1
|
Zheng B, Zheng Y, Hu W, Chen Z. Dissecting the networks underlying diverse brain disorders after prenatal glucocorticoid overexposure. Arch Toxicol 2024; 98:1975-1990. [PMID: 38581585 DOI: 10.1007/s00204-024-03733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.
Collapse
Affiliation(s)
- Baixiu Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Wang T, Li Q, Zhang S, Liu H, Jian W, Guo J. Patterns of gender inequality perception and depressive symptoms among Chinese adults: The mediating role of marital life satisfaction. J Affect Disord 2024; 354:634-641. [PMID: 38492649 DOI: 10.1016/j.jad.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES As one of the most severe public health issues, depressive symptoms have attracted wide attention around the world. This study aims to investigate the mediating role of marital life satisfaction in the relationship between gender inequality perception and depressive symptoms. METHODS Data were obtained from the China Family Panel Studies (CFPS) conducted in 2020. This study incorporated a total of 13,409 married residents aged 20 and above. RESULTS The residents with middle (B = 0.19, 95 % CI = 0.01, 0.40) or high perception of gender inequality (B = 0.55, 95 % CI = 0.34, 0.75) were more likely to develop depressive symptoms. Marital life satisfaction plays a mediating effect in the relationship between patterns of gender inequality perception and depressive symptoms, and the mediating effect accounted for 4.89 % or 1.37 % of the total impact in the residents with middle or high patterns of gender inequality perception. LIMITATIONS Further studies need to understand the mechanisms of perceived patterns of gender inequality and depressive symptoms, because the cross-sectional design in this study cannot draw causal inferences. CONCLUSION Patterns of gender inequality perception are significantly associated with depressive symptoms. Marital life satisfaction plays a mediating role in the relationship between patterns of gender inequality perception and depressive symptoms. It is plausible that nurturing healthy marital relationships could mitigate depressive symptoms in individuals who perceive high degrees of gender disparity.
Collapse
Affiliation(s)
- Ting Wang
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Qiaosheng Li
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Shouchuang Zhang
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Haoran Liu
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Weiyan Jian
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
| | - Jing Guo
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
3
|
Chen G, Zhang Y, Li R, Jin L, Hao K, Rong J, Duan H, Du Y, Yao L, Xiang D, Liu Z. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity. Neurobiol Stress 2024; 30:100624. [PMID: 38524250 PMCID: PMC10958482 DOI: 10.1016/j.ynstr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Tatemoto P, Pértille F, Bernardino T, Zanella R, Guerrero-Bosagna C, Zanella AJ. An enriched maternal environment and stereotypies of sows differentially affect the neuro-epigenome of brain regions related to emotionality in their piglets. Epigenetics 2023; 18:2196656. [PMID: 37192378 DOI: 10.1080/15592294.2023.2196656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/18/2023] Open
Abstract
Epigenetic mechanisms are important modulators of neurodevelopmental outcomes in the offspring of animals challenged during pregnancy. Pregnant sows living in a confined environment are challenged with stress and lack of stimulation which may result in the expression of stereotypies (repetitive behaviours without an apparent function). Little attention has been devoted to the postnatal effects of maternal stereotypies in the offspring. We investigated how the environment and stereotypies of pregnant sows affected the neuro-epigenome of their piglets. We focused on the amygdala, frontal cortex, and hippocampus, brain regions related to emotionality, learning, memory, and stress response. Differentially methylated regions (DMRs) were investigated in these brain regions of male piglets born from sows kept in an enriched vs a barren environment. Within the latter group of piglets, we compared the brain methylomes of piglets born from sows expressing stereotypies vs sows not expressing stereotypies. DMRs emerged in each comparison. While the epigenome of the hippocampus and frontal cortex of piglets is mainly affected by the maternal environment, the epigenome of the amygdala is mainly affected by maternal stereotypies. The molecular pathways and mechanisms triggered in the brains of piglets by maternal environment or stereotypies are different, which is reflected on the differential gene function associated to the DMRs found in each piglets' brain region . The present study is the first to investigate the neuro-epigenomic effects of maternal enrichment in pigs' offspring and the first to investigate the neuro-epigenomic effects of maternal stereotypies in the offspring of a mammal.
Collapse
Affiliation(s)
- Patricia Tatemoto
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo - Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thiago Bernardino
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
- Graduation Program in One Health, University of Santo Amaro, São Paulo Brazil
| | - Ricardo Zanella
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Adroaldo José Zanella
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
5
|
Grigoryan GA. The systemic effects of the enriched environment on the conditioned fear reaction. Front Behav Neurosci 2023; 17:1227575. [PMID: 37674611 PMCID: PMC10477375 DOI: 10.3389/fnbeh.2023.1227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
In this review, a hypothesis is proposed to explain the beneficial effect of an enriched environment (EE) on the conditioned fear reaction (CFR) from the perspective of a functional system of behavioral control. According to the hypothesis, the EE affects all behavioral act components, including the processing of sensory information, memory, motivational and reinforcing systems, and motor activities, which weakens the CFR. Animals raised in the EE have effects that are comparable to those of context (CTX) and CS pre-exposures at latent inhibition. An abundance of stimuli in the EE and constant contact with them provide the formation of CS-noUS and CTX-noUS connections that later, during CFR learning, slow down and diminish fear. The EE also contributes to faster processing of information and habituation to it. As a result, many stimuli in the context lose their significance, and subjects simply ignore them. And finally, the EE affects the motivational and reinforcing brain mechanisms, induces an impairment of search activity, and worsens memory consolidation, which leads to a reduction of CFR.
Collapse
Affiliation(s)
- Grigory A. Grigoryan
- The Laboratory of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Dandi Ε, Spandou E, Dalla C, Tata DA. Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: A systematic review. Eur J Neurosci 2023; 58:3003-3025. [PMID: 37461295 DOI: 10.1111/ejn.16089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 08/16/2023]
Abstract
Environmental factors interact with biological and genetic factors influencing the development and well-being of an organism. The interest in better understanding the role of environment on behavior and physiology led to the development of animal models of environmental manipulations. Environmental enrichment (EE), an environmental condition that allows cognitive and sensory stimulation as well as social interaction, improves cognitive function, reduces anxiety and depressive-like behavior and promotes neuroplasticity. In addition, it exerts protection against neurodegenerative disorders, cognitive aging and deficits aggravated by stressful experiences. Given the beneficial effects of EE on the brain and behavior, preclinical studies have focused on its protective role as an alternative, non-invasive manipulation, to help an organism to cope better with stress. A valid, reliable and effective animal model of chronic stress that enhances anxiety and depression-like behavior is the chronic unpredictable mild stress (CUMS). The variety of stressors and the unpredictability in the time and sequence of exposure to prevent habituation, render CUMS an ethologically relevant model. CUMS has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis, elevation in the basal levels of stress hormones, reduction in brain volume, dendritic atrophy and alterations in markers of synaptic plasticity. Although numerous studies have underlined the compensatory role of EE against the negative effects of various chronic stress regimens (e.g. restraint and social isolation), research concerning the interaction between EE and CUMS is sparse. The purpose of the current systematic review is to present up-to-date research findings regarding the protective role of EE against the negative effects of CUMS.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci 2023; 46:488-502. [PMID: 37031050 PMCID: PMC10192130 DOI: 10.1016/j.tins.2023.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Insulin-like growth factor 2 (IGF2) emerged as a critical mechanism of synaptic plasticity and learning and memory. Deficits in IGF2 in the brain, serum, or cerebrospinal fluid (CSF) are associated with brain diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Increasing IGF2 levels enhances memory in healthy animals and reverses numerous symptoms in laboratory models of aging, neurodevelopmental disorders, and neurodegenerative diseases. These effects occur via the IGF2 receptor (IGF2R) - a receptor that is highly expressed in neurons and regulates protein trafficking, synthesis, and degradation. Here, I summarize the current knowledge regarding IGF2 expression and functions in the brain, particularly in memory, and propose a novel conceptual model for IGF2/IGF2R mechanisms of action in brain health and diseases.
Collapse
|
8
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
9
|
Lu J, Jin K, Jiao J, Liu R, Mou T, Chen B, Zhang Z, Jiang C, Zhao H, Wang Z, Zhou R, Huang M. YY1 (Yin-Yang 1), a transcription factor regulating systemic inflammation, is involved in cognitive impairment of depression. Psychiatry Clin Neurosci 2023; 77:149-159. [PMID: 36436207 DOI: 10.1111/pcn.13510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
AIM Clinical and preclinical studies suggest that alterations in the peripheral and brain immune system are associated with the pathophysiology of depression, also leading to changes in local glucose metabolism in the brain. Here, the authors identified Yin-Yang 1 (YY1), a transcription factor closely associated with central and peripheral inflammation. METHODS Plasma levels of YY1, interleukin (IL) 6, and IL-1β in major depressive disorder (MDD) were collected before and after treatment with vortioxetine, and correlation with clinical and cognitive scores was studied. Chronic unpredictable mild stress was treated with vortioxetine. Micropositron emission tomography (microPET) was used to analyze glucose metabolism and mRNA, and the protein level of the YY1-nuclear factor κB (NF-κB)-IL-1β inflammatory pathway were measured in related brain regions. RESULTS Plasma levels of YY1 and IL-1β were significantly increased in MDD and decreased after treatment with vortioxetine. Meanwhile, the level of YY1 in plasma was negatively correlated with cognitive functions in patients with MDD and positively correlated with the level of IL-1β in plasma. Compared with the control group, in chronic unpredictable mild stress rats, (microPET) analysis showed that the decrease of glucose metabolism in the hippocampus, entorhinal cortex, amygdala, striatum, and medial prefrontal cortex was reversed after treatment. mRNA and protein level of related molecular in YY1-NF-κB-IL-1β inflammatory pathway decreased in the hippocampus and was reversed by vortioxetine. CONCLUSION The current study suggests that the YY1-NF-κB-IL-1β inflammatory pathway may play an essential role in both mood changes and cognitive impairment in depression, and may be associated with changes in glucose metabolism in emotion regulation and cognition. These findings provide new evidence for the inflammatory mechanisms of depression.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Longquan City People's Hospital, Lishui, 323799, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zhihan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Salimi M, Eskandari F, Khodagholi F, Abdollahifar MA, Hedayati M, Zardooz H, Keyhanmanesh R. Perinatal stress exposure induced oxidative stress, metabolism disorder, and reduced GLUT-2 in adult offspring of rats. Hormones (Athens) 2022; 21:625-640. [PMID: 35843978 DOI: 10.1007/s42000-022-00383-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring. METHODS In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring. RESULTS The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged. CONCLUSION Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.
Collapse
Affiliation(s)
- Mina Salimi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, PO Box: 5166614756, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran.
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Maternal stress induced endoplasmic reticulum stress and impaired pancreatic islets’ insulin secretion via glucocorticoid receptor upregulation in adult male rat offspring. Sci Rep 2022; 12:12552. [PMID: 35869151 PMCID: PMC9307850 DOI: 10.1038/s41598-022-16621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to perinatal (prenatal and/or postnatal) stress is considered as a risk factor for metabolic disorders in later life. Accordingly, this study aimed to investigate the perinatal stress effects on the pancreatic endoplasmic reticulum (ER) stress induction, insulin secretion impairment and WFS1 (wolframin ER transmembrane Glycoprotein, which is involved in ER homeostasis and insulin secretion) expression changes, in rat offspring. According to the dams’ period of exposure to variable stress, their male offspring were divided into, control (CTRL); pre-pregnancy, pregnancy, lactation stress (PPPLS); pre-pregnancy stress (PPS); pregnancy stress (PS); lactation stress (LS); pre-pregnancy, pregnancy stress (PPPS); pregnancy, lactation stress (PLS); pre-pregnancy, lactation stress (PPLS) groups. Offspring pancreases were removed for ER extraction and the assessment of ER stress biomarkers, WFS1 gene DNA methylation, and isolated islets’ insulin secretion. Glucose tolerance was also tested. In the stressed groups, maternal stress significantly increased plasma corticosterone levels. In PPS, PS, and PPPS groups, maternal stress increased Bip (Hsp70; heat shock protein family A member 4), Chop (Ddit3; DNA- damage inducible transcript3), and WFS1 protein levels in pancreatic extracted ER. Moreover, the islets’ insulin secretion and content along with glucose tolerance were impaired in these groups. In PPS, PS, LS and PPPS groups, the pancreatic glucocorticoid receptor (GR) expression increased. Maternal stress did not affect pancreatic WFS1 DNA methylation. Thus, maternal stress, during prenatal period, impaired the islets’ insulin secretion and glucose homeostasis in adult male offspring, possibly through the induction of ER stress and GR expression in the pancreas, in this regard the role of WFS1 protein alteration in pancreatic ER should also be considered.
Collapse
|
12
|
Rao J, Cao X. Construction of Resource Ecological Compensation Mechanism Model under Rural Leisure Sports Environment. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:2987270. [PMID: 36213021 PMCID: PMC9536931 DOI: 10.1155/2022/2987270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
In order to solve the problem of resource ecological compensation, this paper proposed a model of resource ecological compensation mechanism based on a rural leisure sports environment. The model is carried out in many places in China. The survey data involves 31 provinces, 10 years, and 43 indicators, with a total of 43 × 10 × 31 = 13,330 data. The preliminary basis of mechanism construction is summarized from four aspects. Finally, make full use of modern information technology to improve the network platform of the compensation mechanism, promote the efficient allocation and comprehensive utilization of ecotourism resources, and lay a solid foundation for establishing a reasonable and perfect resource ecological compensation mechanism and ensuring the long-term and stable operation of the mechanism. Through the experiment, it is found that the timely and effective publication of information can eliminate the inner estrangement between the two sides, so as to make the behavior of both sides more rational. A special information feedback department is established to deal with the opinions put forward by all compensation parties in tourism development, extract effective information, summarize and publish reasonable guidance information, and guide the compensation of both sides to an ideal balance through the feedback of this information. The effectiveness of the experiment is verified.
Collapse
Affiliation(s)
- Juan Rao
- College of Physical Education, Hunan Agricultural University, ChangSha 410128, HuNan, China
| | - Xiaofen Cao
- College of Orient Science and Technology, Hunan Agricultural University, Changsha 410128, HuNan, China
| |
Collapse
|
13
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
14
|
Fu Y, Liu H, He L, Ma S, Chen X, Wang K, Zhao F, Qi F, Guan S, Liu Z. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the Hippocampus of offspring. Behav Brain Res 2022; 433:114009. [PMID: 35850398 DOI: 10.1016/j.bbr.2022.114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Numerous clinical and animal studies have found that antenatal chronic stress can lead to pathological changes the hippocampal development from embryos to adult, but the mechanisms are not well understood. Proteomic analyses provide a new insight to explore the potential mechanisms of this impairment. In this study, gestating rats were subjected to chronic unpredictable mild stress (CUMS) during pregnant days using nine different stimulations, and the changes of the learning and memory performance and the expression of proteins in the hippocampus of offspring were measured. It was found that prenatal chronic stress led to growth retardation, impaired spatial learning and memory ability in the offspring. Furthermore, prenatal stress caused various degrees of damage to neurons, Nissl body, mitochondria and synaptic structures in hippocampal CA3 region of offspring. In addition, 26 significantly different expressed proteins (DEPs) were found between the two groups by using isoquantitative tag-based relative and absolute quantification (iTRAQ) proteomics analysis. Further analyses of these DEPs showed that involved with different molecular functions and several biological processes, such as biological regulation and metabolic processes. Among these, the KEGG pathway enrichment showed that learning and memory impairment was mainly associated with the cyclic guanosine monophosphate protein kinase G (cGMP-PKG) pathway. At the same time, compared with OPC group, the NO, nNOS and cGMP level were significantly decreased, and the expression of PKG protein was also dropped. All of these results suggested that pregnant rats exposed to chronic psychological stress might impair spatial learning and memory ability of offspring, by disturbing the NO/cGMP/PKG signaling pathway.
Collapse
Affiliation(s)
- Youjuan Fu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hongya Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ling He
- Obstetrics and Gynecology Center, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Shuqin Ma
- Obstetrics and Gynecology Center, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xiaohui Chen
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kai Wang
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Feng Zhao
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Faqiu Qi
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Suzhen Guan
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Zhihong Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
15
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
16
|
Macartney EL, Lagisz M, Nakagawa S. The Relative Benefits of Environmental Enrichment on Learning and Memory are Greater When Stressed: A Meta-analysis of Interactions in Rodents. Neurosci Biobehav Rev 2022; 135:104554. [PMID: 35149103 DOI: 10.1016/j.neubiorev.2022.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Environmental enrichment ("EE") is expected to alleviate the negative effects of stress on cognitive performance. However, there are complexities associated with interpreting interactions that obscure determining the benefit EE may play in mitigating the negative effects of stress. To clarify these complexities, we conducted a systematic review with meta-analysis on the main and interactive effects of EE and stress on learning and memory in rodents. We show that EE and stress interact 'synergistically' where EE provides a greater relative benefit to stressed individuals compared to those reared in conventional housing. Importantly, EE can fully-compensate for the negative effects of stress where stressed individuals with EE performed equally to enriched individuals without a stress manipulation. Additionally, we show the importance of other mediating factors, including the order of treatment exposure, duration and type of stress, type of EE, and type of cognitive assays used. This study not only quantifies the interactions between EE and stress, but also provides a clear example for how to conduct and interpret meta-analysis of interactions.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| |
Collapse
|
17
|
Razavinasab M, Parsania S, Nikootalab M, Khaleghi M, Saleki K, Banazadeh M, Shabani M. Early environmental enrichment prevents cognitive impairments and developing addictive behaviours in a mouse model of prenatal psychological and physical stress. Int J Dev Neurosci 2022; 82:72-84. [PMID: 34845740 DOI: 10.1002/jdn.10161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
Environmental enrichment (EE) has shown remarkable effects in improving cognition and addictive behaviour. We tested whether EE could help recover from prenatal stress exposure. Mature Swiss Webster male and virgin female mice were placed together until vaginal plugs were detectable. Next, pregnant rodents were randomized into the control, physically and psychologically stressed groups. The application of stress was initiated on the 10th day of pregnancy and persisted for a week to induce stress in the mice. Open field and elevated plus-maze (EPM) tests were utilized as explorative and anxiety assays, respectively. A passive avoidance shuttle-box test was carried out to check anxiety-modulated behaviour. Morris water maze (MWM) test was undertaken to evaluate spatial learning and memory. Conditioned place preference (CPP) test was selected for evaluation of tendency to morphine consumption. Our results showed that prenatal stress elevated anxiety-like behaviour in the offspring which EE could significantly alleviate after weaning. We also found a higher preference for morphine use in the physical stress and psychological stress offspring group. However, no difference was observed among the genders. Application of EE for the stress group improved several parameters of the cognitive behaviour significantly. Although prenatal stress can lead to detrimental behavioural and cognitive outcomes, it can in part be relieved by early exposure to EE. However, some outcomes linked to prenatal stress exposure may not be diminished by EE therapy. In light of such irreversible effects, large-scale preventive actions promoting avoidance from stress during pregnancy should be advised.
Collapse
Affiliation(s)
- Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahnaz Parsania
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Nikootalab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Khaleghi
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Dong Y, Chen S, Wang Z, Ma Y, Chen J, Li G, Zhou J, Ren Y, Ma H, Xie J, Li H, Zhu Z. Trends in Research of Prenatal Stress From 2011 to 2021: A Bibliometric Study. Front Pediatr 2022; 10:846560. [PMID: 35874593 PMCID: PMC9298743 DOI: 10.3389/fped.2022.846560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maternal stress during pregnancy can raise the risk of mental disorders in offspring. The continuous emergence of clinical concepts and the introduction of new technologies are great challenges. In this study, through bibliometric analysis, the research trends and hotspots on prenatal stress (PS) were explored to comprehend clinical treatments and recommend future scientific research directions. METHODS Studies on PS published on the Web of Science Core Collection (WoSCC) database between 2011 and 2021 were reviewed. Bibliometric analysis was conducted according to the number of publications, keywords, journals, citations, affiliations, and countries. With the data collected from the WoSCC, visualization of geographic distribution; clustering analysis of keywords, affiliations, and authors; and descriptive analysis and review of PS were carried out. RESULTS A total of 7,087 articles published in 2011-2021 were retrieved. During this period, the number of publications increased. Psychoneuroendocrinology is the leading journal on PS. The largest contributor was the United States. The University of California system was leading among institutions conducting relevant research. Wang H, King S, and Tain YL were scholars with significant contributions. Hotspots were classified into four clusters, namely, pregnancy, prenatal stress, oxidative stress, and growth. CONCLUSION The number of studies on PS increased. Journals, countries, institutions, researchers with the most contributions, and most cited articles worldwide were extracted. Studies have mostly concentrated on treating diseases, the application of new technologies, and the analysis of epidemiological characteristics. Multidisciplinary integration is becoming the focus of current development. Epigenetics is increasingly used in studies on PS. Thus, it constitutes a solid foundation for future clinical medical and scientific research.
Collapse
Affiliation(s)
- Yankai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhifei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yao Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jinfeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Ge Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jiahao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yating Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Hengyu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Juanping Xie
- School of Medicine, Qinba Chinese Medicine Resources R&D Center, Ankang University, Ankang, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| |
Collapse
|
19
|
Li J, Yin J, Waqas A, Huang Z, Zhang H, Chen M, Guo Y, Rahman A, Yang L, Li X. Quality of Life in Mothers With Perinatal Depression: A Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:734836. [PMID: 35242060 PMCID: PMC8886107 DOI: 10.3389/fpsyt.2022.734836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The prevalence of perinatal depression is high and its adverse effects on mothers and infants are extensive. Several studies have explored the relationship between perinatal depression and health-related quality of life (HRQoL), but little is known about the nature and magnitude of this effect. The objectives of this study were to evaluate the HRQoL of mothers with perinatal depression and compare the HRQoL of depressed mothers with that of non-depressed mothers. METHODS A systematic review was performed according to the PRISMA guidelines. PubMed, EMBASE, Scopus, PsycINFO, Web of Science, Cochrane Central Register, the China National Knowledge Infrastructure, the VIP Database, and the Wan Fang Database were searched. The retrieval time was from the establishment of the database to July 2020. A series of meta-analyses were run for each outcome pertaining to HRQoL sub-measures. Subgroup analyses were conducted based on country income category and time period. RESULTS Of 7,945 studies identified, 12 articles were included in the meta-analysis, providing HRQoL data for 4,392 mothers. Compared with non-depressed mothers, mothers with perinatal depression reported significantly poor scores across all the quality-of-life domains. Mixed-effects analysis showed that there was no difference in the HRQoL scores of mothers with antepartum and postpartum depression. Mothers with perinatal depression in higher-income countries reported higher disability on role-physical (p = 0.02) and social functioning domains (p = 0.001) than those from lower-income countries. LIMITATIONS Due to insufficient data, no regression analysis was performed. The inability to accurately determine the difference in HRQoL between antepartum and postpartum depression was because of the restriction of the included studies. Moreover, most of the included studies were conducted in middle-income countries and may have an impact on the applicability of the results. Subgroup analyses are observational and not based on random comparisons. The results of subgroup analyses should be interpreted with caution. CONCLUSION HRQoL is compromised in mothers with perinatal depression. Continuous efforts are required to improve the HRQoL of perinatal depressed mothers.Systematic Review Registration: CRD42020199488.
Collapse
Affiliation(s)
- Jiaying Li
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| | - Juan Yin
- School of Nursing, Dalian University, Dalian, China
| | - Ahmed Waqas
- Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| | - Zeyu Huang
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| | - Hongji Zhang
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| | - Manqing Chen
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| | - Yufei Guo
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| | - Atif Rahman
- Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| | - Lei Yang
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomei Li
- School of Nursing, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Cai Z, Hu W, Wu R, Zheng S, Wu K. Bioinformatic analyses of hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. Environ Health Prev Med 2022; 27:38. [PMID: 36198577 PMCID: PMC9556975 DOI: 10.1265/ehpm.22-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) and their metabolites have severe impact on human health, but few studies focus on their nephrotoxicity. This study was conceived to explore hub genes that may be involved in two hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. METHODS Gene dataset was obtained from Gene Expression Omnibus (GEO). Principal component analysis and correlation analysis were used to classify the samples. Differentially expressed genes (DEGs) were screened using the limma package in RStudio (version 4.1.0). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome enrichment analyses of DEGs were conducted. Protein-protein interaction (PPI) network was established using STRING network, and genes were filtered by Cytoscape (version 3.8.2). Finally, the hub genes were integrated by plug-in CytoHubba and RobustRankAggreg, and were preliminarily verified by the Comparative Toxicogenomics Database (CTD). RESULTS GSE8588 dataset was selected in this study. About 190 upregulated and 224 downregulated DEGs in 2-OH-BDE47 group, and 244 upregulated and 276 downregulated DEGs in 2-OH-BDE85 group. Functional enrichment analyses in the GO, KEGG and Reactome indicated the potential involvement of DEGs in endocrine metabolism, oxidative stress mechanisms, regulation of abnormal cell proliferation, apoptosis, DNA damage and repair. 2-OH-BDE85 is more cytotoxic in a dose-dependent manner than 2-OH-BDE47. A total of 98 hub genes were filtered, and 91 nodes and 359 edges composed the PPI network. Besides, 9 direct-acting genes were filtered for the intersection of hub genes by CTD. CONCLUSIONS OH-PBDEs may induce H295R adrenocortical cancer cells in the disorder of endocrine metabolism, regulation of abnormal cell proliferation, DNA damage and repair. The screened hub genes may play an important role in this dysfunction.
Collapse
Affiliation(s)
- Zemin Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Hu
- Chronic Disease Control Center of Shenzhen, Shenzhen 518020, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
21
|
Jiao Q, Dong X, Guo C, Wu T, Chen F, Zhang K, Ma Z, Sun Y, Cao H, Tian C, Hu Q, Liu N, Wang Y, Ji L, Yang S, Zhang X, Li J, Shen H. Effects of sleep deprivation of various durations on novelty-related object recognition memory and object location memory in mice. Behav Brain Res 2021; 418:113621. [PMID: 34624424 DOI: 10.1016/j.bbr.2021.113621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Sleep is essential for important physiological functions. Impairment of learning and memory function caused by lack of sleep is a common physiological phenomenon of which underlying changes in synaptic plasticity in the hippocampus are not well understood. The possible different effects of sleep deprivation (SD) lasting for various durations on learning and memory function and hippocampal synaptic plasticity are still not completely clear. In this study, we used a modified multiple platform method (MMPM) to induce rapid eye movement SD (REM SD), lasting for 24 h, 48 h, and 72 h, separately. The novel place recognition (NPR) and novel object recognition (NOR) tasks were used to test the novelty-related object recognition memory (ORM) and object location memory (OLM) of mice. Then, hippocampal synaptic plasticity was evaluated after all behavioural experiments. The results showed that REM SD played a key role in OLM but not in ORM. Specifically, 24 h REM SD improved novelty-related OLM, accompanied by a significantly increased hippocampal synaptic plasticity, including gain of dendritic spines, increased expression of hippocampal GluA1, and enhanced long-term potentiation (LTP), whereas 48 h REM SD showed no effect on OLM or the hippocampal synaptic plasticity mentioned above; however, 72 h REM SD impaired novelty-related OLM and weakened hippocampal synaptic plasticity, including serious loss of dendritic spines, decreased expression of hippocampal GluA1, and significantly attenuated LTP. Our results suggest that REM SD of various durations has different effects on both novelty-related OLM and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Yun Sun
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Haiyan Cao
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Nannan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Yong Wang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Lijie Ji
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Shutong Yang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Xinjun Zhang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222.
| | - Hui Shen
- Brain Research Center of Innovation Institute of Traditional Chinese medicine, Shandong University of traditional Chinese Medicine, Jinan, Shandong, China, 250355.
| |
Collapse
|
22
|
Li X, Zhao JW, Ding Q, Wu C, Li WQ, Guo YC, Wang D, Xu GQ, Yuan TF, Gong WK, Lan Y. Dynamic Changes of Arc Expression in Dorsal Striatum of Mice After Self-Administration of Sucrose. Front Cell Neurosci 2021; 15:654521. [PMID: 34093130 PMCID: PMC8170099 DOI: 10.3389/fncel.2021.654521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Region-specific plasticity in the striatal circuit plays an important role in the development and long-term maintenance of skills and sequential movement procedures. Studies investigating the molecular substrates that contribute to the plasticity changes during motor skill processes have documented a transition in expression from the dorsomedial striatum (DMS) to the dorsolateral striatum (DLS); however, few studies have explored the expression pattern of molecular substrates in the dorsal striatum during progression of instrumental learning. To address this issue, the activity-regulated cytoskeleton-associated protein (Arc) expressions in the subregional dorsal striatum were analyzed during the early and late learning phases of the 10-day sucrose self-administration process. We found that Arc protein is primarily detected in the DMS only in the initial learning stage; however, it is expressed in the DLS during both early and late learning stages. Moreover, Arc expression in the DMS correlated with the number of rewards received later in the training. These data indicated that the Arc expression in subregions of the dorsal striatum shows region-specific transfer and that Arc expression in the DMS contributes to obtaining reward in later learning stage during the process of instrumental learning.
Collapse
Affiliation(s)
- Xue Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Wang Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wan-Qi Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Chen Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Natong University, Nantong, China
| | - Wan-Kun Gong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|