1
|
Noreen S, Ishaq I, Saleem MH, Ali B, Muhammad Ali S, Iqbal J. Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis. Cancer Biol Ther 2025; 26:2475581. [PMID: 40079211 PMCID: PMC11913392 DOI: 10.1080/15384047.2025.2475581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.
Collapse
Affiliation(s)
- Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Izwa Ishaq
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Muhammad Ali
- Nursing Department, Communicable Disease Center Hamad Medical Corporation, Doha, Qatar
| | - Javed Iqbal
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Nag S, Damodar KSH, Mukherjee S, Rao DR, Debnath I, Haryini S, Mohanto S, Ahmed MG, Subramaniyan V. Unveiling the trending paradigms of synthesis and theranostic biomedical potentials of nano-diamonds (NDs) - a state-of-the-art update. INORG CHEM COMMUN 2025; 177:114313. [DOI: 10.1016/j.inoche.2025.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
3
|
Escudé Martinez de Castilla P, Estapé Senti M, Erkens S, van Weerden WM, Kooijmans SAA, Fens MH, Vader P, Schiffelers RM. Reticuloendothelial system blockade does not enhance siRNA-LNP circulation or tumor accumulation in mice. Int J Pharm X 2025; 9:100324. [PMID: 40115963 PMCID: PMC11925117 DOI: 10.1016/j.ijpx.2025.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
One of the biggest challenges for siRNA-based therapeutics is intracellular delivery into the target cell, which can be facilitated by encapsulating siRNA in lipid nanoparticles (LNPs). In this study, we formulated D-Lin-MC3-DMA-LNPs encapsulating siRNA against the androgen receptor (AR), a key driver in prostate cancer. We effectively knocked down AR expression at both the mRNA as well as protein levels in vitro in AR-expressing prostate cancer cell lines. However, when moving to in vivo studies, siRNA-LNP efficacy is hindered by rapid clearance by the reticuloendothelial system (RES) in the liver and spleen. We evaluated whether transient RES blockade through systemic pre-administration of dextran sulfate or liposomes could extend the circulation time and enhance tumor accumulation of siRNA-LNPs in tumor-bearing mice. In two different mouse prostate cancer (PCa) xenograft models, we observed that, upon systemic administration, LNPs still predominantly accumulated in the liver and spleen, with only limited tumor uptake. Our findings demonstrate that pre-treatment with dextran sulfate or liposomes did not enhance siRNA-LNP blood circulation time or tumor accumulation in vivo, indicating the need for alternative strategies to enhance siRNA-LNP delivery to tumors.
Collapse
Affiliation(s)
| | | | - Sigrun Erkens
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Sharma R, Modi U, Kumar R, Sharma C, Srivastav AK, Bhatia D, Solanki R. Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy. BIOMATERIALS ADVANCES 2025; 171:214235. [PMID: 39978287 DOI: 10.1016/j.bioadv.2025.214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Cancer remains a significant global health challenge, driving the development of advanced platforms for highly targeted and efficient drug delivery. Early-stage nanocarriers, such as synthetic polymeric and inorganic materials, face limitations in biocompatibility and biodegradability. In contrast, bioinspired nanocarriers derived from natural biomacromolecules mimic biological processes and present a promising alternative due to their biocompatibility, biodegradability and non-toxicity. The effectiveness of these drug delivery systems is influenced by factors such as size, shape, surface properties, morphology, functionalization, and preparation methods. Various biomacromolecule-inspired nanocarriers such as protein-based, lipid-based, carbohydrate-based and nucleic acid-based are now at the forefront of research. This review highlights the properties, advantages and limitations of different bioinspired materials. We also explore cutting-edge approaches for cancer therapy using these nanocarriers with recent in-vitro, in-vivo and patent evidence. Finally, we address the challenges and potential solutions associated with bioinspired nanocarriers, proposing future directions. Overall, this review explores nature-inspired drug delivery systems that have paved the way for advancements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Rahul Kumar
- Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chirag Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
5
|
Liu L, Tu B, Sun Y, Liao L, Lu X, Liu E, Huang Y. Nanobody-based drug delivery systems for cancer therapy. J Control Release 2025; 381:113562. [PMID: 39993634 DOI: 10.1016/j.jconrel.2025.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Targeted delivery can elevate the local drug concentration within tumor tissues, while minimizing drug distribution to normal tissues, thus enhancing the effectiveness of anti-tumor medications and reducing adverse effects and systemic toxicities. Nanobodies, the novel molecular pattern of antibodies characterized by their small size, high stability, strong specificity, and low immunogenicity, have been extensively applied in targeted drug delivery for tumor therapy. This review discusses structural disparities and functional advantages of nanobodies compared to other antibody fragments and full-length antibody. It also highlights nanobody applications in targeted tumor therapy, focusing on their use in modifying delivery systems, e.g., liposomes, EVs, micelles, albumin nanoparticles, gold nanoparticles, polymeric nanoparticles, and as nanobody-drug conjugates. This review delves into the methods applied for integrating nanobodies into different drug delivery carriers, in order to provide useful information for researchers developing nanobody-based targeted drug delivery systems.
Collapse
Affiliation(s)
- Lin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bin Tu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yao Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lingling Liao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaoling Lu
- College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yongzhuo Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| |
Collapse
|
6
|
Demartis S, Picco CJ, Larrañeta E, Korelidou A, Islam R, Coulter JA, Giunchedi P, Donnelly RF, Rassu G, Gavini E. Evaluating the efficacy of Rose Bengal-PVA combinations within PCL/PLA implants for sustained cancer treatment. Drug Deliv Transl Res 2025; 15:1770-1785. [PMID: 39313735 PMCID: PMC11968511 DOI: 10.1007/s13346-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
The current investigation aims to address the limitations of conventional cancer therapy by developing an advanced, long-term drug delivery system using biocompatible Rose Bengal (RB)-loaded polyvinyl alcohol (PVA) matrices incorporated into 3D printed polycaprolactone (PCL) and polylactic acid (PLA) implants. The anticancer drug RB's high solubility and low lipophilicity require frequent and painful administration to the tumour site, limiting its clinical application. In this study, RB was encapsulated in a PVA (RB@PVA) matrix to overcome these challenges and achieve a localised and sustained drug release system within a biodegradable implant designed to be implanted near the tumour site. The RB@PVA matrix demonstrated an RB loading efficiency of 77.34 ± 1.53%, with complete RB release within 30 min. However, when integrated into implants, the system provided a sustained RB release of 75.84 ± 8.75% over 90 days. Cytotoxicity assays on PC-3 prostate cancer cells indicated an IC50 value of 1.19 µM for RB@PVA compared to 2.49 µM for free RB, effectively inhibiting cancer cell proliferation. This innovative drug delivery system, which incorporates a polymer matrix within an implantable device, represents a significant advancement in the sustained release of hydrosoluble drugs. It holds promise for reducing the frequency of drug administration, thereby improving patient compliance and translating experimental research into practical therapeutic applications.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Rayhanul Islam
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy.
| |
Collapse
|
7
|
Medina-Moreno A, El-Hammadi MM, Martínez-Soler GI, Ramos JG, García-García G, Arias JL. Magnetic and pH-responsive magnetite/chitosan (core/shell) nanoparticles for dual-targeted methotrexate delivery in cancer therapy. Drug Deliv Transl Res 2025; 15:1646-1659. [PMID: 39237670 DOI: 10.1007/s13346-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Methotrexate successful therapy encounters various challenges in chemotherapy, such as poor oral bioavailability, low specificity, side effects and the development of drug resistances. In this study, it is proposed a dual-targeted nanocarrier comprising magnetite/chitosan nanoparticles for an efficient Methotrexate delivery. The formation of the particles was confirmed through morphological analysis using electron microscopy and elemental mappings via energy dispersive X-ray spectroscopy. These nanoparticles exhibited a size of ≈ 270 nm, a zeta potential of ≈ 24 mV, and magnetic responsiveness, as demonstrated by hysteresis cycle analysis and visual observations under a magnetic field. In addition, these particles displayed high stability, as evidenced by size and surface electric charge measurements, during storage at both 4 ºC and 25 ºC for at least 30 days. Electrophoretic properties were examined in relation to pH and ionic strength, confirming these core/shell nanostructure. The nanoparticles demonstrated a pH-responsive drug release as observed by a sustained Methotrexate release over the next 90 h under pH ≈ 7.4, while complete release occurred within 3 h under acidic conditions (pH ≈ 5.5). In the biocompatibility assessment, the magnetite/chitosan particles showed excellent hemocompatibility ex vivo and no cytotoxic effects on normal MCF-10 A and cancer MCF-7 cells. Furthermore, the Methotrexate-loaded nanoparticles significantly enhanced the antitumor activity reducing the half-maximal inhibitory concentration by ≈ 2.7-fold less compared to the free chemotherapeutic.
Collapse
Affiliation(s)
- Ana Medina-Moreno
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Sevilla, 41012, Spain
| | - Gema I Martínez-Soler
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Javier G Ramos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Gracia García-García
- Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, 04120, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain.
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18016, Spain.
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, 18012, Spain.
| |
Collapse
|
8
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
9
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
10
|
Srinivasan MK, Namasivayam N. Evaluating the in vitro and in vivo effects of carvacrol zinc oxide quantum dots in breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:796-815. [PMID: 39625392 DOI: 10.1080/09205063.2024.2429325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
The study investigates the molecular interactions and biological effects of carvacrol zinc oxide quantum dots (CVC-ZnO QDs) on breast cancer in vitro MCF-7 cell lines and in vivo mammary cancer models. Molecular docking using AutoDock Vina revealed binding energies of CVC with key proteins in the PI3K/AKT/mTOR pathway, including PI3K, AKT, PTEN, and mTOR. The results showed significant interaction with specific amino acids, indicating a strong binding affinity. In vitro studies demonstrated a dose-dependent cytotoxic effect of CVC-ZnO QDs on MCF-7 cells, with an IC50 of 20.02 µg/mL, while enhancing intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), indicative of apoptosis induction. Antioxidant activity, lipid peroxidation, and nuclear morphological changes were assessed, revealing decreased antioxidant status and increased lipid peroxidation in treated cells. In vivo, CVC-ZnO QDs modulated the PI3K/AKT/mTOR signaling in DMBA-induced mammary cancer in rats, decreasing p-PI3K, p-AKT, and p-mTOR expression while upregulating PTEN. Immunohistochemistry, qRT-PCR, and Western blot analyses confirmed these molecular alterations. The study concludes that CVC-ZnO QDs exert cytotoxic and pro-apoptotic effects on breast cancer cells by modulating the PI3K/Akt/mTOR pathway and promoting oxidative stress, presenting a potential therapeutic strategy for breast cancer management.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| |
Collapse
|
11
|
Karimi S, Bakhshali R, Bolandi S, Zahed Z, Mojtaba Zadeh SS, Kaveh Zenjanab M, Jahanban Esfahlan R. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater Today Bio 2025; 31:101626. [PMID: 40124335 PMCID: PMC11926801 DOI: 10.1016/j.mtbio.2025.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is challenged by the tumor microenvironment (TME), which promotes drug resistance and cancer cell growth. This review offers a comprehensive and innovative perspective on how nanomedicine can modify the TME to enhance therapy. Strategies include using nanoparticles to improve oxygenation, adjust acidity, and alter the extracellular matrix, making treatments more effective. Additionally, nanoparticles can enhance immune responses by activating immune cells and reducing suppression within tumors. By integrating these approaches with existing therapies, such as chemotherapy and radiotherapy, nanoparticles show promise in overcoming traditional treatment barriers. The review discusses how changes in the TME can enhance the effectiveness of nanomedicine itself, creating a reciprocal relationship that boosts overall efficacy. We also highlight novel strategies aimed at exploiting and overcoming the TME, leveraging nanoparticle-based approaches for targeted cancer therapy through precise TME modulation.
Collapse
Affiliation(s)
- Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Rathore SS, Leno Jenita JJ, Dotherabandi M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:605-646. [PMID: 39429014 DOI: 10.1080/09205063.2024.2416293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.
Collapse
Affiliation(s)
- Seema S Rathore
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - Manjula Dotherabandi
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
13
|
Jiang Y, Cao Y, Yao Y, Zhang D, Wang Y. Chitosan and hyaluronic acid in breast cancer treatment: Anticancer efficacy and nanoparticle and hydrogel development. Int J Biol Macromol 2025; 301:140144. [PMID: 39848359 DOI: 10.1016/j.ijbiomac.2025.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The pervasive global health concern of breast cancer necessitates the development of innovative therapeutic interventions to enhance efficacy and mitigate adverse effects. Chitosan and hyaluronic acid, recognized for their biocompatibility and biodegradability, present compelling options for the novel drug delivery systems and therapeutic platforms in the context of breast cancer management. This review will delineate the distinctive attributes of chitosan and hyaluronic acid, encompassing their inherent anticancer properties, targeting capabilities, and suitability for chemical modifications along with nanoparticle development. These characteristics render them exceptionally well-suited for the fabrication of nanoparticles and hydrogels. The intrinsic anticancer potential of chitosan, in conjunction with its mucoadhesive properties, and the robust binding affinity of hyaluronic acid to CD44 receptors, facilitate specific drug delivery to the malignant cells, thus circumventing the limitations inherent in traditional treatment modalities such as chemotherapy. The incorporation of these materials into nanocarriers allows for the co-delivery of therapeutic agents, thereby potentiating synergistic effects, while hydrogel systems provide localized, controlled drug release and facilitate tissue regeneration. An analysis of advancements in their synthesis, functionalization, and application is presented, while also acknowledging challenges pertaining to scalability and clinical translation.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiqun Yao
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China.
| | - Yuying Wang
- Department of Breast Surgery, The Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, China.
| |
Collapse
|
14
|
Li X, Yang T, Sun G, Lin B, Tang C, Zhao Z. Mapping the formation of gemcitabine-immunoglobulin nanoparticles and the subsequent activity against pancreatic cancer cells. Int J Biol Macromol 2025; 304:140729. [PMID: 39920937 DOI: 10.1016/j.ijbiomac.2025.140729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
This research involved the synthesis of Gemcitabine-immunoglobulin nanoparticles (GIgG NPs) and the exploration of their apoptotic mechanisms in targeting Panc-1 cancer cells. A desolvation technique for synthesis was applied, resulting in the heterogeneous clustering of IgG molecules with several Gemcitabine molecules. The DLE and DEE were determined to be 6.8 ± 0.32 % and 93.28 ± 2.88 %, respectively. Dynamic Light Scattering (DLS) and imaging analysis indicated a size of 122.1 nm, a PDI of 0.21, and a zeta potential of -23.78 mV. Fluorescence spectroscopy revealed a reduction and shift in the intrinsic fluorescence of IgG as the Gemcitabine concentration increased. ITC data showed that the binding sites (n) for IgG were 0.96, suggesting roughly one Gemcitabine binding site per IgG molecule, while for GIgG NPs, the n value was measured at 0.84. The binding constant (Kb) for IgG-Gemcitabine was 2.06 × 105 M-1, while for GIgG NPs, it was 1.26 × 105 M-1. The Gibbs free energy (ΔG°) for IgG-Gemcitabine was -30.41 kJ/mol, while for GIgG NPs it was -29.18 kJ/mol. Moreover, negative ΔH° and positive ΔS° values suggested that hydrogen bonds and hydrophobic interactions could facilitate the formation of the complex. Molecular docking analysis indicated that nonpolar interactions and intermolecular solvation play a role in the binding of Gemcitabine to IgG. The release kinetics aligned closely with the Korsmeyer-Peppas and Higuchi models for the pH-sensitive release of Gemcitabine. The IC50 of Gemcitabine for Panc-1 cancer cells dropped seven-fold when encapsulated in GIgG NPs, demonstrating enhanced cytotoxicity and selective targeting of cancer cells. Mechanisms for inducing apoptosis were evident via increased effectiveness, gene expression alteration, caspase activation, and oxidative stress. These results indicate that GIgG NPs could serve as a potential therapeutic option for the targeted treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaona Li
- Blood Transfusion Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Tao Yang
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China.
| | - Guofeng Sun
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Bobin Lin
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Chuxian Tang
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Zuhao Zhao
- The Department of General Surgery, Qingdao Central Hospital,University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
15
|
Tawfik RTM, Abd El-Azeem EM, Elsonbaty SM, Ibrahim EA. Green-synthesized selenium-hydroxytyrosol nanocomposites attenuate hepatocellular carcinoma in rats by modulating oxidative stress, inflammation, and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04034-w. [PMID: 40146247 DOI: 10.1007/s00210-025-04034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Hepatocellular carcinoma (HCC) poses a significant health risk and greatly affects global rates of illness and death, highlighting an urgent requirement for new treatment strategies. This study examines the therapeutic effects of selenium-hydroxytyrosol nanocomposites (Se-HTNPs) in a rat model with HCC caused by diethylnitrosamine (DEN). Treatment with Se-HTNPs significantly inhibited serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin, while increasing serum albumin and total protein levels. Oxidative stress was alleviated, as evidenced by a marked reduction in hepatic malondialdehyde (MDA) levels and an increase in antioxidant markers, such as reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC). Se-HTNPs also significantly decreased hepatic inflammatory markers, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), as well as apoptotic markers (p53 and caspase-3) and vascular endothelial growth factor (VEGF). Furthermore, Se-HTNPs suppressed the mRNA expression of c-Jun N-terminal kinase (c-JNK) and nuclear factor kappa B (NF-κB) and improved histopathological alterations brought on by DEN. These findings suggest that Se-HTNPs mitigate DEN-induced HCC in rats through their potent antioxidant, anti-inflammatory, and anti-carcinogenic properties, underscoring their potential as a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Radwa T M Tawfik
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman M Abd El-Azeem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sawsan M Elsonbaty
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
16
|
Patnam S, Singh AD, Ali MS, Thakur BK, Rengan AK, Manda SV. Development and In Vitro Characterization of Milk-Derived Extracellular Vesicle-Mithramycin Formulations for Potential Glioma Therapy. Mol Pharm 2025. [PMID: 40138182 DOI: 10.1021/acs.molpharmaceut.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor with resistance to conventional therapies. Mithramycin (Mit-A), a potent antitumor agent, has shown promise in several tumor types including, GBM. However, its clinical application is limited by toxicity. To address this, we explored the use of milk-derived extracellular vesicles (mEVs) as a delivery system to enhance the therapeutic efficacy of Mit-A. In this study, mEVs were isolated using a 3000 PEG precipitation method and confirmed their size, morphology, and stability through dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The isolated vesicles with a size of 125.6 ± 2.78 nm, a polydispersity index (PDI) of 0.083 ± 0.02, and a ζ-potential of 15 ± 0.57 mV. The presence of typical EV markers such as TSG101, HSP70, and CD63 confirmed their purity. Encapsulation of Mit-A within mEVs led to a slight increase in size to 131.8 ± 6.9 nm, a PDI of 0.081 ± 0.006, and a decrease in ζ-potential to -17 ± 2.0 mV, with an encapsulation efficiency of 58% by the freeze-thaw method. The in vitro transepithelial transport assay revealed that mEV(Mit-A) transported Mit-A more effectively than free Mit-A. The mEV(Mit-A) formulation demonstrated excellent stability in simulated salivary and gastrointestinal fluids, with a sustained release of Mit-A observed over 24 h in vitro in PBS (pH 6.8). Furthermore, mEV(Mit-A) formulations significantly inhibited glioma cell growth, and migration, and induced apoptosis, showing a 2-fold lower IC50 than free Mit-A, indicating superior efficacy. These findings suggest that mEVs represent a promising delivery vehicle for Mit-A, enhancing its potential as an effective treatment for glioblastoma.
Collapse
Affiliation(s)
- Sreekanth Patnam
- Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana 500096, India
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
- Exomed Therapeutics Private Ltd., Hyderabad, Telangana 500096, India
| | - Anula Divyash Singh
- Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana 500096, India
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Sasidhar Venkata Manda
- Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana 500096, India
- UrvogelBio Private Ltd., Hyderabad, Telangana 500096, India
| |
Collapse
|
17
|
G P, Singh M, Gupta PK, Shukla R. Synergy of Microfluidics and Nanomaterials: A Revolutionary Approach for Cancer Management. ACS APPLIED BIO MATERIALS 2025. [PMID: 40100776 DOI: 10.1021/acsabm.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cancer affects millions of individuals every year and is the second most common cause of death. Various therapeutic strategies are explored for the management of cancer including radiation therapy and chemotherapy with or without surgical procedures. However, the drawbacks like poor cancer cell targeting and higher toxicity for healthy cells need the advancement of the therapeutic strategy. The exploration of nanomedicine achieves targeted distribution, and the adoption of microfluidics technology for the preparation of the nanoparticulate system has enhanced the efficacy and uniformity of the nanocarriers. The overview of the existing designs of the microfluidics device assisted in the preparation of the nanoparticles, and various nanodelivery systems formulated using the microfluidic device including liposomes, lipidic nanocarriers, quantum dots, polymeric nanoparticles, and metallic nanocarriers are discussed in this review. Further, the challenges associated with the fabrication of the microfluidics device and the fabrication of microfluidics device-based nanoparticles are detailed here.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Mansi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Bio-Science and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
18
|
Shaikh S, Chary PS, Mehra NK. Tyrosine Kinase Inhibitor Lenvatinib Based Nano Formulations and Cutting-Edge Scale-Up Technologies in revolutionizing Cancer Therapy. ACS APPLIED BIO MATERIALS 2025; 8:1749-1784. [PMID: 40091597 DOI: 10.1021/acsabm.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lenvatinib (LEN), a tyrosine kinase inhibitor, has emerged as a promising therapeutic agent for various solid tumors. Nevertheless, a number of constraints, including diminished bioavailability, incapacity to elicit localized inflammation, and inability to selectively accumulate at the tumor site, may impede the comprehensive exploitation of its versatile tyrosine kinase inhibitory capabilities. In order to achieve targeted delivery of LEN while also reducing its high dose used in conventional therapeutics, nanoformulation approaches can be adopted. The integration of LEN into various nanoformulations, such as nanoparticles, nanocrystals, high density lipoproteins (HDLs), liposomes, and micelles, is discussed, highlighting the advantages of these innovative approaches in a comparative manner; however, given that the current methods of nanoformulation synthesis employ toxic organic solvents and chemicals, there is an imperative need for exploring alternative, environmentally friendly approaches. The multifaceted effects of nanocarriers have rendered them profoundly applicable within the biomedical domain, serving as instrumental entities in various capacities such as vehicles for drug delivery and genetic material, diagnostic agents, facilitators of photothermal therapy, and radiotherapy. However, the scalability of these nanotechnological methodologies must be rigorously investigated and addressed to refine drug delivery mechanisms. This endeavor offers promising prospects for revolutionizing strategies in cancer therapeutics, thereby laying the foundation for future research in scale-up techniques in the pursuit of more effective and less toxic therapies for cancer.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| |
Collapse
|
19
|
Kaur D, Chopra M, Saluja D. Exploiting the Achilles' heel of cancer through a structure-based drug-repurposing approach and experimental validation of top drugs using the TRAP assay. Mol Divers 2025:10.1007/s11030-025-11162-1. [PMID: 40087255 DOI: 10.1007/s11030-025-11162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Telomerase, a reverse transcriptase implicated in replicative immortality of cancers, remains a challenging target for therapeutic intervention due to its structural complexity and the absence of clinically approved small-molecule inhibitors. In this study, we explored drug repurposing as a pragmatic approach to address this gap, leveraging FDA-approved drugs to accelerate the identification of potential telomerase inhibitors. Using a structure-based drug discovery framework, we screened the DrugBank database through a previously validated pharmacophore model for the FVYL pocket in the hTERT thumb domain, the established binding site of BIBR1532. This was followed by molecular docking, pharmacokinetic filtering, and molecular dynamics (MD) simulations to evaluate the stability of protein-ligand complexes. Binding free energy calculations (MM-PBSA and MM-GBSA) were employed for cross-validation, identifying five promising candidates. Experimental validation using the Telomerase Repeat Amplification Protocol (TRAP) assay confirmed the inhibitory potential of Raltitrexed, showing significant inhibition with IC50 8.899 µM in comparison to control. Decomposition analysis and Structure-Activity Relationship (SAR) studies further offered insights into the binding mechanism, reinforcing the utility of the FVYL pocket as a druggable site. Raltitrexed's dual mechanism of action, targeting both telomerase and thymidylate synthase, underscores its potential as a versatile anticancer agent, suitable for combination therapies or standalone treatment. As the top lead, Raltitrexed demonstrates the potential of repurposed drugs in telomerase-targeted therapies, offering a time and cost-effective strategy for advancing its clinical development. The study also provides a robust framework for future drug development, addressing challenges in targeting telomerase for anticancer therapy.
Collapse
Affiliation(s)
- Divpreet Kaur
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
20
|
Li Y, Liu P, Zhang B, Chen J, Yan Y. Global trends and research hotspots in nanodrug delivery systems for breast cancer therapy: a bibliometric analysis (2013-2023). Discov Oncol 2025; 16:269. [PMID: 40047951 PMCID: PMC11885776 DOI: 10.1007/s12672-025-02014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
OBJECTIVE Nanomedicine offers fresh approaches for breast cancer treatment, countering traditional limitations. The nanodrug delivery system's precision and biocompatibility hold promise, yet integration hurdles remain. This study reviews nano delivery systems in breast cancer therapy from 2013 to 2023, guiding future research directions. METHODS In this study, we conducted a comprehensive search on Web of Science database (Guilin Medical University purchase edition) and downloaded literature related to the field published between 2013 and 2023. We analyzed these publications using R software, VOSviewer, and CiteSpace software. RESULTS This study reviewed 2632 documents, showing a steady publication increase from 2013 to 2023, peaking at 408 in 2022. China, USA, India, and Iran were prominent in publishing. The Chinese Academy of Sciences and Tabriz University of Medical Science were key collaboration centers. Notably, the Journal of Controlled Release and Biomaterials ranked among the top 10 journals for publications and citations, establishing their field representation. Key terms like "breast cancer," "nanoparticles," "drug delivery," "in-vitro," and "delivery" were widely used. Research focused on optimizing drug targeting, utilizing the tumor microenvironment for drug delivery, and improving delivery efficiency. CONCLUSION The nanodrug delivery system, as an innovative drug delivery approach, offers numerous advantages and has garnered global attention from researchers. This study provides an analysis of the status and hotspots in nano delivery systems within the realm of breast cancer therapy, offering valuable insights for future research in this domain.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacy, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Pingping Liu
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Juan Chen
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Yuanyuan Yan
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China.
| |
Collapse
|
21
|
Rahdan F, Abedi F, Saberi A, Vaghefi Moghaddam S, Ghotaslou A, Sharifi S, Alizadeh E. Co-delivery of hsa-miR-34a and 3-methyl adenine by a self-assembled cellulose-based nanocarrier for enhanced anti-tumor effects in HCC. Int J Biol Macromol 2025; 307:141501. [PMID: 40054812 DOI: 10.1016/j.ijbiomac.2025.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The simultaneous delivery of oligonucleotides and small molecules has garnered significant interest in cancer therapy. Hepatocellular carcinoma (HCC) treatment is hindered by limited efficacy and significant side effects. Homo sapiens microRNA-34a (hsa-miR-34a) has tumor suppressor properties and like small molecule 3-methyl adenine (3MA) can inhibit autophagy. Besides, 3MA has been shown to enhance anticancer effects in combination therapies. In the present study, a novel modified-cellulose-dialdehyde (MDAC) nanocarrier responsive to lysosomal pH was designed to co-load hsa-miR-34a polyplexes and 3MA and evaluate its antitumor efficacy against HCC. Polyplexes containing hsa-miR-34a and poly L lysine (PLL) with an optimal N/P ratio exhibited a zeta potential of +9.28. These polycations significantly modulated the surface charge of 3MA MDAC for optimal cell-membrane transport and dramatically increased their stability. The PLL-miR34a/3MA MDAC NPs had loading efficiency of around 99.7 % for miR-34a and 35 % for 3MA. Comply with pH dependency, PLL-miR34a polyplex/3MA MDAC NPs worked very efficiently on the inhibiting the expression of autophagy genes (p < 0.05), preventing the formation of autophagosomal vacuoles, reducing rate of cell survival, anti-migratory effects (>100 %), and triggering apoptosis (67.15 %) in HepG2. Our cellulose-based nanocarrier may demonstrate potential for enhancing therapeutic efficacy of combination therapies headed for future clinical translation in HCC.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheyda Sharifi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Mazzotta E, Romeo M, Sacco G, De Benedittis S, Qualtieri A, Perrotta ID, Muzzalupo R. The Impact of Hyaluronic Acid Coating on the Cationic Niosomal Surface for Doxorubicin Delivery. Molecules 2025; 30:1148. [PMID: 40076371 PMCID: PMC11901725 DOI: 10.3390/molecules30051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
This study was designed to develop cationic vesicles for doxorubicin (DOX) delivery and to compare anticancer efficacy of these systems uncoated and coated with hyaluronic acid. Cationic nanoformulation was first optimized using various amounts of Span80, DODAB, and cholesterol. The optimized niosomal formulation (CTN4) in terms of vesicle size, surface zeta potential, and colloidal stability was coated with hyaluronic acid and the in vitro therapeutic effectiveness in uterine cervix cancer cells of vesicles loaded with DOX was tested. In vitro studies revealed significantly superior cytotoxicity against Hela cells of niosomes coated with HA compared to uncoated formulations. Moreover, cytotoxicity was also evaluated on normal fibroblast murine cell line, NIH-3T3 cells, and the results obtained demonstrated that HA-coated vesicles exhibited lower cytotoxicity to NIH-3T3 cells compared to uncoated nanovesicles. These findings highlighted how the surface coating influences the effectiveness of niosomes developed as a target drug delivery system and the selectivity and the antitumour efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| | - Martina Romeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| | - Giuseppina Sacco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| | - Selene De Benedittis
- Institute for the Research and the Biomedical Innovation (IRIB)-CNR-Mangone (CS), 00185 Rome, Italy; (S.D.B.); (A.Q.)
| | - Antonio Qualtieri
- Institute for the Research and the Biomedical Innovation (IRIB)-CNR-Mangone (CS), 00185 Rome, Italy; (S.D.B.); (A.Q.)
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| |
Collapse
|
23
|
Chen C, Zhang H, Han J, Yang L, Li S, Jia Q, Fang J, Ling P, Wang S. Synthesis and antitumor activity of ultra-low molecular weight hyaluronic acid-decorated camptothecin conjugates. Carbohydr Polym 2025; 351:123144. [PMID: 39778985 DOI: 10.1016/j.carbpol.2024.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Camptothecin (CPT) exhibits potent anticancer activity, but its clinical application is limited by poor solubility and severe side effects. Hyaluronic acid (HA) is gaining attention in drug delivery systems due to its excellent biocompatibility and tumor-targeting properties. In this study, we conjugated CPT to the reducing end of ultra-low molecular weight HA to create a series of HA-decorated CPT conjugates. These novel conjugates offer significant advantages over traditional HA-drug formulations, including well-defined structures and consistent drug-loading rates. In vitro studies demonstrated that these HA-decorated conjugates exhibited enhanced anti-proliferative and targeting effects towards various tumor cells. Furthermore, in vivo studies showed that HA-CPT nanoparticles significantly inhibited tumor growth with minimal side effects, as evidenced by stable body weight and histological analyses in treated mice. The approach of using structurally well-defined HA as a carrier for site-specific drug modification expands the potential applications of HA and enhances the therapeutic efficacy of conventional drugs.
Collapse
Affiliation(s)
- Changsheng Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Jingjun Han
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Yang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuang Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Qingwen Jia
- Shandong Freda Pharmaceutical Group Co. Ltd, Jinan, Shandong 250101, China
| | - Junqiang Fang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shuaishuai Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
24
|
Nasr Azadani M, Abed A, Mirzaei SA, Mahjoubin-Tehran M, Hamblin M, Rahimian N, Mirzaei H. Nanoparticles in Cancer Theranostics: Focus on Gliomas. BIONANOSCIENCE 2025; 15:129. [DOI: 10.1007/s12668-024-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/05/2025]
|
25
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
26
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
27
|
Conte M, Carofiglio M, Vander Pol RS, Wood A, Hernandez N, Joubert A, Caffey C, Chua CYX, Grattoni A, Cauda V. Acoustically Driven Hybrid Nanocrystals for In Vivo Pancreatic Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11873-11887. [PMID: 39960802 PMCID: PMC11873934 DOI: 10.1021/acsami.4c21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
New treatment strategies are urgently needed for pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest tumors nowadays. PDAC is marked by hypoxia, intrinsic chemoresistance, a "cold" tumor microenvironment, and dense desmoplastic stroma, which hinders drug penetration. This study investigates the combined effect of iron-doped, lipid-coated zinc oxide nanoparticles enhanced with a fluorescent sonosensitizer and local ultrasound stimulation in treating PDAC. Nanoparticles were synthesized and coated by lipids, and their physiochemical properties were characterized by assessing reproducibility, stability, and efficient inclusion of the sonosensitizer. In vitro, sonosensitizer-enhanced nanoconstructs were tested on a KPC murine PDAC cell line in combination with ultrasound to evaluate their cytotoxicity and assess their efficacy. In vivo, NPs were further coupled with AlexaFluor 700 to allow their localization over time, and the nanoconstructs were intratumorally administered to a subcutaneous murine PDAC model to enhance local bioavailability and tumor visualization and minimize off-target effects of systemic delivery. Biodistribution, efficacy, flow cytometry, and survival studies were carried out on different cohorts of mice. The sonosensitizer-enhanced nanoconstructs, combined with ultrasound, triggered significant reactive oxygen species (ROS) production, reducing the KPC cell viability. In vivo, the antitumor efficacy was particularly pronounced with ultrasound stimulation, demonstrating a synergistic interaction between the nanoparticles and ultrasound. Moreover, increased immune cell infiltration, enhanced cancer cell apoptosis, and prolonged survival of the treated animals were achieved. These findings highlight the potential of a synergistic therapeutic approach combining lipid-coated sonosensitizer-loaded nanoparticles and ultrasound stimulation as an effective therapy for PDAC and in situ monitoring.
Collapse
Affiliation(s)
- Marzia Conte
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Marco Carofiglio
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy
| | - Robin Shae Vander Pol
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Anthony Wood
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Nathanael Hernandez
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Ashley Joubert
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Camden Caffey
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Corrine Ying Xuan Chua
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Alessandro Grattoni
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
- Department
of Surgery, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department
of Radiation Oncology, Houston Methodist
Research Institute, Houston, Texas 77030, United States
| | - Valentina Cauda
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
28
|
Jafar NNA, Abd Hamid J, M A Altalbawy F, Sharma P, Kumar A, Shomurotova S, Jihad Albadr R, Atiyah Altameemi KK, Mahdi Saleh H, Alajeeli F, Mohammed Ahmed A, Ahmad I, Dawood II. Gadolinium (Gd)-based nanostructures as dual-armoured materials for microbial therapy and cancer theranostics. J Microencapsul 2025:1-27. [PMID: 39992246 DOI: 10.1080/02652048.2025.2469259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.
Collapse
Affiliation(s)
- Nadhir N A Jafar
- AL-Zahraa University for Women, College of Health and Medical Technology, Kerbala, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pawan Sharma
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | | | | | - Hawraa Mahdi Saleh
- Department of Dentistry, Al-Manara College For Medical Sciences, Maysan, Iraq
| | - Fakhri Alajeeli
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, Iraq
| | - Ahmed Mohammed Ahmed
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Imad Ibrahim Dawood
- Department of Medical Laboratories Technology, Mazaya University College, Nasiriyah, Iraq
| |
Collapse
|
29
|
Al-Qadi I, Hanania M, Warad I, Al-Hajj N, Hazzam R, Salama Y, Raheem S, Al-Maharik N. Synthesis and biological activities of 3-aminoimidazo[1,2-α]pyridine compounds. BMC Chem 2025; 19:48. [PMID: 39987147 PMCID: PMC11847391 DOI: 10.1186/s13065-025-01412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
Despite their importance in cancer treatment, anticancer compounds face significant challenges due to drug resistance and low specificity, creating an urgent need for the discovery of more effective alternative. Herein, we report the synthesis of eleven 3-aminoimidazole[1,2-α]pyridine compounds (9-19) employing the one-pot Groebke-Blackburn-Bienayme three-component reaction (GBB-3CR). The cytotoxicity of the synthesised compounds was evaluated against three cancer cell lines (MCF-7, HT-29, B16F10) and a normal cell (MEF). Considering effectiveness and safety, the results demonstrated that among the eleven synthesised compounds, only compounds 12 and 14 exhibited high inhibitory activity against cancer cell lines. Compound 12 with a nitro group at the C-2 position and a p-chlorophenyl group at C-3 position, showed the highest inhibitory activity against HT-29, with an IC50 of 4.15 ± 2.93 µM. Additionally, compound 14, with a tolyl moiety at the C-2 position and a p-chlorophenyl amine at C-3 position, can also be considered a promising bioactive product against B16F10, with an IC50 of 21.75 ± 0.81 µM. Further research on these compounds may yield more potent candidates for the development of new anticancer agents.
Collapse
Affiliation(s)
- Isra Al-Qadi
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine
| | - Michel Hanania
- Department of Chemistry, Faculty of Applied Sciences, Technology and Engineering, Bethlehem University, Bethlehem, 00970, Palestine
| | - Ismail Warad
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine
| | - Nisreen Al-Hajj
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine
| | - Rand Hazzam
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine
| | - Yousef Salama
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Nawaf Al-Maharik
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine.
| |
Collapse
|
30
|
Almosa N. Impact of Incorporating Nanoparticles to Adhesive Resin on the Demineralization of Enamel: A Systematic Review. Dent J (Basel) 2025; 13:89. [PMID: 40136717 PMCID: PMC11941179 DOI: 10.3390/dj13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objective: Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to better summarize the existing additions of nanoparticles to dental adhesive systems in order to improve their performance and properties, evaluate their quality, and examine the results that have been published. Materials and methods: The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed central, Cochrane collaboration, Science direct and Scopus scientific engines. Selected MeSH keywords (nanoparticles, adhesive resin, enamel demineralization) were used for data extraction. A total of 13 full-text original articles were included in the final analysis, and these articles were based on adding nanoparticles to the adhesive resin to evaluate their effects on enamel demineralization. Results: The literature search resulted in a total of 13 original studies/articles up until November 2024. The text articles comprised in vitro studies with robust inclusion and exclusion criteria. The review included various types of adhesives and nanoparticles, with amorphous calcium phosphate (ACP) being the most common. Other nanoparticles included polydopamine-Ag, bioactive glass, and silver. Most studies assessed the effects of nanoparticles on adhesive shear bond strength (SBS), microbial growth, and microhardness. Only three studies investigated the effects of nanoparticles on microhardness using Vickers tests. Conclusions: The review found that adding nanoparticles to orthodontic dental adhesives enhances their antibacterial and anticariogenic properties without affecting the shear bond strength. This could prevent enamel demineralization during orthodontic therapy. Future research could benefit from these positive properties, necessitating an interdisciplinary approach.
Collapse
Affiliation(s)
- Naif Almosa
- Department of Paediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
31
|
Tran VA, Hung NH, Thi Vo TT, An SSA, Lee SW, Jeong H, Tan MA. Revolutionary NIR-activated silicon nanoparticles: precision-controlled release and targeted 3D cancer cell destruction. RSC Adv 2025; 15:4958-4969. [PMID: 39957827 PMCID: PMC11826154 DOI: 10.1039/d4ra08889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
In cancer therapy, controlled and targeted drug release systems are essential to maximize therapeutic outcomes while minimizing adverse effects. This study introduces an innovative mesoporous silicon nanoparticle (MSN) platform, functionalized with the natural anticancer agent dieckol (Di) and designed for precise drug delivery activated by near-infrared (NIR) irradiation. By embedding Di and grafting fluorescent organic conjugates onto the MSN surface, this innovative nanocarrier demonstrates exceptional sensitivity to NIR stimuli and potent chemo-photothermal effects. Notably, drug release remains stable across different pH conditions (7.4, 6.5, and 5.5), ensuring consistent therapeutic delivery. However, upon NIR exposure, the release can be selectively accelerated, enabling precise, real-time, and on-demand drug release control for enhanced treatment efficacy. Cytotoxicity tests revealed that IPSi-Dox-Di-DQA nanoparticles exhibited potent dose-dependent inhibition of cancer cell growth (SH-SY5Y and B16-F10), while sparing healthy cells (HEK-293), highlighting their specificity. Furthermore, advanced 3D cell viability assays mimic the complexities of in vivo cancer environments, with spheroid disintegration under nanoparticle treatment underscoring the platform's powerful anticancer potential. These findings position IPSi-Dox-Di-DQA nanoparticles as a promising frontier in the development of selective, effective cancer therapeutics through synergistic NIR-controlled drug release and mitochondrial targeting.
Collapse
Affiliation(s)
- Vy Anh Tran
- Deparment of Material Science, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Nguyen Huy Hung
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
| | - Thu Thao Thi Vo
- Department of Food Science and Biotechnology, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Bionano Research Institute, Gachon University Seongnam-si 1342 Gyeonggi-do 461-701 Republic of Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University Seongnam-si 1342 Gyeonggi-do 461-701 Republic of Korea
| | - Hun Jeong
- Department of Natural Products & Biotechnology, Jeonbuk Science College Jeongeup 56204 Republic of Korea
| | - Mario A Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas Manila 1015 Philippines
| |
Collapse
|
32
|
Desai O, Köster M, Kloos D, Lachmann N, Hauser H, Poortinga A, Wirth D. Ultrasound-triggered drug release in vivo from antibubble-loaded macrophages. J Control Release 2025; 378:365-376. [PMID: 39653149 DOI: 10.1016/j.jconrel.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/22/2024]
Abstract
Nanoparticles have proven to be attractive carriers in therapeutic drug delivery since they can encapsulate, protect and stabilize a plethora of different drugs, thereby improving therapeutic efficacy and reducing side effects. However, specific targeting of drug-loaded nanoparticles to the tissue of interest and a timely and spatially controlled release of drugs on demand still represent a challenge. Recently, gas-filled microparticles, so-called antibubbles, have been developed which can efficiently encapsulate liquid drug droplets. Here, we show that antibubbles are efficiently taken up by macrophages in vitro and are stably maintained for more than 48 h without compromising antibubble integrity and macrophage viability. We show that application of diagnostic ultrasound induces the disintegration of both antibubbles and carrier cells while not affecting non-loaded macrophages. Using 4-hydroxytamoxifen as a model drug, we show ultrasound-mediated drug release upon adoptive transfer of antibubble-loaded macrophages in mice. Together with the ability of macrophages to accumulate in inflamed tissues, antibubble-loaded macrophages represent an attractive tool for targeted delivery of drugs and its ultrasound-mediated spatial and temporal drug release, highlighting the therapeutic perspective of this strategy.
Collapse
Affiliation(s)
- Omkar Desai
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany; iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Albert Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Dagmar Wirth
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
33
|
Sharma DK. Recent advancements in nanoparticles for cancer treatment. Med Oncol 2025; 42:72. [PMID: 39928091 DOI: 10.1007/s12032-025-02609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Nanotechnology is a significant factor that has assisted researchers in overcoming medications' permeability and retention effects. This article discusses how different nanoparticles, such as metallic nanoparticles, carbon nanotubes (CNTs), and extracellular vesicles (EVs), are transforming cancer treatments and diagnosis. While CNTs provide photothermal qualities that enable synergistic effects when paired with chemotherapy, EVs provide biocompatibility and immune evasion, enabling effective drug transport. Because of their special optical and magnetic characteristics, metallic nanoparticles are essential for imaging and targeted medication administration. When compared to traditional treatments, these nanoparticles improve bioavailability, decrease systemic toxicity, and increase therapeutic efficacy. Despite increased investigations, the number of licensed nano-drugs has remained relatively high. More investigation is required into targeted drug delivery using nanocarriers to minimize the shielding impact of the protein corona, increase permeability and retention effects, and reduce toxicity to improve clinical translation. This study focuses on novel approaches and state-of-the-art cancer therapies using nanoparticles that target different cancer cells. It also emphasized the advantages of nanoparticle-based cancer therapies over conventional ones, their difficulties, and future promises.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
34
|
Imath M, Giri J, Mohammad F, Ragavendran C. Eco-friendly synthesis of ZnO nanoparticles fabricated using Fioria vitifolia L. and their biomedical potentials. Microb Pathog 2025; 199:107139. [PMID: 39579945 DOI: 10.1016/j.micpath.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The present study aimed to environmentally friendly synthesis of ZnO NPs using Fioria vitifolia leaf extracts which provides a sustainable and green approach for production of NPs. The produced ZnO NPs were evaluated using various spectrum approaches (UV-vis, FTIR XRD, TEM and EDAX). The synthesized ZnO NPs was confirmed by UV-Visible spectroscopy exhibited a peak at 370 nm. SEM imaging revealed a flash-like and needle-like bottom morphology. Fourier-transform infrared spectroscopy (FTIR) analysis detected vibrations corresponding to alcohols, halides, and aromatics functional groups. TEM showed spherical-shaped NPs with an average diameter of 11 nm. XRD analysis exhibited distinct peaks at 2θ values of 31.7°, 34.3°, 36.2°, 47.4°, 56.6°, 62.8°, 66.4°, 67.9°, 69.1°, and 76.8°, corresponding to the crystallographic planes (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202) planes respectively. The antibacterial activity demonstrated significant zones of inhibition against E. coli (17 ± 0.6 mm) and S. aureus (23.7 ± 0.5 mm), and inhibition of biofilm formation in S. aureus and C. albicans. Additionally, S. mutans exhibited the highest sensitivity to the minimum inhibitory concentration (MIC) of ZnO NPs, with complete inhibition occurring at 7.5 μg/mL. Furthermore, antioxidant DPPH assays exhibited IC50 values of 42 μg/mL. Additionally, the anti-inflammatory properties of ZnO NPs of F. vitifolia were evaluated in-vitro using models utilizing the human red blood cells (HRBC) membrane stabilization method (MSM), and it was shown to have an MSM of 83.87 % at 250 μg/mL. Furthermore, ZnO NPs exhibited anticancer activity against the MDA-MB-231 breast cancer cell line with an IC50 value of 35.50 μg/mL. Toxicological evaluation of FV-ZnO nanoparticles in zebrafish (Danio rerio) embryos indicated low toxicity at maximum concentration. These is first findings suggest that ZnO NPs synthesized from F. vitifolia leaf extracts possess significant antibacterial, antioxidant, anti-inflammatory, and anticancer properties. Additionally, their low toxicity in zebrafish embryos makes them suitable for further development in antimicrobial therapies with minimal side effects, offering a sustainable, biocompatible solution to tackle multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Mohamed Imath
- Department of Pharmacology, JKKMMRF's‑ Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr MGR Medical University, Komorapalayam, Namakkal, Tamil Nadu, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India; Division of Research and Development, Lovely Professional University, Phagwara, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Faruq Mohammad
- Department of Physics, K.S.R. College of Engineering, Tiruchengode, Namakkal, 637215, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| |
Collapse
|
35
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
36
|
Patrojanasophon P, Singpanna K, Rojanarata T, Opanasopit P, Ngawhirunpat T, Pengnam S, Pornpitchanarong C. Folate receptor-targeted thiol-maleimide clicked chitosan/carboxymethyl cellulose nanoparticles for cisplatin delivery in oral carcinoma. Int J Biol Macromol 2025; 290:138976. [PMID: 39708877 DOI: 10.1016/j.ijbiomac.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to develop cisplatin (CDDP)-loaded folic acid (FA)-decorated nanoparticles (NPs) as targeted drug carrier towards overexpressed folate receptors on the oral carcinoma cell line (KB cells). The FA-conjugated thiolated succinyl chitosan (FA-SH-SCS) and maleimide-grafted-carboxymethyl cellulose (CMC-MAL) were synthesized and acquired in the preparation of NPs via thiol-maleimide click reaction. The physicochemical characteristics, drug loading, and drug release of the FA-decorated NPs (FA-NPs) were examined. Also, the in vitro biocompatibility, cellular uptake, and cell death mechanism were investigated. Relatively spherical NPs with negative charge were obtained with a size of approximately 200 nm. The formation of FA-NPs through click reaction was confirmed by the pH change and Ellman's assay. The release of CDDP from the FA-NPs was influenced by the acidic tumor environment. The FA-NPs were non-toxic to the normal cells. Furthermore, FA-NPs improved the cellular uptake of CDDP in oral carcinoma cells through specific recognition of folate receptors by FA-NPs. The delivery of CDDP by FA-NPs to the KB cell induced the apoptotic cell death pathway. Therefore, FA-NPs presented the potential to be effective nanocarriers for CDDP delivery in the treatment of oral cancer via active targeting approach.
Collapse
Affiliation(s)
- Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
37
|
Komane MD, Kayoka-Kabongo PN, Rutkowska DA. The Use of Plant Viral Nanoparticles in Cancer Biotherapy-A Review. Viruses 2025; 17:218. [PMID: 40006973 PMCID: PMC11860677 DOI: 10.3390/v17020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer is a major global health problem that poses significant challenges. Conventional cancer therapies often have severe side effects, necessitating the development of novel therapeutic approaches that are more effective and less toxic. The utilization of plant viral nanoparticles is one of the more promising strategies for cancer biotherapy. Plant viral nanoparticles exhibit advantageous properties, including safety, high stability, rapid production and scalability, biocompatibility and biodegradability, structural uniformity, inherent immunogenicity, ease of modification and high update efficacy as well as lower cost implications, making them attractive vehicles for health applications. Various studies have demonstrated the efficacy of plant viral nanoparticles in targeted therapeutic drug/molecule delivery, tumor imaging and immunotherapy, highlighting their potential as a versatile platform for cancer biotherapy. The drawbacks of plant viral nanoparticles include their perceived ability to induce a hypersensitive/allergic immune response, non-well-defined regulatory approval processes as well as the reluctance of pharmaceutical companies to adapt their manufacturing processes to facilitate plant-based expression. This review discusses applications of plant virus-derived nanoparticles in cancer therapeutics and prospects for translating these findings into clinical practice.
Collapse
Affiliation(s)
- Mamorake Donty Komane
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag X6 Florida 1710, Pretoria 0002, South Africa; (M.D.K.); (P.N.K.-K.)
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag X6 Florida 1710, Pretoria 0002, South Africa; (M.D.K.); (P.N.K.-K.)
| | - Daria Anna Rutkowska
- Advanced Agriculture and Food Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| |
Collapse
|
38
|
Al-Abodi HR. Antiparasitic Effects of Niosomal Formulations of Curcumin and Silymarin Against Toxoplasma gondii In Vitro. Vector Borne Zoonotic Dis 2025; 25:125-132. [PMID: 39161996 DOI: 10.1089/vbz.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Background: Toxoplasmosis is caused by infection with Toxoplasma gondii. No Symptoms in healthy people. Notably, very dangerous symptoms in immunocompromised, or patients with immune diseases. Previous research has shown that the parasite's resistance to drugs continues to emerge and has indicated this resistance as a cause for concern. In this context, researchers have a great responsibility to search for alternative treatments, as well as to develop existing ones. Essentially, this improves the therapeutic efficacy of drugs and prevents the emergence of resistance to them. The present study aims to evaluate antitoxoplasma effects of niosomal loaded curcumin and silymarin and their synergistic effects with clindamycin against T. gondii RH strain in vitro. Materials and Methods: Experiments were conducted on the tachyzoites of T. gondii RH-strain, based on: the free and nieosomal compounds of curcumin and silymarin, in addition to the drug clindamycin. Data were collected to estimate parasite viability during exposure to the therapeutic compounds under study using a special MTT assay ((3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolioum bromide) assay: is a colorimetric assay for measuring cellular growth) kit provided by (Bio Idea Company, Tehran, Iran). Hence, the effect of the therapeutic compounds on the parasite load was studied using the quantitative molecular technique real-time PCR. Results: The results indicate that the combination of N-silymarin and N-curcumin with clindamycin has active synergistic effects against T. gondii leading to complete elimination of the parasite. Data revealed that curcumin and silymarin in both their free and nisomal forms had inhibitory effects on the parasite, and minimal toxic effects on normal cells. Conclusions: The results highlight the successful synergistic effect of clindamycin and the niosomal compounds curcumin and silymarin in completely eradicating the T. gondii RH-strain. This finding contributes positively to the field of safe and effective treatments.
Collapse
Affiliation(s)
- Hiba Riyadh Al-Abodi
- Department of environment, College of Science, University of Al-Qadisiyah, Al-diwaniyah, Iraq
| |
Collapse
|
39
|
Carbone GG, Mariano S, Gabriele A, Cennamo S, Primiceri V, Aziz MR, Panzarini E, Calcagnile L. Exploring the Potential of Gold Nanoparticles in Proton Therapy: Mechanisms, Advances, and Clinical Horizons. Pharmaceutics 2025; 17:176. [PMID: 40006543 PMCID: PMC11859620 DOI: 10.3390/pharmaceutics17020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Proton therapy represents a groundbreaking advancement in cancer radiotherapy, leveraging the unique spatial energy distribution of protons to deliver precise, high-dose radiation to tumors while sparing surrounding healthy tissues. Despite its clinical success, proton therapy faces challenges in optimizing its therapeutic precision and efficacy. Recent research has highlighted the potential of gold nanoparticles to enhance proton therapy outcomes. Due to their high atomic number and favorable biological properties, gold nanoparticles act as radiosensitizers by amplifying the generation of secondary electrons and reactive oxygen species upon proton irradiation. This enhances DNA damage in tumor cells while preserving healthy tissues. Additionally, functionalization of gold nanoparticles with tumor-targeting ligands offers improved precision, making proton therapy more effective against a broader range of cancers. This review synthesizes current knowledge on the mechanisms of gold nanoparticle radiosensitization, preclinical evidence, and the technological hurdles that must be addressed to integrate this promising approach into clinical practice, aiming to advance the efficacy and accessibility of proton therapy in cancer therapy.
Collapse
Affiliation(s)
- Giorgio Giuseppe Carbone
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Stefania Mariano
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Alessandra Gabriele
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Sabrina Cennamo
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Vitantonio Primiceri
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Muhammad Rizwan Aziz
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Lucio Calcagnile
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| |
Collapse
|
40
|
Ghosh S, Guleria A, Patra S, Chakraborty A, Barick KC, Kumar C, Singh K, Rakshit S, Chakravarty R. Protein-functionalized and intrinsically radiolabeled [ 188Re]ReO x nanoparticles: advancing cancer therapy through concurrent radio-photothermal effects. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07074-9. [PMID: 39856453 DOI: 10.1007/s00259-025-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE Enhancing therapeutic effectiveness is crucial for translating anticancer nanomedicines from laboratory to clinical settings. In this study, we have developed radioactive rhenium oxide nanoparticles encapsulated in human serum albumin ([188Re]ReOx-HSA NPs) for concurrent radiotherapy (RT) and photothermal therapy (PTT), aiming to optimize treatment outcomes. METHODS [188Re]ReOx-HSA NPs were synthesized by a controlled reduction of 188ReO4- in HSA medium and extensively characterized. The anticancer effect of [188Re]ReOx-HSA NPs was demonstrated in vitro in murine melanoma (B16F10) cell line. In vivo SPECT/CT imaging, autoradiography and biodistribution studies were performed after intratumoral injection of [188Re]ReOx-HSA NPs in melanoma tumor-bearing C57BL/6 mice. The potential of [188Re]ReOx-HSA NPs for combined RT and PTT treatment was also demonstrated in the aforesaid mice model. RESULTS [188Re]ReOx-HSA NPs (size 4-6 nm) were synthesized with high colloidal and radiochemical stability. Upon laser (808 nm) exposure on B16F10 cells incubated with [188Re]ReOx-HSA NPs, only < 20% of cells were alive demonstrating high therapeutic efficacy under in vitro settings. Uniform dose distribution and retention of the radiolabeled NPs in the tumor volume were observed via SPECT/CT imaging and autoradiography studies. Tumor growth in mice model was significantly arrested with ~ 1.85 MBq dose of [188Re]ReOx-HSA NPs and simultaneous laser irradiation, demonstrating synergistic benefit of RT and PTT. CONCLUSIONS These results demonstrate that intrinsically radiolabeled [188Re]ReOx-HSA NPs having unique features such as high photothermal effects and favorable nuclear decay characteristics for combined RT/PTT, hold great promise for clinical translation.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Apurav Guleria
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Kanhu Charan Barick
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
41
|
Gong Q, Song X, Tong Y, Huo L, Zhao X, Han Y, Shen W, Ru J, Shen X, Liang C. Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification. J Nanobiotechnology 2025; 23:42. [PMID: 39849540 PMCID: PMC11761731 DOI: 10.1186/s12951-025-03134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025] Open
Abstract
The acidic tumor microenvironment, a hallmark of many solid tumors, is primarily induced by the high glycolytic rate of tumor cells. To avoid acidosis, tumor cells ingeniously maintain an acidic extracellular pH while keeping a relatively alkaline intracellular pH. Overturning the unique pH gradient of tumor cells has exhibited to be a viable approach for cancer therapy. In this review, the formation and regulatory mechanisms of the acidic microenvironment in solid tumors will be firstly outlined. Subsequently, we will comprehensively summarize the latest advancements in anti-tumor therapy via using nanomedicines to manipulate the tumor pH gradient, including acidifying intracellular environment and alkalizing extracellular environment. Following this, we will discuss the future potential of strategies employing nanomedicines to reverse tumor pH gradient. This review aims to foster research on therapeutic approaches targeting the pH regulation of solid tumors and holds an optimistic outlook for the future development of this field.
Collapse
Affiliation(s)
- Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| | - Yao Tong
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lixuan Huo
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuefen Zhao
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yingying Han
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Shen
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
42
|
Shaw JR, Vaidya R, Xu F, Dharmaraj S, Pearson RM. Microfluidics-generated PLA nanoparticles: impact of purification method on macrophage interactions, anti-inflammatory effects, biodistribution, and protein corona formation. RSC PHARMACEUTICS 2025; 2:135-146. [PMID: 39650739 PMCID: PMC11615567 DOI: 10.1039/d4pm00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Polymeric nanoparticles (NPs) are traditionally formulated using batch methodologies that are poorly scalable and require time consuming, hands-on purification procedures. Here, we prepared poly(lactic acid) (PLA)-based polymeric NPs using a scalable microfluidics-based method and systematically investigated the impact of purification method (centrifugation versus tangential flow filtration (TFF)) to remove poly(vinyl alcohol) (PVA) on macrophage uptake, anti-inflammatory effects, biodistribution, and protein corona formation. TFF purification demonstrated significantly higher recovery of NPs compared to the centrifugation method, with little-to-no aggregation observed. PVA removal efficiency was superior with centrifugation, although TFF was comparable. NP cellular association, in vitro anti-inflammatory activity, and in vivo biodistribution studies suggested purification method-dependent alterations, which were correlated with protein corona profiles. This study underscores the potential of TFF, combined with microfluidics, as an efficient and high-yield purification method for NPs, and reveals the need for extensive confirmation of NP biological activity alongside physicochemical properties when developing NP therapeutics at-scale.
Collapse
Affiliation(s)
- Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine 685 W. Baltimore Street Baltimore MD 21201 USA
| | - Radha Vaidya
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Fanny Xu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine 685 W. Baltimore Street Baltimore MD 21201 USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine 22 S. Greene Street Baltimore MD 21201 USA
| |
Collapse
|
43
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
44
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
45
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
46
|
Anjum S, Akhtar A, Aldaqal SM, Abduh MS, Ahmad H, Mustafa R, Naseer F, Sadia M, Ahmad T. Enhanced targeted treatment of cervical cancer using nanoparticle-based doxycycline delivery system. Sci Rep 2025; 15:2318. [PMID: 39824865 PMCID: PMC11742058 DOI: 10.1038/s41598-024-84203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol). Characterization of the HA-Chitosan nanoparticles showed a particle size of 284.6 nm, a zeta potential of 16.9 mV, and a polydispersity index of 0.314, with SEM confirming smooth surface morphology. The encapsulation efficiency of DOX-loaded nanoparticles was 89.32%, exhibiting a sustained release profile, with 67.45% released over 72 h in acidic conditions (pH 5.5). Cytotoxicity assays demonstrated a significant reduction in HeLa cell viability to 22% at 72 h, compared to 67% in normal HEK cells. Stability tests confirmed the maintenance of nanoparticle integrity and a consistent drug release profile over three months. Cell migration was reduced by 45%, and RT-PCR analysis revealed a 53% downregulation of TNF-α expression, suggesting effective targeting of inflammatory pathways. These results underscore the potential of HA-Chitosan-based DOX nanoparticles in improving cervical cancer treatment through enhanced targeted delivery and inhibition of tumor-promoting mechanisms.
Collapse
Affiliation(s)
- Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Ayesha Akhtar
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saleh M Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Hammad Ahmad
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad, Pakistan
| | - Riaz Mustafa
- Department of Pathology, University of Agriculture Faisalabad, Sub campus Toba Tek Singh, Faisalabad, Pakistan
| | - Faiza Naseer
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Maryam Sadia
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
47
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
48
|
YALÇIN TE, YETGİN C. Influence of Formulation Composition on the Characteristic Properties of 5-fluorouracil-loaded Liposomes. Turk J Pharm Sci 2025; 21:551-556. [PMID: 39801089 PMCID: PMC11730006 DOI: 10.4274/tjps.galenos.2024.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 01/16/2025]
Abstract
Objectives Variations in the types and quantities of excipients used to prepare liposomes can affect the physicochemical properties of liposome formulations. This study aimed to provide information about the design and fabrication of 5-fluorouracil (5-FU)-loaded liposome formulations using different lipid and cholesterol (CHOL) derivatives. Materials and Methods Passive loading via a small-volume incubation method was used to prepare liposomes. The particle size, polydispersity index, zeta potential, and encapsulation efficiency (EE%) of the formulations were determined. The release studies of the formulations were conducted using a Franz diffusion cell at 37 °C. In this study, a high-pressure liquid chromatography device was used to measure the amount of 5-FU. Results The mean particle sizes of all formulations were between 134 and 166 nm, and they had a negative charge on their surface. Increasing the cholesteryl hemisuccinate content reduced the size of the liposomes. Additionally, all formulations exhibited a low polydispersity index (0.3). The EE% of all formulations exceeded 30%. The in vitro release of 5-FU from liposome formulations followed the Korsemeyer-Peppas model. Conclusion Modifying the lipid and CHOL content in the formulations, as indicated by the experimental results, can change the characteristic properties of liposomes. The use of soybean phosphatidylcholine and cholesteryl hemisuccinate appears to be a promising combination for the preparation of hydrophilic drug-loaded liposome formulations.
Collapse
Affiliation(s)
- Tahir Emre YALÇIN
- Gazi University Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara, Türkiye
| | - Ceren YETGİN
- Gazi University Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara, Türkiye
| |
Collapse
|
49
|
Liu M, Sun Y, Wei Q, Zhang A, Wang S, Wang D, Dong Z, Ma X, Yan R, Wang Y. 4T1 Cell Membrane Biomimetic Nanovehicle for Enhanced Breast Cancer Treatment. ACS Med Chem Lett 2025; 16:51-58. [PMID: 39811139 PMCID: PMC11726363 DOI: 10.1021/acsmedchemlett.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, hollow mesoporous silica nanoparticles (HMSN) coated with a 4T1 tumor cell membrane were used to construct biomimetic nanomaterials (DTX@CHMSN) for the treatment of breast cancer. The nanodrug can improve the water solubility of polyenetaxel (DTX) by taking advantage of the special structure, good biocompatibility, and adjustable surface chemical properties of HMSN. Hollow mesoporous silica nanoparticles are coated with 4T1 cell membranes derived from homologous tumors (CHMSN). Adhesion glycoproteins on cancer cell membranes specifically bind to receptors on the cell membranes of the same cancer cell to target specific breast cancer tissues. At the same time, the cell membrane of the 4T1 tumor also contains CD47 protein, which can be specifically recognized by the immune system to produce immune escape. Therefore, the biomimetic nanomedicine DTX@CHMSN, with homologous targeting and immune escape ability, can accumulate in large quantities at the tumor site, reduce systemic toxicity, and thus improve the therapeutic effect.
Collapse
Affiliation(s)
- Mengkang Liu
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Sun
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuxian Wei
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Anna Zhang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - SaiFei Wang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zhipeng Dong
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaonan Ma
- The Public
Laboratory Platform, China Pharmaceutical
University, Nanjing 211198, China
| | - Ran Yan
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
50
|
Salvanou EA, Apostolopoulou A, Xanthopoulos S, Koelewijn S, van Overeem P, Laurent G, Bazzi R, Denat F, Roux S, Bouziotis P. 161Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2025; 18:248. [PMID: 39859720 PMCID: PMC11766487 DOI: 10.3390/ma18020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025]
Abstract
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer. More specifically, Au@TADOTAGA and NFAu@TADOTAGA NPs were efficiently radiolabeled with 161Tb, and their in vitro stability was assessed up to 21 d post-radiolabeling. Furthermore, their cytotoxic profile against 4T1 breast cancer cells was evaluated, and their ex vivo biodistribution characteristics were revealed after intratumoral injection in the same animal model. The enhanced retention at the tumor site urged us to evaluate the therapeutic effect of the [161Tb]Tb-NFAu@TADOTAGA nanosystem after intratumoral administration to 4T1-tumor-bearing mice, over a period of 24 days. Three different therapeutic protocols were performed in order to identify which therapeutic approach would offer the optimum results and identify the proposed nanosystem as a promising nanoscale brachytherapy agent.
Collapse
Affiliation(s)
- Evangelia-Alexandra Salvanou
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Adamantia Apostolopoulou
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Stavros Xanthopoulos
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Stuart Koelewijn
- Terthera b.v., Minervum 7070, 4817 ZK Breda, The Netherlands; (S.K.); (P.v.O.)
| | | | - Gautier Laurent
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Rana Bazzi
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, F-21078 Dijon, France;
| | - Stéphane Roux
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| |
Collapse
|