1
|
Khunsanit P, Jitsamai N, Thongsima N, Chadchawan S, Pongpanich M, Henry IM, Comai L, Suriya-Arunroj D, Budjun I, Buaboocha T. QTL-Seq identified a genomic region on chromosome 1 for soil-salinity tolerance in F 2 progeny of Thai salt-tolerant rice donor line "Jao Khao". FRONTIERS IN PLANT SCIENCE 2024; 15:1424689. [PMID: 39258300 PMCID: PMC11385611 DOI: 10.3389/fpls.2024.1424689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Introduction Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety. Methods A total of 462 F2 progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population. Two high- and low-bulk sets, based on cell membrane stability (CMS) and tiller number at the recovery stage (TN), were equally sampled. The genomes of each pool were sequenced, and statistical significance of QTL was calculated using QTLseq and G prime (G') analysis, which is based on calculating the allele frequency differences or Δ(SNP index). Results Both methods detected the overlapping interval region, wherein CMS-bulk was mapped at two loci in the 38.41-38.85 Mb region with 336 SNPs on chromosome 1 (qCMS1) and the 26.13-26.80 Mb region with 1,011 SNPs on chromosome 3 (qCMS3); the Δ(SNP index) peaks were -0.2709 and 0.3127, respectively. TN-bulk was mapped at only one locus in the overlapping 38.26-38.95 Mb region on chromosome 1 with 575 SNPs (qTN1) and a Δ(SNP index) peak of -0.3544. These identified QTLs in two different genetic backgrounds of segregating populations derived from JK were validated. The results confirmed the colocalization of the qCMS1 and qTN1 traits on chromosome 1. Based on the CMS trait, qCMS1/qTN1 stably expressed 6%-18% of the phenotypic variance in the two validation populations, while qCMS1/qTN1 accounted for 16%-20% of the phenotypic variance in one validation population based on the TN trait. Conclusion The findings confirm that the CMS and TN traits are tightly linked to the long arm of chromosome 1 rather than to chromosome 3. The validated qCMS-TN1 QTL can be used for gene/QTL pyramiding in marker-assisted selection to expedite breeding for salt resistance in rice at the seedling stage.
Collapse
Affiliation(s)
- Prasit Khunsanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Navarit Jitsamai
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nattana Thongsima
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | | | - Itsarapong Budjun
- Rice Department, Ministry of Agriculture and Cooperation, Bangkok, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Tiwari K, Tiwari S, Kumar N, Sinha S, Krishnamurthy SL, Singh R, Kalia S, Singh NK, Rai V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. PLANTS (BASEL, SWITZERLAND) 2024; 13:1099. [PMID: 38674508 PMCID: PMC11054697 DOI: 10.3390/plants13081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2024]
Abstract
Rice (Oryza sativa L.) is a crucial crop contributing to global food security; however, its production is susceptible to salinity, a significant abiotic stressor that negatively impacts plant germination, vigour, and yield, degrading crop production. Due to the presence of exchangeable sodium ions (Na+), the affected plants sustain two-way damage resulting in initial osmotic stress and subsequent ion toxicity in the plants, which alters the cell's ionic homeostasis and physiological status. To adapt to salt stress, plants sense and transfer osmotic and ionic signals into their respective cells, which results in alterations of their cellular properties. No specific Na+ sensor or receptor has been identified in plants for salt stress other than the SOS pathway. Increasing productivity under salt-affected soils necessitates conventional breeding supplemented with biotechnological interventions. However, knowledge of the genetic basis of salinity stress tolerance in the breeding pool is somewhat limited because of the complicated architecture of salinity stress tolerance, which needs to be expanded to create salt-tolerant variants with better adaptability. A comprehensive study that emphasizes the QTLs, genes and governing mechanisms for salt stress tolerance is discussed in the present study for future research in crop improvement.
Collapse
Affiliation(s)
- Keshav Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sushma Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Nivesh Kumar
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shikha Sinha
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | | | - Renu Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi 110003, India
| | - Nagendra Kumar Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Vandna Rai
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
3
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
4
|
Maniruzzaman S, Rahman MA, Hasan M, Rasul MG, Molla AH, Khatun H, Iftekharuddaula KM, Kabir MS, Akter S. Molecular Mapping to Discover Reliable Salinity-Resilient QTLs from the Novel Landrace Akundi in Two Bi-Parental Populations Using SNP-Based Genome-Wide Analysis in Rice. Int J Mol Sci 2023; 24:11141. [PMID: 37446320 DOI: 10.3390/ijms241311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving high-yield potential is always the ultimate objective of any breeding program. However, various abiotic stresses such as salinity, drought, cold, flood, and heat hampered rice productivity tremendously. Salinity is one of the most important abiotic stresses that adversely affect rice grain yield. The present investigation was undertaken to dissect new genetic loci, which are responsible for salt tolerance at the early seedling stage in rice. A bi-parental mapping population (F2:3) was developed from the cross between BRRI dhan28/Akundi, where BRRI dhan28 (BR28) is a salt-sensitive irrigated (boro) rice mega variety and Akundi is a highly salinity-tolerant Bangladeshi origin indica rice landrace that is utilized as a donor parent. We report reliable and stable QTLs for salt tolerance from a common donor (Akundi) irrespective of two different genetic backgrounds (BRRI dhan49/Akundi and BRRI dhan28/Akundi). A robust 1k-Rice Custom Amplicon (1k-RiCA) SNP marker genotyping platform was used for genome-wide analysis of this bi-parental population. After eliminating markers with high segregation distortion, 886 polymorphic SNPs built a genetic linkage map covering 1526.5 cM of whole rice genome with an average SNP density of 1.72 cM for the 12 genetic linkage groups. A total of 12 QTLs for nine different salt tolerance-related traits were identified using QGene and inclusive composite interval mapping of additive and dominant QTL (ICIM-ADD) under salt stress on seven different chromosomes. All of these 12 new QTLs were found to be unique, as no other map from the previous study has reported these QTLs in the similar chromosomal location and found them different from extensively studied Saltol, SKC1, OsSalT, and salT locus. Twenty-eight significant digenic/epistatic interactions were identified between chromosomal regions linked to or unlinked to QTLs. Akundi acts like a new alternate donor source of salt tolerance except for other usually known donors such as Nona Bokra, Pokkali, Capsule, and Hasawi used in salt tolerance genetic analysis and breeding programs worldwide, including Bangladesh. Integration of the seven novel, reliable, stable, and background independent salinity-resilient QTLs (qSES1, qSL1, qRL1, qSUR1, qSL8, qK8, qK1) reported in this investigation will expedite the cultivar development that is highly tolerant to salt stress.
Collapse
Affiliation(s)
- Sheikh Maniruzzaman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - M Akhlasur Rahman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Mehfuz Hasan
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohammad Golam Rasul
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Hasina Khatun
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - K M Iftekharuddaula
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Md Shahjahan Kabir
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Salma Akter
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| |
Collapse
|
5
|
Singh L, Pruthi R, Chapagain S, Subudhi PK. Genome-Wide Association Study Identified Candidate Genes for Alkalinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112206. [PMID: 37299185 DOI: 10.3390/plants12112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Alkalinity stress is a major hindrance to enhancing rice production globally due to its damaging effect on plants' growth and development compared with salinity stress. However, understanding of the physiological and molecular mechanisms of alkalinity tolerance is limited. Therefore, a panel of indica and japonica rice genotypes was evaluated for alkalinity tolerance at the seedling stage in a genome-wide association study to identify tolerant genotypes and candidate genes. Principal component analysis revealed that traits such as alkalinity tolerance score, shoot dry weight, and shoot fresh weight had the highest contribution to variations in tolerance, while shoot Na+ concentration, shoot Na+:K+ ratio, and root-to-shoot ratio had moderate contributions. Phenotypic clustering and population structure analysis grouped the genotypes into five subgroups. Several salt-susceptible genotypes such as IR29, Cocodrie, and Cheniere placed in the highly tolerant cluster suggesting different underlying tolerance mechanisms for salinity and alkalinity tolerance. Twenty-nine significant SNPs associated with alkalinity tolerance were identified. In addition to three alkalinity tolerance QTLs, qSNK4, qSNC9, and qSKC10, which co-localized with the earlier reported QTLs, a novel QTL, qSNC7, was identified. Six candidate genes that were differentially expressed between tolerant and susceptible genotypes were selected: LOC_Os04g50090 (Helix-loop-helix DNA-binding protein), LOC_Os08g23440 (amino acid permease family protein), LOC_Os09g32972 (MYB protein), LOC_Os08g25480 (Cytochrome P450), LOC_Os08g25390 (Bifunctional homoserine dehydrogenase), and LOC_Os09g38340 (C2H2 zinc finger protein). The genomic and genetic resources such as tolerant genotypes and candidate genes would be valuable for investigating the alkalinity tolerance mechanisms and for marker-assisted pyramiding of the favorable alleles for improving alkalinity tolerance at the seedling stage in rice.
Collapse
Affiliation(s)
- Lovepreet Singh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Rajat Pruthi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sandeep Chapagain
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Prasanta K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Sarkar B, Varalaxmi Y, Vanaja M, RaviKumar N, Prabhakar M, Yadav SK, Maheswari M, Singh VK. Mapping of QTLs for morphophysiological and yield traits under water-deficit stress and well-watered conditions in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1124619. [PMID: 37223807 PMCID: PMC10200936 DOI: 10.3389/fpls.2023.1124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 05/25/2023]
Abstract
Maize productivity is significantly impacted by drought; therefore, improvement of drought tolerance is a critical goal in maize breeding. To achieve this, a better understanding of the genetic basis of drought tolerance is necessary. Our study aimed to identify genomic regions associated with drought tolerance-related traits by phenotyping a mapping population of recombinant inbred lines (RILs) for two seasons under well-watered (WW) and water-deficit (WD) conditions. We also used single nucleotide polymorphism (SNP) genotyping through genotyping-by-sequencing to map these regions and attempted to identify candidate genes responsible for the observed phenotypic variation. Phenotyping of the RILs population revealed significant variability in most of the traits, with normal frequency distributions, indicating their polygenic nature. We generated a linkage map using 1,241 polymorphic SNPs distributed over 10 chromosomes (chrs), covering a total genetic distance of 5,471.55 cM. We identified 27 quantitative trait loci (QTLs) associated with various morphophysiological and yield-related traits, with 13 QTLs identified under WW conditions and 12 under WD conditions. We found one common major QTL (qCW2-1) for cob weight and a minor QTL (qCH1-1) for cob height that were consistently identified under both water regimes. We also detected one major and one minor QTL for the Normalized Difference Vegetation Index (NDVI) trait under WD conditions on chr 2, bin 2.10. Furthermore, we identified one major QTL (qCH1-2) and one minor QTL (qCH1-1) on chr 1 that were located at different genomic positions to those identified in earlier studies. We found co-localized QTLs for stomatal conductance and grain yield on chr 6 (qgs6-2 and qGY6-1), while co-localized QTLs for stomatal conductance and transpiration rate were identified on chr 7 (qgs7-1 and qTR7-1). We also attempted to identify the candidate genes responsible for the observed phenotypic variation; our analysis revealed that the major candidate genes associated with QTLs detected under water deficit conditions were related to growth and development, senescence, abscisic acid (ABA) signaling, signal transduction, and transporter activity in stress tolerance. The QTL regions identified in this study may be useful in designing markers that can be utilized in marker-assisted selection breeding. In addition, the putative candidate genes can be isolated and functionally characterized so that their role in imparting drought tolerance can be more fully understood.
Collapse
|
7
|
Jin SK, Xu LN, Yang QQ, Zhang MQ, Wang SL, Wang RA, Tao T, Hong LM, Guo QQ, Jia SW, Song T, Leng YJ, Cai XL, Gao JP. High-resolution quantitative trait locus mapping for rice grain quality traits using genotyping by sequencing. FRONTIERS IN PLANT SCIENCE 2023; 13:1050882. [PMID: 36714703 PMCID: PMC9878556 DOI: 10.3389/fpls.2022.1050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Rice is a major food crop that sustains approximately half of the world population. Recent worldwide improvements in the standard of living have increased the demand for high-quality rice. Accurate identification of quantitative trait loci (QTLs) for rice grain quality traits will facilitate rice quality breeding and improvement. In the present study, we performed high-resolution QTL mapping for rice grain quality traits using a genotyping-by-sequencing approach. An F2 population derived from a cross between an elite japonica variety, Koshihikari, and an indica variety, Nona Bokra, was used to construct a high-density genetic map. A total of 3,830 single nucleotide polymorphism markers were mapped to 12 linkage groups spanning a total length of 2,456.4 cM, with an average genetic distance of 0.82 cM. Seven grain quality traits-the percentage of whole grain, percentage of head rice, percentage of area of head rice, transparency, percentage of chalky rice, percentage of chalkiness area, and degree of chalkiness-of the F2 population were investigated. In total, 15 QTLs with logarithm of the odds (LOD) scores >4 were identified, which mapped to chromosomes 6, 7, and 9. These loci include four QTLs for transparency, four for percentage of chalky rice, four for percentage of chalkiness area, and three for degree of chalkiness, accounting for 0.01%-61.64% of the total phenotypic variation. Of these QTLs, only one overlapped with previously reported QTLs, and the others were novel. By comparing the major QTL regions in the rice genome, several key candidate genes reported to play crucial roles in grain quality traits were identified. These findings will expedite the fine mapping of these QTLs and QTL pyramiding, which will facilitate the genetic improvement of rice grain quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Qing Yang
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Lian-Min Hong
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qian-Qian Guo
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Jia Leng
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Nguyen TT, Dwiyanti MS, Sakaguchi S, Koide Y, Le DV, Watanabe T, Kishima Y. Identification of a Saltol-Independent Salinity Tolerance Polymorphism in Rice Mekong Delta Landraces and Characterization of a Promising Line, Doc Phung. RICE (NEW YORK, N.Y.) 2022; 15:65. [PMID: 36529786 PMCID: PMC9760585 DOI: 10.1186/s12284-022-00613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The Mekong Delta River in Vietnam is facing salinity intrusion caused by climate change and sea-level rise that is severely affecting rice cultivation. Here, we evaluated salinity responses of 97 rice accessions (79 landraces and 18 improved accessions) from the Mekong Delta population by adding 100 mM NaCl to the nutrient solution for up to 20 days. We observed a wide distribution in salinity tolerance/sensitivity, with two major peaks across the 97 accessions when using the standard evaluation system (SES) developed by the International Rice Research Institute. SES scores revealed strong negative correlations (ranging from - 0.68 to - 0.83) with other phenotypic indices, such as shoot elongation length, root elongation length, shoot dry weight, and root dry weight. Mineral concentrations of Na+ in roots, stems, and leaves and Ca2+ in roots and stems were positively correlated with SES scores, suggesting that tolerant accessions lower their cation exchange capacity in the root cell wall. The salinity tolerance of Mekong Delta accessions was independent from the previously described salinity tolerance-related locus Saltol, which encodes an HKT1-type transporter in the salinity-tolerant cultivars Nona Bokra and Pokkali. Indeed, genome-wide association studies using SES scores and shoot dry weight ratios of the 79 accessions as traits identified a single common peak located on chromosome 1. This SNP did not form a linkage group with other nearby SNPs and mapped to the 3' untranslated region of gene LOC_Os01g32830, over 6.5 Mb away from the Saltol locus. LOC_Os01g32830 encodes chloroplast glycolate/glycerate translocator 1 (OsPLGG1), which is responsible for photorespiration and growth. SES and shoot dry weight ratios differed significantly between the two possible haplotypes at the causal SNP. Through these analyses, we characterize Doc Phung, one of the most salinity-tolerant varieties in the Mekong Delta population and a promising new genetic resource.
Collapse
Affiliation(s)
- Tam Thanh Nguyen
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Mekong Delta Development Research Institute, Can Tho University, Campus 2 3-2 Street, Can Tho, Vietnam.
| | | | - Shuntaro Sakaguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Dung Viet Le
- College of Agriculture, Can Tho University, Campus 2 3-2 Street, Can Tho, Vietnam
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
9
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
10
|
Mapping QTLs for Reproductive Stage Salinity Tolerance in Rice Using a Cross between Hasawi and BRRI dhan28. Int J Mol Sci 2022; 23:ijms231911376. [PMID: 36232678 PMCID: PMC9569796 DOI: 10.3390/ijms231911376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Salinity stress is a major constraint to rice production in many coastal regions due to saline groundwater and river sources, especially during the dry season in coastal areas when seawater intrudes further inland due to reduced river flows. Since salinity tolerance is a complex trait, breeding efforts can be assisted by mapping quantitative trait loci (QTLs) for complementary salt tolerance mechanisms, which can then be combined to provide higher levels of tolerance. While an abundance of seedling stage salinity tolerance QTLs have been mapped, few studies have investigated reproductive stage tolerance in rice due to the difficulty of achieving reliable stage-specific phenotyping techniques. In the current study, a BC1F2 mapping population consisting of 435 individuals derived from a cross between a salt-tolerant Saudi Arabian variety, Hasawi, and a salt-sensitive Bangladeshi variety, BRRI dhan28, was evaluated for yield components after exposure to EC 10 dS/m salinity stress during the reproductive stage. After selecting tolerant and sensitive progeny, 190 individuals were genotyped by skim sequencing, resulting in 6209 high quality single nucleotide polymorphic (SNP) markers. Subsequently, a total of 40 QTLs were identified, of which 24 were for key traits, including productive tillers, number and percent filled spikelets, and grain yield under stress. Importantly, three yield-related QTLs, one each for productive tillers (qPT3.1), number of filled spikelets (qNFS3.1) and grain yield (qGY3.1) under salinity stress, were mapped at the same position (6.7 Mb or 26.1 cM) on chromosome 3, which had not previously been associated with grain yield under salinity stress. These QTLs can be investigated further to dissect the molecular mechanisms underlying reproductive stage salinity tolerance in rice.
Collapse
|
11
|
Rasheed A, Li H, Nawaz M, Mahmood A, Hassan MU, Shah AN, Hussain F, Azmat S, Gillani SFA, Majeed Y, Qari SH, Wu Z. Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective. FRONTIERS IN PLANT SCIENCE 2022; 13:966749. [PMID: 35968147 PMCID: PMC9366114 DOI: 10.3389/fpls.2022.966749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 05/08/2023]
Abstract
Improvement of salinity tolerance in rice can minimize the stress-induced yield losses. Rice (Oryza sativa) is one of Asia's most widely consumed crops, native to the subtropical regions, and is generally associated with sensitivity to salinity stress episodes. Salt-tolerant rice genotypes have been developed using conventional breeding methods; however, the success ratio is limited because of the complex nature of the trait and the high cost of development. The narrow genetic base of rice limited the success of conventional breeding methods. Hence, it is critical to launch the molecular tools for screening rice novel germplasm for salt-tolerant genes. In this regard, the latest molecular techniques like quantitative trait loci (QTL) mapping, genetic engineering (GE), transcription factors (TFs) analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) are reliable for incorporating the salt tolerance in rice at the molecular level. Large-scale use of these potent genetic approaches leads to identifying and editing several genes/alleles, and QTL/genes are accountable for holding the genetic mechanism of salinity tolerance in rice. Continuous breeding practices resulted in a huge decline in rice genetic diversity, which is a great worry for global food security. However, molecular breeding tools are the only way to conserve genetic diversity by exploring wild germplasm for desired genes in salt tolerance breeding programs. In this review, we have compiled the logical evidences of successful applications of potent molecular tools for boosting salinity tolerance in rice, their limitations, and future prospects. This well-organized information would assist future researchers in understanding the genetic improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fiaz Hussain
- Directorate of Agronomy, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Saira Azmat
- Department of Agriculture, Agriculture Extension and Adaptive Research, Government of the Punjab, Lahore, Pakistan
| | | | - Yasir Majeed
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
13
|
Genetic Mapping to Detect Stringent QTLs Using 1k-RiCA SNP Genotyping Platform from the New Landrace Associated with Salt Tolerance at the Seedling Stage in Rice. PLANTS 2022; 11:plants11111409. [PMID: 35684182 PMCID: PMC9183132 DOI: 10.3390/plants11111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Rice is the world’s most important food crop, providing the daily calorie intake for more than half of the world’s population. Rice breeding has always been preoccupied with maximizing yield potential. However, numerous abiotic factors, such as salt, cold, drought, and heat, significantly reduce rice productivity. Salinity, one of the major abiotic stresses, reduces rice yield worldwide. This study was conducted to determine new quantitative trait loci (QTLs) that regulate salt tolerance in rice seedlings. One F2:3 mapping population was derived from a cross between BRRI dhan49 (a popular but sensitive rainfed rice variety) and Akundi (a salt-tolerant rice landrace in Bangladesh used as a donor parent). The 1k-Rice Custom Amplicon (1k-RiCA) single-nucleotide polymorphism (SNP) markers were used to genotype this mapping population. After removing segregation distortion and monomorphic markers, 884 SNPs generated a 1526.8 cM-long genetic linkage map with a mean marker density of 1.7 cM for the 12 linkage groups. By exploiting QGene and ICIM-ADD, a sum of 15 QTLs for nine traits was identified in salt stress on seven chromosomes. Four important genomic loci were identified (qSES1, qSL1, qSUR1 and qRL1) on chromosome 1. Out of these 15 QTLs, 14 QTLs are unique, as no other study has mapped in the same chromosomal location. We also detected 15 putative candidate genes and their functions. The ICIM-EPI approach identified 43 significant pairwise epistasis interactions between regions associated with and unassociated with QTLs. Apart from more well-known donors, Akundi serves as an important new donor source for global salt tolerance breeding initiatives, including Bangladesh. The introgression of the novel QTLs identified in this study will accelerate the development of new salt-tolerant varieties that are highly resistant to salt stress using marker-enabled breeding.
Collapse
|
14
|
de Ocampo MP, Ho VT, Thomson MJ, Mitsuya S, Yamauchi A, Ismail AM. QTL mapping under salt stress in rice using a Kalarata-Azucena population. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2022; 218:74. [PMID: 36060537 PMCID: PMC9427886 DOI: 10.1007/s10681-022-03026-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/19/2022] [Indexed: 05/24/2023]
Abstract
UNLABELLED Salt stress is a major constraint across large rice production areas in Asia, because of the high sensitivity of modern rice varieties. To identify quantitative trait loci (QTL) associated with salt tolerance in rice, we developed an F2 population from a cross between the salt-tolerant landrace, Kalarata, and the salt-sensitive parent, Azucena. F3 families from this population were screened and scored for salt tolerance using IRRI's Standard evaluation system (SES). Growth, biomass, Na+ and K+ concentrations in leaf tissues, and chlorophyll concentration were determined. A genetic linkage map was constructed with 151 SSRs and InDel markers, which cover 1463 cM with an average distance of 9.69 cM between loci. A total of 13 QTL were identified using Composite Interval Mapping for 16 traits. Several novel QTL were identified in this study, the largest is for root sodium concentration (LOD = 11.0, R2 = 25.0) on chromosome 3, which also co-localize with a QTL for SES. Several QTL on the short arm of chromosome 1 coincide with the Saltol locus identified before. The novel QTL identified in this study constitute future targets for molecular breeding, to combine them with other QTL identified before, for higher tolerance and stable performance of rice varieties in salt affected soils. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10681-022-03026-8.
Collapse
Affiliation(s)
- Marjorie P. de Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Viet The Ho
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, 343C Heep Center, Texas A&M University, College Station, TX USA
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Abdelbagi M. Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
15
|
Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V. VT, Sheoran S, T. RK, Longmei N, Rakshit S, Siddique KHM. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 2022; 128:497-518. [DOI: 10.1038/s41437-022-00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
|
16
|
Radha B, Sunitha NC, Sah RP, T P MA, Krishna GK, Umesh DK, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Ch L N M, S B, Marndi BC, Siddique KHM. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:996514. [PMID: 36714754 PMCID: PMC9874338 DOI: 10.3389/fpls.2022.996514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
Collapse
Affiliation(s)
- Beena Radha
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Vellayani, Thiruvananthapuram, Kerala, India
| | | | - Rameswar P Sah
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Md Azharudheen T P
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - G K Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Thrissur, Kerala, India
| | - Deepika Kumar Umesh
- Mulberry Breeding & Genetics Section, Central Sericultural Research and Training Institute-Berhampore, Central Silk Board, Murshidabad, West Bengal, India
| | - Sini Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, Kumarakom, Kerala, India
| | - Chandrappa Anilkumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Sameer Upadhyay
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Awadhesh Kumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Manikanta Ch L N
- Department of Plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Behera S
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Bishnu Charan Marndi
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Kadambot H M Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
18
|
Singh RK, Kota S, Flowers TJ. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3495-3533. [PMID: 34287681 PMCID: PMC8519845 DOI: 10.1007/s00122-021-03890-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/09/2021] [Indexed: 05/15/2023]
Abstract
Reproductive stage salinity tolerance is most critical for rice as it determines the yield under stress. Few studies have been undertaken for this trait as phenotyping was cumbersome, but new methodology outlined in this review seeks to redress this deficiency. Sixty-three meta-QTLs, the most important genomic regions to target for enhancing salinity tolerance, are reported. Although rice has been categorized as a salt-sensitive crop, it is not equally affected throughout its growth, being most sensitive at the seedling and reproductive stages. However, a very poor correlation exists between sensitivity at these two stages, which suggests that the effects of salt are determined by different mechanisms and sets of genes (QTLs) in seedlings and during flowering. Although tolerance at the reproductive stage is arguably the more important, as it translates directly into grain yield, more than 90% of publications on the effects of salinity on rice are limited to the seedling stage. Only a few studies have been conducted on tolerance at the reproductive stage, as phenotyping is cumbersome. In this review, we list the varieties of rice released for salinity tolerance traits, those being commercially cultivated in salt-affected soils and summarize phenotyping methodologies. Since further increases in tolerance are needed to maintain future productivity, we highlight work on phenotyping for salinity tolerance at the reproductive stage. We have constructed an exhaustive list of the 935 reported QTLs for salinity tolerance in rice at the seedling and reproductive stages. We illustrate the chromosome locations of 63 meta-QTLs (with 95% confidence interval) that indicate the most important genomic regions for salt tolerance in rice. Further study of these QTLs should enhance our understanding of salt tolerance in rice and, if targeted, will have the highest probability of success for marker-assisted selections.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture (ICBA), Dubai, UAE
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Suneetha Kota
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
- Genetics and Plant Breeding Department, Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Timothy J Flowers
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
19
|
Kale RR, Durga Rani CV, Anila M, Mahadeva Swamy HK, Bhadana VP, Senguttuvel P, Subrahmanyam D, Ayyappa Dass M, Swapnil K, Anantha MS, Punniakotti E, Prasanna BL, Rekha G, Sinha P, Kousik MBVN, Dilip T, Hajira SK, Brajendra P, Mangrauthia SK, Gireesh C, Tuti M, Mahendrakumar R, Giri J, Singh P, Sundaram RM. Novel major QTLs associated with low soil phosphorus tolerance identified from the Indian rice landrace, Wazuhophek. PLoS One 2021; 16:e0254526. [PMID: 34264991 PMCID: PMC8282084 DOI: 10.1371/journal.pone.0254526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005). Five major QTLs explaining phenotypic variance to an extent of 15.28%, 17.25%, 21.84%, 20.23%, and 18.50%, associated with the traits, plant height, shoot length, the number of productive tillers, panicle length and yield, respectively, were located in the hotspot. Two major QTLs located on chromosome 1, associated with the traits, total biomass and root to shoot ratio, explaining 15.44% and 15.44% phenotypic variance, respectively were also identified. Complex epistatic interactions were observed among the traits, grain yield per plant, days to 50% flowering, dry shoot weight, and P content of the seed. In-silico analysis of genomic regions flanking the major QTLs revealed the presence of key putative candidate genes, possibly associated with tolerance.
Collapse
Affiliation(s)
- Ravindra Ramrao Kale
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Ch. V. Durga Rani
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - M. Anila
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - H. K. Mahadeva Swamy
- Indian Council of Agricultural Research—Sugarcane Breeding Institute, Coimbatore, India
| | - V. P. Bhadana
- Indian Council of Agricultural Research -Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - P. Senguttuvel
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - D. Subrahmanyam
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. Ayyappa Dass
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - K. Swapnil
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. S. Anantha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - E. Punniakotti
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - B. Laxmi Prasanna
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - G. Rekha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - P. Sinha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. B. V. N. Kousik
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - T. Dilip
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S. K. Hajira
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - P. Brajendra
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S. K. Mangrauthia
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - C. Gireesh
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Mangaldeep Tuti
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - R. Mahendrakumar
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Jitendra Giri
- Department of Biotechnology - National Institute of Plant Genome Research, New Delhi, India
| | - Pawandeep Singh
- Department of Biotechnology - National Institute of Plant Genome Research, New Delhi, India
| | - R. M. Sundaram
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
20
|
Application of Genomics to Understand Salt Tolerance in Lentil. Genes (Basel) 2021; 12:genes12030332. [PMID: 33668850 PMCID: PMC7996261 DOI: 10.3390/genes12030332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Soil salinity is a major abiotic stress, limiting lentil productivity worldwide. Understanding the genetic basis of salt tolerance is vital to develop tolerant varieties. A diversity panel consisting of 276 lentil accessions was screened in a previous study through traditional and image-based approaches to quantify growth under salt stress. Genotyping was performed using two contrasting methods, targeted (tGBS) and transcriptome (GBS-t) genotyping-by-sequencing, to evaluate the most appropriate methodology. tGBS revealed the highest number of single-base variants (SNPs) (c. 56,349), and markers were more evenly distributed across the genome compared to GBS-t. A genome-wide association study (GWAS) was conducted using a mixed linear model. Significant marker-trait associations were observed on Chromosome 2 as well as Chromosome 4, and a range of candidate genes was identified from the reference genome, the most plausible being potassium transporters, which are known to be involved in salt tolerance in related species. Detailed mineral composition performed on salt-treated and control plant tissues revealed the salt tolerance mechanism in lentil, in which tolerant accessions do not transport Na+ ions around the plant instead localize within the root tissues. The pedigree analysis identified two parental accessions that could have been the key sources of tolerance in this dataset.
Collapse
|
21
|
Nakhla WR, Sun W, Fan K, Yang K, Zhang C, Yu S. Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:428. [PMID: 33668277 PMCID: PMC7996262 DOI: 10.3390/plants10030428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Rice is highly sensitive to salinity stress during the seedling establishment phase. Salt stress is widely occurring in cultivated areas and severely affects seed germination ability and seedling establishment, which may result in a complete crop failure. The objective of the present study is to identify quantitative trait loci (QTLs) related to salt tolerance of the germination and seedling stages in a rice backcross inbred line (BIL) population that was derived from a backcross of an Africa rice ACC9 as donor and indica cultivar Zhenshan97 (ZS97) as the recurrent parent. Under salt stress, ACC9 exhibited a higher germination percentage, but more repressed seedling growth than ZS97. Using the BIL population, 23 loci for germination parameters were detected at the germination stage and 46 loci were identified for several morphological and physiological parameters at the seedling stage. Among them, nine and 33 loci with the ACC9 alleles increased salt tolerance at the germination and seedling stages, respectively. Moreover, several major QTLs were found to be co-localized in the same or overlapping regions of previously reported genes for salt stress. These major loci will facilitate improving salt-tolerance rice in genome-breeding programs.
Collapse
Affiliation(s)
- Walid Raafat Nakhla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Mitsuya S, Murakami N, Sato T, Kazama T, Toriyama K, Skoulding NS, Kano-Nakata M, Yamauchi A. Evaluation of rice grain yield and yield components of Nona Bokra chromosome segment substitution lines with the genetic background of Koshihikari, in a saline paddy field. AOB PLANTS 2019; 11:plz040. [PMID: 31632626 PMCID: PMC6790112 DOI: 10.1093/aobpla/plz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
The ability to tolerate salt differs with the growth stages of rice and thus the yield components that are determined during various growth stages, are differentially affected by salt stress. In this study, we utilized chromosome segment substitution lines (CSSLs) from Nona Bokra, a salt-tolerant indica landrace, with the genetic background of Koshihikari, a salt-susceptible japonica variety. These were screened to find superior CSSLs under long-term saline conditions that showed higher grain yield and yield components in comparison to Koshihikari. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for 1 month further, then the field was flooded, with saline water maintained at 7.41 dS m-1 salinity until harvest. The experiments were performed twice, once in 2015 and a targeted study in 2016. Salt tolerance of growth and reproductive stage parameters was evaluated as the Salt Effect Index (SEI) which was computed as the difference in each parameter within each line between control and saline conditions. All CSSLs and Koshihikari showed a decrease in grain yield and yield components except panicle number under salinity. SL538 showed a higher SEI for grain yield compared with Koshihikari under salinity throughout the two experiments. This was attributed to the retained grain filling and harvest index, yet the mechanism was not due to maintaining Na+, Cl- and K+ homeostasis. Few other CSSLs showed greater SEI for grain weight under salinity compared with Koshihikari, which might be related to low concentration of Na+ in leaves and panicles. These data indicate that substitution of different Nona Bokra chromosome segments independently contributed to the maintenance of grain filling and grain weight of Koshihikari under saline conditions.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Norifumi Murakami
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | | | - Mana Kano-Nakata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
23
|
Rahman MA, Thomson MJ, De Ocampo M, Egdane JA, Salam MA, Shah-E-Alam M, Ismail AM. Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. RICE (NEW YORK, N.Y.) 2019; 12:63. [PMID: 31410650 PMCID: PMC6692794 DOI: 10.1186/s12284-019-0319-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. The purpose of this study was to establish the relative importance of different traits associated with salinity tolerance in rice and to identify new quantitative trait loci (QTL) conferring tolerance to salinity at seedling stage. A total of 231 F2:3 plants derived from a cross between a sensitive variety BRRI dhan29 (BR29 hereafter) and Capsule, a salt tolerant Bangladeshi indica landrace, were evaluated under salt stress in a phytotron. RESULTS Out of the 231 F2 plants, 47 highly tolerant and 47 most sensitive lines were selected, representing the two extreme tails of the phenotypic distribution. These 94 plants were genotyped for 105 simple sequence repeat (SSR) and insertion/deletion (InDel) markers. A genetic linkage map spanning approximately 1442.9 cM of the 12 linkage groups with an average marker distance of 13.7 cM was constructed. QTL were identified on the long arm of chromosome 1 for Na+ concentration, K+ concentration, Na+-K+ ratio and survival; chromosome 3 for Na+ concentration, survival and overall phenotypic evaluation using the Standard Evaluation system (SES); and chromosome 5 for SES. A total of 6 pairwise epistatic interactions were also detected between QTL-linked and QTL-unlinked regions. Graphical genotyping indicated an association between the phenotypes of the extreme families and their QTL genotypes. Path coefficient analysis revealed that Na+ concentration, survival, Na+-K+ ratio and the overall phenotypic performance (SES score) are the major traits associated with salinity tolerance of Capsule. CONCLUSIONS Capsule provides an alternative source of salinity tolerance aside from Pokkali and Nona Bokra, the two Indian salt tolerant landraces traditionally used for breeding salt tolerant rice varieties. Pyramiding the new QTL identified in this study with previously discovered loci, such as Saltol, will facilitate breeding varieties that are highly tolerant of salt stress.
Collapse
Affiliation(s)
- M Akhlasur Rahman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Marjorie De Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - James A Egdane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M A Salam
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - M Shah-E-Alam
- Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
24
|
Cobb JN, Biswas PS, Platten JD. Back to the future: revisiting MAS as a tool for modern plant breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:647-667. [PMID: 30560465 PMCID: PMC6439155 DOI: 10.1007/s00122-018-3266-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE New models for integration of major gene MAS with modern breeding approaches stand to greatly enhance the reliability and efficiency of breeding, facilitating the leveraging of traditional genetic diversity. Genetic diversity is well recognised as contributing essential variation to crop breeding processes, and marker-assisted selection is cited as the primary tool to bring this diversity into breeding programs without the associated genetic drag from otherwise poor-quality genomes of donor varieties. However, implementation of marker-assisted selection techniques remains a challenge in many breeding programs worldwide. Many factors contribute to this lack of adoption, such as uncertainty in how to integrate MAS with traditional breeding processes, lack of confidence in MAS as a tool, and the expense of the process. However, developments in genomics tools, locus validation techniques, and new models for how to utilise QTLs in breeding programs stand to address these issues. Marker-assisted forward breeding needs to be enabled through the identification of robust QTLs, the design of reliable marker systems to select for these QTLs, and the delivery of these QTLs into elite genomic backgrounds to enable their use without associated genetic drag. To enhance the adoption and effectiveness of MAS, rice is used as an example of how to integrate new developments and processes into a coherent, efficient strategy for utilising genetic variation. When processes are instituted to address these issues, new genes can be rolled out into a breeding program rapidly and completely with a minimum of expense.
Collapse
Affiliation(s)
- Joshua N Cobb
- International Rice Research Institute, National Road, Los Banos, Laguna, Philippines
| | - Partha S Biswas
- International Rice Research Institute, National Road, Los Banos, Laguna, Philippines
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - J Damien Platten
- International Rice Research Institute, National Road, Los Banos, Laguna, Philippines.
| |
Collapse
|
25
|
Yadav S, Sandhu N, Majumder RR, Dixit S, Kumar S, Singh SP, Mandal NP, Das SP, Yadaw RB, Singh VK, Sinha P, Varshney RK, Kumar A. Epistatic interactions of major effect drought QTLs with genetic background loci determine grain yield of rice under drought stress. Sci Rep 2019; 9:2616. [PMID: 30796339 PMCID: PMC6385343 DOI: 10.1038/s41598-019-39084-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Epistatic interactions of QTLs with the genetic background and QTL-QTL interaction plays an important role in the phenotypic performance of introgression lines developed through genomic-assisted breeding (GAB). In this context, NIL pairs developed with various drought QTL (qDTY) combinations in the genetic background of IR64, TDK1-Sub1 and Savitri backgrounds were utilized to study the interactions. Multi-season phenotyping of NIL pairs harboring similar qDTY combinations provided contrasting performance for grain yield under drought (RS) (classified as high and low yielding NILs) but nearly similar performance under non-stress(NS) conditions. Genome wide genotyping data revealed a total of 16, 5 and 6 digenic interactions were detected under RS conditions in low yielding NILs of IR64, TDK1-Sub1 and Savitri respectively while no significant interaction was found in high yielding NILs under RS and NS conditions in any of the genetic backgrounds used in this study. It is evident from this study that existence of epistatic interactions between QTLs with genetic background, QTL-QTL interaction and interactions among background markers loci itself on different chromosomes influences the expression of a complex trait such as grain yield under drought. The generated information will be useful in all the GAB program of across the crops for precise breeding.
Collapse
Affiliation(s)
- Shailesh Yadav
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Nitika Sandhu
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ratna Rani Majumder
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Santosh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - S P Singh
- Bihar Agricultural University, Sabour, Bihar, India
| | - N P Mandal
- Central Rainfed Upland Rice Research station, National Rice Research Institute, Hazaribagh, Jharkhand, India
| | - S P Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | | | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Pallavi Sinha
- International Crops Research Institute for the Semi-arid Tropics, Patancheru, Hyderabad, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-arid Tropics, Patancheru, Hyderabad, India
| | - Arvind Kumar
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
26
|
Bai YL, Cai BD, Luo XT, Ye TT, Feng YQ. Simultaneous Determination of Abscisic Acid and Its Catabolites by Hydrophilic Solid-Phase Extraction Combined with Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10906-10912. [PMID: 30260222 DOI: 10.1021/acs.jafc.8b03820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An efficient and selective pretreatment method of one-step hydrophilic interaction chromatography-based solid phase extraction (HILIC SPE) was developed using silica as the sorbent to quickly and sensitively detect endogenous ABA and its five catabolites in fresh Oryza sativa tissues. The extracted analytes were sensitively quantified with ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Under the optimized conditions, good linearity of the developed analytical method was obtained in the range of 0.2-1000 ng/mL with linear correlation coefficients ( r) greater than 0.9987. The limits of detection (LODs, signal/noise = 3) ranged from 0.01 to 0.74 ng/mL. The relative recoveries were between 83.3% and 112.0% with the relative standard deviations (RSDs) ranging from 0.5 to 15.0%. Using the proposed method, the concentration variations of ABA and its catabolites were monitored in the salt-stressed rice tissues.
Collapse
Affiliation(s)
- Ya-Li Bai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Bao-Dong Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Xiao-Tong Luo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Tian-Tian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
27
|
Khan MA, Tong F, Wang W, He J, Zhao T, Gai J. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. PLANTA 2018; 248:947-962. [PMID: 29980855 DOI: 10.1007/s00425-018-2952-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION RTM-GWAS identified 111 DT QTLs, 262 alleles with high proportion of QEI and genetic variation accounting for 88.55-95.92% PV in NAM, from which QTL-allele matrices were established and candidate genes annotated. Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and ZhengYang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) ≥ 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL-environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52-41.65%), plus genetic variation (46.90-58.40%) in a total of 88.55-95.92% PV. The identified QTLs-alleles were organized into main-effect and QEI-effect QTL-allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098-1.132, transgressive over the parents (0.651-0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL-allele-based genomic selection for optimal cross selection.
Collapse
Affiliation(s)
- Mueen Alam Khan
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
| | - Fei Tong
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
| | - Wubin Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|