1
|
Magar ND, Barbadikar KM, Reddy V, Revadi P, Guha P, Gangatire D, Balakrishnan D, Sharma S, Madhav MS, Sundaram RM. Genetic mapping of regions associated with root system architecture in rice using MutMap QTL-seq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108836. [PMID: 38941724 DOI: 10.1016/j.plaphy.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
The root system architecture is an important complex trait in rice. With changing climatic conditions and soil nutrient deficiencies, there is an immediate need to breed nutrient-use-efficient rice varieties with robust root system architectural (RSA) traits. To map the genomic regions associated with crucial component traits of RSA viz. root length and root volume, a biparental F2 mapping population was developed using TI-128, an Ethyl Methane Sulphonate (EMS) mutant of a mega variety BPT-5204 having high root length (RL) and root volume (RV) with wild type BPT-5204. Extreme bulks having high RL and RV and low RL and RV were the whole genome re-sequenced along with parents. Genetic mapping using the MutMap QTL-Seq approach elucidated two genomic intervals on Chr.12 (3.14-3.74 Mb, 18.11-20.85 Mb), and on Chr.2 (23.18-23.68 Mb) as potential regions associated with both RL and RV. The Kompetitive Allele Specific PCR (KASP) assays for SNPs with delta SNP index near 1 were associated with higher RL and RV in the panel of sixty-two genotypes varying in root length and volume. The KASP_SNPs viz. Chr12_S4 (C→T; Chr12:3243938), located in the 3' UTR region of LOC_Os12g06670 encoding a protein kinase domain-containing protein and Chr2_S6 (C→T; Chr2:23181622) present upstream in the regulator of chromosomal condensation protein LOC_Os2g38350. Validation of these genes using qRT-PCR and in-silico studies using various online tools and databases revealed higher expression in TI-128 as compared to BPT- 5204 at the seedling and panicle initiation stages implying the functional role in enhancing RL and RV.
Collapse
Affiliation(s)
- Nakul D Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Chaudhary Charan Singh University, Meerut, 250005, India
| | | | - Vishal Reddy
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Pritam Guha
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Dhiraj Gangatire
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | | | - M Sheshu Madhav
- ICAR-Central Tobacco Research Institute, Rajahmundry, 533106, India
| | - Raman M Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
2
|
Zhang Y, Wu X, Wang X, Dai M, Peng Y. Crop root system architecture in drought response. J Genet Genomics 2024:S1673-8527(24)00100-0. [PMID: 38723744 DOI: 10.1016/j.jgg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024]
Abstract
Drought is a natural disaster that profoundly impacts on global agricultural production, significantly reduces crop yields, and thereby poses a severe threat to worldwide food security. Addressing the challenge of effectively improving crop drought resistance (DR) to mitigate yield loss under drought conditions is a global issue. An optimal root system architecture (RSA) plays a pivotal role in enhancing crops' capacity to efficiently uptake water and nutrients, which consequently strengthens their resilience against environmental stresses. In this review, we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes. Based on the current research, we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR. Lastly, we discussed the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Xi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, HuBei 430070, China
| | - Xingrong Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, HuBei 430070, China.
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Sahito JH, Zhang H, Gishkori ZGN, Ma C, Wang Z, Ding D, Zhang X, Tang J. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. Int J Mol Sci 2024; 25:1918. [PMID: 38339196 PMCID: PMC10855973 DOI: 10.3390/ijms25031918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Genome-wide association studies (GWAS) have emerged as a powerful tool for unraveling intricate genotype-phenotype association across various species. Maize (Zea mays L.), renowned for its extensive genetic diversity and rapid linkage disequilibrium (LD), stands as an exemplary candidate for GWAS. In maize, GWAS has made significant advancements by pinpointing numerous genetic loci and potential genes associated with complex traits, including responses to both abiotic and biotic stress. These discoveries hold the promise of enhancing adaptability and yield through effective breeding strategies. Nevertheless, the impact of environmental stress on crop growth and yield is evident in various agronomic traits. Therefore, understanding the complex genetic basis of these traits becomes paramount. This review delves into current and future prospectives aimed at yield, quality, and environmental stress resilience in maize and also addresses the challenges encountered during genomic selection and molecular breeding, all facilitated by the utilization of GWAS. Furthermore, the integration of omics, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics has enriched our understanding of intricate traits in maize, thereby enhancing environmental stress tolerance and boosting maize production. Collectively, these insights not only advance our understanding of the genetic mechanism regulating complex traits but also propel the utilization of marker-assisted selection in maize molecular breeding programs, where GWAS plays a pivotal role. Therefore, GWAS provides robust support for delving into the genetic mechanism underlying complex traits in maize and enhancing breeding strategies.
Collapse
Affiliation(s)
- Javed Hussain Sahito
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zeeshan Ghulam Nabi Gishkori
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenhui Ma
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
4
|
Nagata K, Nonoue Y, Matsubara K, Mizobuchi R, Ono N, Shibaya T, Ebana K, Ogiso-Tanaka E, Tanabata T, Sugimoto K, Taguchi-Shiobara F, Yonemaru JI, Uga Y, Fukuda A, Ueda T, Yamamoto SI, Yamanouchi U, Takai T, Ikka T, Kondo K, Hoshino T, Yamamoto E, Adachi S, Sun J, Kuya N, Kitomi Y, Iijima K, Nagasaki H, Shomura A, Mizubayashi T, Kitazawa N, Hori K, Ando T, Yamamoto T, Fukuoka S, Yano M. Development of 12 sets of chromosome segment substitution lines that enhance allele mining in Asian cultivated rice. BREEDING SCIENCE 2023; 73:332-342. [PMID: 37840983 PMCID: PMC10570878 DOI: 10.1270/jsbbs.23006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 10/17/2023]
Abstract
Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.
Collapse
Affiliation(s)
- Kazufumi Nagata
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yasunori Nonoue
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kazuki Matsubara
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Ritsuko Mizobuchi
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Nozomi Ono
- Institute of the Society for Techno-innovation of Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
| | - Taeko Shibaya
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kaworu Ebana
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Eri Ogiso-Tanaka
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Takanari Tanabata
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kazuhiko Sugimoto
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Fumio Taguchi-Shiobara
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Jun-ichi Yonemaru
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yusaku Uga
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Atsunori Fukuda
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tadamasa Ueda
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Shin-ichi Yamamoto
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Utako Yamanouchi
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Toshiyuki Takai
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Takashi Ikka
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Katsuhiko Kondo
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tomoki Hoshino
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Eiji Yamamoto
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Shunsuke Adachi
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Jian Sun
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Noriyuki Kuya
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yuka Kitomi
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Ken Iijima
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hideki Nagasaki
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Ayahiko Shomura
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tatsumi Mizubayashi
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Noriyuki Kitazawa
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kiyosumi Hori
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tsuyu Ando
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Toshio Yamamoto
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Shuichi Fukuoka
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Masahiro Yano
- National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
5
|
Yue L, Xie B, Cao X, Chen F, Wang C, Xiao Z, Jiao L, Wang Z. The Mechanism of Manganese Ferrite Nanomaterials Promoting Drought Resistance in Rice. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091484. [PMID: 37177029 PMCID: PMC10180523 DOI: 10.3390/nano13091484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Strategies to reduce the risk of drought damage are urgently needed as intensified climate change threatens agricultural production. One potential strategy was using nanomaterials (NMs) to enhance plant resistance by regulating various physiological and biochemical processes. In the present study, 10 mg kg-1 manganese ferrite (MnFe2O4) NMs had the optimal enhancement to elevate the levels of biomass, photosynthesis, nutrient elements, and polysaccharide in rice by 10.9-525.0%, respectively, under drought stress. The MnFe2O4 NMs were internalized by rice plants, which provided the possibility for rice to better cope with drought. Furthermore, as compared with drought control and equivalent ion control, the introduction of MnFe2O4 NMs into the roots significantly upregulated the drought-sensing gene CLE25 (29.4%) and the receptor gene NCED3 (59.9%). This activation stimulated downstream abscisic acid, proline, malondialdehyde, and wax biosynthesis by 23.3%, 38.9%, 7.2%, and 26.2%, respectively. In addition, 10 mg·kg-1 MnFe2O4 NMs significantly upregulated the relative expressions of OR1, AUX2, AUX3, PIN1a, and PIN2, and increased IAA content significantly, resulting in an enlarged root angle and a deeper and denser root to help the plant withstand drought stresses. The nutritional quality of rice grains was also improved. Our study provides crucial insight for developing nano-enabled strategies to improve crop productivity and resilience to climate change.
Collapse
Affiliation(s)
- Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Budiao Xie
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Liya Jiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
6
|
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int J Mol Sci 2022; 24:6. [PMID: 36613450 PMCID: PMC9820233 DOI: 10.3390/ijms24010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
At least 75% of the world's grain production comes from the three most important cereal crops: rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays). However, abiotic stressors such as heavy metal toxicity, salinity, low temperatures, and drought are all significant hazards to the growth and development of these grains. Quantitative trait locus (QTL) discovery and mapping have enhanced agricultural production and output by enabling plant breeders to better comprehend abiotic stress tolerance processes in cereals. Molecular markers and stable QTL are important for molecular breeding and candidate gene discovery, which may be utilized in transgenic or molecular introgression. Researchers can now study synteny between rice, maize, and wheat to gain a better understanding of the relationships between the QTL or genes that are important for a particular stress adaptation and phenotypic improvement in these cereals from analyzing reports on QTL and candidate genes. An overview of constitutive QTL, adaptive QTL, and significant stable multi-environment and multi-trait QTL is provided in this article as a solid framework for use and knowledge in genetic enhancement. Several QTL, such as DRO1 and Saltol, and other significant success cases are discussed in this review. We have highlighted techniques and advancements for abiotic stress tolerance breeding programs in cereals, the challenges encountered in introgressing beneficial QTL using traditional breeding techniques such as mutation breeding and marker-assisted selection (MAS), and the in roads made by new breeding methods such as genome-wide association studies (GWASs), the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and meta-QTL (MQTL) analysis. A combination of these conventional and modern breeding approaches can be used to apply the QTL and candidate gene information in genetic improvement of cereals against abiotic stresses.
Collapse
Affiliation(s)
| | - Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
7
|
Teramoto S, Yamasaki M, Uga Y. Identification of a unique allele in the quantitative trait locus for crown root number in japonica rice from Japan using genome-wide association studies. BREEDING SCIENCE 2022; 72:222-231. [PMID: 36408322 PMCID: PMC9653191 DOI: 10.1270/jsbbs.22010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
To explore the genetic resources that could be utilized to help improve root system architecture phenotypes in rice (Oryza sativa), we have conducted genome-wide association studies to investigate maximum root length and crown root number in 135 10-day-old Japanese rice accessions grown hydroponically. We identified a quantitative trait locus for crown root number at approximately 32.7 Mbp on chromosome 4 and designated it qNCR1 (quantitative trait locus for Number of Crown Root 1). A linkage disequilibrium map around qNCR1 suggested that three candidate genes are involved in crown root number: a cullin (LOC_Os04g55030), a gibberellin 20 oxidase 8 (LOC_Os04g55070), and a cyclic nucleotide-gated ion channel (LOC_Os04g55080). The combination of haplotypes for each gene was designated as a haploblock, and haploblocks 1, 2, and 3 were defined. Compared to haploblock 1, the accessions with haploblocks 2 and 3 had fewer crown roots; approximately 5% and 10% reductions in 10-day-old plants and 15% and 25% reductions in 42-day-old plants, respectively. A Japanese leading variety Koshihikari and its progenies harbored haploblock 3. Their crown root number could potentially be improved using haploblocks 1 and 2.
Collapse
Affiliation(s)
- Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo 675-2103, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
8
|
Gobu R, Dash GK, Lal JP, Swain P, Mahender A, Anandan A, Ali J. Unlocking the Nexus between Leaf-Level Water Use Efficiency and Root Traits Together with Gas Exchange Measurements in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091270. [PMID: 35567271 PMCID: PMC9101036 DOI: 10.3390/plants11091270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/19/2023]
Abstract
Drought stress severely affects plant growth and development, causing significant yield loss in rice. This study demonstrates the relevance of water use efficiency with deeper rooting along with other root traits and gas exchange parameters. Forty-nine rice genotypes were evaluated in the basket method to examine leaf-level water use efficiency (WUEi) variation and its relation to root traits. Significant variation in WUEi was observed (from 2.29 to 7.39 µmol CO2 mmol−1 H2O) under drought stress. Regression analysis revealed that high WUEi was associated with higher biomass accumulation, low transpiration rate, and deep rooting ratio. The ratio of deep rooting was also associated with low internal CO2 concentration. The association of deep rooting with lower root number and root dry weight suggests that an ideal drought-tolerant genotype with higher water use efficiency should have deeper rooting (>30% RDR) with moderate root number and root dry weight to be sustained under drought for a longer period. The study also revealed that, under drought stress conditions, landraces are more water-use efficient with superior root traits than improved genotypes.
Collapse
Affiliation(s)
- Ramasamy Gobu
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (R.G.); (G.K.D.)
- Division of Crop Improvement and Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Institute of Spices Research (IISR), Kozhikode 673012, Kerala, India
| | - Goutam Kumar Dash
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (R.G.); (G.K.D.)
- Crop Physiology and Biochemistry Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jai Prakash Lal
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Padmini Swain
- Crop Physiology and Biochemistry Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Anumalla Mahender
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Philippines;
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (R.G.); (G.K.D.)
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Science (IISS), Bangalore 560065, India
- Correspondence: (A.A.); (J.A.); Tel.: +671-2367768-783 (ext. 2227) (A.A.); +63-2580-5600 (ext. 2541) (J.A.)
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Philippines;
- Correspondence: (A.A.); (J.A.); Tel.: +671-2367768-783 (ext. 2227) (A.A.); +63-2580-5600 (ext. 2541) (J.A.)
| |
Collapse
|
9
|
Zhang B, Ma L, Wu B, Xing Y, Qiu X. Introgression Lines: Valuable Resources for Functional Genomics Research and Breeding in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:863789. [PMID: 35557720 PMCID: PMC9087921 DOI: 10.3389/fpls.2022.863789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
The narrow base of genetic diversity of modern rice varieties is mainly attributed to the overuse of the common backbone parents that leads to the lack of varied favorable alleles in the process of breeding new varieties. Introgression lines (ILs) developed by a backcross strategy combined with marker-assisted selection (MAS) are powerful prebreeding tools for broadening the genetic base of existing cultivars. They have high power for mapping quantitative trait loci (QTLs) either with major or minor effects, and are used for precisely evaluating the genetic effects of QTLs and detecting the gene-by-gene or gene-by-environment interactions due to their low genetic background noise. ILs developed from multiple donors in a fixed background can be used as an IL platform to identify the best alleles or allele combinations for breeding by design. In the present paper, we reviewed the recent achievements from ILs in rice functional genomics research and breeding, including the genetic dissection of complex traits, identification of elite alleles and background-independent and epistatic QTLs, analysis of genetic interaction, and genetic improvement of single and multiple target traits. We also discussed how to develop ILs for further identification of new elite alleles, and how to utilize IL platforms for rice genetic improvement.
Collapse
Affiliation(s)
- Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Isolation and Molecular Characterisation of TtDro1A and TtDro1B Genes from Triticum turgidum Subspecies durum and turgidum, Study of Their Influences on Seedling Root Angles. PLANTS 2022; 11:plants11060821. [PMID: 35336704 PMCID: PMC8954752 DOI: 10.3390/plants11060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022]
Abstract
Durum wheat (Triticum turgidum, 2n = 4x = AABB) includes several subspecies with differential characteristics in their root system architecture (RSA). Subspecies durum has longer and more vertical roots, while subspecies turgidum has smaller and shallower roots. The homeologous genes TtDro1A and TtDro1B of both subspecies have been identified and found to differ in their sizes, sequences and the proteins they encode. To determine whether there is a relationship between the level of expression of these two genes and the angle adopted by the roots of durum wheat seedlings, their expressions has been studied by RT-qPCR, both in the primary seminal root and in the other seminal roots. The results of the analyses showed that the TtDro1A gene is expressed 1.4 times more in the primary seminal root than in the other seminal roots. Furthermore, this gene is expressed 2.49 to 8.76 times more than TtDro1B depending on root type (primary or seminal) and subspecies. There are positive correlations between the expression ratio of both genes (TtDro1A/TtDro1B) and the mean of all root angles, the most vertical root angle and the most horizontal root angle of the seedlings. The higher the expression of TtDro1B gene, the lower the root growth angles.
Collapse
|
11
|
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:803603. [PMID: 35154193 PMCID: PMC8829427 DOI: 10.3389/fpls.2021.803603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Najeebul Rehman Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Roohi Mushtaq
- Department of Biotechnology and Bioinformatics, SP College, Cluster University Srinagar, Srinagar, India
| | - Jai Singh Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stuttgart, AR, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
14
|
Vinarao R, Proud C, Snell P, Fukai S, Mitchell J. QTL Validation and Development of SNP-Based High Throughput Molecular Markers Targeting a Genomic Region Conferring Narrow Root Cone Angle in Aerobic Rice Production Systems. PLANTS (BASEL, SWITZERLAND) 2021; 10:2099. [PMID: 34685908 PMCID: PMC8537842 DOI: 10.3390/plants10102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Aerobic rice production (AP) provides potential solutions to the global water crisis by consuming less water than traditional permanent water culture. Narrow root cone angle (RCA), development of deeper rooting and associated genomic regions are key for AP adaptation. However, their usefulness depends on validation across genetic backgrounds and development of linked markers. Using three F2 populations derived from IRAT109, qRCA4 was shown to be effective in multiple backgrounds, explaining 9.3-17.3% of the genotypic variation and introgression of the favourable allele resulted in 11.7-15.1° narrower RCA. Novel kompetitive allele specific PCR (KASP) markers were developed targeting narrow RCA and revealed robust quality metrics. Candidate genes related with plant response to abiotic stress and root development were identified along with 178 potential donors across rice subpopulations. This study validated qRCA4's effect in multiple genetic backgrounds further strengthening its value in rice improvement for AP adaptation. Furthermore, the development of novel KASP markers ensured the opportunity for its seamless introgression across pertinent breeding programs. This work provides the tools and opportunity to accelerate development of genotypes with narrow RCA through marker assisted selection in breeding programs targeting AP, which may ultimately contribute to more sustainable rice production where water availability is limited.
Collapse
Affiliation(s)
- Ricky Vinarao
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (R.V.); (C.P.); (S.F.)
| | - Christopher Proud
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (R.V.); (C.P.); (S.F.)
| | - Peter Snell
- Department of Primary Industries, Yanco Agricultural Institute, Yanco, NSW 2703, Australia;
| | - Shu Fukai
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (R.V.); (C.P.); (S.F.)
| | - Jaquie Mitchell
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (R.V.); (C.P.); (S.F.)
| |
Collapse
|
15
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
16
|
Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. PLANT, CELL & ENVIRONMENT 2021; 44:1846-1857. [PMID: 33576018 DOI: 10.1111/pce.14029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.
Collapse
Affiliation(s)
- Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences. The Industrial Crop Institute, Fenyang, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Si Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Li Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Qian
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Li Han
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Shuanglu Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Canrong Ma
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanfang Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Chongyu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qian Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Saijie Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lina Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xi Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Youchun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hao Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qiong Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Lichi Li
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Sheng Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Lei Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chengyun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions. Sci Rep 2021; 11:6942. [PMID: 33767323 PMCID: PMC7994909 DOI: 10.1038/s41598-021-86259-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.
Collapse
|
18
|
Vinarao R, Proud C, Zhang X, Snell P, Fukai S, Mitchell J. Stable and Novel Quantitative Trait Loci (QTL) Confer Narrow Root Cone Angle in an Aerobic Rice (Oryza sativa L.) Production System. RICE (NEW YORK, N.Y.) 2021; 14:28. [PMID: 33677700 PMCID: PMC7937586 DOI: 10.1186/s12284-021-00471-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Aerobic rice production (AP) may be a solution to the looming water crisis by utilising less water compared to traditional flooded culture. As such, development of genotypes with narrow root cone angle (RCA) is considered a key AP adaptation trait as it could lead to deeper rooting and ensure water uptake at depth. Quantitative trait loci (QTL) and genes associated with rooting angle have been identified in rice, but usually in conventional transplanted systems or in upland and drought conditions. This study aimed to identify QTL associated with RCA in AP systems using a recombinant inbred line population derived from IRAT109. RESULTS Four experiments conducted in glasshouse and aerobic field conditions revealed significant genotypic variation existed for RCA in the population. Single and multiple QTL models identified the presence of eight QTL distributed in chromosomes 1, 2, 3, 4, and 11. Combined, these QTL explained 36.7-51.2% of the genotypic variance in RCA present in the population. Two QTL, qRCA1.1 and qRCA1.3, were novel and may be new targets for improvement of RCA. Genotypes with higher number of favourable QTL alleles tended to have narrower RCA. qRCA4 was shown to be a major and stable QTL explaining up to 24.3% of the genotypic variation, and the presence of the target allele resulted in as much as 8.6° narrower RCA. Several genes related to abiotic stress stimulus response were found in the qRCA4 region. CONCLUSION Stable and novel genomic regions associated with RCA have been identified. Genotypes which had combinations of these QTL, resulted in a narrower RCA phenotype. Allele mining, gene cloning, and physiological dissection should aid in understanding the molecular function and mechanisms underlying RCA and these QTL. Ultimately, our work provides an opportunity for breeding programs to develop genotypes with narrow RCA and deep roots for improved adaptation in an AP system for sustainable rice production.
Collapse
Affiliation(s)
- Ricky Vinarao
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Christopher Proud
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Xiaolu Zhang
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Peter Snell
- Department of Primary Industries, Yanco Agricultural Institute, Yanco, NSW, 2703, Australia
| | - Shu Fukai
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Jaquie Mitchell
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Singh BK, Ramkumar MK, Dalal M, Singh A, Solanke AU, Singh NK, Sevanthi AM. Allele mining for a drought responsive gene DRO1 determining root growth angle in donors of drought tolerance in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:523-534. [PMID: 33854281 PMCID: PMC7981370 DOI: 10.1007/s12298-021-00950-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Deeper Rooting 1 (DRO1) gene identified from a major QTL on chromosome 9 increases the root growth angle (RGA) and thus facilitates survival under drought and hence is an excellent candidate for rice improvement. Twenty-four major Indian upland and lowland genotypes including the 'yield under drought' (DTY) QTL donors were subjected to allele mining of DRO1 (3058 bp) using four pairs of overlapping primers. A total of 216 and 52 SNPs were identified across all genotypes in the gene and coding region (756 bp) respectively with transversions 3.6 fold more common than transitions in the gene and 2.5 times in the CDS. In 251 amino acid long protein, substitutions were found in 19 positions, wherein change in position 92 was the most frequent. Based on allele mining, the 24 genotypes can be classified into 16 primary structure variants ranging from complete functional allele (Satti, IR36 and DTY 3.1 donor, IR81896-B-B-195) to truncated non-functional alleles in PMK2, IR64, IR20 and Swarna. All the DTY donors, other than IR81896-B-B-195, and most of the upland drought tolerant cultivars (Nagina 22, Vandana and Dhagaddeshi) had accumulated 6-19 SNPs and 4-8 amino acid substitutions resulting in substantial differences in their protein structure. The expression analysis revealed that all the genotypes showed upregulation under drought stress though the degree of upregulation varied among genotypes. The information on structural variations in DRO1 gene will be very useful for the breeders, especially in the light of recent breeding programmes on improving drought tolerance using several DTY donors and upland accessions. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-021-00950-2).
Collapse
Affiliation(s)
- Bablee Kumari Singh
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - M. K. Ramkumar
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Monika Dalal
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Archana Singh
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa campus, New Delhi, India
| | - Amolkumar U. Solanke
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Nagendra K. Singh
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research- National Institute for Plant Biotechnology, Pusa campus, New Delhi, India
| |
Collapse
|
20
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Mano Y, Nakazono M. Genetic regulation of root traits for soil flooding tolerance in genus Zea. BREEDING SCIENCE 2021; 71:30-39. [PMID: 33762874 PMCID: PMC7973494 DOI: 10.1270/jsbbs.20117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/16/2023]
Abstract
Flooding stress caused by excessive precipitation and poor drainage threatens upland crop production and food sustainability, so new upland crop cultivars are needed with greater tolerance to soil flooding (waterlogging). So far, however, there have been no reports of highly flooding-tolerant upland crop cultivars, including maize, because of the lack of flooding-tolerant germplasm and the presence of a large number of traits affecting flooding tolerance. To achieve the goal of breeding flooding-tolerant maize cultivars by overcoming these difficulties, we chose highly flooding-tolerant teosinte germplasm. These flooding-tolerance-related traits were separately assessed by establishing a method for the accurate evaluation of each one, followed by performing quantitative trait locus (QTL) analyses for each trait using maize × teosinte mapping populations, developing introgression lines (ILs) or near-isogenic lines (NILs) containing QTLs and pyramiding useful traits. We have identified QTLs for flooding-tolerance-related root traits, including the capacity to form aerenchyma, formation of radial oxygen loss barriers, tolerance to flooded reducing soil conditions, flooding-induced adventitious root formation and shallow root angle. In addition, we have developed several ILs and NILs with flooding-tolerance-related QTLs and are currently developing pyramided lines. These lines should be valuable for practical maize breeding programs focused on flooding tolerance.
Collapse
Affiliation(s)
- Yoshiro Mano
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
22
|
Zheng C, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics 2020; 21:852. [PMID: 33261554 PMCID: PMC7709433 DOI: 10.1186/s12864-020-07257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The root growth angle (RGA) typically determines plant rooting depth, which is significant for plant anchorage and abiotic stress tolerance. Several quantitative trait loci (QTLs) for RGA have been identified in crops. However, the underlying mechanisms of the RGA remain poorly understood, especially in apple rootstocks. The objective of this study was to identify QTLs, validate genetic variation networks, and develop molecular markers for the RGA in apple rootstock. Results Bulked segregant analysis by sequencing (BSA-seq) identified 25 QTLs for RGA using 1955 hybrids of the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., large RGA) and ‘M9’ (M. pumila Mill., small RGA). With RNA sequencing (RNA-seq) and parental resequencing, six major functional genes were identified and constituted two genetic variation networks for the RGA. Two single nucleotide polymorphisms (SNPs) of the MdLAZY1 promoter damaged the binding sites of MdDREB2A and MdHSFB3, while one SNP of MdDREB2A and MdIAA1 affected the interactions of MdDREB2A/MdHSFB3 and MdIAA1/MdLAZY1, respectively. A SNP within the MdNPR5 promoter damaged the interaction between MdNPR5 and MdLBD41, while one SNP of MdLBD41 interrupted the MdLBD41/MdbHLH48 interaction that affected the binding ability of MdLBD41 on the MdNPR5 promoter. Twenty six SNP markers were designed on candidate genes in each QTL interval, and the marker effects varied from 0.22°-26.11°. Conclusions Six diagnostic markers, SNP592, G122, b13, Z312, S1272, and S1288, were used to identify two intricate genetic variation networks that control the RGA and may provide new insights into the accuracy of the molecular markers. The QTLs and SNP markers can potentially be used to select deep-rooted apple rootstocks.
Collapse
Affiliation(s)
- Caixia Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Uddin MN, Fukuta Y. A Region on Chromosome 7 Related to Differentiation of Rice ( Oryza sativa L.) Between Lowland and Upland Ecotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:1135. [PMID: 32849696 PMCID: PMC7398126 DOI: 10.3389/fpls.2020.01135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/13/2020] [Indexed: 05/03/2023]
Abstract
Due to global population expansion and climate change impacts, the development of a stable yielding variety that adapts well to unfavorable conditions for rice cultivation, can contribute to sustainable and stable production in rice (Oryza sativa L.). Understanding genetic differentiations to ecotypes for rice cultivations, such as upland, rainfed lowland, and irrigated lowland, is very important to develop the breeding materials for adapting to each environmental condition. The upland landrace variety basically has low tiller/panicle numbers and a large panicle, and the plant architecture is different from that of the lowland variety. The tiller and panicle numbers have been considered as one of the most difficult traits for genetic changes artificially in rice breeding. A low tiller recessive gene ltn2 originated from a New Plant Type variety, IR 65600-87-2-23, harboring segments from an upland variety, Ketan Lumbu (Tropical Japonica Group), was found on chromosome 7, and the other QTLs for culm length, culm weight, panicle length, panicle weight, seed fertility, harvest index, and soil surface rooting were also detected in the same chromosome region. These low tiller genes and the other QTLs were estimated to play an important role in developing the architecture for upland rice. Some QTLs for root growth angle, DRO3 and qSFR7, were also found in the same chromosome region from upland varieties categorized into the Tropical Japonica Group, and the QTLs may also be relevant to upland adaptation together with other traits. Previous studies using high throughput re-sequencing (whole genome variation data) of a large batch of rice accessions could identify the ecotype differentiated genomic regions (EDRs) and Ecotype differentiated genes (EDGs) such as Os07g0449700, a type response regulator, which is critical in upland adaptation in the same region of chromosome 7. Two selective loci, E3735 and E4208, for upland and lowland differentiation, and their corresponding genes Os07g0260000 and Os07g0546500 were also detected on chromosome 7 by drought-responding EST-SSRs. These findings indicate that the region on chromosome 7 is highly possible to related to the plant shoot and root architecture in the upland rice variety that has an important role and differentiates between upland and lowland ecotypes.
Collapse
Affiliation(s)
- Md. Nashir Uddin
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Yoshimichi Fukuta
- Tropical Agricultural Research Front, Japan International Research Center for Agricultural Science (JIRCAS), Ishigaki, Japan
- *Correspondence: Yoshimichi Fukuta,
| |
Collapse
|
24
|
Ma X, Han B, Tang J, Zhang J, Cui D, Geng L, Zhou H, Li M, Han L. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:274-282. [PMID: 31593900 DOI: 10.1016/j.plaphy.2019.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 05/27/2023]
Abstract
Dongxiang common wild rice (Oryza rufipogon Griff.) is believed to have the northernmost distribution of any wild rice species. Many favorable genes were lost during rice domestication, and Dongxiang common wild rice is a potential source of many genes related to biological and abiotic stress resistance and high grain yield. Despite its importance, japonica rice has not yet been used as a background material for the construction of introgression lines carrying Dongxiang common wild rice chromosome segments. In this study, we used Dongxiang common wild rice as the donor parent and Nipponbare (Oryza sativa L), a reference-sequence japonica cultivar, as the recurrent parent to develop a set of 104 chromosome segment substitution lines (CSSLs) through crossing and backcrossing with marker-assisted selection based on 203 polymorphic molecular markers evenly distributed across 12 chromosomes. The 104 CSSLs covered 87.94% of the genome of Dongxiang common wild rice. Each CSSL contained an average of four introgressed segments, and the average segment length was 3.3 Mb. Quantitative trait locus (QTL) analysis of the panicle-related traits of the CSSLs at two sites (Beijing and Nanchang, Jiangxi Province) revealed 18 QTLs for eight traits. Among these 18 QTLs were two known grain length- and width-related genes and four novel QTLs. In addition, two QTLs were verified, and two novel QTLs were identified, for panicle neck length, a domestication-related trait. The developed CSSLs potentially represent a valuable population for detecting favorable genes in common wild rice and creating germplasm resources for japonica rice breeding.
Collapse
Affiliation(s)
- Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Jiani Zhang
- Chongqing Normal University, Chongqing, 401331, China
| | - Di Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leiyue Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiying Zhou
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Maomao Li
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| | - Longzhi Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Nada RM, Abo-Hegazy SE, Budran EG, Abogadallah GM. The interaction of genes controlling root traits is required for the developmental acquisition of deep and thick root traits and improving root architecture in response to low water or nitrogen content in rice (Oryza sativa L.) cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:122-132. [PMID: 31151078 DOI: 10.1016/j.plaphy.2019.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Most of the hot spots about rice research are related to roots; increasing rice yield is mainly associated with improving root traits. Understanding phenotype-gene regulation relationship in different rice cultivars can contribute to the genetic improvement of root system. The expression pattern of root genes in moroberekan (deep and thick roots and high root/shoot ratio "R/S") was compared to that in Giza178 and PM12 (numerous but shallow roots) and IR64 (fewer but deeper roots than the latter ones). In contrast to the other genotypes, moroberekan did not cease developing deep and thick roots even after 60 days from sowing, perhaps because of not only the consistent upregulation but also the interaction of root genes. Xylem sap flow was significantly higher even under drought (low water content) in moroberekan. Auxin signaling-related ARF12 and PIN1 genes could play key roles in improving root traits in response to low water or nitrogen content. Their concurrent upregulation was coincided with developing 1) deeper roots in moroberekan under drought, 2) thicker and deeper roots in PM12 under low nitrogen content (LN) and 3) new roots with thicker and deeper characteristics in the four genotypes after root trimming. The upregulation of PIN1 or ARF12 in Giza178 at LN, PM12 at drought or in IR64 under drought or LN did not greatly change the root traits. Hierarchical analysis showed that ARF12 and PIN1 were distantly related, but overlapped with other genes controlling root traits. Overexpression of ARF12 and PIN1 could improve root traits in rice cultivars.
Collapse
Affiliation(s)
- Reham M Nada
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Sara E Abo-Hegazy
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Enas G Budran
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Gaber M Abogadallah
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
26
|
Dharmappa PM, Doddaraju P, Malagondanahalli MV, Rangappa RB, Mallikarjuna NM, Rajendrareddy SH, Ramanjinappa R, Mavinahalli RP, Prasad TG, Udayakumar M, Sheshshayee SM. Introgression of Root and Water Use Efficiency Traits Enhances Water Productivity: An Evidence for Physiological Breeding in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2019; 12:14. [PMID: 30847616 PMCID: PMC6405788 DOI: 10.1186/s12284-019-0268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/11/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Semi-irrigated aerobic cultivation of rice has been suggested as a potential water saving agronomy. However, suitable cultivars are needed in order to sustain yield levels. An introgression of water mining and water use efficiency (WUE) traits is the most appropriate strategy for a comprehensive genetic enhancement to develop such rice cultivars. RESULTS We report a novel strategy of phenotyping and marker-assisted backcross breeding to introgress water mining (root) and water use efficiency (WUE) traits into a popular high yielding cultivar, IR-64. Trait donor genotypes for root (AC-39020) and WUE (IET-16348) were crossed separately and the resultant F1s were inter-mated to generate double cross F1s (DCF1). Progenies of three generations of backcross followed by selfing were charatcerised for target phenotype and genome integration. A set of 260 trait introgressed lines were identified. Root weight and root length of TILs were 53% and 23.5% higher, while Δ13C was 2.85‰ lower indicating a significant increase in WUE over IR-64. Five best TILs selected from BC3F3 generation showed 52% and 63% increase in yield over IR-64 under 100% and 60% FC, respectively. The trait introgressed lines resembled IR64 with more than 97% of genome recovered with a significant yield advantage under semi-irrigated aerobic conditions The study validated markers identified earlier by association mapping. CONCLUSION Introgression of root and WUE into IR64, resulted in an excellent yield advantage even when cultivated under semi-irrigated aerobic condition. The study provided a proof-of-concept that maintaining leaf turgor and carbon metabolism results in improved adaptation to water limited conditions and sustains productivity. A marker based multi-parent backcross breeding is an appropriate approach for trait introgression. The trait introgressed lines developed can be effectively used in future crop improvement programs as donor lines for both root and WUE.
Collapse
Affiliation(s)
- Prathibha M. Dharmappa
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Pushpa Doddaraju
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | | | - Raju B. Rangappa
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
- Present address- Department of Agronomy Kansas State University, Kansas, USA
| | - N. M. Mallikarjuna
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Sowmya H. Rajendrareddy
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Ramachandra Ramanjinappa
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
- Present address: Assistant Professor, Department of Biotechnology, Reva University, Bengaluru, India
| | | | - Trichy Ganesh Prasad
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Sreeman M. Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| |
Collapse
|
27
|
Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1-25. [PMID: 30483819 DOI: 10.1007/s00122-018-3219-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/24/2018] [Indexed: 05/27/2023]
Abstract
CSSLs are a complete library of introgression lines with chromosomal segments of usually a distant genotype in an adapted background and are valuable genetic resources for basic and applied research on improvement of complex traits. Chromosome segment substitution lines (CSSLs) are genetic stocks representing the complete genome of any genotype in the background of a cultivar as overlapping segments. Ideally, each CSSL has a single chromosome segment from the donor with a maximum recurrent parent genome recovered in the background. CSSL development program requires population-wide backcross breeding and genome-wide marker-assisted selection followed by selfing. Each line in a CSSL library has a specific marker-defined large donor segment. CSSLs are evaluated for any target phenotype to identify lines significantly different from the parental line. These CSSLs are then used to map quantitative trait loci (QTLs) or causal genes. CSSLs are valuable prebreeding tools for broadening the genetic base of existing cultivars and harnessing the genetic diversity from the wild- and distant-related species. These are resources for genetic map construction, mapping QTLs, genes or gene interactions and their functional analysis for crop improvement. In the last two decades, the utility of CSSLs in identification of novel genomic regions and QTL hot spots influencing a wide range of traits has been well demonstrated in food and commercial crops. This review presents an overview of how CSSLs are developed, their status in major crops and their use in genomic studies and gene discovery.
Collapse
Affiliation(s)
- Divya Balakrishnan
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Malathi Surapaneni
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sukumar Mesapogu
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sarla Neelamraju
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India.
| |
Collapse
|
28
|
Affiliation(s)
- Magdalena Julkowska
- Biological and Environmental Science and Engineering, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Saddique MAB, Ali Z, Khan AS, Rana IA, Shamsi IH. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. RICE (NEW YORK, N.Y.) 2018; 11:34. [PMID: 29799607 PMCID: PMC5968016 DOI: 10.1186/s12284-018-0226-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rice is a drought susceptible crop. A symbiotic association between rice and mycorrhizal fungi could effectively protect the plant against sudden or frequent episodes of drought. Due to its extensive network of hyphae, the endophyte is able to deeply explore the soil and transfer water and minerals to the plant, some of them playing an important role in mitigating the effects of drought stress. Moreover, the endophyte could modify the expression of drought responsive genes and regulate antioxidants. RESULTS Three rice genotypes, WC-297 (drought tolerant), Caawa (moderately drought tolerant) and IR-64 (drought susceptible) were inoculated with Piriformospora indica (P. indica), a dynamic endophyte. After 20 days of co-cultivation with the fungus, rice seedlings were subjected to 15% polyethylene glycol-6000 induced osmotic stress. P. indica improved the growth of rice seedlings. It alleviated the destructive effects of the applied osmotic stress. This symbiotic association increased seedling biomass, the uptake of phosphorus and zinc, which are functional elements for rice growth under drought stress. It boosted the chlorophyll fluorescence, increased the production of proline and improved the total antioxidant capacity in leaves. The association with the endophyte also up regulated the activity of the Pyrroline-5-carboxylate synthase (P5CS), which is critical for the synthesis of proline. CONCLUSION A mycorrhizal association between P. indica and rice seedlings provided a multifaceted protection to rice plants under osmotic stress (- 0.295 MPa).
Collapse
Affiliation(s)
- Muhammad Abu Bakar Saddique
- Department of Plant Breeding and Genetics, University of Agriculture, 38040, Faisalabad, Pakistan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, 38040, Faisalabad, Pakistan.
- Department of Plant Breeding and Genetics, Muhammad Nawaz Shareef University of Agriculture, 60000, Multan, Pakistan.
| | - Abdus Salam Khan
- Department of Plant Breeding and Genetics, University of Agriculture, 38040, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, 38040, Faisalabad, Pakistan
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
30
|
Uga Y, Assaranurak I, Kitomi Y, Larson BG, Craft EJ, Shaff JE, McCouch SR, Kochian LV. Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics 2018; 19:273. [PMID: 29678154 PMCID: PMC5910583 DOI: 10.1186/s12864-018-4639-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
Abstract
Background Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines derived from a cross between lowland indica rice, IR64, and upland tropical japonica rice, Kinandang Patong, (IK-CSSLs), using 2D & 3D root phenotyping platforms. Results Lengths of seminal and crown roots in the IK-CSSLs grown under hydroponic conditions were measured by 2D image analysis (RootReader2D). Twelve CSSLs showed significantly longer seminal root length than the recurrent parent IR64. Of these, 8 CSSLs also exhibited longer total length of the three longest crown roots compared to IR64. Three-dimensional image analysis (RootReader3D) for these CSSLs grown in gellan gum revealed that only one CSSL, SL1003, showed significantly longer total root length than IR64. To characterize the root morphology of SL1003 under soil conditions, SL1003 was grown in Turface, a soil-like growth media, and roots were quantified using RootReader3D. SL1003 had larger total root length and increased total crown root length than did IR64, although its seminal root length was similar to that of IR64. The larger TRL in SL1003 may be due to increased crown root length. Conclusions SL1003 carries an introgression from Kinandang Patong on the long arm of chromosome 1 in the genetic background of IR64. We conclude that this region harbors a QTL controlling crown root elongation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4639-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Ithipong Assaranurak
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.,Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Brandon G Larson
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Eric J Craft
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Jon E Shaff
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Susan R McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
31
|
Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice. G3-GENES GENOMES GENETICS 2018; 8:727-735. [PMID: 29279303 PMCID: PMC5919730 DOI: 10.1534/g3.117.300147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 (QRO1) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice (Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC4F2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC4F3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice.
Collapse
|
32
|
Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, Sturrock CJ, Yu H, Lu C, Peng J, Mao C. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:385-397. [PMID: 29294052 PMCID: PMC5853395 DOI: 10.1093/jxb/erx427] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/13/2017] [Indexed: 05/17/2023]
Abstract
Root system architecture is very important for plant growth and crop yield. It is essential for nutrient and water uptake, anchoring, and mechanical support. Root growth angle (RGA) is a vital constituent of root system architecture and is used as a parameter for variety evaluation in plant breeding. However, little is known about the underlying molecular mechanisms that determine root growth angle in rice (Oryza sativa). In this study, a rice mutant large root angle1 (lra1) was isolated and shown to exhibit a large RGA and reduced sensitivity to gravity. Genome resequencing and complementation assays identified OsPIN2 as the gene responsible for the mutant phenotypes. OsPIN2 was mainly expressed in roots and the base of shoots, and showed polar localization in the plasma membrane of root epidermal and cortex cells. OsPIN2 was shown to play an important role in mediating root gravitropic responses in rice and was essential for plants to produce normal RGAs. Taken together, our findings suggest that OsPIN2 plays an important role in root gravitropic responses and determining the root system architecture in rice by affecting polar auxin transport in the root tip.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengxue Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wenyuan Ruan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Craig J Sturrock
- The Hounsfield Facility, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UK
| | - Jinrong Peng
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Bettembourg M, Dardou A, Audebert A, Thomas E, Frouin J, Guiderdoni E, Ahmadi N, Perin C, Dievart A, Courtois B. Genome-wide association mapping for root cone angle in rice. RICE (NEW YORK, N.Y.) 2017; 10:45. [PMID: 28971382 PMCID: PMC5624858 DOI: 10.1186/s12284-017-0184-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant root systems play a major role in anchoring and in water and nutrient uptake from the soil. The root cone angle is an important parameter of the root system architecture because, combined with root depth, it helps to determine the volume of soil explored by the plant. Two genes, DRO1 and SOR1, and several QTLs for root cone angle have been discovered in the last 5 years. RESULTS To find other QTLs linked to root cone angle, a genome-wide association mapping study was conducted on two panels of 162 indica and 169 japonica rice accessions genotyped with two sets of SNP markers (genotyping-by-sequencing set with approximately 16,000 markers and high-density-rice-array set with approximately 300,000 markers). The root cone angle of all accessions was measured using a screen protractor on images taken after 1 month of plant growth in the Rhizoscope phenotyping system. The distribution of the root cone angle in the indica panel was Gaussian, but several accessions of the japonica panel (all the bulus from Indonesia and three temperate japonicas from Nepal or India) appeared as outliers with a very wide root cone angle. The data were submitted to association mapping using a mixed model with control of structure and kinship. A total of 15 QTLs for the indica panel and 40 QTLs for the japonica panel were detected. Genes underlying these QTLs (+/-50 kb from the significant markers) were analyzed. We focused our analysis on auxin-related genes, kinases, and genes involved in root developmental processes and identified 8 particularly interesting genes. CONCLUSIONS The present study identifies new sources of wide root cone angle in rice, proposes ways to bypass some drawbacks of association mapping to further understand the genetics of the trait and identifies candidate genes deserving further investigation.
Collapse
Affiliation(s)
| | | | - Alain Audebert
- Cirad, UMR AGAP, F34398 Montpellier Cedex 5, France
- Cirad / ISRA-Ceraas, BP 3320 Thies, Senegal
| | | | | | | | | | | | - Anne Dievart
- Cirad, UMR AGAP, F34398 Montpellier Cedex 5, France
- Shanghai Jiao Tong University (SJTU), School of Life Sciences and Biotechnology, Shanghai, 200240 China
| | | |
Collapse
|
34
|
Iannucci A, Marone D, Russo MA, De Vita P, Miullo V, Ferragonio P, Blanco A, Gadaleta A, Mastrangelo AM. Mapping QTL for Root and Shoot Morphological Traits in a Durum Wheat × T. dicoccum Segregating Population at Seedling Stage. Int J Genomics 2017; 2017:6876393. [PMID: 28845431 PMCID: PMC5563412 DOI: 10.1155/2017/6876393] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/12/2017] [Accepted: 06/21/2017] [Indexed: 01/27/2023] Open
Abstract
A segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. "Simeto" and the T. dicoccum accession "Molise Colli" was grown in soil and evaluated for a number of shoot and root morphological traits. A total of 17 quantitative trait loci (QTL) were identified for shoot dry weight, number of culms, and plant height and for root dry weight, volume, length, surface area, and number of forks and tips, on chromosomes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B. LODs were 2.1 to 21.6, with percent of explained phenotypic variability between 0.07 and 52. Three QTL were mapped to chromosome 4B, one of which corresponds to the Rht-B1 locus and has a large impact on both shoot and root traits (LOD 21.6). Other QTL that have specific effects on root morphological traits were also identified. Moreover, meta-QTL analysis was performed to compare the QTL identified in the "Simeto" × "Molise Colli" segregating population with those described in previous studies in wheat, with three novel QTL defined. Due to the complexity of phenotyping for root traits, further studies will be helpful to validate these regions as targets for breeding programs for optimization of root function for field performance.
Collapse
Affiliation(s)
- Anna Iannucci
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Daniela Marone
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Maria Anna Russo
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Vito Miullo
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Pina Ferragonio
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria-Centro Cerealicoltura e Colture Industriali (CREA-CI), SS 673 km 25.2, 71122 Foggia, Italy
| |
Collapse
|
35
|
Lou Q, Chen L, Mei H, Xu K, Wei H, Feng F, Li T, Pang X, Shi C, Luo L, Zhong Y. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1314. [PMID: 28798764 PMCID: PMC5526896 DOI: 10.3389/fpls.2017.01314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.
Collapse
Affiliation(s)
- Qiaojun Lou
- Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Kai Xu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Haibin Wei
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Fangjun Feng
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Tiemei Li
- Shanghai Agrobiological Gene CenterShanghai, China
| | | | - Caiping Shi
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd.Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Yang Zhong
- Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
36
|
Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet 2017; 13:e1006889. [PMID: 28686596 PMCID: PMC5521850 DOI: 10.1371/journal.pgen.1006889] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/21/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance.
Collapse
Affiliation(s)
- Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xiang Cen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xipeng Ding
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jianping Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Tomita A, Sato T, Uga Y, Obara M, Fukuta Y. Genetic variation of root angle distribution in rice ( Oryza sativa L.) seedlings. BREEDING SCIENCE 2017; 67:181-190. [PMID: 28744171 PMCID: PMC5515312 DOI: 10.1270/jsbbs.16185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 05/19/2023]
Abstract
We developed a new method of using seedling trays to evaluate root angle distribution in rice (Oryza sativa. L), and found a wide genetic variation among cultivars. The seedling tray method can be used to evaluate in detail the growth angles of rice crown roots at the seedling stage by allocating nine scores (10° to 90°). Unlike basket methods, it can handle large plant populations over a short growth period (only 14 days). By using the method, we characterized the root angle distributions of 97 accessions into two cluster groups: A and B. The numbers of accessions in group A were limited, and these were categorized as shallow rooting types including soil-surface root. Group B included from shallow to deep rooting types; both included Indica and Japonica Group cultivars, lowland and upland cultivars, and landraces and improved types. No relationship between variation in root vertical angle and total root number was found. The variation in root angle distribution was not related to differentiation between the Japonica and Indica Groups, among ecosystems used for rice cultivation, or among degrees of genetic improvement. The new evaluation method and associated information on genetic variation of rice accessions will be useful in root architecture breeding of rice.
Collapse
Affiliation(s)
- Asami Tomita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Mitsuhiro Obara
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Yoshimichi Fukuta
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa 907-0002, Japan
| |
Collapse
|
38
|
Feng W, Lindner H, Robbins NE, Dinneny JR. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses. THE PLANT CELL 2016; 28:1769-82. [PMID: 27503468 PMCID: PMC5006702 DOI: 10.1105/tpc.16.00182] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 05/20/2023]
Abstract
Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes.
Collapse
Affiliation(s)
- Wei Feng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Heike Lindner
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Neil E Robbins
- Department of Biology, Stanford University, Stanford, California 94305
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
39
|
Lou Q, Chen L, Mei H, Wei H, Feng F, Wang P, Xia H, Li T, Luo L. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4749-57. [PMID: 26022253 PMCID: PMC4507776 DOI: 10.1093/jxb/erv246] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding.
Collapse
Affiliation(s)
- Qiaojun Lou
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China Fudan University, No. 220, Handan Road, Yangpu District, Shanghai 200433, PR China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Fangjun Feng
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Pei Wang
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, No. 2901, Beidi Road, Minhang District, Shanghai 201106, PR China
| |
Collapse
|
40
|
Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. RICE (NEW YORK, N.Y.) 2015; 8:16. [PMID: 25844121 PMCID: PMC4385264 DOI: 10.1186/s12284-015-0049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/27/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The functional allele of the rice gene DEEPER ROOTING 1 (DRO1) increases the root growth angle (RGA). However, wide natural variation in RGA is observed among rice cultivars with the functional DRO1 allele. To elucidate genetic factors related to such variation, we quantitatively measured RGA using the basket method and analyzed quantitative trait loci (QTLs) for RGA in three F2 mapping populations derived from crosses between the large RGA-type cultivar Kinandang Patong and each of three accessions with varying RGA: Momiroman has small RGA and was used to produce the MoK-F2 population; Yumeaoba has intermediate RGA (YuK-F2 population); Tachisugata has large RGA (TaK-F2 population). All four accessions belong to the same haplotype group of functional DRO1 allele. RESULTS We detected the following statistically significant QTLs: one QTL on chromosome 4 in MoK-F2, three QTLs on chromosomes 2, 4, and 6 in YuK-F2, and one QTL on chromosome 2 in TaK-F2. Among them, the two QTLs on chromosome 4 were located near DRO2, which has been previously reported as a major QTL for RGA, whereas the two major QTLs for RGA on chromosomes 2 (DRO4) and 6 (DRO5) were novel. With the LOD threshold reduced to 3.0, several minor QTLs for RGA were also detected in each population. CONCLUSION Natural variation in RGA in rice cultivars carrying functional DRO1 alleles may be controlled by a few major QTLs and by several additional minor QTLs.
Collapse
Affiliation(s)
- Yuka Kitomi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Noriko Kanno
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Sawako Kawai
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Tatsumi Mizubayashi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Shuichi Fukuoka
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Yusaku Uga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
41
|
Uga Y, Kitomi Y, Ishikawa S, Yano M. Genetic improvement for root growth angle to enhance crop production. BREEDING SCIENCE 2015; 65:111-9. [PMID: 26069440 PMCID: PMC4430504 DOI: 10.1270/jsbbs.65.111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/09/2014] [Indexed: 05/06/2023]
Abstract
The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences (NIAS),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yuka Kitomi
- National Institute of Agrobiological Sciences (NIAS),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Satoru Ishikawa
- National Institute of Agro-Environmental Sciences (NIAES),
Tsukuba, Ibaraki 305-8604,
Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences (NIAS),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| |
Collapse
|