1
|
Wei L, Bo L, Luo C, Yin N, Jiang W, Qian F, Zhou A, Lu X, Guo H, Mao C. Transplantation of human umbilical cord-derived mesenchymal stem cells improves age-related ovarian functional decline via regulating the local renin-angiotensin system on inflammation and oxidative stress. Stem Cell Res Ther 2024; 15:377. [PMID: 39444026 PMCID: PMC11515572 DOI: 10.1186/s13287-024-03997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Age-related reproductive aging is a natural and irreversible physiological process, and delaying childbearing is increasingly common all over the world. Transplantation of mesenchymal stem cells (MSCs) is considered a new and effective therapy to restore ovarian function, but the relevant mechanisms remain unclear. Recently, it has been found that there is a local Renin-angiotensin system (RAS) in human ovary and it plays a key role. METHODS After collecting follicular fluid from women who received oocyte retrieval for pure male factor infertility, the level of RAS components in it were detected, and the correlation analysis by linear regression. Then, the in vivo experiments on female C57BL/6 mice were designed to measure ovarian function, and the transcription and translation levels of RAS pathway were detected by molecular biology methods. Moreover, the role of RAS in regulating inflammation and oxidative stress in the co-culture system were explored in in vitro experiments on KGN cells. RESULTS First, a total of 139 samples of analyzable follicular fluid were obtained. The local RAS of ovary, which is independent of systemic RAS (P > 0.05), is affected by age (Pearson r < 0, P < 0.05) and related to ovarian function, inflammation, oxidative stress indexes and assisted reproduction laboratory outcomes (P < 0.05). Next, the ovary/body weight of aging mice decreased significantly and serum sex hormones levels changed significantly (P < 0.01). The number of functional follicles decreased, while the atresia follicles increased (P < 0.05). After MSCs transplantation, all the above measures have been partially recovered (P < 0.05). Although several RAS components in aging ovary changed, MSCs only improved the expression level of AT1R (P < 0.05). Furthermore, the secretion ability and mitochondrial membrane potential of aging KGN cells decreased, while the intracellular ROS level and the aging cells ratio increased (P < 0.01). All the above measures have been partially recovered when co-cultured with MSCs (P < 0.05). After Ang(1-7) were added into the co-culture system, the above have been more significantly restored compared with Ang II (P < 0.05). Nevertheless, there was no statistical difference in estradiol level no matter which one was added (P > 0.05). CONCLUSIONS Together, our findings indicate that a novel possible mechanism to explain how stem cells restore age-related ovarian functional decline.
Collapse
Affiliation(s)
- Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Na Yin
- Obstetrics and Gynecology Department, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, 200030, China
| | - Wangtao Jiang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fei Qian
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Anwen Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xuanping Lu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huiping Guo
- Obstetrics and Gynecology Department, Zhangjiagang First People's Hospital Affiliated to Soochow University, Zhangjiagang, 215699, Jiangsu, China.
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
2
|
Przewocki J, Kossiński D, Łukaszuk A, Jakiel G, Wocławek-Potocka I, Ołdziej S, Łukaszuk K. Follicular Fluid Proteomic Analysis to Identify Predictive Markers of Normal Embryonic Development. Int J Mol Sci 2024; 25:8431. [PMID: 39126000 PMCID: PMC11313438 DOI: 10.3390/ijms25158431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Ageing populations, mass "baby-free" policies and children born to mothers at the age at which they are biologically expected to become grandmothers are growing problems in most developed societies. Therefore, any opportunity to improve the quality of infertility treatments seems important for the survival of societies. The possibility of indirectly studying the quality of developing oocytes by examining their follicular fluids (hFFs) offers new opportunities for progress in our understanding the processes of final oocyte maturation and, consequently, for predicting the quality of the resulting embryos and personalising their culture. Using mass spectrometry, we studied follicular fluids collected individually during in vitro fertilisation and compared their composition with the quality of the resulting embryos. We analysed 110 follicular fluids from 50 oocyte donors, from which we obtained 44 high-quality, 39 medium-quality, and 27 low-quality embryos. We identified 2182 proteins by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) using a TripleTOF 5600+ hybrid mass spectrometer, of which 484 were suitable for quantification. We were able to identify several proteins whose concentrations varied between the follicular fluids of different oocytes from the same patient and between patients. Among them, the most important appear to be immunoglobulin heavy constant alpha 1 (IgA1hc) and dickkopf-related protein 3. The first one is found at higher concentrations in hFFs from which oocytes develop into poor-quality embryos, the other one exhibits the opposite pattern. None of these have, so far, had any specific links to fertility disorders. In light of these findings, these proteins should be considered a primary target for research aimed at developing a diagnostic tool for oocyte quality control and pre-fertilisation screening. This is particularly important in cases where the fertilisation of each egg is not an option for ethical or other reasons, or in countries where it is prohibited by law.
Collapse
Affiliation(s)
- Janusz Przewocki
- Institute of Mathematics, University of Gdansk, 80-308 Gdańsk, Poland
- iYoni App—For Fertility Treatment, LifeBite, 10-763 Olsztyn, Poland; (D.K.); (K.Ł.)
| | - Dominik Kossiński
- iYoni App—For Fertility Treatment, LifeBite, 10-763 Olsztyn, Poland; (D.K.); (K.Ł.)
| | - Adam Łukaszuk
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH25 9RG, UK
| | - Grzegorz Jakiel
- Invicta Research and Development Center, 81-740 Sopot, Poland
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Izabela Wocławek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology UG & MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Krzysztof Łukaszuk
- iYoni App—For Fertility Treatment, LifeBite, 10-763 Olsztyn, Poland; (D.K.); (K.Ł.)
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
3
|
Hsu CF, Seenan V, Wang LY, Chen PC, Ding DC, Chu TY. Human peritoneal fluid exerts ovulation- and nonovulation-sourced oncogenic activities on transforming fallopian tube epithelial cells. Cancer Cell Int 2024; 24:231. [PMID: 38956560 PMCID: PMC11218150 DOI: 10.1186/s12935-024-03406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Secretory cells in the fallopian tube fimbria epithelium (FTE) are regarded as the main cells of origin of ovarian high-grade serous carcinoma (HGSC). Ovulation is the main cause of FTE oncogenesis, which proceeds through a sequence of TP53 mutations, chromosomal instability due to Rb/cyclin E aberration, in situ carcinoma (STIC), and metastasis to the ovary and peritoneum (metastatic HGSC). Previously, we have identified multiple oncogenic activities of the ovulatory follicular fluid (FF), which exerts the full spectrum of transforming activity on FTE cells at different stages of transformation. After ovulation, the FF is transfused into the peritoneal fluid (PF), in which the FTE constantly bathes. We wondered whether PF exerts the same spectrum of oncogenic activities as done by FF and whether these activities are derived from FF. By using a panel of FTE cell lines with p53 mutation (FT282-V), p53/CCNE1 aberrations (FT282-CCNE1), and p53/Rb aberrations plus spontaneous transformation, and peritoneal metastasis (FEXT2), we analyzed the changes of different transformation phenotypes after treating with FF and PF collected before or after ovulation. Similar to effects exhibited by FF, we found that, to a lesser extent, PF promoted anchorage-independent growth (AIG), migration, anoikis resistance, and peritoneal attachment in transforming FTE cells. The more transformed cells were typically more affected. Among the transforming activities exhibited by PF treatment, AIG, Matrigel invasion, and peritoneal attachment growth were higher with luteal-phase PF treatment than with the proliferative-phase PF treatment, suggesting an ovulation source. In contrast, changes in anoikis resistance and migration activities were similar in response to treatment with PF collected before and after ovulation, suggesting an ovulation-independent source. The overall transforming activity of luteal-phase PF was verified in an i.p. co-injection xenograft mouse model. Co-injection of Luc-FEXT2 cells with either FF or luteal-phase PF supported early peritoneal implantation, whereas co-injection with follicular-phase PF did not. This study, for the first time, demonstrates that PF from ovulating women can promote different oncogenic phenotypes in FTE cells at different stages of malignant transformation. Most of these activities, other than anoikis resistance and cell migration, are sourced from ovulation.
Collapse
Affiliation(s)
- Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Vaishnavi Seenan
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Liang-Yuan Wang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970, Taiwan
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan.
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970, Taiwan.
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan.
| |
Collapse
|
4
|
Seenan V, Hsu CF, Subramani K, Chen PC, Ding DC, Chu TY. Ovulation provides excessive coagulation and hepatocyte growth factor signals to cause postoperative intraabdominal adhesions. iScience 2024; 27:109788. [PMID: 38770140 PMCID: PMC11103365 DOI: 10.1016/j.isci.2024.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Postoperative adhesions show a higher occurrence in females aged 16-60, especially after pelvic surgeries. This study explores the role of ovulation in adhesion formation in mice. Ovarian surgery in mice with normal- or super-ovulation led to pronounced adhesions, whereas ovulation-defective Pgr-KO mice showed minimal adhesions. Specifically, exposure to ovulatory follicular fluid (FF) markedly increased the adhesion. The hazardous exposure time window was one day before to 2.5 days after the surgery. Mechanistically, early FF exposure triggered adhesions via the blood coagulation cascade, while later exposure relied on the HGF/cMET signaling pathway. Prophylactic administration of a thrombin inhibitor pre-operatively or a cMET inhibitor postoperatively effectively mitigated FF-induced adhesions, while COX inhibitor treatment exhibited no discernible effect. These findings underscore ovulation as a pivotal factor in the development of pelvic wound adhesions and advocate for targeted preventive strategies such as c-MET inhibition, scheduling surgeries outside the ovulatory period, or employing oral contraceptive measures.
Collapse
Affiliation(s)
- Vaishnavi Seenan
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Kanchana Subramani
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Department of Life Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| |
Collapse
|
5
|
Xie Y, Chen J, Liu K, Huang J, Zeng Y, Gao M, Qian Y, Liu L, Tan Y, Nie X. Differential expression of follicular fluid exosomal microRNA in women with diminished ovarian reserve. J Assist Reprod Genet 2024; 41:1087-1096. [PMID: 38321265 PMCID: PMC11052957 DOI: 10.1007/s10815-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.
Collapse
Affiliation(s)
- Ying Xie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Chen
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kailu Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingyu Huang
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yaqiong Zeng
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mengya Gao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yu Qian
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong Tan
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Xiaowei Nie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
6
|
Peliciari-Garcia RA, de Barros CF, Secio-Silva A, de Barros Peruchetti D, Romano RM, Bargi-Souza P. Multi-omics Investigations in Endocrine Systems and Their Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:187-209. [PMID: 38409422 DOI: 10.1007/978-3-031-50624-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Innovative techniques such as the "omics" can be a powerful tool for the understanding of intracellular pathways involved in homeostasis maintenance and identification of new potential therapeutic targets against endocrine-metabolic disorders. Over the last decades, proteomics has been extensively applied in the study of a wide variety of human diseases, including those involving the endocrine system. Among the most endocrine-related disorders investigated by proteomics in humans are diabetes mellitus and thyroid, pituitary, and reproductive system disorders. In diabetes, proteins implicated in insulin signaling, glucose metabolism, and β-cell activity have been investigated. In thyroid diseases, protein expression alterations were described in thyroid malignancies and autoimmune thyroid illnesses. Additionally, proteomics has been used to investigate the variations in protein expression in adrenal cancers and conditions, including Cushing's syndrome and Addison's disease. Pituitary tumors and disorders including acromegaly and hypopituitarism have been studied using proteomics to examine changes in protein expression. Reproductive problems such as polycystic ovarian syndrome and endometriosis are two examples of conditions where alterations in protein expression have been studied using proteomics. Proteomics has, in general, shed light on the molecular underpinnings of many endocrine-related illnesses and revealed promising biomarkers for both their detection and treatment. The capacity of proteomics to thoroughly and objectively examine complex protein mixtures is one of its main benefits. Mass spectrometry (MS) is a widely used method that identifies and measures proteins based on their mass-to-charge ratio and their fragmentation pattern. MS can perform the separation of proteins according to their physicochemical characteristics, such as hydrophobicity, charge, and size, in combination with liquid chromatography. Other proteomics techniques include protein arrays, which enable the simultaneous identification of several proteins in a single assay, and two-dimensional gel electrophoresis (2D-DIGE), which divides proteins depending on their isoelectric point and molecular weight. This chapter aims to summarize the most relevant proteomics data from targeted tissues, as well as the daily rhythmic variation of relevant biomarkers in both physiological and pathophysiological conditions within the involved endocrine system, especially because the actual modern lifestyle constantly imposes a chronic unentrained condition, which virtually affects all the circadian clock systems within human's body, being also correlated with innumerous endocrine-metabolic diseases.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Carolina Fonseca de Barros
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo de Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Taheri Moghadam M, Nazayer H, Azandeh S, Eftekhari Moghadam AR, Nikbakht R. The Effect of Normal Follicular Fluid on the Differentiation of PCOS Ovarian Stem Cells into Oocyte-Like Cells. Adv Biomed Res 2023; 12:259. [PMID: 38192893 PMCID: PMC10772787 DOI: 10.4103/abr.abr_151_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 01/10/2024] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is one of the causes of infertility for which treatment methods do not have a high rate of pregnancy. In this study, the stem cells in the follicular fluid (FF) of patients were grown in the normal FF, and their differentiation into oocytes was evaluated. Materials and Methods The FF of PCOS patients was centrifuged, and their cells were cultured with and without 20% normal FF for 2 weeks. The cells were evaluated for their morphology by inverted microscope and for markers of stem cells (NANOG and OCT4) and oocytes (zona pellucida (ZP) 2 and ZP3) by RT-PCR and immunocytochemistry. The amount of steroids was measured by enzyme-linked immunosorbent assay (ELISA). Results The cells were all round on day 0. After that, they had a heterogeneous morphology (fibroblast-like cells, epithelial-like cells, and round oocyte-like cells). In the first week, NANOG and OCT4 genes in the study group were less expressed than those in the control group (P < 0.0001) (~0.5-fold), while ZP2 and Z3 genes were more expressed (P < 0.0001) (~2-fold). In the second week, stem cell genes were more expressed in the control group (~2 fold), and oocyte genes were more expressed in the study group (P < 0.0001) (~2.5-3.11 fold). These results were also confirmed by immunocytochemistry. The amount of steroids was much higher in the study group (three times and five times in two weeks) (P < 0.0001). Conclusions Stem cells can be obtained from the FF of PCOS, and normal FF has a positive effect on the growth and maturation of oocyte-like cells in vitro.
Collapse
Affiliation(s)
- Mahin Taheri Moghadam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hanan Nazayer
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Azandeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali R. Eftekhari Moghadam
- Department of Anatomical Science, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Elias KM, Ng NW, Dam KU, Milne A, Disler ER, Gockley A, Holub N, Seshan ML, Church GM, Ginsburg ES, Anchan RM. Fertility restoration in mice with chemotherapy induced ovarian failure using differentiated iPSCs. EBioMedicine 2023; 94:104715. [PMID: 37482511 PMCID: PMC10435842 DOI: 10.1016/j.ebiom.2023.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Treatment options for premature ovarian insufficiency (POI) are limited to hormone replacement and donor oocytes. A novel induced pluripotent stem cell (iPSC) transplant paradigm in a mouse model has potential translational applications for management of POI. METHODS Mouse ovarian granulosa cell derived-iPSCS were labelled with green fluorescent protein (GFP) reporter and differentiated in vitro into oocytes. Differentiated cells were assayed for estradiol and progesterone secretion by enzyme-linked immunosorbent assays. After Fluorescence-Activated Cell Sorting (FACS) for the cell surface marker anti-Mullerian hormone receptor (AMHR2), enriched populations of differentiated cells were surgically transplanted into ovaries of mice that had POI secondary to gonadotoxic pre-treatment with alkylating agents. A total of 100 mice were used in these studies in five separate experiments with 56 animals receiving orthotopic ovarian injections of either FACS sorted or unsorted differentiated iPSCSs and the remaining animals receiving sham injections of PBS diluent. Following transplantation surgery, mice were stimulated with gonadotropins inducing oocyte development and underwent oocyte retrieval. Nine transplanted mice were cross bred with wild-type mice to assess fertility. Lineage tracing of resultant oocytes, F1 (30 pups), and F2 (42 pups) litters was interrogated by GFP expression and validation by short tandem repeat (STR) lineage tracing. FINDINGS [1] iPSCs differentiate into functional oocytes and steroidogenic ovarian cells which [2] express an ovarian (GJA1) and germ cell (ZP1) markers. [3] Endocrine function and fertility were restored in mice pretreated with gonadotoxic alkylating agents via orthotopic transplantation of differentiated iPSCS, thus generating viable, fertile mouse pups. INTERPRETATION iPSC-derived ovarian tissue can reverse endocrine and reproductive sequelae of POI. FUNDING Center for Infertility and Reproductive Surgery Research Award, Siezen Foundation award (RMA). Reproductive Scientist Development Program, Marriott Foundation, Saltonstall Foundation, Brigham Ovarian Cancer Research Fund (K.E).
Collapse
Affiliation(s)
- Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nicholas W Ng
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Kh U Dam
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Ankrish Milne
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Emily R Disler
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Alison Gockley
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nicole Holub
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Elizabeth S Ginsburg
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
9
|
Kanaka V, Drakakis P, Loutradis D, Tsangaris GT. Proteomics in the study of female fertility: an update. Expert Rev Proteomics 2023; 20:319-330. [PMID: 37874610 DOI: 10.1080/14789450.2023.2275683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions. AREAS COVERED The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure. EXPERT OPINION The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
10
|
Taggi M, Liuzzi F, Botticelli L, De Carlini S, Longo M, Donno V, Fabbiani L, La Marca A. Evidence for the expression of vasorin in the human female reproductive tissues. Gynecol Endocrinol 2023; 39:2224457. [PMID: 37331376 DOI: 10.1080/09513590.2023.2224457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Objective: To investigate the expression and localization of Vasorin (Vasn) in human female reproductive system. Methods: The presence of Vasorin was evaluated by RT-PCR and immunoblotting analyses in patient-derived endometrial, myometrial and granulosa cells (GCs) primary cultures. Immunostaining analyses were performed to detect Vasn localization in primary cultures and in ovarian and uterine tissues. Results: Vasn mRNA was detected in patient-derived endometrial, myometrial and GCs primary cultures without significant differences at the transcript level. Otherwise, immunoblotting analysis showed that Vasn protein levels were significantly higher in GCs than proliferative endometrial stromal cells (ESCs) and myometrial cells. Immunohistochemistry performed in ovarian tissues revealed that Vasn was expressed in the GCs of ovarian follicles at different stages of development with a higher immunostaining signal in mature ovarian follicles such as the antral follicle or on the surface of cumulus oophorus cells than in early-stage follicles. The immunostaining of uterine tissues showed that Vasn was expressed in the proliferative stroma endometrium while it was significantly less expressed in the secretory endometrium. Conversely, no protein immunoreactivity was revealed in health myometrial tissue. Conclusions: Our results revealed the presence of Vasn in the ovary and the endometrium. The pattern of Vasn expression and distribution suggests that this protein may have a role in the regulation of processes such as folliculogenesis, oocyte maturation, and endometrial proliferation.
Collapse
Affiliation(s)
- Marilena Taggi
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Liuzzi
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Serena De Carlini
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Longo
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Donno
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Antonio La Marca
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Viardot-Foucault V, Zhou J, Bi D, Takinami Y, Chan JKY, Lee YH. Dehydroepiandrosterone supplementation and the impact of follicular fluid metabolome and cytokinome profiles in poor ovarian responders. J Ovarian Res 2023; 16:107. [PMID: 37268990 PMCID: PMC10239139 DOI: 10.1186/s13048-023-01166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Poor ovarian responders (POR) are women undergoing in-vitro fertilization who respond poorly to ovarian stimulation, resulting in the retrieval of lower number of oocytes, and subsequently lower pregnancy rates. The follicular fluid (FF) provides a crucial microenvironment for the proper development of follicles and oocytes through tightly controlled metabolism and cell signaling. Androgens such as dehydroepiandrosterone (DHEA) have been proposed to alter the POR follicular microenvironment, but the impact DHEA imposes on the FF metabolome and cytokine profiles is unknown. Therefore, the objective of this study is to profile and identify metabolomic changes in the FF with DHEA supplementation in POR patients. METHODS FF samples collected from 52 POR patients who underwent IVF with DHEA supplementation (DHEA +) and without (DHEA-; controls) were analyzed using untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics and a large-scale multiplex suspension immunoassay covering 65 cytokines, chemokines and growth factors. Multivariate statistical modelling by partial least squares-discriminant regression (PLSR) analysis was performed for revealing metabolome-scale differences. Further, differential metabolite analysis between the two groups was performed by PLSR β-coefficient regression analysis and Student's t-test. RESULTS Untargeted metabolomics identified 118 FF metabolites of diverse chemistries and concentrations which spanned three orders of magnitude. They include metabolic products highly associated with ovarian function - amino acids for regulating pH and osmolarity, lipids such fatty acids and cholesterols for oocyte maturation, and glucocorticoids for ovarian steroidogenesis. Four metabolites, namely, glycerophosphocholine, linoleic acid, progesterone, and valine were significantly lower in DHEA + relative to DHEA- (p < 0.05-0.005). The area under the curves of progesterone glycerophosphocholine, linoleic acid and valine are 0.711, 0.730, 0.785 and 0.818 (p < 0.05-0.01). In DHEA + patients, progesterone positively correlated with IGF-1 (Pearson r: 0.6757, p < 0.01); glycerophosphocholine negatively correlated with AMH (Pearson r: -0.5815; p < 0.05); linoleic acid correlated with estradiol and IGF-1 (Pearson r: 0.7016 and 0.8203, respectively; p < 0.01 for both). In DHEA- patients, valine negatively correlated with serum-free testosterone (Pearson r: -0.8774; p < 0.0001). Using the large-scale immunoassay of 45 cytokines, we observed significantly lower MCP1, IFNγ, LIF and VEGF-D levels in DHEA + relative to DHEA. CONCLUSIONS In POR patients, DHEA supplementation altered the FF metabolome and cytokine profile. The identified four FF metabolites that significantly changed with DHEA may provide information for titrating and monitoring individual DHEA supplementation.
Collapse
Affiliation(s)
- Veronique Viardot-Foucault
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
| | - Jieliang Zhou
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yoshihiko Takinami
- Bruker Japan, 3-9 Yokohama City, Kanagawa, 220-0022 Japan
- Present Address: Kanomax Analytical Incorportated, Shimizu Suita City, Osaka Japan
| | - Jerry. K. Y. Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
- Obstetrics and Gynaecology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Yie Hou Lee
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore, 229899 Singapore
- Obstetrics and Gynaecology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
- Singapore-MIT Alliance for Research and Technoology, 1 CREATE Way, Singapore, 138602 Singapore
| |
Collapse
|
12
|
Zhang S, Mu L, Wang H, Xu X, Jia L, Niu S, Wang Y, Wang P, Li L, Chai J, Li Z, Zhang Y, Zhang H. Quantitative proteomic analysis uncovers protein-expression profiles during gonadotropin-dependent folliculogenesis in mice†. Biol Reprod 2023; 108:479-491. [PMID: 36477298 DOI: 10.1093/biolre/ioac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian follicle is the basic functional unit of female reproduction, and is composed of oocyte and surrounding granulosa cells. In mammals, folliculogenesis strictly rely on gonadotropin regulations to determine the ovulation and the quality of eggs. However, the dynamic changes of protein-expressing profiles in follicles at different developmental stages remain largely unknown. By performing mass-spectrometry-based quantitative proteomic analysis of mouse follicles, we provide a proteomic database (~3000 proteins) that covers three key stages of gonadotropin-dependent folliculogenesis. By combining bioinformatics analysis with in situ expression validation, we showed that our proteomic data well reflected physiological changes during folliculogenesis, which provided potential to predict unknown regulators of folliculogenesis. Additionally, by using the oocyte structural protein zona pellucida protein 2 as the internal control, we showed the possibility of our database to predict the expression dynamics of oocyte-expressing proteins during folliculogenesis. Taken together, we provide a high-coverage proteomic database to study protein-expression dynamics during gonadotropin-dependent folliculogenesis in mammals.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haoran Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junyi Chai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
The Effects of the Follicle-Stimulating Hormone on Human Follicular Fluid-Derived Stromal Cells. Int J Mol Sci 2023; 24:ijms24032450. [PMID: 36768772 PMCID: PMC9916742 DOI: 10.3390/ijms24032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The prevalence of infertility is getting higher over the years. The increasing age of first-time parents, although economically more desirable, can cause various biological problems from low natural conception rate to poor pregnancy outcomes. The growing demand for assisted reproductive technology procedures worldwide draws medical specialists' and scientists' attention to various elements which could lead to successful conception, such as follicular fluid (FF) and hormones. In this study, we analyzed the effects of exposure to follicle-stimulating hormone (FSH) on FF-derived stromal cells isolated from females admitted for treatment due to infertility, participating in assisted reproductive technologies procedures. We demonstrated that FF stromal cells are positive for mesenchymal stromal cell surface markers (CD90+, CD44+, CD166+) and showed that FSH has no impact on FF stromal cell morphology yet lowers proliferation rate. Using a real-time polymerase chain reaction method, we indicated that the expression of PTGS2 is significantly downregulated in FF sediment cells of patients who did not conceive; furthermore, we showed that FSH can affect the expression of ovarian follicle development and FSH response-related genes differentially depending on the length of exposure and that levels of ovulatory cascade genes differ in conceived and not-conceived patients' FF stromal cells. Using mass spectrometry analysis, we identified 97 proteins secreted by FF stromal cells. The identified proteins are related to stress response, positive regulation of apoptotic cell clearance and embryo implantation.
Collapse
|
14
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
15
|
Nejabati HR, Roshangar L, Nouri M. Follicular fluid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta 2023; 538:29-35. [PMID: 36368351 DOI: 10.1016/j.cca.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The decrease in the reproductive potential due to aging occurs as a gradual decline in the quantity and quality of the ovarian reserve, a phenomenon associated with risk of miscarriage, pregnancy loss, low ovarian stimulation, and oocyte abnormalities, such as chromosomal aneuploidies. Numerous studies have shown that the fertility potential of older women is decreased by changes to the cellular composition of the follicles. Additionally, a unique method of cellular communication has been identified which involves the release of extracellular vesicles (EVs) in various body fluids including follicular fluid (FF). The changing composition of EVs especially non-coding RNAs, such as miRNAs has been documented across a broad range of cell types during aging. Accordingly, alterations of miRNA cargo within FF-derived EVs due to increased age may serve as a potential predictor of oocyte quality. In this review we examine the relationship between FF EV miRNAs and ovarian aging.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Oxidative homeostasis in follicular fluid and reproductive outcomes - from bench to bedside. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2022; 21:276-284. [PMID: 36704764 PMCID: PMC9872000 DOI: 10.5114/pm.2022.124019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023]
Abstract
Free radicals and oxidant molecules are part of our organism in a stable balance. However, when addressing female infertility, questions about their role in oocyte quality arise. This review outlines the major alterations of redox homeostasis in the follicular fluid through pathophysiological conditions in female reproduction and its potential effect on IVF outcome. A review of the literature was accurately performed. Manuscripts investigating follicular fluid biomarkers, especially related to oxidant molecules, were screened and used in this review. Studies assessing the follicular reactive species were found and screened. Moreover, studies assessing the IVF outcomes related to biomarkers were considered. The results are provided in an analytical pathway. The study of biomarkers confirms the shift to enhanced oxidizing modification of macromolecules and antioxidative consumption in the follicular fluid of women undergoing IVF treatment. A lack of congruency in methods appears to be marked in the design of scientific studies. However, it is not clear whether redox disbalance has a disruptive effect on the oocyte competence or whether it plays a role in the oocyte maturation process. Red-ox balance plays a questionable role in IVF outcomes. Possible further insights may consider the antioxidant role of adjuvants during controlled ovarian stimulation cycles.
Collapse
|
17
|
Schon SB, Yang K, Schindler R, Jiang L, Neff LM, Seeley RJ, Marsh EE. Obesity-related alterations in protein expression in human follicular fluid from women undergoing in vitro fertilization. F&S SCIENCE 2022; 3:331-339. [PMID: 36096447 DOI: 10.1016/j.xfss.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare the proteomic composition of follicular fluid from women with normal weight vs. women with obesity but without a history of polycystic ovary syndrome or known ovarian dysfunction undergoing in vitro fertilization. DESIGN Cross-sectional. SETTING Academic medical center. PATIENT(S) Eight women with normal weight and 8 women with obesity undergoing in vitro fertilization and without a history of polycystic ovary syndrome, ovulatory dysfunction, diminished ovarian reserve, or known endometriosis were included in the analysis. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Proteomic assessment using liquid chromatography-mass spectrometry analysis. RESULT(S) The mean age of women with normal weight was similar to that of women with obesity (32.9 vs. 32.6 years, not significant). The mean body mass index of women with normal weight was 21.2 kg/m2 compared with a body mass index of 37.1 kg/m2 in women with obesity. A total of 1,174 proteins were identified with ≥2 peptides present. Twenty-five proteins were found to be significantly altered in the follicular fluid from women with obesity. Of these 25 proteins, 19 were up-regulated and 6 were down-regulated. Notably, C-reactive protein was 11-fold higher in the follicular fluid from women with obesity than in the follicular fluid from women with normal weight. CONCLUSION(S) Obesity is associated with dysregulation at the level of the follicle, including alterations in proteins related to inflammation and metabolism. These include proteins with emerging roles in energy homeostasis and follicular regulation.
Collapse
Affiliation(s)
- Samantha B Schon
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Kun Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Ronald Schindler
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Li Jiang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Chen A. Follicular fluid metabolome: a better alternative than serum metabolome for new insights on reproductive health? Fertil Steril 2022; 118:980-981. [PMID: 36273851 DOI: 10.1016/j.fertnstert.2022.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Grzeczka A, Graczyk S, Skowronska A, Skowronski MT, Kordowitzki P. Relevance of Vitamin D and Its Deficiency for the Ovarian Follicle and the Oocyte: An Update. Nutrients 2022; 14:nu14183712. [PMID: 36145088 PMCID: PMC9502977 DOI: 10.3390/nu14183712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
For many years, vitamin D (VD) has been known to be an essential micronutrient with important relevance not only for the skeletal system, but also for numerous other mammalian organ systems. Low levels of VD result in a VD deficiency, which is a global health problem. Moreover, VD deficiencies are linked to several pathologies, for instance, diseases of the cardiovascular system, diabetes mellitus, or sub- and infertility. In the past two decades, an increasing body of evidence has shown that adequate physiological levels of VD are crucial for the female gamete and its microenvironment, and VD deficiency has been associated with decreased live birth rates among women undergoing in vitro fertilization (IVF). With regard to the female reproductive tract, VD receptors (VDRs) have been detected in the ovary, endometrium, and the placenta. Although it has been reported that VD seems to be relevant for both calcium-dependent and independent pathways, its relevance for the oocyte’s developmental competence and life span remains elusive. Therefore, herein, we aim to provide an update on the importance of VD and VD deficiency for the oocyte and the follicular microenvironment.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum of the University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Mariusz T. Skowronski
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| | - Paweł Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
- Correspondence:
| |
Collapse
|
20
|
Schallmoser A, Einenkel R, Färber C, Sänger N. In vitro growth (IVG) of human ovarian follicles in frozen thawed ovarian cortex tissue culture supplemented with follicular fluid under hypoxic conditions. Arch Gynecol Obstet 2022; 306:1299-1311. [PMID: 35871693 PMCID: PMC9470640 DOI: 10.1007/s00404-022-06672-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Background Despite its clinical success rates, transplantation after ovarian tissue cryopreservation (OTC) remains a matter of concern. Certain cancer subtypes may lead to the transfer of malignant cells when transplantation of affected ovarian tissue is conducted. IVG and subsequent isolation of vital follicles obtained from frozen thawed ovarian tissue for further in vitro maturation (IVM) would expand current fertility protection techniques while reducing the risk of retransplanting malignant cells. Methods A total of 216 cortical biopsies from 3 patients were included in this study in 4 treatment groups. After freezing, thawing and 8 days of hypoxic tissue culture supplemented with different concentrations of human follicular fluid (HuFF) and follicle-stimulating hormone (FSH), follicles were isolated enzymatically and stained with calcein to determine follicular viability. Numbers and size of vital follicles were assessed by fluorescence microscopy (Ti2, Nikon) and specified by computer assisted, semi-automated measurement (NIS software, Nikon). To estimate the effect of in vitro culture on apoptosis, tissue sections were stained for nicked DNA (TUNEL) prior and after tissue culture. Results Analysing 3025 vital follicles, we observed significant differences [P < 0.01] regarding follicle size when hypoxic tissue culture was supplemented with HuFF compared with the control group on day 1, individual follicles reached sizes > 100 µm. Conclusions The results implicate that HuFF contains valuable factors contributing to significant IVG of follicles in human ovarian tissue and could be regarded as an additional tool in personalized fertility restoration prior to retransplantation of ovarian tissue.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Cara Färber
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
21
|
Jenabi M, Khodarahmi P, Tafvizi F, Bostanabad SZ. Evaluation of expression CXCL8 chemokine and its relationship with oocyte maturation and embryo quality in the intracytoplasmic sperm injection method. Mol Biol Rep 2022; 49:8413-8427. [PMID: 35781602 DOI: 10.1007/s11033-022-07660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The present study aimed to evaluate the expression of the chemokine CXCL8 in both mRNA and protein levels in the serum, follicular fluid (FF), and cumulus cells (CCs) and its relationship with oocyte maturation and embryo quality in women undergoing intracytoplasmic sperm injection (ICSI). METHODS A total of 87 women who underwent an ICSI cycle were evaluated in two groups, including the case group (female factor infertility) and the control group (fertile). In the serum, FF, and CCs, the protein and mRNA expression of CXCL8 were measured using immunosorbent assay and Real-Time PCR, respectively. The quality and quantity of the oocytes and embryos were assessed, and the relationship of protein and mRNA CXCL8 was evaluated with oocyte maturation and embryo quality. RESULTS The level of protein and mRNA of CXCL8 was significantly higher in the serum, FF, and CCs in the case group than in the control group. In the case group, the expression of mRNA and protein of CXCL8 had a significant increase in FF and CCs compared to serum; also, there was a CXCL8 protein significant increase in FF compared to CCs. The count of oocytes obtained, MII oocytes and the percentage of oocyte maturity significantly decreased in the case group. The expression of CXCL8 was inversely related to oocyte maturation, but no relationship was observed with embryo quality. CONCLUSIONS The elevated concentrations of CXCL8 in the serum and FF seem to be a predictor as a potential non-invasive biomarker for the oocyte maturation outcome in women with different causes of female factor infertility.
Collapse
Affiliation(s)
- Maryam Jenabi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Parvin Khodarahmi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | | |
Collapse
|
22
|
Ishak GM, Feugang JM, Pechanova O, Pechan T, Peterson DG, Willard ST, Ryan PL, Gastal EL. Follicular-fluid proteomics during equine follicle development. Mol Reprod Dev 2022; 89:298-311. [PMID: 35762042 DOI: 10.1002/mrd.23622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation. A total of 294 proteins were detected in FF (FDR <1%), corresponding to 65 common proteins and 124, 142, 167, 132, and 142 proteins in the predeviation, deviation, postdeviation, preovulatory, and impending ovulation groups, respectively. The higher expression of properdin and several other proteins belonging to the complement system during the deviation time and ovulation suggested their contribution in the selection of the future dominant follicle and ovulation. Apolipoprotein A-1 and antithrombin-III appeared to be important throughout folliculogenesis. The "complement and coagulation cascades" was the major KEGG pathway across all stages of follicle development. The significant expression of several proteins belonging to the serine-type endopeptidase indicated their likely contribution to follicle and oocyte development. Our data provide an extensive description and functional analyses of the equine FF proteome during follicle selection, development, and ovulation. This information will help improve understanding of the ovarian function and ovulatory dysfunctions and might serve as a reference for future biomarker discovery for oocyte quality assessment.
Collapse
Affiliation(s)
- Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
23
|
The Double Engines and Single Checkpoint Theory of Endometriosis. Biomedicines 2022; 10:biomedicines10061403. [PMID: 35740424 PMCID: PMC9219825 DOI: 10.3390/biomedicines10061403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a chronic disease characterized by the ectopic localization of the endometrial tissue in the peritoneal cavity. Consequently, it causes local pathological changes and systemic symptoms, affecting at least one in every ten women. This disease is difficult to diagnose early, it is prone to dissemination, is difficult to eradicate, tends to recur, and is regarded as “a cancer of no kill”. Indeed, the development of endometriosis closely resembles that of cancer in the way of mutagenesis, pelvic spreading, and immunological adaptation. While retrograde menstruation has been regarded as the primary cause of endometriosis, the role of ovulation and menstrual stimuli in the development of endometriosis has long been overlooked. The development of ovarian and peritoneal endometrioses, similar to the development of high-grade serous carcinoma in the fallopian tube fimbriae with intraperitoneal metastasis, depends highly on the carcinogens released during ovulation. Moreover, endometriosis carries an extremely hypermutated genome, which is non-inferior to the ultra-mutated endometrial cancer. The hypermutation would lead to an overproduction of new proteins or neoantigens. Because of this, the developing endometriosis may have to turn on the PD-1/PDL-1 “self-tolerance” checkpoint to evade immune surveillance, leaving an Achilles tendon for an immune checkpoint blockade. In this review, we present the double engines and single checkpoint theory of the genesis of endometriosis, provide the current pieces of evidence supporting the hypothesis, and discuss the new directions of prevention and treatment.
Collapse
|
24
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
25
|
Maghraby HA, Agameya AFM, Swelam MS, El Dabah NA, Ahmed OY. Consecutive versus concomitant follicle-stimulating hormone and highly purified human menopausal gonadotropin: A milder response but better quality. Clin Exp Reprod Med 2022; 49:135-141. [PMID: 35698776 PMCID: PMC9184884 DOI: 10.5653/cerm.2021.05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objective This study investigated the impact of two stimulation protocols using highly purified human menopausal gonadotropin (HP-hMG) on the endocrine profile, follicular fluid soluble Fas levels, and outcomes of intracytoplasmic sperm injection (ICSI) cycles. Methods This prospective clinical trial included 100 normal-responder women undergoing ovarian stimulation for ICSI; 55 patients received concomitant follicle-stimulating hormone (FSH) plus HP-hMG from the start of stimulation, while 45 patients received FSH followed by HP-hMG during mid/late follicular stimulation. The primary outcome was the number of top-quality embryos. The secondary outcomes were the number and percentage of metaphase II (MII) oocytes and the clinical pregnancy rate. Results The number of MII oocytes was significantly higher in the concomitant protocol (median, 13.0; interquartile range [IQR], 8.5–18.0 vs. 9.0 [8.0–13.0] in the consecutive protocol; p=0.009); however, the percentage of MII oocytes and the fertilization rate were significantly higher in the consecutive protocol (median, 90.91; IQR, 80.0–100.0 vs. 83.33 [75.0–93.8]; p=0.034 and median, 86.67; IQR, 76.9–100.0 vs. 77.78 [66.7–89.9]; p=0.028, respectively). No significant between-group differences were found in top-quality embryos (p=0.693) or the clinical pregnancy rate (65.9% vs. 61.8% in the consecutive vs. concomitant protocol, respectively). The median follicular fluid soluble Fas antigen level was significantly higher in the concomitant protocol (9,731.0 pg/mL; IQR, 6,004.5–10,807.6 vs. 6,350.2 pg/mL; IQR, 4,382.4–9,418.4; p=0.021). Conclusion Personalized controlled ovarian stimulation using HP-hMG during the late follicular phase led to a significantly lower response, but did not affect the quality of ICSI.
Collapse
Affiliation(s)
- Hassan Ali Maghraby
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Manal Shafik Swelam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermeen Ahmed El Dabah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ola Youssef Ahmed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Hsu CF, Seenan V, Wang LY, Chu TY. Ovulation Enhances Intraperitoneal and Ovarian Seedings of High-Grade Serous Carcinoma Cells Originating from the Fallopian Tube: Confirmation in a Bursa-Free Mouse Xenograft Model. Int J Mol Sci 2022; 23:ijms23116211. [PMID: 35682896 PMCID: PMC9181345 DOI: 10.3390/ijms23116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Recently, new paradigms for the etiology and origin of ovarian high-grade serous carcinoma (HGSC) have emerged. The carcinogens released during ovulation transform fallopian tube epithelial cells, exfoliating and metastasizing to the peritoneal organs, including the ovaries. Solid in vivo evidence of the paradigms in a mouse model is urgently needed but is hampered by the differing tubo-ovarian structures. In mice, there is a bursa structure surrounding the distal oviduct and ovary. This, on one hand, prevents the direct influence of ovulatory follicular fluid (FF) on the exfoliated tumor cells. On the other hand, it hinders the seeding of exfoliated tumor cells into the ovary. Methods: In this study, we created a bursa-free mouse xenograft model to examine the effect of superovulation on peritoneal and ovarian metastases of transformed human tubal epithelial cells after intraperitoneal injection in NSG mice. Results: The bursa-free mouse model showed a better effect of ovulation on peritoneal metastasis. In this model, superovulation increased the number of transformed human tubal epithelial cell seedlings after intraperitoneal injection. Compared to the bursa-intact state, bursa-free ovaries were more vulnerable to external tumor seeding in either normal ovulation or superovulation state. Conclusions: This study provides the first in vivo evidence that intraperitoneal spreading of tubal HGSC cells is enhanced by ovulation. This study also demonstrated a mouse model for studying ovary-peritoneum interaction in cancer development.
Collapse
Affiliation(s)
- Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
| | - Vaishnavi Seenan
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Liang-Yuan Wang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (C.-F.H.); (V.S.); (L.-Y.W.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
27
|
Proteomic Analysis of Human Follicular Fluid Reveals the Pharmacological Mechanisms of the Chinese Patent Drug Kunling Pill for Improving Diminished Ovarian Reserve. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5929694. [PMID: 35668784 PMCID: PMC9167067 DOI: 10.1155/2022/5929694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the pharmacological mechanism of a Chinese patent drug (Kunling Pill (KLP)) on improving diminished ovarian reserve based on proteomic analysis. Methods. A total of 18 patients divided into three groups (the normal ovary reserve (NOR), diminished ovary reserve (DOR), and KLP groups) undergoing assisted reproductive technology by standard ovarian stimulation protocols were recruited to collect follicular fluid. Data-independent acquisition mass spectrometry was used to identify differentially expressed proteins by nano-LC-MS/MS. Bioinformatic analysis was conducted to predict the functions and pathways of the identified proteins. Clinical, hormonal, and biochemical parameters were also analyzed in the three groups. Results. A total of 144 differentially expressed proteins were screened out, including 56 proteins that were downregulated and 88 proteins that were upregulated in the DOR group compared with the NOR group, while 27 proteins were shared in the KLP-treated group. Among them, 10 proteins were upregulated and 17 proteins were downregulated in the KLP-treated group compared with the DOR group. The most enriched biological processes accounted for 28 GO terms, including cellular process, biological regulation, metabolic process, and regulation of biological process. Significant pathways were associated with fatty acid elongation, fatty acid degradation, fatty acid metabolism, nicotinate and nicotinamide metabolism, and valine, leucine, and isoleucine degradation. Conclusion. Our study provides the proteome profiles of human follicular fluid from DOR patients treated by KLP. Functional analyses of proteome datasets revealed that core proteins (SAA1, MIF, and PRDX5) and related pathways (fatty acid metabolism, nicotinate and nicotinamide metabolism, and tyrosine and purine metabolism) are possible pharmacological mechanisms through which KLP improves DOR. Therefore, these findings may help better understand the complex mechanisms through which DOR is treated by the Chinese patent drug KLP.
Collapse
|
28
|
Proteomic Alterations in Follicular Fluid of Human Small Antral Follicles Collected from Polycystic Ovaries—A Pilot Study. Life (Basel) 2022; 12:life12030391. [PMID: 35330141 PMCID: PMC8954146 DOI: 10.3390/life12030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3–11 mm in diameter, perturbing the dominant follicle’s selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6–9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence.
Collapse
|
29
|
|
30
|
Souza TTS, van Tilburg MF, Bezerra MJB, Rola LD, Pereira LMC, Duarte JMB, Chaves MS, Melo LM, Moura AAAN, Freitas VJF. Global proteomic analysis of the follicular fluid from brown brocket deer (Mazama gouazoubira; Fisher, 1814). EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biol Reprod 2022; 106:274-290. [PMID: 35136962 DOI: 10.1093/biolre/ioac009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Oocyte quality is perhaps the most important limiting factor in female fertility; however, the current methods of determining oocyte competence are only marginally capable of predicting a successful pregnancy. We aim to review the predictive value of non-invasive techniques for the assessment of human oocytes and their related cells and biofluids that pertain to their developmental competence. Investigation of the proteome, transcriptome, and hormonal makeup of follicular fluid, as well as cumulus-oocyte complexes are currently underway; however, prospective randomized non-selection-controlled trials of the future are needed before determining their prognostic value. The biological significance of polar body morphology and genetics are still unknown and the subject of debate. The predictive utility of zygotic viscoelasticity for embryo development has been demonstrated, but similar studies performed on oocytes have yet to be conducted. Metabolic profiling of culture media using human oocytes are also limited and may require integration of automated, high-throughput targeted metabolomic assessments in real time with microfluidic platforms. Light exposure to oocytes can be detrimental to subsequent development and utilization of time-lapse imaging and morphometrics of oocytes is wanting. Polarized light, Raman microspectroscopy, and coherent anti-Stokes Raman scattering are a few novel imaging tools that may play a more important role in future oocyte assessment. Ultimately, the integration of chemistry, genomics, microfluidics, microscopy, physics, and other biomedical engineering technologies into the basic studies of oocyte biology, and in testing and perfecting practical solutions of oocyte evaluation, are the future for non-invasive assessment of oocytes.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Daniel Miranian
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Physiology, Urology, and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Ding Y, Jiang Y, Zhu M, Zhu Q, He Y, Lu Y, Wang Y, Qi J, Feng Y, Huang R, Yin H, Li S, Sun Y. Follicular fluid lipidomic profiling reveals potential biomarkers of polycystic ovary syndrome: A pilot study. Front Endocrinol (Lausanne) 2022; 13:960274. [PMID: 36176459 PMCID: PMC9513192 DOI: 10.3389/fendo.2022.960274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder associated with multiple metabolic conditions including obesity, insulin resistance, and dyslipidemia. PCOS is the most common cause of anovulatory infertility; however, the molecular diversity of the ovarian follicle microenvironment is not fully understood. This study aimed to investigate the follicular fluid (FF) lipidomic profiles in different phenotypes of PCOS and to explore novel lipid biomarkers. METHODS A total of 25 women with PCOS and 12 women without PCOS who underwent in vitro fertilization and embryo transfer were recruited, and their FF samples were collected for the lipidomic study. Liquid chromatography-tandem mass spectrometry was used to compare the differential abundance of FF lipids between patients with different PCOS phenotypes and controls. Subsequently, correlations between specific lipid concentrations in FF and high-quality embryo rate (HQER) were analyzed to further evaluate the potential interferences of lipid levels with oocyte quality in PCOS. Candidate biomarkers were then compared via receiver operating characteristic (ROC) curve analysis. RESULTS In total, 19 lipids were identified in ovarian FF. Of these, the concentrations of ceramide (Cer) and free fatty acids (FFA) in FF were significantly increased, whereas those of lysophosphatidylglycerol (LPG) were reduced in women with PCOS compared to controls, especially in obese and insulin-resistant groups. In addition, six subclasses of ceramide, FFA, and LPG were correlated with oocyte quality. Twenty-three lipid subclasses were identified as potential biomarkers of PCOS, and ROC analysis indicated the prognostic value of Cer,36:1;2, FFA C14:1, and LPG,18:0 on HQER in patients with PCOS. CONCLUSIONS Our study showed the unique lipidomic profiles in FF from women with PCOS. Moreover, it provided metabolic signatures as well as candidate biomarkers that help to better understand the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ying Ding
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yihong Jiang
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jia Qi
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yifan Feng
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Huang
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shengxian Li
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shengxian Li, ; Yun Sun,
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- *Correspondence: Shengxian Li, ; Yun Sun,
| |
Collapse
|
33
|
Mohammadi Yeganeh S, Nazarian H, Habibi B, Novin M, Salehpour S, Novin M. Expression analysis of genes and MicroRNAs involved in recurrent implantation failure: New noninvasive biomarkers of implantation. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_246_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Zhou W, Zhang T, Lian Y, Zhang W, Yang M, Li Y, Wang L, Yan X. Exosomal lncRNA and mRNA profiles in polycystic ovary syndrome: bioinformatic analysis reveals disease-related networks. Reprod Biomed Online 2022; 44:777-790. [DOI: 10.1016/j.rbmo.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
|
35
|
Ashrafnezhad Z, Naji M, Aleyasin A, Hedayatpour A, Mahdavinezhad F, Gharaei R, Qasemi M, Amidi F. Evaluating the Differential Expression of miR-146a, miR-222, and miR-9 in Matched Serum and Follicular Fluid of Polycystic Ovary Syndrome Patients: Profiling and Predictive Value. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:320-333. [PMID: 37727646 PMCID: PMC10506678 DOI: 10.22088/ijmcm.bums.11.4.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 09/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder of women in reproductive age with significant effects on reproductive and metabolic functions. Many molecular players may be involved in PCOS pathology; however, miRNAs possess great ability in gene expression control in normal ovarian function and folliculogenesis. We appraised the relative expression of miR-146a, miR-222, miR-9, and miR-224 in serum and follicular fluid (FF) of PCOS patients compared to control subjects. PCOS (n = 35) and control (n = 30) subjects were recruited in the study during their enrolment in IVF cycles. Serum and FF of human subjects were collected and stored. Total RNA was isolated from samples and cDNA was synthesized using miRNA-specific stem-loop RT primers. Quantitative real-time PCR was used to evaluate the expression of miRNAs relative to U6 expression. The predictive value of miRNAs' expression for discrimination of PCOS patients from control subjects was evaluated by receiver-operating characteristic (ROC) curve analysis. miR-224 was not detected in serum and FF samples. Significantly, higher levels of miR-146a and miR-9 in serum of PCOS group were detected. In contrast, relative expression of miR-146a and miR-9 significantly decreased in FF. In PCOS group, relative expression of all detected miRNAs was elevated in serum in comparison to FF, whereas in control group no change was noticed. Combination of FF miRNAs showed improved predictive value with area under the ROC curve (AUC) of 0.84, 93.8% sensitivity, and 83.3% specificity. Contradicting alternations of miRNAs in serum and FF are indicative of different sources of miRNAs in body fluids. Presumptive target genes of studied miRNAs in signalling pathways may show the potential role of these miRNA in folliculogenesis.
Collapse
Affiliation(s)
- Zhale Ashrafnezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ashraf Aleyasin
- Department of Obstetrics and Gynecology, Infertility Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Qasemi
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences,BIOCEV, Vestec, Czech Republic.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Sun J, Guo X, Yu P, Liang J, Mo Z, Zhang M, Yang L, Huang X, Hu B, Liu J, Ouyang Y, He M. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J Cell Mol Med 2021; 26:88-98. [PMID: 34854218 PMCID: PMC8742182 DOI: 10.1111/jcmm.17034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Vasorin (VASN) is an important transmembrane protein associated with development and disease. However, it is not clear whether the death of mice with VASN deficiency (VASN-/- ) is related to cardiac dysfunction. The aim of this research was to ascertain whether VASN induces pathological cardiac hypertrophy by targeting myosin light chain 7 (MYL7). VASN-/- mice were produced by CRISPR/Cas9 technology and inbreeding. PCR amplification, electrophoresis, real-time PCR and Western blotting were used to confirm VASN deficiency. Cardiac hypertrophy was examined by blood tests, histological analysis and real-time PCR, and key downstream factors were identified by RNA sequencing and real-time PCR. Western blotting, immunohistochemistry and electron microscopy analysis were used to confirm the downregulation of MYL7 production and cardiac structural changes. Our results showed that sudden death of VASN-/- mice occurred 21-28 days after birth. The obvious increases in cardiovascular risk, heart weight and myocardial volume and the upregulation of hypertrophy marker gene expression indicated that cardiac hypertrophy may be the cause of death in young VASN-/- mice. Transcriptome analysis revealed that VASN deficiency led to MYL7 downregulation, which induced myocardial structure abnormalities and disorders. Our results revealed a pathological phenomenon in which VASN deficiency may lead to cardiac hypertrophy by downregulating MYL7 production. However, more research is necessary to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Yu
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, China
| |
Collapse
|
37
|
DNase activity in human seminal plasma and follicular fluid and its inhibition by follicular fluid chelating agents. Reprod Biomed Online 2021; 43:1079-1086. [PMID: 34753679 DOI: 10.1016/j.rbmo.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
RESEARCH QUESTION What is the mechanism by which human follicular fluid inhibits seminal plasma DNase activity? DESIGN Human genomic DNA was incubated with human follicular fluid and seminal plasma (reaction mixture) under different experimental conditions; increasing volumes of human follicular fluid; proteinase K digested or heat inactivated human follicular fluid; and the addition of Ca2+ or Mg2+ to the reaction mixture. RESULTS Increasing volume of human follicular fluid resulted in a dose-dependent inhibition of seminal plasma DNase activity. Inhibition was not caused by proteins in the human follicular fluid as digestion with proteinase K or heat inactivation of human follicular fluid failed to abolish its inhibitory effect. Addition of divalent cations resulted in a reversion of the inhibitory effect, providing evidence that human follicular fluid inhibition of seminal plasma DNase activity seems to be mediated by a compound with chelating activity. Furthermore, incubation of genomic DNA with human follicular fluid in the presence of divalent cations served to elicit the existence of DNase activity. CONCLUSIONS Human follicular fluid seems to contain a molecule or molecules with chelating capacity that inhibits DNase activity of both follicular fluid and seminal plasma. Our findings provide new insight to understanding sperm preservation and the physiology of fertilization biology.
Collapse
|
38
|
Huang HS, Chu SC, Chen PC, Lee MH, Huang CY, Chou HM, Chu TY. Insuline-Like Growth Factor-2 (IGF2) and Hepatocyte Growth Factor (HGF) Promote Lymphomagenesis in p53-null Mice in Tissue-specific and Estrogen-signaling Dependent Manners. J Cancer 2021; 12:6021-6030. [PMID: 34539876 PMCID: PMC8425200 DOI: 10.7150/jca.60120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/31/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Trp53-/- mice are prone to develop lymphomas at old ages. Factors promoting this tumorigenesis are unknown. Here, we showed human ovulatory follicular fluid (FF) largely promotes lymphomagenesis in Trp53-/- mice at earlier ages. Meanwhile, we clarified that IGF2 and HGF are important cell transforming factors within FF. Methods: To induce tumor formation, 5% FFs, 100 ng/ml IGF2, 20 ng/ml HGF, or both IGF2 and HGF in a volume of 200 µl PBS, was injected into 8-wk-old female Trp53 -/- mice at the mammary fat pad. The injection was repeated weekly for up to 7 weeks or extending to 13 weeks to observe the accumulative incidence of lymphomagenesis. Immunohistochemistry staining and gene rearrangement analysis were used to identify the tumor type. Results: By injecting FF into the mammary fat pad weekly, lymphomas developed in 8/16 (50%) of mice by seven weeks. We identified IGF2 and HGF in FF is largely responsible for this activity. The same weekly injection of IGF2, HGF, and their combination induced lymphomas in 4/11 (36%), 3/8 (38%), and 6/9 (67%) mice, respectively. Interestingly, tumorigenesis was induced only when those were injected into the adipose tissues in the mammary gland, but not when injected into non-adipose sites. We also found this tumor-promoting activity is estradiol (E2)-dependent and relies on estrogen receptor (ER) α expression in the adipose stroma. No tumor or only tiny tumor was yielded when the ovaries were resected or when ER is antagonized. Finally, an extension of the weekly FF-injection to 13 weeks did not further increase the lymphomagenesis rate, suggesting an effect on pre-initiated cancer cells. Conclusions: Taken together, the study disclosed a robust tumor-promoting effect of IGF2 and HGF in the p53 loss-initiated lymphomagenesis depending on an adipose microenvironment in the presence of E2. In light of the clarity of this spontaneous tumor promotion model, we provide a new tool for studying p53-mediated lymphomagenesis and suggest that, as a chemoprevention test, this is a practical model to perform.
Collapse
Affiliation(s)
- Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,School of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Ming-Hsun Lee
- Department of Pathology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Chi-Ya Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Hsien-Ming Chou
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Life Science, Tzu Chi University, Hualien 970, Taiwan, ROC
| |
Collapse
|
39
|
Lewandowska AE, Fel A, Thiel M, Czaplewska P, Łukaszuk K, Wiśniewski JR, Ołdziej S. Compatibility of Distinct Label-Free Proteomic Workflows in Absolute Quantification of Proteins Linked to the Oocyte Quality in Human Follicular Fluid. Int J Mol Sci 2021; 22:7415. [PMID: 34299044 PMCID: PMC8304916 DOI: 10.3390/ijms22147415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
We present two separate label-free quantitative workflows based on different high-resolution mass spectrometers and LC setups, which are termed after the utilized instrument: Quad-Orbitrap (nano-LC) and Triple Quad-TOF (micro-LC) and their directed adaptation toward the analysis of human follicular fluid proteome. We identified about 1000 proteins in each distinct workflow using various sample preparation methods. With assistance of the Total Protein Approach, we were able to obtain absolute protein concentrations for each workflow. In a pilot study of twenty samples linked to diverse oocyte quality status from four donors, 455 and 215 proteins were quantified by the Quad-Orbitrap and Triple Quad-TOF workflows, respectively. The concentration values obtained from both workflows correlated to a significant degree. We found reasonable agreement of both workflows in protein fold changes between tested groups, resulting in unified lists of 20 and 22 proteins linked to oocyte maturity and blastocyst development, respectively. The Quad-Orbitrap workflow was best suited for an in-depth analysis without the need of extensive fractionation, especially of low abundant proteome, whereas the Triple Quad-TOF workflow allowed a more robust approach with a greater potential to increase in effectiveness with the growing number of analyzed samples after the initial effort of building a comprehensive spectral library.
Collapse
Affiliation(s)
- Aleksandra E. Lewandowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Anna Fel
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Marcel Thiel
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Krzysztof Łukaszuk
- INVICTA Fertility and Reproductive Center, Polna 64, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany;
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| |
Collapse
|
40
|
Pla I, Sanchez A, Pors SE, Pawlowski K, Appelqvist R, Sahlin KB, Poulsen LLC, Marko-Varga G, Andersen CY, Malm J. Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation. Hum Reprod 2021; 36:756-770. [PMID: 33313811 PMCID: PMC7891813 DOI: 10.1093/humrep/deaa335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S) The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Krzysztof Pawlowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, Warszawa 02-787, Poland
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - K Barbara Sahlin
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Liv La Cour Poulsen
- Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,First Department of Surgery, Tokyo Medical University, Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| |
Collapse
|
41
|
Brand H, Barnabas GD, Sapoznik S, Bahar-Shany K, Pozniak Y, Yung Y, Hourvitz A, Geiger T, Jacob-Hirsch J, Levanon K. NF-κB-miR-155 axis activation mediates ovulation-induced oncogenic effects in fallopian tube epithelium. Carcinogenesis 2021; 41:1703-1712. [PMID: 32614381 DOI: 10.1093/carcin/bgaa068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The fallopian tube secretory epithelial cells (FTSECs) are the cell-of-origin of most high-grade serous ovarian carcinomas (HGSOC). FTSECs are repeatedly exposed to inflammation induced by follicular fluid (FF) that is released with every ovulation cycle throughout a woman's reproductive years. Uninterrupted ovulation cycles are an established risk factor for HGSOC. Stimuli present in the FF induce an inflammatory environment which may cause DNA damage eventually leading to serous tumorigenesis. With the aim of elucidating possible mechanistic pathways, we established an 'ex vivo persistent ovulation model' mimicking the repeated exposure of human benign fallopian tube epithelium (FTE) to FF. We performed mass spectrometry analysis of the secretome of the ex vivo cultures as well as confirmatory targeted expressional and functional analyses. We demonstrated activation of the NF-κB pathway and upregulation of miR-155 following short-term exposure of FTE to human FF. Increased expression of miR-155 was also detected in primary HGSOC tumors compared with benign primary human FTE and corresponded with changes in the expression of miR-155 target genes. The phenotype of miR-155 overexpression in FTSEC cell line is of increased migratory and altered adhesion capacities. Overall, activation of the NF-κB-miR-155 axis in FTE may represent a possible link between ovulation-induced inflammation, DNA damage, and transcriptional changes that may eventually lead to serious carcinogenesis.
Collapse
Affiliation(s)
- Hadar Brand
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Stav Sapoznik
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Bahar-Shany
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yair Pozniak
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Yuval Yung
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ariel Hourvitz
- Sackler Faculty of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.,IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | - Keren Levanon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
42
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
43
|
Di Meo A, Sohaei D, Batruch I, Alexandrou P, Prassas I, Diamandis EP. Proteomic Profiling of the Human Tissue and Biological Fluid Proteome. J Proteome Res 2020; 20:444-452. [PMID: 33107741 DOI: 10.1021/acs.jproteome.0c00502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In-depth analysis of the human genome sequence has led to the annotation of approximately 20,000 human protein-coding genes. Although mass spectrometry (MS)-based workflows have made a great headway in achieving near genome-wide coverage, an equivalent complete map of the human proteome remains elusive. Delineating the spatial distribution of all human proteins at the organ, tissue, and cellular level can offer insight into health and disease and represents an excellent reference for the discovery of biomarkers and therapeutic targets. Here, we performed label-free liquid chromatography coupled to tandem MS (LC-MS/MS) to profile the normal human proteome. In total, we analyzed 117 samples from 46 normal tissues and organs at autopsy. Our high-resolution MS approach allowed for the quantification of 10,438 unique proteins. In order to expand our coverage of the human proteome, we combined our previously published biological fluid proteomic data from healthy individuals. We considered data from seven biological fluids, including urine, cerebrospinal fluid, synovial fluid, seminal plasma, sweat, cervical vaginal fluid, and nipple aspirate fluid. Overall, we generated tandem mass spectra corresponding to 13,028 unique human protein-coding genes. Although our analysis did not accomplish complete proteome coverage, it should be an important complementary resource for future biomarker discovery.
Collapse
Affiliation(s)
- Ashley Di Meo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada
| | - Dorsa Sohaei
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S, Canada
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada
| | - Pantelis Alexandrou
- Department of Forensic Medicine and Toxicology, School of Medicine, University of Athens, Athens 157 72, Greece
| | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5T 3L9, Canada
| | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| |
Collapse
|
44
|
Klobučar M, Pavlić SD, Car I, Severinski NS, Milaković TT, Badovinac AR, Pavelić SK. Mass spectrometry-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from follicular fluid. Biomol Concepts 2020; 11:153-171. [PMID: 33099516 DOI: 10.1515/bmc-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Couples with infertility issues have been assisted by in vitro fertilization reproduction technologies with high success rates of 50-80%. However, complications associated with ovarian stimulation remain, such as ovarian hyperstimulation. Oocyte quality is a significant factor impacting the outcome of in vitro fertilization procedures, but other processes are also critical for fertilization success. Increasing evidence points to aberrant inflammation as one of these critical processes reflected in molecular changes, including glycosylation of proteins. Here we report results from a MALDI-TOF-MS-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from the follicular fluid obtained from patients undergoing fertilization through either (1) assisted reproduction by modified natural cycle or (2) controlled ovarian stimulation (GnRH antagonist, GnRH Ant) protocols. Significant inflammatory-related differences between analyzed N-glycomes were observed from samples and correlated with the ovarian stimulation protocol used in patients.
Collapse
Affiliation(s)
- Marko Klobučar
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sanja Dević Pavlić
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Iris Car
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Neda Smiljan Severinski
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Tamara Tramišak Milaković
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Anđelka Radojčić Badovinac
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | | |
Collapse
|
45
|
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200077. [PMID: 33070736 DOI: 10.1098/rstb.2020.0077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of non-gametic components of the ejaculate (seminal fluid) in fertility and sperm competitiveness is now well established. Surprisingly, however, we know far less about female reproductive fluid (FRF) in the context of sexual selection, and insights into male-FRF interactions in the context of sperm competition have only recently emerged. Despite this limited knowledge, evidence from taxonomically diverse species has revealed insights into the effects of FRF on sperm traits that have previously been implicated in studies of sperm competition. Specifically, through the differential effects of FRF on a range of sperm traits, including chemoattraction and alterations in sperm velocity, FRF has been shown to exert positive phenotypic effects on the sperm of males that are preferred as mating partners, or those from the most compatible or genetically diverse males. Despite these tantalizing insights into the putative sexually selected functions of FRF, we largely lack a mechanistic understanding of these processes. Taken together, the evidence presented here highlights the likely ubiquity of FRF-regulated biases in fertilization success across a diverse range of taxa, thus potentially elevating the importance of FRF to other non-gametic components that have so far been studied largely in males. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 WA, Australia
| |
Collapse
|
46
|
Carter LE, Cook DP, Collins O, Gamwell LF, Dempster HA, Wong HW, McCloskey CW, Garson K, Vuong NH, Vanderhyden BC. COX2 is induced in the ovarian epithelium during ovulatory wound repair and promotes cell survival†. Biol Reprod 2020; 101:961-974. [PMID: 31347667 DOI: 10.1093/biolre/ioz134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
The ovarian surface epithelium (OSE) is a monolayer of cells surrounding the ovary that is ruptured during ovulation. After ovulation, the wound is repaired, however, this process is poorly understood. In epithelial tissues, wound repair is mediated by an epithelial-to-mesenchymal transition (EMT). Transforming Growth Factor Beta-1 (TGFβ1) is a cytokine commonly known to induce an EMT and is present throughout the ovarian microenvironment. We, therefore, hypothesized that TGFβ1 induces an EMT in OSE cells and activates signaling pathways important for wound repair. Treating primary cultures of mouse OSE cells with TGFβ1 induced an EMT mediated by TGFβRI signaling. The transcription factor Snail was the only EMT-associated transcription factor increased by TGFβ1 and, when overexpressed, was shown to increase OSE cell migration. A polymerase chain reaction array of TGFβ signaling targets determined Cyclooxygenase-2 (Cox2) to be most highly induced by TGFβ1. Constitutive Cox2 expression modestly increased migration and robustly enhanced cell survival, under stress conditions similar to those observed during wound repair. The increase in Snail and Cox2 expression with TGFβ1 was reproduced in human OSE cultures, suggesting these responses are conserved between mouse and human. Finally, the induction of Cox2 expression in OSE cells during ovulatory wound repair was shown in vivo, suggesting TGFβ1 increases Cox2 to promote wound repair by enhancing cell survival. These data support that TGFβ1 promotes ovulatory wound repair by induction of an EMT and activation of a COX2-mediated pro-survival pathway. Understanding ovulatory wound repair may give insight into why ovulation is the primary non-hereditary risk factor for ovarian cancer.
Collapse
Affiliation(s)
- Lauren E Carter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Olga Collins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisa F Gamwell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Holly A Dempster
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Howard W Wong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ken Garson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nhung H Vuong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
WNT and inflammatory signaling distinguish human Fallopian tube epithelial cell populations. Sci Rep 2020; 10:9837. [PMID: 32555344 PMCID: PMC7300082 DOI: 10.1038/s41598-020-66556-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Many high-grade serous carcinomas (HGSCs) likely originate in the distal region of the Fallopian tube’s epithelium (TE) before metastasizing to the ovary. Unfortunately, molecular mechanisms promoting malignancy in the distal TE are obfuscated, largely due to limited primary human TE gene expression data. Here we report an in depth bioinformatic characterization of 34 primary TE mRNA-seq samples. These samples were prepared from proximal and distal TE regions of 12 normal Fallopian tubes. Samples were segregated based on their aldehyde dehydrogenase (ALDH) activity. Distal cells form organoids with higher frequency and larger size during serial organoid formation assays when compared to proximal cells. Consistent with enrichment for stem/progenitor cells, ALDH+ cells have greater WNT signaling. Comparative evaluation of proximal and distal TE cell population’s shows heightened inflammatory signaling in distal differentiated (ALDH−) TE. Furthermore, comparisons of proximal and distal TE cell populations finds that the distal ALDH+ TE cells exhibit pronounced expression of gene sets characteristic of HGSC sub-types. Overall, our study indicates increased organoid forming capacity, WNT/inflammatory signaling, and HGSC signatures underlie differences between distal and proximal regions of the human TE. These findings provide the basis for further mechanistic studies of distal TE susceptibility to the malignant transformation.
Collapse
|
48
|
Liu X, Wang Y, Zhu P, Wang J, Liu J, Li N, Wang W, Zhang W, Zhang C, Wang Y, Shen X, Liu F. Human follicular fluid proteome reveals association between overweight status and oocyte maturation abnormality. Clin Proteomics 2020; 17:22. [PMID: 32528235 PMCID: PMC7282111 DOI: 10.1186/s12014-020-09286-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 05/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background Human follicular fluid (HFF), which is composed by essential proteins required for the follicle development, provides an important microenvironment for oocyte maturation. Recently, overweight status has been considered as a detrimental impact factor on oocyte maturation, but whether HFF proteome could provide protein markers for assessing overweight-based oocyte maturation deficiency is still unknown. Methods To reveal the HFF-based molecular characteristics associated with abnormal oocyte maturation, an iTRAQ-based comparative proteomic analysis was performed to investigate different HFF protein expression profiles from normal weight women and overweight status women. Results Two hundred HFF proteins were quantified in our data, of which 43% have not been overlapped by two previous publications. Compared with the HFF proteins of normal weight women, 22 up-regulated HFF proteins and 21 down-regulated HFF proteins were found in the overweight status women. PANTHER database showed these altered HFF proteins participated in development, metabolism, immunity, and coagulation, and STRING database demonstrated their complicated interaction networks. The confidence of proteomic outcome was verified by Western blot analysis of WAP four-disulfide core domain protein 2 (WFDC2), lactotransferrin (LTF), prostate-specific antigen (KLK3), fibronectin (FN1), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Further, ELISA assay indicated WFDC2 might be a potentially useful candidate HFF marker for the diagnosis of oocyte maturation arrest caused by overweight status. Conclusions Our work provided a new complementary high-confidence HFF dataset involved in oocyte maturation, and these altered HFF proteins might have clinical relevance and diagnostic and prognostic value for abnormal oocyte maturation in overweight status women.
Collapse
Affiliation(s)
- Xin Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Yanhua Wang
- Department of Medical Records Room, Weifang People's Hospital, Weifang, 261041 Shandong People's Republic of China
| | - Peng Zhu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Juan Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Ning Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Wendi Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Chengli Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Yanwei Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Xiaofang Shen
- Reproductive Center, Beijing BaoDao Obstetrics and Gynecology Hospital, Beijing, 100000 People's Republic of China
| | - Fujun Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| |
Collapse
|
49
|
Liu Y, Wu Y, Tian M, Luo W, Zhang C, Liu Y, Li K, Cheng W, Liu D. Protein Expression Profile in IVF Follicular Fluid and Pregnancy Outcome Analysis in Euthyroid Women with Thyroid Autoimmunity. ACS OMEGA 2020; 5:11439-11447. [PMID: 32478232 PMCID: PMC7254522 DOI: 10.1021/acsomega.0c00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The objective of this study is to investigate the influence of the thyroid autoantibodies on the protein expression in follicular fluid and the clinical outcome of assisted reproductive technology. A total of 602 patients treated for infertility were screened; 49 euthyroid women who were positive for thyroid autoantibodies and 63 negative controls were recruited. Follicular fluid samples were analyzed using proteomics. Validation of target proteins in follicular fluid was performed by using parallel reaction monitoring. Differentially expressed proteins in follicular fluid, clinical pregnancy rate, abortion rate, and live-birth rate were analyzed. Clinical pregnancy rates and take-home baby rates in the thyroid autoimmunity (TAI) group were less than in the control group, but abortion rates in the TAI group were higher than in the control group (all P < 0.005). A total of 49 proteins were differentially expressed in the TAI-positive group. In Gene Ontology secondary annotations of all the proteins identified, five types of proteins were associated with the reproductive process. Among 11 proteins quantitatively identified by parallel reaction monitoring, angiotensinogen and fetuin-B were associated with reproduction. These differentially expressed proteins identified in this study involved multiple pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Our study provides evidence that some differentially expressed proteins between TAI-positive women and controls were associated with the reproductive process and closely related to important physiologic effects, which could partially explain the underlying mechanism link between TAI and the adverse outcomes of assisted reproductive technology.
Collapse
Affiliation(s)
- Yuting Liu
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Department
of Endocrinology and Metabolism, The Ninth
People’s Hospital of Chongqing, Chongqing 400700, China
| | - Yijia Wu
- Reproductive
Medical Center, Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical
University, Chongqing 400010, China
| | - Mingyuan Tian
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wenwen Luo
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chanyu Zhang
- Reproductive
Medical Center, Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical
University, Chongqing 400010, China
| | - Yongjian Liu
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ke Li
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wei Cheng
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Dongfang Liu
- Department
of Endocrinology and Metabolism, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- ,
| |
Collapse
|
50
|
de Almeida Monteiro Melo Ferraz M, Fujihara M, Nagashima JB, Noonan MJ, Inoue-Murayama M, Songsasen N. Follicular extracellular vesicles enhance meiotic resumption of domestic cat vitrified oocytes. Sci Rep 2020; 10:8619. [PMID: 32451384 PMCID: PMC7248092 DOI: 10.1038/s41598-020-65497-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) contain multiple factors that regulate cell and tissue function. However, understanding of their influence on gametes, including communication with the oocyte, remains limited. In the present study, we characterized the proteome of domestic cat (Felis catus) follicular fluid EVs (ffEV). To determine the influence of follicular fluid EVs on gamete cryosurvival and the ability to undergo in vitro maturation, cat oocytes were vitrified using the Cryotop method in the presence or absence of ffEV. Vitrified oocytes were thawed with or without ffEVs, assessed for survival, in vitro cultured for 26 hours and then evaluated for viability and meiotic status. Cat ffEVs had an average size of 129.3 ± 61.7 nm (mean ± SD) and characteristic doughnut shaped circular vesicles in transmission electron microscopy. Proteomic analyses of the ffEVs identified a total of 674 protein groups out of 1,974 proteins, which were classified as being involved in regulation of oxidative phosphorylation, extracellular matrix formation, oocyte meiosis, cholesterol metabolism, glycolysis/gluconeogenesis, and MAPK, PI3K-AKT, HIPPO and calcium signaling pathways. Furthermore, several chaperone proteins associated with the responses to osmotic and thermal stresses were also identified. There were no differences in the oocyte survival among fresh and vitrified oocyte; however, the addition of ffEVs to vitrification and/or thawing media enhanced the ability of frozen-thawed oocytes to resume meiosis. In summary, this study is the first to characterize protein content of cat ffEVs and their potential roles in sustaining meiotic competence of cryopreserved oocytes.
Collapse
Affiliation(s)
| | - Mayako Fujihara
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
| | - Jennifer Beth Nagashima
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - Michael James Noonan
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Nucharin Songsasen
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| |
Collapse
|