1
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
2
|
Shen Y, Wang J, Sheng X, Yu H, Shaw RK, Song M, Cai S, Qiao S, Lin F, Gu H. Fine mapping of a major co-localized QTL associated with self-incompatibility identified in two F 2 populations (broccoli × cauliflower and cauliflower × Chinese kale). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:264. [PMID: 39527153 DOI: 10.1007/s00122-024-04770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE A major QTL responsible for self-incompatibility was stably identified in two F2 populations. Through fine mapping and qRT-PCR analysis, ARK3 emerged as the most promising candidate gene, playing a pivotal role in regulating self-incompatibility in Brassica oleracea. Self-incompatibility (SI) is a common phenomenon in Brassica oleracea species, which can maintain genetic diversity but will also limit seed production. Although the S locus has been extensively studied in Arabidopsis and some Brassicaceae crops, map-based cloning of self-incompatibility genes has not been conducted in Brassica oleracea, such as cauliflower and broccoli. In the present study, we identified a major co-localized QTL on chromosome C6 that control SI in two F2 populations derived from intervarietal crosses: broccoli × cauliflower (CL_F2) and cauliflower × Chinese kale (CJ_F2). Subsequently, this QTL was narrowed down to 168.5 Kb through fine mapping using 3,429 F2:3 progenies and 12 available KASP markers. Within this 168.5 Kb region, BolC6t39084H, a homologue of Arabidopsis ARK3, could be a candidate gene that plays a key role in regulating SI in B. oleracea species. This finding can pave the way for an in-depth understanding of the molecular mechanisms underlying SI, and will contribute to the seed production of B. oleracea vegetables.
Collapse
Affiliation(s)
- Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ranjan K Shaw
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shiyi Cai
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Shuting Qiao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Sanya Institute, China Agricultural University, Yazhou Bay, Sanya, 572025, China
| | - Fan Lin
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Ma B, Cao X, Li X, Bian Z, Zhang QQ, Fang Z, Liu J, Li Q, Liu Q, Zhang L, He Z. Two ABCI family transporters, OsABCI15 and OsABCI16, are involved in grain-filling in rice. J Genet Genomics 2024; 51:492-506. [PMID: 37913986 DOI: 10.1016/j.jgg.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Seed development is critical for plant reproduction and crop yield, with panicle seed-setting rate, grain-filling, and grain weight being key seed characteristics for yield improvement. However, few genes are known to regulate grain filling. Here, we identify two adenosine triphosphate (ATP)-binding cassette (ABC)I-type transporter genes, OsABCI15 and OsABCI16, involved in rice grain-filling. Both genes are highly expressed in developing seeds, and their proteins are localized to the plasma membrane and cytosol. Interestingly, knockout of OsABCI15 and OsABCI16 results in a significant reduction in seed-setting rate, caused predominantly by the severe empty pericarp phenotype, which differs from the previously reported low seed-setting phenotype resulting from failed pollination. Further analysis indicates that OsABCI15 and OsABCI16 participate in ion homeostasis and likely export ions between filial tissues and maternal tissues during grain filling. Importantly, overexpression of OsABCI15 and OsABCI16 enhances the seed-setting rate and grain yield in transgenic plants and decreases ion accumulation in brown rice. Moreover, the OsABCI15/16 orthologues in maize exhibit a similar role in kernel development, as demonstrated by their disruption in transgenic maize. Therefore, our findings reveal the important roles of two ABC transporters in cereal grain filling, highlighting their value in crop yield improvement.
Collapse
Affiliation(s)
- Bin Ma
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Xiubiao Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyuan Li
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310024, China
| | - Zhong Bian
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zijun Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Yan M, Jiao G, Shao G, Chen Y, Zhu M, Yang L, Xie L, Hu P, Tang S. Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development. BMC PLANT BIOLOGY 2024; 24:196. [PMID: 38494545 PMCID: PMC10946104 DOI: 10.1186/s12870-024-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.
Collapse
Affiliation(s)
- Mei Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
5
|
Xu H, Wang H, Zhang Y, Yang X, Lv S, Hou D, Mo C, Wassie M, Yu B, Hu T. A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield. PLANT COMMUNICATIONS 2023; 4:100641. [PMID: 37349987 PMCID: PMC10721467 DOI: 10.1016/j.xplc.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Bioengineering of photorespiratory bypasses is an effective strategy for improving plant productivity by modulating photosynthesis. In previous work, two photorespiratory bypasses, the GOC and GCGT bypasses, increased photosynthetic rates but decreased seed-setting rate in rice (Oryza sativa), probably owing to excess photosynthate accumulation in the stem. To solve this bottleneck, we successfully developed a new synthetic photorespiratory bypass (called the GMA bypass) in rice chloroplasts by introducing Oryza sativa glycolate oxidase 1 (OsGLO1), Cucurbita maxima malate synthase (CmMS), and Oryza sativa ascorbate peroxidase7 (OsAPX7) into the rice genome using a high-efficiency transgene stacking system. Unlike the GOC and GCGT bypass genes driven by constitutive promoters, OsGLO1 in GMA plants was driven by a light-inducible Rubisco small subunit promoter (pRbcS); its expression dynamically changed in response to light, producing a more moderate increase in photosynthate. Photosynthetic rates were significantly increased in GMA plants, and grain yields were significantly improved under greenhouse and field conditions. Transgenic GMA rice showed no reduction in seed-setting rate under either test condition, unlike previous photorespiratory-bypass rice, probably reflecting proper modulation of the photorespiratory bypass. Together, these results imply that appropriate engineering of the GMA bypass can enhance rice growth and grain yield without affecting seed-setting rate.
Collapse
Affiliation(s)
- Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China.
| | - Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanwen Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shufang Lv
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Changru Mo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
6
|
Liu Z, Sun H, Zhang Y, Du M, Xiang J, Li X, Chang Y, Sun J, Cheng X, Xiong M, Zhao Z, Liu E. Mining the candidate genes of rice panicle traits via a genome-wide association study. Front Genet 2023; 14:1239550. [PMID: 37732315 PMCID: PMC10507276 DOI: 10.3389/fgene.2023.1239550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Panicle traits are important for improving the panicle architecture and grain yield of rice. Therefore, we performed a genome-wide association study (GWAS) to analyze and determine the genetic determinants of five panicle traits. A total of 1.29 million single nucleotide polymorphism (SNP) loci were detected in 162 rice materials. We carried out a GWAS of panicle length (PL), total grain number per panicle (TGP), filled grain number per panicle (FGP), seed setting rate (SSR) and grain weight per panicle (GWP) in 2019, 2020 and 2021. Four quantitative trait loci (QTLs) for PL were detected on chromosomes 1, 6, and 9; one QTL for TGP, FGP, and GWP was detected on chromosome 4; two QTLs for FGP were detected on chromosomes 4 and 7; and one QTL for SSR was detected on chromosome 1. These QTLs were detected via a general linear model (GLM) and mixed linear model (MLM) in both years of the study period. In this study, the genomic best linear unbiased prediction (BLUP) method was used to verify the accuracy of the GWAS results. There are nine QTLs were both detected by the multi-environment GWAS method and the BLUP method. Moreover, further analysis revealed that three candidate genes, LOC_Os01g43700, LOC_Os09g25784, and LOC_Os04g47890, may be significantly related to panicle traits of rice. Haplotype analysis indicated that LOC_Os01g43700 and LOC_Os09g25784 are highly associated with PL and that LOC_Os04g47890 is highly associated with TGP, FGP, and GWP. Our results offer essential genetic information for the molecular improvement of panicle traits. The identified candidate genes and elite haplotypes could be used in marker-assisted selection to improve rice yield through pyramid breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Li H, Feng B, Li J, Fu W, Wang W, Chen T, Liu L, Wu Z, Peng S, Tao L, Fu G. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. PLANT, CELL & ENVIRONMENT 2023; 46:1363-1383. [PMID: 36658612 DOI: 10.1111/pce.14547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.
Collapse
Affiliation(s)
- Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianmeng Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Jadoon S, Qin Q, Shi W, Longfeng Y, Hou S. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3 participate actively in growth and adaptive responses under abscisic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:990575. [PMID: 36186070 PMCID: PMC9521630 DOI: 10.3389/fpls.2022.990575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.), a worldwide staple food crop, is affected by various environmental stressors that ultimately reduce yield. However, diversified physiological and molecular responses enable it to cope with adverse factors. It includes the integration of numerous signaling in which protein phosphatase 1 (PP1) plays a pivotal role. Research on PP1 has been mostly limited to the PP1 catalytic subunit in numerous cellular progressions. Therefore, we focused on the role of PP1 regulatory subunits (PP1r), OsINH2 and OsINH3, homologs of AtINH2 and AtINH3 in Arabidopsis, in rice growth and stress adaptations. Our observations revealed that these are ubiquitously expressed regulatory subunits that interacted and colocalized with their counter partners, type 1 protein phosphatase (OsTOPPs) but could not change their subcellular localization. The mutation in OsINH2 and OsINH3 reduced pollen viability, thereby affected rice fertility. They were involved in abscisic acid (ABA)-mediated inhibition of seed germination, perhaps by interacting with osmotic stress/ABA-activated protein kinases (OsSAPKs). Meanwhile, they positively participated in osmotic adjustment by proline biosynthesis, detoxifying reactive oxygen species (ROS) through peroxidases (POD), reducing malondialdehyde formation (MDA), and regulating stress-responsive genes. Moreover, their co-interaction proposed they might mediate cellular processes together or by co-regulation; however, the special behavior of two different PP1r is needed to explore. In a nutshell, this research enlightened the involvement of OsINH2 and OsINH3 in the reproductive growth of rice and adaptive strategies under stress. Hence, their genetic interaction with ABA components and deep mechanisms underlying osmotic regulation and ROS adjustment would explain their role in complex signaling. This research offers the basis for introducing stress-resistant crops.
Collapse
|
9
|
Yadavalli VR, Balakrishnan D, Surapaneni M, Addanki K, Mesapogu S, Beerelli K, Desiraju S, Voleti SR, Neelamraju S. Mapping QTLs for yield and photosynthesis-related traits in three consecutive backcross populations of Oryza sativa cultivar Cottondora Sannalu (MTU1010) and Oryza rufipogon. PLANTA 2022; 256:71. [PMID: 36070104 DOI: 10.1007/s00425-022-03983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Identification of trait enhancing QTLs for yield and photosynthesis-related traits in rice using interspecific mapping population and chromosome segment substitution lines derived from a cross between Oryza sativa and Oryza rufipogon. Wild rice contains novel genes which can help in improving rice yield. Common wild rice Oryza rufipogon is a known source for enhanced photosynthesis and yield-related traits. We developed BC2F2:3:4 mapping populations using O. rufipogon IC309814 with high photosynthetic rate as donor, and elite cultivar MTU1010 as recurrent parent. Evaluation of 238 BC2F2 families for 13 yield-related traits and 208 BC2F2 families for seven photosynthesis-related physiological traits resulted in identification of significantly different lines which performed better than MTU1010 for various yield contributing traits. 49 QTLs were identified for 13 yield traits and 7 QTLs for photosynthesis-related traits in BC2F2. In addition, 34 QTLs in BC2F3 and 26 QTLs in BC2F4 were also detected for yield traits.11 common QTLs were identified in three consecutive generations and their trait-increasing alleles were derived from O. rufipogon. Significantly, one major effect common QTL qTGW3.1 for thousand grain weight with average phenotypic variance 8.1% and one novel QTL qBM7.1 for biomass were identified. Photosynthesis-related QTLs qPN9.1, qPN12.1, qPN12.2 qSPAD1.1 and qSPAD6.1 showed additive effect from O. rufipogon. A set of 145 CSSLs were identified in BC2F2 which together represented 87% of O. rufipogon genome. In addition, 87 of the 145 CSSLs were significantly different than MTU1010 for at least one trait. The major effect QTLs can be fine mapped for gene discovery. CSSLs developed in this study are a good source of novel alleles from O. rufipogon in the background of Cottondora Sannalu for rapid improvement of any trait in rice.
Collapse
Affiliation(s)
- Venkateswara Rao Yadavalli
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Divya Balakrishnan
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
- Department of Plant Breeding and Genetics, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Malathi Surapaneni
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Krishnamraju Addanki
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Sukumar Mesapogu
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Kavitha Beerelli
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Subrahmanyam Desiraju
- Department of Plant Physiology, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Sitapati Rao Voleti
- Department of Plant Physiology, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India
| | - Sarla Neelamraju
- ICAR National Professor Project, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, Telangana, India.
| |
Collapse
|
10
|
Qin P, Gao J, Shen W, Wu Z, Dai C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. BnaCRCs with domestication preference positively correlate with the seed-setting rate of canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1717-1731. [PMID: 35882961 DOI: 10.1111/tpj.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Canola (Brassica napus) is an important oil crop worldwide. The seed-setting rate (SS) is a critical factor in determining its yield, and the development of pistils affects pollination and seed sets. However, research on seed-setting defects has been limited owing to difficulties in the identification of phenotypes, mutations, and complex genetic mechanisms. In this study, we found a stigma defect (sd) mutant in B. napus, which had no nectary. The SS of sd mutants in the field was approximately 93.4% lower than that of the wild type. Scanning and transmission electron microscopy imaging of sd mutants showed a low density of stigma papillary cells and stigma papillary cell vacuoles that disappeared 16 h after flowering. Genetic analysis of segregated populations showed that two recessive nuclear genes are responsible for the mutant phenotype of sd. Based on re-sequencing and map-based cloning, we reduced the candidate sites on ChrA07 (BnaSSA07) and ChrC06 (BnaSSC06) to 30 and 67 kb, including six and eight predicted genes, respectively. Gene analyses showed that a pair of CRABS CLAW (CRC) homeologous genes at BnaSSA07 and BnaSSC06 were associated with the development of carpel and nectary. BnaSSA07.CRC and BnaSSC06.CRC candidate genes were found to be expressed in flower organs only, with significant differences in their expression in the pistils of the near-isogenic lines. DNA sequencing showed transposon insertions in the upstream region and intron of the candidate gene BnaSSA07.crc. We also found that BnaSSC06.crc exists widely in the natural population and we give possible reasons for its widespread existence.
Collapse
Affiliation(s)
- Pei Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiang Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zengxiang Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Yuan G, Zou T, He Z, Xiao Q, Li G, Liu S, Xiong P, Chen H, Peng K, Zhang X, Luo T, Zhou D, Yang S, Zhou F, Zhang K, Zheng K, Han Y, Zhu J, Liang Y, Deng Q, Wang S, Sun C, Yu X, Liu H, Wang L, Li P, Li S. SWOLLEN TAPETUM AND STERILITY 1 is required for tapetum degeneration and pollen wall formation in rice. PLANT PHYSIOLOGY 2022; 190:352-370. [PMID: 35748750 PMCID: PMC9434214 DOI: 10.1093/plphys/kiac307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 06/01/2023]
Abstract
The pollen wall is important for protecting the male gametophyte and for fertilization. The lipid components of the pollen wall are mainly synthesized and transported from the sporophytic tapetum. Although several factors related to lipid biosynthesis have been characterized, the molecular mechanisms underlying lipid biosynthesis during pollen development in rice (Oryza sativa L.) remain elusive. Here, we showed that mutation in the SWOLLEN TAPETUM AND STERILITY 1 (STS1) gene causes delayed tapetum degradation and aborted pollen wall formation in rice. STS1 encodes an endoplasmic reticulum (ER)-localized protein that contains domain of unknown function (DUF) 726 and exhibits lipase activity. Lipidomic and transcriptomic analyses showed that STS1 is involved in anther lipid homeostasis. Moreover, STS1 interacts with Polyketide Synthase 2 (OsPKS2) and Acyl-CoA Synthetase 12 (OsACOS12), two enzymes crucial in lipidic sporopollenin biosynthesis in pollen wall formation, suggesting a potentially lipidic metabolon for sporopollenin biosynthesis in rice. Collectively, our results indicate that STS1 is an important factor for lipid biosynthesis in reproduction, providing a target for the artificial control of male fertility in hybrid rice breeding and insight into the function of DUF726-containing protein in plants.
Collapse
Affiliation(s)
| | | | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fuxin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaiyou Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhao Han
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Author for correspondence: (S.L.), (P.L.)
| | | |
Collapse
|
12
|
Genome wide Identification and Characterization of Wheat GH9 Genes Reveals Their Roles in Pollen Development and Anther Dehiscence. Int J Mol Sci 2022; 23:ijms23116324. [PMID: 35683004 PMCID: PMC9181332 DOI: 10.3390/ijms23116324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Glycoside hydrolase family 9 (GH9) is a key member of the hydrolase family in the process of cellulose synthesis and hydrolysis, playing important roles in plant growth and development. In this study, we investigated the phenotypic characteristics and gene expression involved in pollen fertility conversion and anther dehiscence from a genomewide level. In total, 74 wheat GH9 genes (TaGH9s) were identified, which were classified into Class A, Class B and Class C and unevenly distributed on chromosomes. We also investigated the gene duplication and reveled that fragments and tandem repeats contributed to the amplification of TaGH9s. TaGH9s had abundant hormone-responsive elements and light-responsive elements, involving JA–ABA crosstalk to regulate anther development. Ten TaGH9s, which highly expressed stamen tissue, were selected to further validate their function in pollen fertility conversion and anther dehiscence. Based on the cell phenotype and the results of the scanning electron microscope at the anther dehiscence period, we found that seven TaGH9s may target miRNAs, including some known miRNAs (miR164 and miR398), regulate the level of cellulose by light and phytohormone and play important roles in pollen fertility and anther dehiscence. Finally, we proposed a hypothesis model to reveal the regulation pathway of TaGH9 on fertility conversion and anther dehiscence. Our study provides valuable insights into the GH9 family in explaining the male sterility mechanism of the wheat photo-thermo-sensitive genetic male sterile (PTGMS) line and generates useful male sterile resources for improving wheat hybrid breeding.
Collapse
|
13
|
Singh A, Mathan J, Yadav A, K. Goyal A, Chaudhury A. Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects. CEREAL GRAINS - VOLUME 1 2021. [DOI: 10.5772/intechopen.99318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Cereals are a rich source of vitamins, minerals, carbohydrates, fats, oils and protein, making them the world’s most important source of nutrition. The influence of rising global population, as well as the emergence and spread of disease, has the major impact on cereal production. To meet the demand, there is a pressing need to increase cereal production. Optimal seed development is a key agronomical trait that contributes to crop yield. The seed development and maturation is a complex process that includes not only embryo and endosperm development, but also accompanied by huge physiological, biochemical, metabolic, molecular and transcriptional changes. This chapter discusses the growth of cereal seed and highlights the novel biological insights, with a focus on transgenic and new molecular breeding, as well as biotechnological intervention strategies that have improved crop yield in two major cereal crops, primarily wheat and rice, over the last 21 years (2000–2021).
Collapse
|
14
|
Yang G, Nabi F, Sajid S, Kaleri AR, Jakhar AM, Cheng L, Raspor M, Muhammad N, Ma J, Hu Y. Response of root development and nutrient uptake of two chinese cultivars of hybrid rice to nitrogen and phosphorus fertilization in Sichuan Province, China. Mol Biol Rep 2021; 48:8009-8021. [PMID: 34665398 PMCID: PMC8604849 DOI: 10.1007/s11033-021-06835-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 02/01/2023]
Abstract
Background Chemical fertilization helped modern agriculture in grain yield improvement to ensure food security. The response of chemical fertilization for higher hybrid rice production is highly dependent on optimal fertilization management in paddy fields. To assess such responses, in the current work we examine the yield, root growth, and expression of related genes responsible for stress metabolism of nitrogen (N) and phosphorus (P) in two hybrid-rice cultivars Deyou4727 (D47) and Yixiangyou2115 (Y21). Methods and results The experiment followed four nitrogen (N) (N0, N60, N120, and N180 kg/ha) and phosphorus (P) (P0, P60, P90, and P120 kg/ha) fertilizer levels. The grain yield in D47 was more sensitive to nitrogen application, while Y21 was more sensitive to phosphorus application, which resulted in comparatively higher biomass and yield. Our findings were corroborated by gene expression studies of glutamine synthetase OsGS1;1 and OsGS1;2 and phosphate starvation-related genes PHR1 and SPX, confirming sensitivity to N and P application. The number of roots was less sensitive to nitrogen application in D47 between N0 and N60, but the overall nutrient response difference was significantly higher due to the deep rooting system as compared to Y21. Conclusions The higher yield, high N and P use efficiency, and versatile root growth of D47 make it suitable to reduce unproductive usage of N and P from paddy fields, improving hybrid rice productivity, and environmental safety in the Sichuan basin area of China. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-06835-7.
Collapse
Affiliation(s)
- Guotao Yang
- Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Farhan Nabi
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Sumbal Sajid
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Abdul Rasheed Kaleri
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Ali Murad Jakhar
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.,Institute of Plant Sciences, University of Sindh, Jamshoro, 76080, Pakistan
| | - Liang Cheng
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Martin Raspor
- Institute for Biological Research Siniša Stanković-National Institute of Republic of Serbia,, University of Belgrade, 11060, Belgrade, Serbia
| | - Noor Muhammad
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jun Ma
- Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
15
|
Wang T, Li Y, Song S, Qiu M, Zhang L, Li C, Dong H, Li L, Wang J, Li L. EMBRYO SAC DEVELOPMENT 1 affects seed setting rate in rice by controlling embryo sac development. PLANT PHYSIOLOGY 2021; 186:1060-1073. [PMID: 33734397 PMCID: PMC8195536 DOI: 10.1093/plphys/kiab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 05/16/2023]
Abstract
Seed setting rate is one of the critical factors that determine rice yield. Grain formation is a complex biological process, whose molecular mechanism is yet to be improved. Here we investigated the function of an OVATE family protein, Embryo Sac Development 1 (ESD1), in the regulation of seed setting rate in rice (Oryza sativa) by examining its loss-of-function mutants generated via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) technology. ESD1 was predominantly expressed at Stage 6 of panicle development, especially in the ovules. esd1 mutants displayed reduced seed setting rates with normal stamen development and pollen tube growth but abnormal pistil group. Investigation of embryo sacs revealed that during the mitosis of functional megaspores, some egg cells degraded during differentiation in esd1 mutants, thereby hindering subsequent fertilization process and reducing seed setting rate. In addition, the transcriptional level of O. sativa anaphase-promoting complex 6, a reported embryo sac developing gene, was significantly reduced in esd1 mutants. These results support that ESD1 is an important modulator of ESD and seed setting rate in rice. Together, this finding demonstrates that ESD1 positively regulates the seed setting rate by controlling ESD in rice and has implications for the improvement of rice yield.
Collapse
Affiliation(s)
- Tiankang Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yixing Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Shufeng Song
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mudan Qiu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Licheng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chengxia Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Hao Dong
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Lei Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianlong Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Li Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Author for communication:
| |
Collapse
|
16
|
Xiang XJ, Sun LP, Yu P, Yang ZF, Zhang PP, Zhang YX, Wu WX, Chen DB, Zhan XD, Khan RM, Abbas A, Cheng SH, Cao LY. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:453-471. [PMID: 33089345 DOI: 10.1007/s00122-020-03706-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.
Collapse
Affiliation(s)
- Xiao-Jiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Ping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zheng-Fu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei-Pei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying-Xin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wei-Xun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Dai-Bo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Xiao-Deng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Riaz-Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shi-Hua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Li-Yong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
17
|
Zhong H, Liu S, Meng X, Sun T, Deng Y, Kong W, Peng Z, Li Y. Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS. BMC Genomics 2021; 22:86. [PMID: 33509071 PMCID: PMC7842007 DOI: 10.1186/s12864-021-07391-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background The number of panicles per plant, number of grains per panicle, and 1000-grain weight are important factors contributing to the grain yield per plant in rice. The Rice Diversity Panel 1 (RDP1) contains a total of 421 purified, homozygous rice accessions representing diverse genetic variations within O. sativa. The release of High-Density Rice Array (HDRA, 700 k SNPs) dataset provides a new opportunity to discover the genetic variants of panicle architectures in rice. Results In this report, a new method genome-phenome wide association study (GPWAS) was performed with 391 individuals and 27 traits derived from RDP1 to scan the relationship between the genes and multi-traits. A total of 1985 gene models were linked to phenomic variation with a p-value cutoff of 4.49E-18. Besides, 406 accessions derived from RDP1 with 411,066 SNPs were used to identify QTLs associated with the total spikelets number per panicle (TSNP), grain number per panicle (GNP), empty grain number per panicle (EGNP), primary branch number (PBN), panicle length (PL), and panicle number per plant (PN) by GLM, MLM, FarmCPU, and BLINK models for genome-wide association study (GWAS) analyses. A total of 18, 21, 18, 17, 15, and 17 QTLs were identified tightly linked with TSNP, GNP, EGNP, PBN, PL, and PN, respectively. Then, a total of 23 candidate genes were mapped simultaneously using both GWAS and GPWAS methods, composed of 6, 4, 5, 4, and 4 for TSNP, GNP, EGNP, PBN, and PL. Notably, one overlapped gene (Os01g0140100) were further investigated based on the haplotype and gene expression profile, indicating this gene might regulate the TSNP or panicle architecture in rice. Conclusions Nearly 30 % (30/106) QTLs co-located with the previous published genes or QTLs, indicating the power of GWAS. Besides, GPWAS is a new method to discover the relationship between genes and traits, especially the pleiotropy genes. Through comparing the results from GWAS and GPWAS, we identified 23 candidate genes related to panicle architectures in rice. This comprehensive study provides new insights into the genetic basis controlling panicle architectures in rice, which lays a foundation in rice improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07391-x.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yujuan Deng
- Department of Computer Science and Engineering, Experimental Teaching Center, Shijiazhuang University, Shijiazhuang, Hebei, China
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Guo Y, Li S, Zhang Z, Li Y, Hu Z, Xin D, Chen Q, Wang J, Zhu R. Automatic and Accurate Calculation of Rice Seed Setting Rate Based on Image Segmentation and Deep Learning. FRONTIERS IN PLANT SCIENCE 2021; 12:770916. [PMID: 34970287 PMCID: PMC8712771 DOI: 10.3389/fpls.2021.770916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/23/2021] [Indexed: 05/03/2023]
Abstract
The rice seed setting rate (RSSR) is an important component in calculating rice yields and a key phenotype for its genetic analysis. Automatic calculations of RSSR through computer vision technology have great significance for rice yield predictions. The basic premise for calculating RSSR is having an accurate and high throughput identification of rice grains. In this study, we propose a method based on image segmentation and deep learning to automatically identify rice grains and calculate RSSR. By collecting information on the rice panicle, our proposed image automatic segmentation method can detect the full grain and empty grain, after which the RSSR can be calculated by our proposed rice seed setting rate optimization algorithm (RSSROA). Finally, the proposed method was used to predict the RSSR during which process, the average identification accuracy reached 99.43%. This method has therefore been proven as an effective, non-invasive method for high throughput identification and calculation of RSSR. It is also applicable to soybean yields, as well as wheat and other crops with similar characteristics.
Collapse
Affiliation(s)
- Yixin Guo
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Shuai Li
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhanguo Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Zhenbang Hu
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Qingshan Chen
- Agricultural College, Northeast Agricultural University, Harbin, China
- *Correspondence: Qingshan Chen,
| | - Jingguo Wang
- Agricultural College, Northeast Agricultural University, Harbin, China
- Jingguo Wang,
| | - Rongsheng Zhu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, China
- Rongsheng Zhu,
| |
Collapse
|