individuals for hypertension risk by comparing between individuals in the last PRS decile and the median decile: we observed an odds ratio (OR) of 3.62, CI = [2.01, 6.32] (P = 9.01E-07) and 3.22, 95% CI = [2.06, 5.10] (P = 6.47E-08) in the target and validation cohorts, respectively. The relatively high case/control ORs across PRS quantiles corroborates the presence of strong polygenic components which could be driven by an enrichment of risk alleles within the cases but also by potential enrichment of protective alleles in the old normotensive controls. Moreover, novel pathway-specific PRS revealed an enrichment of the polygenic signal attributable to specific biological pathways. Among those the most significantly associated with hypertension status was the calcium signaling pathway together with other mainly related such as the phosphatidylinositol/inositol phosphate pathways. Conclusions The development of pathway-specific PRS could prioritize biological mechanisms, according to their contribution to the genetic susceptibility, whose regulations might be a potential pharmacological preventive target.
Collapse
Affiliation(s)
- Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
- *Correspondence: Carlo Maj
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Simonini
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Glorioso
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | | | - Nicola Glorioso
- Department of Clinical and Experimental Medicine, Hypertension and Related Diseases Centre, University of Sassari, Sassari, Italy
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Francesco P. Cappuccio
- Warwick Medical School, and UHCW NHS Trust, University of Warwick, Coventry, United Kingdom
| | - Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jan A. Staessen
- Research Institute Alliance for the Promotion of Preventive Medicine (APPREMED), Mechelen, Belgium
- Biomedical Science Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| | - Daniele Cusi
- Institute of Biomedical Technologies Milano National Research Council of Italy (CNR), Milano, Italy
- Bio4Dreams Scientific Unit, Bio4Dreams-Business Nursery for Life Sciences, Milano, Italy
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Manunta
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Okada N, Yako T, Nakamura S, Shimazawa M, Hara H. Reduced mitochondrial complex II activity enhances cell death via intracellular reactive oxygen species in STHdhQ111 striatal neurons with mutant huntingtin. J Pharmacol Sci 2021; 147:367-375. [PMID: 34663519 DOI: 10.1016/j.jphs.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by CAG repeat expansion in the huntingtin (HTT) gene. Here, we examined the effects of antioxidants on 3-nitropropionic acid (3-NP; a mitochondrial complex II inhibitor)-induced mitochondrial dysfunction and cell death in STHdhQ111 striatal cells carrying homozygous mutant HTT with extended CAG repeats compared with those in STHdhQ7 striatal cells. 3-NP reduced cell viability and increased cell death both in STHdhQ111 and STHdhQ7, and the cytotoxicity was markedly attenuated by antioxidants (N-acetyl-l-cysteine and edaravone). Furthermore, 3-NP increased intracellular reactive oxygen species (ROS) production in both cell lines, and this increase was inhibited by antioxidants. Mitochondrial ROS was also increased by 3-NP in STHdhQ111 but not in STHdhQ7, and this increase was significantly inhibited by edaravone. Mitochondrial membrane potential (MMP) was lower in STHdhQ111 than that in STHdhQ7, and antioxidants prevented 3-NP-induced MMP decrease in STHdhQ111.3-NP enhanced oligomerization of dynamin-related protein 1 (Drp1), a protein that promotes mitochondrial fission in both cells, and both antioxidants prevented the increase in oligomerization. These results suggest that reduced mitochondrial complex II activity enhances cell death via intracellular ROS production and Drp1 oligomerization in striatal cells with mutant HTT and antioxidants may reduce striatal cell death.
Collapse
Affiliation(s)
- Noria Okada
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
12
|
circRNA Regulates Dopaminergic Synapse, MAPK, and Long-term Depression Pathways in Huntington Disease. Mol Neurobiol 2021; 58:6222-6231. [PMID: 34476673 DOI: 10.1007/s12035-021-02536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Huntington disease (HD) is the most common neurogenetic disorder caused by expansion of the CAG repeat in the HTT gene; nevertheless, the molecular bases of the disease are not fully understood. Non-coding RNAs have demonstrated to be involved in the physiopathology of HD. However, the role of circRNAs has not been investigated. The aim of this study was to identify the circRNAs with differential expression in a murine cell line model of HD and to identify the biological pathways regulated by the differentially expressed circRNAs. CircRNA expression was analyzed through a microarray, which specifically detects circular species of RNA. The expression patterns between a murine cell line expressing mutant Huntingtin and cells expressing wild-type Huntingtin were compared. We predicted the miRNAs with binding sites for the differentially expressed circRNAs and the corresponding target genes for those miRNAs. Using the target genes, we performed a function enrichment analysis. We identified 23 circRNAs differentially expressed, 19 downregulated and four upregulated. Most of the downregulated circRNAs derive from the Rere gene. The dopaminergic synapse, MAPK, and long-term depression pathways were significantly enriched. The three identified pathways have been previously associated with the physiopathology of HD. The understanding of the circRNA-miRNA-mRNA network involved in the molecular mechanisms driving HD can lead us to identify novel biomarkers and potential therapeutic targets. To the best of our knowledge, this is the first study analyzing circRNAs in a model of Huntington disease.
Collapse
|
13
|
Wright GEB, Caron NS, Ng B, Casal L, Casazza W, Xu X, Ooi J, Pouladi MA, Mostafavi S, Ross CJD, Hayden MR. Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease. Hum Mol Genet 2021; 29:2788-2802. [PMID: 32898862 PMCID: PMC7530525 DOI: 10.1093/hmg/ddaa184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder that is caused by a CAG repeat expansion in HTT. The length of this repeat, however, only explains a proportion of the variability in age of onset in patients. Genome-wide association studies have identified modifiers that contribute toward a proportion of the observed variance. By incorporating tissue-specific transcriptomic information with these results, additional modifiers can be identified. We performed a transcriptome-wide association study assessing heritable differences in genetically determined expression in diverse tissues, with genome-wide data from over 4000 patients. Functional validation of prioritized genes was undertaken in isogenic HD stem cells and patient brains. Enrichment analyses were performed with biologically relevant gene sets to identify the core pathways. HD-associated gene coexpression modules were assessed for associations with neurological phenotypes in an independent cohort and to guide drug repurposing analyses. Transcriptomic analyses identified genes that were associated with age of HD onset and displayed colocalization with gene expression signals in brain tissue (FAN1, GPR161, PMS2, SUMF2), with supporting evidence from functional experiments. This included genes involved in DNA repair, as well as novel-candidate modifier genes that have been associated with other neurological conditions. Further, cortical coexpression modules were also associated with cognitive decline and HD-related traits in a longitudinal cohort. In summary, the combination of population-scale gene expression information with HD patient genomic data identified novel modifier genes for the disorder. Further, these analyses expanded the pathways potentially involved in modifying HD onset and prioritized candidate therapeutics for future study.
Collapse
Affiliation(s)
- Galen E B Wright
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Bernard Ng
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lorenzo Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - William Casazza
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xiaohong Xu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jolene Ooi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sara Mostafavi
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
14
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Pattamatta A, Nguyen L, Olafson HR, Scotti MM, Laboissonniere LA, Richardson J, Berglund JA, Zu T, Wang ET, Ranum LPW. Repeat length increases disease penetrance and severity in C9orf72 ALS/FTD BAC transgenic mice. Hum Mol Genet 2020; 29:3900-3918. [PMID: 33378537 DOI: 10.1093/hmg/ddaa279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Amrutha Pattamatta
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lien Nguyen
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Hailey R Olafson
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Marina M Scotti
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Laboissonniere
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jared Richardson
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - J Andrew Berglund
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Biochemistry and Molecular Biology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Tao Zu
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.,Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Godoy LAD, Bomfim FRCD. CRISPR-CAS9 como ferramenta para edição do gene IT-15 na Doença de Huntington. REVISTA CIÊNCIAS EM SAÚDE 2020. [DOI: 10.21876/rcshci.v10i4.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A Doença de Huntington (DH) é uma doença neurodegenerativa, autossômica dominante e hereditária que ocorre devido a uma mutação genética que gera uma sequência repetitiva de trinucleotídeos CAG, presentes no gene IT-15, gene da huntingtina, localizado no cromossomo 4. O objetivo foi revisar a neuropatologia da doença de Huntington (DH) e a utilização do método CRISPR-Cas9 para silenciar o gene IT-15 e verificar assim, a consequência nos genes HIP14 e HAP1, que possuem interação com a Huntigtina mutada e o resultado desta no organismo do paciente. Foram pesquisados artigos em bases indexadas (Scielo, PubMed e LILACs) com os seguintes descritores: ((Huntington) OR (Proteína Huntingtina)) AND (edição gênica). Também foi utilizada a ferramenta on line GeneMania, acesso livre, para análise de probabilidades e interações gênicas. O silenciamento do gene IT-15 acarreta alterações nas proteínas que interagem com a Huntingtina mutada, levando a perturbações em diversos processos.
Collapse
|
17
|
New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signal 2020; 4:NS20200010. [PMID: 33224521 PMCID: PMC7672267 DOI: 10.1042/ns20200010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is a fatal, inherited neurodegenerative disease that causes neuronal death, particularly in medium spiny neurons. HD leads to serious and progressive motor, cognitive and psychiatric symptoms. Its genetic basis is an expansion of the CAG triplet repeat in the HTT gene, leading to extra glutamines in the huntingtin protein. HD is one of nine genetic diseases in this polyglutamine (polyQ) category, that also includes a number of inherited spinocerebellar ataxias (SCAs). Traditionally it has been assumed that HD age of onset and disease progression were solely the outcome of age-dependent exposure of neurons to toxic effects of the inherited mutant huntingtin protein. However, recent genome-wide association studies (GWAS) have revealed significant effects of genetic variants outside of HTT. Surprisingly, these variants turn out to be mostly in genes encoding DNA repair factors, suggesting that at least some disease modulation occurs at the level of the HTT DNA itself. These DNA repair proteins are known from model systems to promote ongoing somatic CAG repeat expansions in tissues affected by HD. Thus, for triplet repeats, some DNA repair proteins seem to abandon their normal genoprotective roles and, instead, drive expansions and accelerate disease. One attractive hypothesis—still to be proven rigorously—is that somatic HTT expansions augment the disease burden of the inherited allele. If so, therapeutic approaches that lower levels of huntingtin protein may need blending with additional therapies that reduce levels of somatic CAG repeat expansions to achieve maximal effect.
Collapse
|
18
|
Clever F, Cho IK, Yang J, Chan AWS. Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington's Disease Monkeys. J Huntingtons Dis 2020; 8:443-448. [PMID: 31561381 PMCID: PMC6839466 DOI: 10.3233/jhd-190359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expanded CAG repeat results in somatic mosaicism and genetic anticipation in Huntington’s disease (HD). Here we report a longitudinal study examining CAG repeat instability in lymphocytes and sperm of three HD monkeys throughout their whole life-span that encompass the prodromal to symptomatic stages of HD. We demonstrate a progressive increase in CAG repeat length in lymphocytes and sperm as the animals aged. We also examined the impact of CAG repeat length on expansion rate, which showed a clear linear correlation up to 62Q, and high instability after. Our findings stress the importance of further investigation in CAG instability in peripheral blood cells longitudinally.
Collapse
Affiliation(s)
- Faye Clever
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - In Ki Cho
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Marras C, Mestre T, McDermott MP. Huntington's Disease and Hypertension: Sorting Out Mixed Messages. Mov Disord 2020; 35:915-917. [PMID: 32562461 DOI: 10.1002/mds.28076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Tiago Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
20
|
Alexander-Floyd J, Haroon S, Ying M, Entezari AA, Jaeger C, Vermulst M, Gidalevitz T. Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans. BMC Biol 2020; 18:18. [PMID: 32093691 PMCID: PMC7038566 DOI: 10.1186/s12915-020-0750-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown. RESULTS We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells. CONCLUSIONS Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types.
Collapse
Affiliation(s)
- J Alexander-Floyd
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Present Address: Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S Haroon
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Ying
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
| | - A A Entezari
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Current Address: Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - C Jaeger
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Current Address: Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - M Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Current Address: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Gidalevitz
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Fox LM, Kim K, Johnson CW, Chen S, Croce KR, Victor MB, Eenjes E, Bosco JR, Randolph LK, Dragatsis I, Dragich JM, Yoo AS, Yamamoto A. Huntington's Disease Pathogenesis Is Modified In Vivo by Alfy/Wdfy3 and Selective Macroautophagy. Neuron 2019; 105:813-821.e6. [PMID: 31899071 DOI: 10.1016/j.neuron.2019.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Despite being an autosomal dominant disorder caused by a known coding mutation in the gene HTT, Huntington's disease (HD) patients with similar trinucleotide repeat mutations can have an age of onset that varies by decades. One likely contributing factor is the genetic heterogeneity of patients that might modify their vulnerability to disease. We report that although the heterozygous depletion of the autophagy adaptor protein Alfy/Wdfy3 has no consequence in control mice, it significantly accelerates age of onset and progression of HD pathogenesis. Alfy is required in the adult brain for the autophagy-dependent clearance of proteinaceous deposits, and its depletion in mice and neurons derived from patient fibroblasts accelerates the aberrant accumulation of this pathological hallmark shared across adult-onset neurodegenerative diseases. These findings indicate that selectively compromising the ability to eliminate aggregated proteins is a pathogenic driver, and the selective elimination of aggregates may confer disease resistance.
Collapse
Affiliation(s)
- Leora M Fox
- Doctoral Program in Neurobiology and Behavior, Department of Neuroscience, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA
| | - Kiryung Kim
- Department of Neurology, Columbia University, New York, NY, USA
| | | | - Shawei Chen
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine R Croce
- Graduate Program in Pathobiology and Molecular Medicine, Columbia University, New York, NY, USA
| | - Matheus B Victor
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Evelien Eenjes
- Department of Neurology, Columbia University, New York, NY, USA
| | - Joan R Bosco
- Department of Neurology, Columbia University, New York, NY, USA
| | - Lisa K Randolph
- Doctoral Program in Neurobiology and Behavior, Department of Neuroscience, Columbia University, New York, NY, USA
| | | | | | - Andrew S Yoo
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ai Yamamoto
- Doctoral Program in Neurobiology and Behavior, Department of Neuroscience, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Popescu C. Monozygotic Twins Discordant for Kennedy Disease: A Case Report. J Clin Neuromuscul Dis 2019; 21:112-116. [PMID: 31743255 DOI: 10.1097/cnd.0000000000000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spinal and bulbar muscular atrophy or Kennedy disease (KD) is an X-linked recessive disorder caused by a pathogenic CAG expansion in the first exon of the androgen receptor. Proximal muscle atrophy, weakness, contraction fasciculations, bulbar involvement, and sensory disturbances are part of the clinical picture of KD. We report the unusual genetic and phenotypic expression in 2 monozygotic twins. Genetic analysis has shown abnormal expansion of CAG repeat in the first exon of the androgen receptor gene on chromosome X different between the twin brothers (44, respectively, 46) but with large phenotypical differences including onset age, evolution, and clinical features. Disease began at age 31 for the first brother, respectively, and at 56 years for the second one and consisted of muscle wasting and progressive impairment of walking. In addition, the second brother did not manifest bulbar involvement 3 years after clinical onset and has more sensory features. Besides classical EMG testing, we evaluate sensory participation in spinal and bulbar muscular atrophy with sudoscan device and confirmed the sensory deficit. We discussed epigenetic factors potentially involved in KD that could play a role in the phenotypical differences. To the best of our knowledge, this is the first case describing CAG trinucleotide repeats in monozygotic twins and also the first sudoscan diagnostic of sensory disturbances in Kennedy syndrome.
Collapse
|
23
|
Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, Bečanović K, Drögemöller BI, Semaka A, Nguyen CM, Trost B, Richards F, Bijlsma EK, Squitieri F, Ross CJD, Scherer SW, Eberle MA, Yuen RKC, Hayden MR. Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease. Am J Hum Genet 2019; 104:1116-1126. [PMID: 31104771 DOI: 10.1016/j.ajhg.2019.04.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/10/2019] [Indexed: 01/28/2023] Open
Abstract
Huntington disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Although the length of this repeat is inversely correlated with age of onset (AOO), it does not fully explain the variability in AOO. We assessed the sequence downstream of the CAG repeat in HTT [reference: (CAG)n-CAA-CAG], since variants within this region have been previously described, but no study of AOO has been performed. These analyses identified a variant that results in complete loss of interrupting (LOI) adenine nucleotides in this region [(CAG)n-CAG-CAG]. Analysis of multiple HD pedigrees showed that this LOI variant is associated with dramatically earlier AOO (average of 25 years) despite the same polyglutamine length as in individuals with the interrupting penultimate CAA codon. This LOI allele is particularly frequent in persons with reduced penetrance alleles who manifest with HD and increases the likelihood of presenting clinically with HD with a CAG of 36-39 repeats. Further, we show that the LOI variant is associated with increased somatic repeat instability, highlighting this as a significant driver of this effect. These findings indicate that the number of uninterrupted CAG repeats, which is lengthened by the LOI, is the most significant contributor to AOO of HD and is more significant than polyglutamine length, which is not altered in these individuals. In addition, we identified another variant in this region, where the CAA-CAG sequence is duplicated, which was associated with later AOO. Identification of these cis-acting modifiers have potentially important implications for genetic counselling in HD-affected families.
Collapse
Affiliation(s)
- Galen E B Wright
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cassandra McDonald
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | - Qingwen Xia
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kristina Bečanović
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Britt I Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alicia Semaka
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Charlotte M Nguyen
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada
| | - Fiona Richards
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333, the Netherlands
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephen W Scherer
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5G 0A4, Canada; McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
| | | | - Ryan K C Yuen
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5G 0A4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
24
|
Natural Genetic Variation in Yeast Reveals That NEDD4 Is a Conserved Modifier of Mutant Polyglutamine Aggregation. G3-GENES GENOMES GENETICS 2018; 8:3421-3431. [PMID: 30194090 PMCID: PMC6222566 DOI: 10.1534/g3.118.200289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A feature common to late onset proteinopathic disorders is an accumulation of toxic protein conformers and aggregates in affected tissues. In the search for potential drug targets, many studies used high-throughput screens to find genes that modify the cytotoxicity of misfolded proteins. A complement to this approach is to focus on strategies that use protein aggregation as a phenotypic readout to identify pathways that control aggregate formation and maintenance. Here we use natural variation between strains of budding yeast to genetically map loci that influence the aggregation of a polyglutamine-containing protein derived from a mutant form of huntingtin, the causative agent in Huntington disease. Linkage analysis of progeny derived from a cross between wild and laboratory yeast strains revealed two polymorphic loci that modify polyglutamine aggregation. One locus contains the gene RFU1 which modifies ubiquitination states of misfolded proteins targeted by the E3-ubiquitin ligase complex Rsp5 Activity of the Rsp5 complex, and the mammalian homolog NEDD4, are critical in maintaining protein homeostasis in response to proteomic stress. Our analysis also showed linkage of the aggregation phenotype to a distinct locus containing a gene encoding the Rsp5-interacting Bul2 protein. Allele-swap experiments validated the impact of both RFU1 and BUL2 on huntingtin aggregation. Furthermore, we found that the nematode Caenorhabditis elegans' ortholog of Rsp5, wwp-1, also negatively regulates polyglutamine aggregation. Knockdown of the NEDD4 in human cells likewise altered polyglutamine aggregation. Taken together, these results implicate conserved processes involving the ubiquitin regulation network that modify protein aggregation and provide novel therapeutic targets for polyglutamine and other protein folding diseases.
Collapse
|
25
|
Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat Commun 2018; 9:3191. [PMID: 30266909 PMCID: PMC6162324 DOI: 10.1038/s41467-018-05653-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease is a progressive neurodegenerative disorder caused by polyglutamine-expanded mutant huntingtin (mHTT). Here, we show that the deubiquitinase Usp12 rescues mHTT-mediated neurodegeneration in Huntington’s disease rodent and patient-derived human neurons, and in Drosophila. The neuroprotective role of Usp12 may be specific amongst related deubiquitinases, as the closely related homolog Usp46 does not suppress mHTT-mediated toxicity. Mechanistically, we identify Usp12 as a potent inducer of neuronal autophagy. Usp12 overexpression accelerates autophagic flux and induces an approximately sixfold increase in autophagic structures as determined by ultrastructural analyses, while suppression of endogenous Usp12 slows autophagy. Surprisingly, the catalytic activity of Usp12 is not required to protect against neurodegeneration or induce autophagy. These findings identify the deubiquitinase Usp12 as a regulator of neuronal proteostasis and mHTT-mediated neurodegeneration. Abnormal accumulations of toxic proteins are often found in degenerating neurons. Here, Aron and colleagues show that non-enzymatic function of deubiquitinase Usp12 can mitigate neuronal cell death caused by mutant Huntingtin by inducing neuronal autophagic function.
Collapse
|
26
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018; 97:625-648. [PMID: 30027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurodegenerative diseases constitute a large proportion of disorders in elderly, majority being sporadic in occurrence with ∼5-10% familial. A strong genetic component underlies the Mendelian forms but nongenetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms, despite large genomewide association studies and more recently whole exome and whole genome sequencing, have been limited. This review provides a concise account of the genetics that we know, the pathways that they implicate, the challenges that are faced and the prospects that are envisaged for the sporadic, complex forms of neurodegenerative diseases, taking four most common conditions, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease as examples. Poor replication across studies, inability to establish genotype-phenotype correlations and the overall failure to predict risk and/or prevent disease in this group poses a continuing challenge. Among others, clinical heterogeneity emerges as the most important impediment warranting newer approaches. Advanced computational and system biology tools to analyse the big data are being generated and the alternate strategy such as subgrouping of case-control cohorts based on deep phenotyping using the principles of Ayurveda to overcome current limitation of phenotype heterogeneity seem to hold promise. However, at this point, with advances in discovery genomics and functional analysis of putative determinants with translation potential for the complex forms being minimal, stem cell therapies are being attempted as potential interventions. In this context, the possibility to generate patient derived induced pluripotent stem cells, mutant/gene/genome correction through CRISPR/Cas9 technology and repopulating the specific brain regions with corrected neurons, which may fulfil the dream of personalized medicine have been mentioned briefly. Understanding disease pathways/biology using this technology, with implications for development of novel therapeutics are optimistic expectations in the near future.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi 110 021, India.
| | | | | | | |
Collapse
|
28
|
Does arterial hypertension influence the onset of Huntington's disease? PLoS One 2018; 13:e0197975. [PMID: 29791508 PMCID: PMC5965871 DOI: 10.1371/journal.pone.0197975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/13/2018] [Indexed: 11/21/2022] Open
Abstract
Huntington’s disease (HD) age of onset (AO) is mainly determined by the length of the CAG repeat expansion in the huntingtin gene. The remaining AO variability has been attributed to other little-known factors. A factor that has been associated with other neurodegenerative diseases is arterial hypertension (AHT). The aim of this study is to evaluate the contribution of AHT to the AO of HD. We used data from a cohort of 630 European HD patients with adult onset collected by the REGISTRY project of the European Huntington’s Disease Network. Multiple linear regression and ANOVA, controlling for the CAG repeat number of the expanded allele (CAGexp) of each patient, were performed to assess the association between the AHT condition and the AO of the motor symptoms (mAO). The results showed a significant association between AHT and mAO, especially when we only considered the patients diagnosed with AHT prior to manifesting any HD signs (pre-HD AHT). Remarkably, despite the low number of cases, those patients developed motor symptoms 5–8 years later than normotensive patients in the most frequent CAGexp range (40–44). AHT is an age-related condition and consequently, the age of the patient at the time of data collection could be a confounder variable. However, given that most pre-HD AHT patients included in our study had started treatment with antihypertensive drugs prior to the onset of HD, and that antihypertensive drugs have been suggested to confer a neuroprotective effect in other neurodegenerative diseases, raises the interest in elucidating the impact of AHT and/or AHT treatment in HD age of onset in further studies. A confirmation of our results in a larger sample set would open the possibility to significantly improve HD management.
Collapse
|
29
|
Perinatal insults and neurodevelopmental disorders may impact Huntington's disease age of diagnosis. Parkinsonism Relat Disord 2018; 55:55-60. [PMID: 29804730 PMCID: PMC6226577 DOI: 10.1016/j.parkreldis.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The age of diagnosis of Huntington's disease (HD) varies among individuals with the same HTT CAG-repeat expansion size. We investigated whether early-life events, like perinatal insults or neurodevelopmental disorders, influence the diagnosis age. METHODS We used data from 13,856 participants from REGISTRY and Enroll-HD, two large international multicenter observational studies. Disease-free survival analyses of mutation carriers with an HTT CAG repeat expansion size above and including 36 were computed through Kaplan-Meier estimates of median time until an HD diagnosis. Comparisons between groups were computed using a Cox proportional hazard survival model adjusted for CAG-repeat expansion length. We also assessed whether the group effect depended on gender and the affected parent. RESULTS Insults in the perinatal period were associated with an earlier median age of diagnosis of 45.00 years (95%CI: 42.07-47.92) compared to 51.00 years (95%CI: 50.68-51.31) in the reference group, with a CAG-adjusted hazard ratio of 1.61 (95%CI: 1.26-2.06). Neurodevelopmental disorders were also associated with an earlier median age of diagnosis than the reference group of 47.00 years (95% CI: 43.38-50.62) with a CAG-adjusted hazard ratio of 1.42 (95%CI: 1.16-1.75). These associations did not change significantly with gender or affected parent. CONCLUSIONS These results, derived from large observational datasets, show that perinatal insults and neurodevelopmental disorders are associated with earlier ages of diagnosis of magnitudes similar to the effects of known genetic modifiers of HD. Given their clear temporal separation, these early events may be causative of earlier HD onset, but further research is needed to prove causation.
Collapse
|
30
|
Liu J, Ciarochi J, Calhoun VD, Paulsen JS, Bockholt HJ, Johnson HJ, Long JD, Lin D, Espinoza FA, Misiura MB, Caprihan A, Turner JA. Genetics Modulate Gray Matter Variation Beyond Disease Burden in Prodromal Huntington's Disease. Front Neurol 2018; 9:190. [PMID: 29651271 PMCID: PMC5884935 DOI: 10.3389/fneur.2018.00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by an expansion mutation of the cytosine–adenine–guanine (CAG) trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715), we extracted gray matter (GM) components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age). Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels) with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B) in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.
Collapse
Affiliation(s)
- Jingyu Liu
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer Ciarochi
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Department of Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Vince D Calhoun
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Jane S Paulsen
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Neurology, University of Iowa, Iowa City, IA, United States.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - H Jeremy Bockholt
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Neurology, University of Iowa, Iowa City, IA, United States.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Hans J Johnson
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Biostatistics, University of Iowa, Iowa City, IA, United States
| | - Dongdong Lin
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States
| | - Flor A Espinoza
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States
| | - Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Department of Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Arvind Caprihan
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States
| | - Jessica A Turner
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States.,Department of Neuroscience, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
31
|
Calpena E, López Del Amo V, Chakraborty M, Llamusí B, Artero R, Espinós C, Galindo MI. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 2018; 11:dmm.029082. [PMID: 29208631 PMCID: PMC5818072 DOI: 10.1242/dmm.029082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot–Marie–Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jpDrosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up- and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts. Summary: This work reveals that the Drosophila Junctophilin protein has similar functions to its mammalian homologues and uncovers new interactions of potential biomedical interest with Huntingtin and Notch signalling.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Víctor López Del Amo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Beatriz Llamusí
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Carmen Espinós
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain.,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
| | - Máximo I Galindo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain .,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| |
Collapse
|
32
|
Lima M, Raposo M. Towards the Identification of Molecular Biomarkers of Spinocerebellar Ataxia Type 3 (SCA3)/Machado-Joseph Disease (MJD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:309-319. [PMID: 29427111 DOI: 10.1007/978-3-319-71779-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whereas spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) remains an untreatable disorder, disease-modifying compounds have begun being tested in the context of clinical trials; their success is dependent on the sensitivity of the methods used to measure subtle therapeutic benefits. Thus, efforts are being made to propose a battery of potential outcome measures, including molecular biomarkers (MBs), which remain to be identified; MBs are particularly pertinent if SCA3 trials are expected to enroll preataxic subjects. Recently, promising candidate MBs of SCA3 have emerged from gene expression studies. In this chapter we provide a synthesis of the cross-sectional and pilot longitudinal studies of blood-based transcriptional biomarkers conducted so far. Other alterations with potential to track the progression of SCA3, such as those involving mitochondrial DNA (mtDNA) are also referred. It is expected that a set of molecular biomarkers can be identified; these will be used in complementarity with clinical and imaging markers to fully track SCA3, from its preataxic phase to the disease stage.
Collapse
Affiliation(s)
- Manuela Lima
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal. .,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal. .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | - Mafalda Raposo
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
33
|
Al-Ramahi I, Giridharan SSP, Chen YC, Patnaik S, Safren N, Hasegawa J, de Haro M, Wagner Gee AK, Titus SA, Jeong H, Clarke J, Krainc D, Zheng W, Irvine RF, Barmada S, Ferrer M, Southall N, Weisman LS, Botas J, Marugan JJ. Inhibition of PIP4Kγ ameliorates the pathological effects of mutant huntingtin protein. eLife 2017; 6:29123. [PMID: 29256861 PMCID: PMC5743427 DOI: 10.7554/elife.29123] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of the causative gene for Huntington’s disease (HD) has promoted numerous efforts to uncover cellular pathways that lower levels of mutant huntingtin protein (mHtt) and potentially forestall the appearance of HD-related neurological defects. Using a cell-based model of pathogenic huntingtin expression, we identified a class of compounds that protect cells through selective inhibition of a lipid kinase, PIP4Kγ. Pharmacological inhibition or knock-down of PIP4Kγ modulates the equilibrium between phosphatidylinositide (PI) species within the cell and increases basal autophagy, reducing the total amount of mHtt protein in human patient fibroblasts and aggregates in neurons. In two Drosophila models of Huntington’s disease, genetic knockdown of PIP4K ameliorated neuronal dysfunction and degeneration as assessed using motor performance and retinal degeneration assays respectively. Together, these results suggest that PIP4Kγ is a druggable target whose inhibition enhances productive autophagy and mHtt proteolysis, revealing a useful pharmacological point of intervention for the treatment of Huntington’s disease, and potentially for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | | | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Samarjit Patnaik
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Junya Hasegawa
- Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Maria de Haro
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | - Amanda K Wagner Gee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Steven A Titus
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Hyunkyung Jeong
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Jonathan Clarke
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Robin F Irvine
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Sami Barmada
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Lois S Weisman
- Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | - Juan Jose Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| |
Collapse
|
34
|
Kalathur RKR, Pedro Pinto J, Sahoo B, Chaurasia G, Futschik ME. HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington's Disease. Sci Rep 2017; 7:5216. [PMID: 28701700 PMCID: PMC5507972 DOI: 10.1038/s41598-017-05224-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.
Collapse
Affiliation(s)
- Ravi Kiran Reddy Kalathur
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - José Pedro Pinto
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | | | - Gautam Chaurasia
- Institute for Theoretical Biology, Charité, Humboldt-University, Berlin, Germany
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal. .,School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom.
| |
Collapse
|
35
|
Bezulska A, Naczk M, Adach Z, Arlet J, Celichowski J. Sense of extension force and angle of the knee joint are correlated between two generations of men. J Sports Sci 2017; 36:565-570. [PMID: 28471325 DOI: 10.1080/02640414.2017.1324204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Numerous motor abilities depend on the activity of proprioceptors, which has been suggested to be genetically determined. To test this hypothesis, the control of torque generated by knee extensors and knee position was studied in 30 father-son pairs both before and immediately after running. After stabilisation of the participant in a sitting position, the knee joint of his dominant leg was flexed to 90°, and the maximal voluntary torque (MVT) of the dominant knee extensors under static conditions was measured. The participant then tried five times to produce 50% of the MVT. Next, the participant extended the knee to 45° five times without visual control. Significant correlations between the reproducibility of successive trials for groups of fathers and their sons were found. The correlation coefficients for the repeatability of the knee extension torque were 0.69 (confidence interval [CI] = 0.45-0.84; P < 0.01) and 0.75 (CI = 0.54-0.87; P < 0.01) before and after the fatiguing exercise, respectively, whereas the coefficient for the reproducibility of positioning the knee was 0.49 (CI = 0.16-0.72; P < 0.01) after the fatiguing exercise. Our results indicate a significant influence of hereditary factors on the control of limb torque and position.
Collapse
Affiliation(s)
- Anna Bezulska
- a Department of Physiological Sciences , University School of Physical Education in Poznan, Faculty of Physical Culture in Gorzow Wielkopolski , Poland
| | - M Naczk
- a Department of Physiological Sciences , University School of Physical Education in Poznan, Faculty of Physical Culture in Gorzow Wielkopolski , Poland
| | - Z Adach
- a Department of Physiological Sciences , University School of Physical Education in Poznan, Faculty of Physical Culture in Gorzow Wielkopolski , Poland
| | - J Arlet
- a Department of Physiological Sciences , University School of Physical Education in Poznan, Faculty of Physical Culture in Gorzow Wielkopolski , Poland
| | - J Celichowski
- b Department of Neurobiology , University School of Physical Education , Poznan , Poland
| |
Collapse
|
36
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
37
|
|
38
|
Petkova R, Chelenkova P, Tournev I, Chakarov S. The minus of a plus is a minus. Mass death of selected neuron populations in sporadic late-onset neurodegenerative disease may be due to a combination of subtly decreased capacity to repair oxidative DNA damage and increased propensity for damage-related apoptosis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rumena Petkova
- Scientific Technological Service (STS) Ltd., Sofia, Bulgaria
| | - Pavlina Chelenkova
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Ivaylo Tournev
- Clinic of Neurology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
39
|
Wallace M, Downing N, Lourens S, Mills J, Kim JI, Long J, Paulsen J. Is There an Association of Physical Activity with Brain Volume, Behavior, and Day-to-day Functioning? A Cross Sectional Design in Prodromal and Early Huntington Disease. PLOS CURRENTS 2016; 8. [PMID: 27818843 PMCID: PMC4866530 DOI: 10.1371/currents.hd.cba6ea74972cf8412a73ce52eb018c1e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Huntington disease (HD) is a genetic neurodegenerative disease leading to progressive motor, cognitive, and behavioral decline. Subtle changes in these domains are detectable up to 15 years before a definitive motor diagnosis is made. This period, called prodromal HD, provides an opportunity to examine lifestyle behaviors that may impact disease progression. THEORETICAL FRAMEWORK Physical activity relates to decreased rates of brain atrophy and improved cognitive and day-to-day functioning in Alzheimer disease and healthy aging populations. Previous research has yielded mixed results regarding the impact of physical activity on disease progression in HD and paid little attention to the prodromal phase. METHODS We conducted analyses of associations among current physical activity level, current and retrospective rate of change for hippocampus and striatum volume, and cognitive, motor, and day-to-day functioning variables. Participants were 48 gene-expanded cases with prodromal and early-diagnosed HD and 27 nongene-expanded control participants. Participants wore Fitbit Ultra activity monitors for three days and completed the self-reported International Physical Activity Questionnaire (IPAQ). Hippocampal and striatal white matter volumes were measured using magnetic resonance imaging. Cognitive tests included the Stroop Color and Word Test, and the Symbol Digit Modalities Test (SDMT). Motor function was assessed using the Unified Huntington's Disease Rating Scale total motor score (TMS). Day-to-day functioning was measured using the World Health Organization Disability Assessment Schedule (WHODAS) version 2.0. RESULTS Higher Fitbit activity scores were significantly related to better scores on the SDMT and WHODAS in case participants but not in controls. Fitbit activity scores tracked better with TMS scores in the group as a whole, though the association did not reach statistical significance in the case participants. Higher Fitbit activity scores related to less day-to-day functioning decline in retrospective slope analyses. Fitbit activity scores did not differ significantly between cases and controls. CONCLUSIONS This is the first known study examining the associations between activity level and imaging, motor, cognitive, and day-to-day functioning outcomes in prodromal and early HD. Preliminary results suggest physical activity positively correlates with improved cognitive and day-to-day functioning and possibly motor function in individuals in the prodromal and early phase of the condition.
Collapse
Affiliation(s)
- McKenzie Wallace
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Iowa City, Iowa, USA
| | - Nancy Downing
- College of Nursing, The University of Iowa, Iowa City, Iowa, USA
| | - Spencer Lourens
- School of Medicine, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - James Mills
- Department on Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Ji-In Kim
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jeffrey Long
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jane Paulsen
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
40
|
Sun YM, Zhang YB, Wu ZY. Huntington's Disease: Relationship Between Phenotype and Genotype. Mol Neurobiol 2016; 54:342-348. [PMID: 26742514 DOI: 10.1007/s12035-015-9662-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.
Collapse
Affiliation(s)
- Yi-Min Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Bin Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
Bouhouche A, Regragui W, Lamghari H, Khaldi K, Birouk N, Lytim S, Bellamine S, Kriouile Y, Bouslam N, Haddou EHAB, Faris MA, Benomar A, Yahyaoui M. Clinical and genetic data of Huntington disease in Moroccan patients. Afr Health Sci 2015; 15:1232-8. [PMID: 26958025 DOI: 10.4314/ahs.v15i4.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) occurs worldwide with prevalence varying from 0.1 to 10/100,000 depending of the ethnic origin. Since no data is available in the Maghreb population, the aim of this study is to describe clinical and genetic characteristics of Huntington patients of Moroccan origin. METHODS Clinical and genetics data of 21 consecutive patients recruited from 2009 to 2014 from the outpatient clinic of six medical centers were analyzed. Statistical analysis was performed using descriptive statistics. RESULTS Twenty one patients from 17 families were diagnosed positive for the IT15 gene CAG expansion. Clinical symptoms were predominantly motor (19/21). Twelve patients had psychiatric and behavioral disorders, and 11 patients had cognitive disorders essentially of memory impairment. Analysis of genetic results showed that 5 patients had reduced penetrant (RP) alleles and 16 had fully penetrant (FP) alleles. The mean CAG repeat length in patients with RP alleles was 38.4 ± 0.54, and 45.37 ± 8.30 in FP alleles. The age of onset and the size of the CAG repeat length showed significant inverse correlation (p <0.001, r = -0.754). CONCLUSION Clinical and genetic data of Moroccan patients are similar to those of Caucasian populations previously reported in the literature.
Collapse
Affiliation(s)
- Ahmed Bouhouche
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Wafaa Regragui
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | | | | | - Nazha Birouk
- Service de Neurophysiologie clinique, Hôpital des Spécialités de Rabat, Morocco
| | - Safaa Lytim
- Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Soufiane Bellamine
- Service de Neurologie et de Neuropsychologie, Hôpital des Spécialités de Rabat, Morocco
| | | | - Naima Bouslam
- Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - El Hachmia Ait Ben Haddou
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Mustapha Alaoui Faris
- Service de Neurologie et de Neuropsychologie, Hôpital des Spécialités de Rabat, Morocco
| | - Ali Benomar
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Mohamed Yahyaoui
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| |
Collapse
|
42
|
Zhang N, Bailus BJ, Ring KL, Ellerby LM. iPSC-based drug screening for Huntington's disease. Brain Res 2015; 1638:42-56. [PMID: 26428226 DOI: 10.1016/j.brainres.2015.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/29/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ningzhe Zhang
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Barbara J Bailus
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Karen L Ring
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States.
| |
Collapse
|
43
|
Pascu AM, Ifteni P, Teodorescu A, Burtea V, Correll CU. Delayed identification and diagnosis of Huntington's disease due to psychiatric symptoms. Int J Ment Health Syst 2015; 9:33. [PMID: 26300964 PMCID: PMC4546337 DOI: 10.1186/s13033-015-0026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative illness that affects 2–9/100.000 of the general population. The usual onset is at around age 35–40 years, but there were cases with onset above 55 years. The disease manifests clinically with many neurological and psychiatric symptoms, leading in advanced phases to dementia, but cognitive symptoms are frequently present much earlier in the disease course. HD is caused by an expanded polyglutamine stretch in the N-terminal part of a 350 kDa protein called huntingtin (HTT). This stretch is encoded by a trinucleotide CAG repetition in exon 1 of HTT. An expansion of greater than 36 repeats results in HD. The number of repeats is inversely correlated with the age of onset of motor symptoms, and disease onset during childhood or adolescence is associated with more than 60 CAG repeats. Mood disturbances may be one of the earliest symptoms of HD and may precede the onset of the motor pheno-type for almost 10 years. Neuropsychiatric symptoms may delay the appropriate diagnosis of HD and have major implications for disease management, prognosis and quality of life for patients and families. This case study is about a 58 years old female patient with late identification of Huntington’s disease after two admissions to psychiatric inpatient units, for the treatment of behavioral disturbances.
Collapse
Affiliation(s)
| | - Petru Ifteni
- Faculty of Medicine, Transilvania University, Brasov, Romania ; Psychiatry and Neurology Hospital, Brasov, Romania
| | | | - Victoria Burtea
- Faculty of Medicine, Transilvania University, Brasov, Romania
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York, USA ; Hofstra North Shore-LIJ School of Medicine, Hempstead, NY USA
| |
Collapse
|
44
|
Lewis EA, Smith GA. Using Drosophila models of Huntington's disease as a translatable tool. J Neurosci Methods 2015; 265:89-98. [PMID: 26241927 DOI: 10.1016/j.jneumeth.2015.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/17/2022]
Abstract
The Huntingtin (Htt) protein is essential for a wealth of intracellular signaling cascades and when mutated, causes multifactorial dysregulation of basic cellular processes. Understanding the contribution to each of these intracellular pathways is essential for the elucidation of mechanisms that drive pathophysiology. Using appropriate models of Huntington's disease (HD) is key to finding the molecular mechanisms that contribute to neurodegeneration. While mouse models and cell lines expressing mutant Htt have been instrumental to HD research, there has been a significant contribution to our understating of the disease from studies utilizing Drosophila melanogaster. Flies have an Htt protein, so the endogenous pathways with which it interacts are likely conserved. Transgenic flies engineered to overexpress the human mutant HTT gene display protein aggregation, neurodegeneration, behavioral deficits and a reduced lifespan. The short life span of flies, low cost of maintaining stocks and genetic tools available for in vivo manipulation make them ideal for the discovery of new genes that are involved in HD pathology. It is possible to do rapid genome wide screens for enhancers or suppressors of the mutant Htt-mediated phenotype, expressed in specific tissues or neuronal subtypes. However, there likely remain many yet unknown genes that modify disease progression, which could be found through additional screening approaches using the fly. Importantly, there have been instances where genes discovered in Drosophila have been translated to HD mouse models.
Collapse
Affiliation(s)
- Elizabeth A Lewis
- Neurobiology Department, Aaron Lazare Research Building, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gaynor A Smith
- Neurobiology Department, Aaron Lazare Research Building, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
45
|
Exploring Genetic Factors Involved in Huntington Disease Age of Onset: E2F2 as a New Potential Modifier Gene. PLoS One 2015; 10:e0131573. [PMID: 26148071 PMCID: PMC4493078 DOI: 10.1371/journal.pone.0131573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/03/2015] [Indexed: 01/09/2023] Open
Abstract
Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor.
Collapse
|
46
|
Abstract
BACKGROUND Patient incentives for encouraging healthy behavior raise a number of ethical concerns: Do they target the vulnerable? Do they involve psychological manipulation? Do they undermine intrinsic motivation? PURPOSE To the purpose of this paper is to provide an overview of ethical challenges raised by patient incentives and incentive programs and develop a systematic approach to understanding and analyzing these ethical challenges. METHOD Ethical considerations raised by patient incentives can be broadly grouped into two kinds: medical ("patient-oriented") and public health ("constituent-oriented") concerns. Ethical frameworks suitable to these kinds of concerns are explored. RESULTS Two ethical frameworks are applied to the challenges raised by patient incentives: (1) Incentives are assessed in terms of personal and social responsibility for health; and (2) incentives are assessed as elements of normatively structured clinical relationships (e.g., the traditional patient-clinician relationship). CONCLUSION A better understanding of ethical concerns and the resources available within the personal responsibility and clinical encounter frameworks suggest complementary guidance may be available for approaching many of the ethical issues raised by patient incentives.
Collapse
Affiliation(s)
- Eran P Klein
- Oregon Health & Science University, Department of Neurology, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239-3098, USA,
| |
Collapse
|
47
|
Goldman JS. Genetic testing and counseling in the diagnosis and management of young-onset dementias. Psychiatr Clin North Am 2015; 38:295-308. [PMID: 25998117 DOI: 10.1016/j.psc.2015.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Young-onset dementia is hereditary, multifactorial, or sporadic. The most common hereditary dementias include Alzheimer disease, frontotemporal degeneration, Huntington disease, prion diseases, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Careful attainment of family history assists with diagnosis and determining the likelihood of a genetic cause, and can direct genetic testing. The type of genetic testing depends on confidence of the diagnosis, patient's and affected relatives' symptoms, and the number of disease genes. Single gene, disease-specific gene panels, and large dementia panels are available. Genetic counseling should be given and informed consent obtained. Predictive testing follows the Huntington disease protocol.
Collapse
Affiliation(s)
- Jill S Goldman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, Box 16, New York, NY 10032, USA.
| |
Collapse
|
48
|
Abstract
Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| |
Collapse
|
49
|
The genome as pharmacopeia: Association of genetic dose with phenotypic response. Biochem Pharmacol 2015; 94:229-40. [DOI: 10.1016/j.bcp.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
|
50
|
Ramos EM, Kovalenko M, Guide JR, St Claire J, Gillis T, Mysore JS, Sequeiros J, Wheeler VC, Alonso I, MacDonald ME. Chromosome substitution strain assessment of a Huntington's disease modifier locus. Mamm Genome 2015; 26:119-30. [PMID: 25645993 PMCID: PMC4372682 DOI: 10.1007/s00335-014-9552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/03/2014] [Indexed: 11/30/2022]
Abstract
Huntington’s disease (HD) is a dominant neurodegenerative disorder that is due to expansion of an unstable HTT CAG repeat for which genome-wide genetic scans are now revealing chromosome regions that contain disease-modifying genes. We have explored a novel human–mouse cross-species functional prioritisation approach, by evaluating the HD modifier 6q23–24 linkage interval. This unbiased strategy employs C57BL/6J (B6J) HdhQ111 knock-in mice, replicates of the HD mutation, and the C57BL/6J-chr10A/J/NaJ chromosome substitution strain (CSS10), in which only chromosome 10 (chr10), in synteny with the human 6q23–24 region, is derived from the A/J (AJ) strain. Crosses were performed to assess the possibility of dominantly acting chr10 AJ-B6J variants of strong effect that may modulate CAG-dependent HdhQ111/+ phenotypes. Testing of F1 progeny confirmed that a single AJ chromosome had a significant effect on the rate of body weight gain and in HdhQ111 mice the AJ chromosome was associated subtle alterations in somatic CAG instability in the liver and the formation of intra-nuclear inclusions, as well as DARPP-32 levels, in the striatum. These findings in relatively small cohorts are suggestive of dominant chr10 AJ-B6 variants that may modify effects of the CAG expansion, and encourage a larger study with CSS10 and sub-strains. This cross-species approach may therefore be suited to functional in vivo prioritisation of genomic regions harbouring genes that can modify the early effects of the HD mutation.
Collapse
Affiliation(s)
- Eliana Marisa Ramos
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|