1
|
Roy N, Kabir AH, Zahan N, Mouna ST, Chakravarty S, Rahman AH, Bayzid MS. Genome wide association studies on seven yield-related traits of 183 rice varieties in Bangladesh. PLANT DIRECT 2024; 8:e593. [PMID: 38887667 PMCID: PMC11182691 DOI: 10.1002/pld3.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
Rice genetic diversity is regulated by multiple genes and is largely dependent on various environmental factors. Uncovering the genetic variations associated with the diversity in rice populations is the key to breed stable and high yielding rice varieties. We performed genome wide association studies (GWASs) on seven rice yielding traits (grain length, grain width, grain weight, panicle length, leaf length, leaf width, and leaf angle) based on a population of 183 rice landraces of Bangladesh. Our GWASs reveal various chromosomal regions and candidate genes that are associated with different traits in Bangladeshi rice varieties. Noteworthy was the recurrent implication of chromosome 10 in all three grain-shape-related traits (grain length, grain width, and grain weight), indicating its pivotal role in shaping rice grain morphology. Our study also underscores the involvement of transposon gene families across these three traits. For leaf related traits, chromosome 10 was found to harbor regions that are significantly associated with leaf length and leaf width. The results of these association studies support previous findings as well as provide additional insights into the genetic diversity of rice. This is the first known GWAS study on various yield-related traits in the varieties of Oryza sativa available in Bangladesh-the fourth largest rice-producing country. We believe this study will accelerate rice genetics research and breeding stable high-yielding rice in Bangladesh.
Collapse
Affiliation(s)
- Nilanjan Roy
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
- Molecular, Cellular, and Developmental BiologyUniversity of KansasLawrenceKansasUSA
| | - Acramul Haque Kabir
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Nourin Zahan
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
| | - Shahba Tasmiya Mouna
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
| | - Sakshar Chakravarty
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
- Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Atif Hasan Rahman
- Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Md. Shamsuzzoha Bayzid
- Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| |
Collapse
|
2
|
Chen Y, Shi H, Yang G, Liang X, Lin X, Tan S, Guo T, Wang H. OsCRLK2, a Receptor-Like Kinase Identified by QTL Analysis, is Involved in the Regulation of Rice Quality. RICE (NEW YORK, N.Y.) 2024; 17:24. [PMID: 38587574 PMCID: PMC11001810 DOI: 10.1186/s12284-024-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The quality of rice (Oryza sativa L) is determined by a combination of appearance, flavor, aroma, texture, storage characteristics, and nutritional composition. Rice quality directly influences acceptance by consumers and commercial value. The genetic mechanism underlying rice quality is highly complex, and is influenced by genotype, environment, and chemical factors such as starch type, protein content, and amino acid composition. Minor variations in these chemical components may lead to substantial differences in rice quality. Among these components, starch is the most crucial and influential factor in determining rice quality. In this study, quantitative trait loci (QTLs) associated with eight physicochemical properties related to the rapid viscosity analysis (RVA) profile were identified using a high-density sequence map constructed using recombinant inbred lines (RILs). Fifty-nine QTLs were identified across three environments, among which qGT6.4 was a novel locus co-located across all three environments. By integrating RNA-seq data, we identified the differentially expressed candidate gene OsCRLK2 within the qGT6.4 interval. osclrk2 mutants exhibited decreased gelatinization temperature (GT), apparent amylose content (AAC) and viscosity, and increased chalkiness. Furthermore, osclrk2 mutants exhibited downregulated expression of the majority of starch biosynthesis-related genes compared to wild type (WT) plants. In summary, OsCRLK2, which encodes a receptor-like protein kinase, appears to consistently influence rice quality across different environments. This discovery provides a new genetic resource for use in the molecular breeding of rice cultivars with improved quality.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Hanfeng Shi
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Guili Yang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Xueyu Liang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Xiaolian Lin
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Siping Tan
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China.
| | - Hui Wang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
3
|
Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. Beyond skin-deep: targeting the plant surface for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6468-6486. [PMID: 37589495 PMCID: PMC10662250 DOI: 10.1093/jxb/erad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.
Collapse
Affiliation(s)
- Jenna Bryanne Jolliffe
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
4
|
Yan LL, Mi J, Shen CC, Qian R, Wang J, Pu CX, Sun Y. OsCIP1, a secreted protein, binds to and stabilizes OsCR4 to promote aleurone layer development, seed germination and early seedling growth in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111637. [PMID: 36787850 DOI: 10.1016/j.plantsci.2023.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The receptor kinase CRINKLY 4 (CR4) and its orthologs are known for their essential roles in cell differentiation and their shuttling between plasma membrane and cytoplasmic vesicles, a unique feature tied to their extracellular domain. However, the extracellular regulators of CR4 have been little known. Here we identified an OsCR4 Interacting Protein 1 (OsCIP1) (also named as OsLTPL36 in rice) by a yeast two-hybrid screen using the extracellular domain of OsCR4 (OsCR4E) as bait. OsCIP1/OsLTPL36 harbors a signal peptide and is localized to the outer surface of the plasma membrane. It interacted with the TNFR subdomain of OsCR4, causing an increase in OsCR4 recycling to the plasma membrane. oscip1, in which OsCR4 protein was decreased, exhibited thinner aleurone layer, late germination and delayed growth; while OsCIP1-overexpressing plants, in which OsCR4 protein was increased, displayed enhanced growth at the early seedling stage. OsCIP1 was cleaved between W61 and Q62, and the resulting C-terminal half exhibited a greater affinity for OsCR4E than did its precursor. Abolishing this cleavage site compromises OsCIP1's ability to promote seedling growth. Our results provide valuable clues for the regulation of CR4 activity and its functions in aleurone layer cell differentiation by a secreted small protein in rice.
Collapse
Affiliation(s)
- Lin-Lin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Jing Mi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Can-Can Shen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Rong Qian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Jiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
5
|
Lou D, Lu S, Chen Z, Lin Y, Yu D, Yang X. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice. BMC PLANT BIOLOGY 2023; 23:53. [PMID: 36694135 PMCID: PMC9872327 DOI: 10.1186/s12870-023-04071-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Many data suggest that the sucrose non-fermenting 1-related kinases 2 (SnRK2s) are very important to abiotic stress for plants. In rice, these kinases are known as osmotic stress/ABA-activated protein kinases (SAPKs). Osmotic stress/ABA-activated protein kinase 3 (OsSAPK3) is a member of SnRK2II in rice, but its function is still unclear. RESULTS The expression of OsSAPK3 was up regulated by drought, NaCl, PEG and ABA. OsSAPK3 mutated seedings (sapk3-1 and sapk3-2) showed reduced hypersensitivity to exogenous ABA. In addition, under drought conditions, sapk3-1 and sapk3-2 showed more intolerance to drought, including decreased survival rate, increased water loss rate, increased stomatal conductance and significantly decreased expression levels of SLAC1 and SLAC7. Physiological and metabolic analyses showed that OsSAPK3 might play an important role in drought stress signaling pathway by affecting osmotic adjustment and osmolytes, ROS detoxification and expression of ABA dependent and independent dehydration-responsive genes. All gronomic traits analyses demonstrated that OsSAPK3 could improve rice yield by affecting the regulation of tiller numbers and grain size. CONCLUSION OsSAPK3 plays an important role in both ABA-dependent and ABA-independent drought stress responses. More interestingly, OsSAPK3 could improve rice yield by indirectly regulating tiller number and grain size. These findings provide new insight for the development of drought-resistant rice.
Collapse
Affiliation(s)
- Dengji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Suping Lu
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Zhen Chen
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Yi Lin
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Qin D, Liu G, Liu R, Wang C, Xu F, Xu Q, Ling Y, Dong G, Peng Y, Ge S, Guo G, Dong J, Li C. Positional cloning identified HvTUBULIN8 as the candidate gene for round lateral spikelet (RLS) in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:7. [PMID: 36656367 PMCID: PMC9852219 DOI: 10.1007/s00122-023-04272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Map-based cloning, subcellular localization, virus-induced-gene-silencing and transcriptomic analysis reveal HvTUB8 as a candidate gene with pleiotropic effects on barley spike and leaf development via ethylene and chlorophyll metabolism. Barley lateral spikelet morphology and grain shape play key roles in grain physical quality and yield. Several genes and QTLs for these traits have been cloned or fine mapped previously. Here, we report the phenotypic and genotypic analysis of a barley mutant with round lateral spikelet (rls) from cv. Edamai 934. rls had round lateral spikelet, short but round grain, shortened awn, thick glume and dark green leaves. Histocytologic and ultrastructural analysis revealed that the difference of grain shape of rls was caused by change of cell arrangement in glume, and the dark leaf color resulted from enlarged chloroplast. HvTUBULIN8 (HvTUB8) was identified as the candidate gene for rls by combination of RNA-Seq, map-based-cloning, virus-induced-gene-silencing (VIGS) and protein subcellular location. A single G-A substitution at the third exon of HvTUB8 resulted in change of Cysteine 354 to tyrosine. Furthermore, the mutant isoform Hvtub8 could be detected in both nucleus and cytoplasm, whereas the wild-type protein was only in cytoplasm and granular organelles of wheat protoplasts. Being consistent with the rare phenotype, the "A" allele of HvTUB8 was only detected in rls, but not in a worldwide barley germplasm panel with 400 accessions. VIGS confirmed that HvTUB8 was essential to maintain spike integrity. RNA-Seq results suggested that HvTUB8 may control spike morphogenesis via ethylene homeostasis and signaling, and control leaf color through chlorophyll metabolism. Collectively, our results support HvTUB8 as a candidate gene for barley spike and leaf morphology and provide insight of a novel mechanism of it in barley development.
Collapse
Affiliation(s)
- Dandan Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Gang Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Rui Liu
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chunchao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Guoqing Dong
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Shuangtao Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, WA, 6150, Australia.
| |
Collapse
|
7
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
8
|
Wu X, Cai X, Zhang B, Wu S, Wang R, Li N, Li Y, Sun Y, Tang W. ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP15 signaling. THE PLANT CELL 2022; 34:3773-3789. [PMID: 35848951 PMCID: PMC9516062 DOI: 10.1093/plcell/koac194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Seed size is determined by the coordinated growth of the embryo, endosperm, and integument. Growth of the integument is initiated by signal molecules released from the developing endosperm or embryo. Although recent studies have identified many components that regulate seed size by controlling integument growth, the upstream signals and the signal transduction pathway that activate these components after double fertilization are unclear. Here, we report that the receptor-like kinase ERECTA (ER) controls seed size by regulating outer integument cell proliferation in Arabidopsis thaliana. Seeds from er mutants were smaller, while those from ER-overexpressing plants were larger, than those of control plants. Different from its role in regulating the development of other organs, ER regulates seed size via a novel mechanism that is independent of its intracellular domain. Our genetic and biochemical data show that a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling pathway comprising MAPK-KINASE 4/5, MAPK 3/6 (MPK3/6), DA1, and UBIQUITIN SPECIFIC PROTEASE 15 (UBP15) functions downstream of ER and modulates seed size. MPK3/6 phosphorylation inactivates and destabilizes DA1 to increase the abundance of UBP15, promoting outer integument cell proliferation and increasing seed size. Our study illustrates a nearly completed ER-mediated signaling pathway that regulates seed size and will help uncover the mechanism that coordinates embryo, endosperm, and integument growth after double fertilization.
Collapse
Affiliation(s)
| | | | - Baowen Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Shuting Wu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ruiju Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Sun
- Author for correspondence: (Y.S.), (W.T.)
| | | |
Collapse
|
9
|
Rashid MAR, Zhao Y, Azeem F, Zhao Y, Ahmed HGMD, Atif RM, Pan Y, Zhu X, Liang Y, Zhang H, Li D, Zhang Z, Li Z. Unveiling the genetic architecture for lodging resistance in rice ( Oryza sativa. L) by genome-wide association analyses. Front Genet 2022; 13:960007. [PMID: 36147492 PMCID: PMC9486067 DOI: 10.3389/fgene.2022.960007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lodging is one of the major abiotic stresses, affecting the total crop yield and quality. The improved lodging resistance and its component traits potentially reduce the yield losses. The section modulus (SM), bending moment at breaking (M), pushing resistance (PR), and coefficient of lodging resistance (cLr) are the key elements to estimate the lodging resistance. Understanding the genetic architecture of lodging resistance-related traits will help to improve the culm strength and overall yield potential. In this study, a natural population of 795 globally diverse genotypes was further divided into two (indica and japonica) subpopulations and was used to evaluate the lodging resistance and culm strength-related traits. Significant diversity was observed among the studied traits. We carried out the genome-wide association evaluation of four lodging resistance traits with 3.3 million deep resolution single-nucleotide polymorphic (SNP) markers. The general linear model (GLM) and compressed mixed linear model (MLM) were used for the whole population and two subpopulation genome-wide association studies (GWAS), and a 1000-time permutation test was performed to remove the false positives. A total of 375 nonredundant QTLs were observed for four culm strength traits on 12 chromosomes of the rice genome. Then, 33 pleiotropic loci governing more than one trait were mined. A total of 4031 annotated genes were detected within the candidate genomic region of 33 pleiotropic loci. The functional annotations and metabolic pathway enrichment analysis showed cellular localization and transmembrane transport as the top gene ontological terms. The in silico and in vitro expression analyses were conducted to validate the three candidate genes in a pleiotropic QTL on chromosome 7. It validated OsFBA2 as a candidate gene to contribute to lodging resistance in rice. The haplotype analysis for the candidate gene revealed a significant functional variation in the promoter region. Validation and introgression of alleles that are beneficial to induce culm strength may be used in rice breeding for lodging resistance.
Collapse
Affiliation(s)
- Muhammad Abdul Rehman Rashid
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yong Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yan Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | | | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yinghua Pan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xiaoyang Zhu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Dutta H, Mishra GP, Aski MS, Bosamia TC, Mishra DC, Bhati J, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Kumar A, Tripathi K, Kumar RR, Yadava DK, Kumar S, Dikshit HK. Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil (Lens culinaris Medik.). Front Genet 2022; 13:942079. [PMID: 36035144 PMCID: PMC9399355 DOI: 10.3389/fgene.2022.942079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil (Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division–related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Tejas C. Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, NASC Complex, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| |
Collapse
|
11
|
Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet 2022; 54:1248-1258. [PMID: 35851189 PMCID: PMC9355876 DOI: 10.1038/s41588-022-01127-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Common oat (Avena sativa) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.
Collapse
Affiliation(s)
- Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Honghai Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Laichun Guo
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Chunlong Wang
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Yubo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kaiquan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Dong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomeng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Yun Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Di Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghong Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Liming Wei
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengsong Peng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Changzhong Ren
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- China Oat and Buckwheat Research Center, Baicheng, China.
| |
Collapse
|
12
|
A putative SUBTILISIN-LIKE SERINE PROTEASE 1 (SUBSrP1) regulates anther cuticle biosynthesis and panicle development in rice. J Adv Res 2022; 42:273-287. [PMID: 36513418 PMCID: PMC9788943 DOI: 10.1016/j.jare.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Panicle abortion is a severe physiological defect and causes a reduction in grain yield. OBJECTIVES In this study, we aim to provide the characterization and functional analysis of a mutant apa1331 (apical panicle abortion1331). METHODS The isolated mutant from an EMS-mutagenized population was subjected to SSR analysis and Mutmap assay for candidate gene mapping. We performed phenotypic analysis, anthers cross-sections morphology, wax and cutin profiling, biochemical assays and phylogenetic analysis for characterization and evaluation of apa1331. We used CRISPR/Cas9 disruption for functional validation of its candidate gene. Furthermore, comparative RNA-seq and relative expression analysis were performed to get further insights into mechanistic role of the candidate gene. RESULTS The anthers from the apical spikelets of apa1331 were degenerated, pollen-less and showed defects in cuticle formation. Transverse sections of apa1331 anthers showed defects in post-meiotic microspore development at stage 8-9. Gas Chromatography showed a significant reduction of wax and cutin in anthers of apa1331 compared to Wildtype (WT). Quantification of H2O2 and MDA has indicated the excessive ROS (reactive oxygen species) in apa1331. Trypan blue staining and TUNEL assay revealed cell death and excessive DNA fragmentation in apa1331. Map-based cloning and Mutmap analysis revealed that LOC_Os04g40720, encoding a putative SUBTILISIN-LIKE SERINE PROTEASE (OsSUBSrP1), harbored an SNP (A > G) in apa1331. Phenotypic defects were only seen in apical spikelets due to highest expression of OsSUBSrP1 in upper panicle portion. CRISPR-mediated knock-out lines of OsSUBSrP1 displayed spikelet abortion comparable to apa1331. Global gene expression analysis revealed a significant downregulation of wax and cutin biosynthesis genes. CONCLUSIONS Our study reports the novel role of SUBSrP1 in anther cuticle biosynthesis by ROS-mediated programmed cell death in rice.
Collapse
|
13
|
Sabir IA, Manzoor MA, Shah IH, Liu X, Jiu S, Wang J, Alam P, Abdullah M, Zhang C. Identification and Comprehensive Genome-Wide Analysis of Glutathione S-Transferase Gene Family in Sweet Cherry ( Prunus avium) and Their Expression Profiling Reveals a Likely Role in Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:938800. [PMID: 35903236 PMCID: PMC9315441 DOI: 10.3389/fpls.2022.938800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 05/08/2023]
Abstract
Glutathione S-transferases (GSTs) in plants are multipurpose enzymes that are involved in growth and development and anthocyanins transportation. However, members of the GST gene family were not identified in sweet cherry (Prunus avium). To identify the GST genes in sweet cherry, a genome-wide analysis was conducted. In this study, we identified 67 GST genes in P. avium genome and nomenclature according to chromosomal distribution. Phylogenetic tree analysis revealed that PavGST genes were classified into seven chief subfamily: TCHQD, Theta, Phi, Zeta, Lambda, DHAR, and Tau. The majority of the PavGST genes had a relatively well-maintained exon-intron and motif arrangement within the same group, according to gene structure and motif analyses. Gene structure (introns-exons) and conserved motif analysis revealed that the majority of the PavGST genes showed a relatively well-maintained motif and exons-introns configuration within the same group. The chromosomal localization, GO enrichment annotation, subcellular localization, syntenic relationship, Ka/Ks analysis, and molecular characteristics were accomplished using various bioinformatics tools. Mode of gene duplication showed that dispersed duplication might play a key role in the expansion of PavGST gene family. Promoter regions of PavGST genes contain numerous cis-regulatory components, which are involved in multiple stress responses, such as abiotic stress and phytohormones responsive factors. Furthermore, the expression profile of sweet cherry PavGSTs showed significant results under LED treatment. Our findings provide the groundwork for future research into induced LED anthocyanin and antioxidants deposition in sweet cherries.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Caixi Zhang,
| |
Collapse
|
14
|
Raza H, Khan MR, Zafar SA, Kirch HH, Bartles D. Aldehyde dehydrogenase 3I1 gene is recruited in conferring multiple abiotic stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:85-94. [PMID: 34670007 DOI: 10.1111/plb.13337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Plant growth and productivity is restricted by a multitude of abiotic stresses. These stresses negatively affect physiological and metabolic pathways, leading to the production of many harmful substances like ROS, lipid peroxides and aldehydes. This study was conducted to investigate the role of Arabidopsis ALDH3I1 gene in multiple abiotic stress tolerance. Transgenic tobacco plants were generated that overexpress the ALDH3I1 gene driven by the CaMV35S promoter and evaluated under different abiotic stresses, namely salt, drought, cold and oxidative stress. Tolerance to stress was evaluated based on responses of various growth and physiological traits under stress condition. Transgenic plants displayed elevated ALDH3I1 transcript levels compared to WT plants. The constitutive ectopic expression of ALDH3I1 conferred increased tolerance to salt, drought, cold and oxidative stresses in transgenic plants, along with improved plant growth. Transgenic plants overexpressing ALDH3I1 had higher chlorophyll content, photosynthesis rate and proline, and less accumulation of ROS and malondialdehyde compared to the WT, which contributed to stress tolerance in transgenic plants. Our results further revealed that ALDH3I1 had a positive effect on CO2 assimilation rate in plants under abiotic stress conditions. Overall, this study revealed that ALDH3I1 positively regulates abiotic stress tolerance in plants, and has future implications in producing transgenic cereal and horticultural plants tolerant to abiotic stresses.
Collapse
Affiliation(s)
- H Raza
- Institute for Molecular Physiology & Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - M R Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - S A Zafar
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - H H Kirch
- Institute for Molecular Physiology & Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - D Bartles
- Institute for Molecular Physiology & Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Manzoor MA, Sabir IA, Shah IH, Wang H, Yu Z, Rasool F, Mazhar MZ, Younas S, Abdullah M, Cai Y. Comprehensive Comparative Analysis of the GATA Transcription Factors in Four Rosaceae Species and Phytohormonal Response in Chinese Pear ( Pyrus bretschneideri) Fruit. Int J Mol Sci 2021; 22:12492. [PMID: 34830372 PMCID: PMC8618624 DOI: 10.3390/ijms222212492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The GATA gene family is one of the most important transcription factors (TFs). It extensively exists in plants, contributes to diverse biological processes such as the development process, and responds to environmental stress. Although the GATA gene family has been comprehensively and systematically studied in many species, less is known about GATA genes in Chinese pears (Pyrus bretschneideri). In the current study, the GATA gene family in the four Rosaceae genomes was identified, its structural characteristics identified, and a comparative analysis of its properties was carried out. Ninety-two encoded GATA proteins were authenticated in the four Rosaceae genomes (Pyrus bretschneideri, Prunus avium, Prunus mume, and Prunus persica) and categorized into four subfamilies (Ⅰ-Ⅳ) according to phylogeny. The majority of GATA genes contained one to two introns and conserved motif composition analysis revealed their functional divergence. Whole-genome duplications (WGDs) and dispersed duplication (DSD) played a key role in the expansion of the GATA gene family. The microarray indicated that, among P. bretschneideri, P. avium, P. mume and P. persica, GATA duplicated regions were more conserved between Pyrus bretschneideri and Prunus persica with 32 orthologous genes pairs. The physicochemical parameters, duplication patterns, non-synonymous (ka), and synonymous mutation rate (ks) and GO annotation ontology were performed using different bioinformatics tools. cis-elements respond to various phytohormones, abiotic/biotic stress, and light-responsive were found in the promoter regions of GATA genes which were induced via stimuli. Furthermore, subcellular localization of the PbGATA22 gene product was investigated, showing that it was present in the nucleus of tobacco (Nicotiana tabacum) epidermal cells. Finally, in silico analysis was performed on various organs (bud, leaf, stem, ovary, petal, and sepal) and different developmental stages of fruit. Subsequently, the expression profiles of PbGATA genes were extensively expressed under exogenous hormonal treatments of SA (salicylic acid), MeJA (methyl jasmonate), and ABA (abscisic acid) indicating that play important role in hormone signaling pathways. A comprehensive analysis of GATA transcription factors was performed through systematic biological approaches and comparative genomics to establish a theoretical base for further structural and functional investigations in Rosaceae species.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (M.A.M.); (H.W.); (Z.Y.)
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (I.A.S.); (I.H.S.)
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (I.A.S.); (I.H.S.)
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (M.A.M.); (H.W.); (Z.Y.)
| | - Zhao Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (M.A.M.); (H.W.); (Z.Y.)
| | - Faiz Rasool
- Gulab Davi Education Institute, Lahore 200240, Pakistan;
| | - Muhammad Zaid Mazhar
- Department of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Shoaib Younas
- Department of Food Science and Technology, University of Central Punjab, Lahore 200240, Pakistan;
| | - Muhammad Abdullah
- Queenland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia;
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (M.A.M.); (H.W.); (Z.Y.)
| |
Collapse
|
16
|
Ali LG, Nulit R, Ibrahim MH, Yien CYS. Efficacy of KNO 3, SiO 2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Sci Rep 2021; 11:3864. [PMID: 33594103 PMCID: PMC7887194 DOI: 10.1038/s41598-021-83434-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023] Open
Abstract
Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
Collapse
Affiliation(s)
- Lawan Gana Ali
- Department of Science Laboratory Technology, Mai Idris Alooma Polytechnic, Geidam, Yobe State Nigeria ,grid.11142.370000 0001 2231 800XDepartment of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Selangor, Darul Ehsan Malaysia
| | - Rosimah Nulit
- grid.11142.370000 0001 2231 800XDepartment of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Selangor, Darul Ehsan Malaysia
| | - Mohd Hafiz Ibrahim
- grid.11142.370000 0001 2231 800XDepartment of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Selangor, Darul Ehsan Malaysia
| | - Christina Yong Seok Yien
- grid.11142.370000 0001 2231 800XDepartment of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Selangor, Darul Ehsan Malaysia
| |
Collapse
|
17
|
Thermal Stresses in Maize: Effects and Management Strategies. PLANTS 2021; 10:plants10020293. [PMID: 33557079 PMCID: PMC7913793 DOI: 10.3390/plants10020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023]
Abstract
Climate change can decrease the global maize productivity and grain quality. Maize crop requires an optimal temperature for better harvest productivity. A suboptimal temperature at any critical stage for a prolonged duration can negatively affect the growth and yield formation processes. This review discusses the negative impact of temperature extremes (high and low temperatures) on the morpho-physiological, biochemical, and nutritional traits of the maize crop. High temperature stress limits pollen viability and silks receptivity, leading to a significant reduction in seed setting and grain yield. Likewise, severe alterations in growth rate, photosynthesis, dry matter accumulation, cellular membranes, and antioxidant enzyme activities under low temperature collectively limit maize productivity. We also discussed various strategies with practical examples to cope with temperature stresses, including cultural practices, exogenous protectants, breeding climate-smart crops, and molecular genomics approaches. We reviewed that identified quantitative trait loci (QTLs) and genes controlling high- and low temperature stress tolerance in maize could be introgressed into otherwise elite cultivars to develop stress-tolerant cultivars. Genome editing has become a key tool for developing climate-resilient crops. Moreover, challenges to maize crop improvement such as lack of adequate resources for breeding in poor countries, poor communication among the scientists of developing and developed countries, problems in germplasm exchange, and high cost of advanced high-throughput phenotyping systems are discussed. In the end, future perspectives for maize improvement are discussed, which briefly include new breeding technologies such as transgene-free clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas)-mediated genome editing for thermo-stress tolerance in maize.
Collapse
|
18
|
Adeel Zafar S, Uzair M, Ramzan Khan M, Patil SB, Fang J, Zhao J, Lata Singla‐Pareek S, Pareek A, Li X. DPS1
regulates cuticle development and leaf senescence in rice. Food Energy Secur 2021. [DOI: 10.1002/fes3.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan
| | - Suyash B. Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Sneh Lata Singla‐Pareek
- Plant Stress BiologyInternational Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
19
|
Li Z, Zhang X, Zhao K, Zhao K, Qu C, Gao G, Gong F, Ma X, Yin D. Comprehensive Transcriptome Analyses Reveal Candidate Genes for Variation in Seed Size/Weight During Peanut ( Arachis hypogaea L.) Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:666483. [PMID: 34093624 PMCID: PMC8170302 DOI: 10.3389/fpls.2021.666483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 05/05/2023]
Abstract
Seed size/weight, a key domestication trait, is also an important selection target during peanut breeding. However, the mechanisms that regulate peanut seed development are unknown. We re-sequenced 12 RNA samples from developing seeds of two cultivated peanut accessions (Lines 8106 and 8107) and wild Arachis monticola at 15, 30, 45, and 60 days past flowering (DPF). Transcriptome analyses showed that ∼36,000 gene loci were expressed in each of the 12 RNA samples, with nearly half exhibiting moderate (2 ≤ FPKM < 10) expression levels. Of these genes, 12.2% (4,523) were specifically expressed during seed development, mainly at 15 DPF. Also, ∼12,000 genes showed significant differential expression at 30, 45, and/or 60 DPF within each of the three peanut accessions, accounting for 31.8-34.1% of the total expressed genes. Using a method that combined comprehensive transcriptome analysis and previously mapped QTLs, we identified several candidate genes that encode transcription factor TGA7, topless-related protein 2, IAA-amino acid hydrolase ILR1-like 5, and putative pentatricopeptide repeat-containing (PPR) protein. Based on sequence variations identified in these genes, SNP markers were developed and used to genotype both 30 peanut landraces and a genetic segregated population, implying that EVM0025654 encoding a PPR protein may be associated with the increased seed size/weight of the cultivated accessions in comparison with the allotetraploid wild peanut. Our results provide additional knowledge for the identification and functional research into candidate genes responsible for the seed size/weight phenotype in peanut.
Collapse
|
20
|
Ahmed S, Rashid MAR, Zafar SA, Azhar MT, Waqas M, Uzair M, Rana IA, Azeem F, Chung G, Ali Z, Atif RM. Genome-wide investigation and expression analysis of APETALA-2 transcription factor subfamily reveals its evolution, expansion and regulatory role in abiotic stress responses in Indica Rice (Oryza sativa L. ssp. indica). Genomics 2020; 113:1029-1043. [PMID: 33157261 DOI: 10.1016/j.ygeno.2020.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Rice is an important cereal crop that serves as staple food for more than half of the world population. Abiotic stresses resulting from changing climatic conditions are continuously threating its yield and production. Genes in APETALA-2 (AP2) family encode transcriptional regulators implicated during regulation of developmental processes and abiotic stress responses but their identification and characterization in indica rice was still missing. In this context, twenty-six genes distributed among eleven chromosomes in Indica rice encoding AP2 transcription-factor subfamily were identified and their diverse haplotypes were studied. Phylogenetic analysis of OsAP2 TF family-members grouped them into three clades indicating conservation of clades among cereals. Segmental duplications were observed to be principal route of evolution, supporting the higher positive selection-pressure, which were estimated to be originated about 10.57 to 56.72 million years ago (MYA). Conserved domain analysis and intron-exon distribution pattern of identified OsAP2s revealed their exclusive distribution among the specific clades of the phylogenetic tree. Moreover, the members of osa-miR172 family were also identified potentially targeting four OsAP2 genes. The real-time quantitative expression profiling of OsAP2s under heat stress conditions in contrasting indica rice genotypes revealed the differential expression pattern of OsAP2s (6 genes up-regulated and 4 genes down-regulated) in stress- and genotype-dependent manner. These findings unveiled the evolutionary pathways of AP2-TF in rice, and can help the functional characterization under developmental and stress responses.
Collapse
Affiliation(s)
- Sohaib Ahmed
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abdul Rehman Rashid
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center of Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Syed Adeel Zafar
- National key facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Agriculture Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Uzair
- National key facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Iqrar Ahmad Rana
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Republic of Korea.
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad-38040 Pakistan.
| |
Collapse
|
21
|
Bommisetty R, Chakravartty N, Bodanapu R, Naik JB, Panda SK, Lekkala SP, Lalam K, Thomas G, Mallikarjuna SJ, Eswar GR, Kadambari GM, Bollineni SN, Issa K, Akkareddy S, Srilakshmi C, Hariprasadreddy K, Rameshbabu P, Sudhakar P, Gupta S, Lachagari VBR, Vemireddy LR. Discovery of genomic regions and candidate genes for grain weight employing next generation sequencing based QTL-seq approach in rice (Oryza sativa L.). Mol Biol Rep 2020; 47:8615-8627. [PMID: 33098552 DOI: 10.1007/s11033-020-05904-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/07/2020] [Indexed: 01/05/2023]
Abstract
Rice (Oryza sativa L.) yield enhancement is one of the prime objectives of plant breeders. Elucidation of the inheritance of grain weight, a key yield component trait, is of paramount importance for raising the yield thresholds in rice. In the present investigation, we employed Next-Generation Sequencing based QTL-seq approach to identify major genomic regions associated with grain weight using mapping populations derived from a cross between BPT5204 and MTU3626. QTL-seq analysis identified three grain weight quantitative trait loci (QTL) viz., qGW1 (35-40 Mb), qGW7 (10-18 Mb), and qGW8 (2-5 Mb) on chromosomes 1, 7 and 8, respectively and all are found to be novel. Further, qGW8 was confirmed through conventional QTL mapping in F2, F3 and BC1F2 populations and found to explain the phenotypic variance of 17.88%, 16.70% and 15.00%, respectively, indicating a major QTL for grain weight. Based on previous reports, two candidate genes in the qGW8 QTL were predicted i.e., LOC_Os08g01490 (Cytochrome P450), and LOC_Os08g01680 (WD domain, G-beta repeat domain containing protein) and through in silico analysis they were found to be highly expressed in reproductive organs during different stages of grain development. Here, we have demonstrated that QTL-seq is one of the rapid approaches to uncover novel QTLs controlling complex traits. The candidate genes identified in the present study undoubtedly enhance our understanding of the mechanism and inheritance of the grain weight. These candidate genes can be exploited for yield enhancement after confirmation through complementary studies.
Collapse
Affiliation(s)
- Reddyyamini Bommisetty
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | | | - Reddaiah Bodanapu
- AgriGenome Labs Pvt Ltd., SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India
| | - Jeevula B Naik
- Regional Agricultural Research Station, ANGRAU, Tirupati, 517502, India
| | - Sanjib K Panda
- Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sivarama P Lekkala
- AgriGenome Labs Pvt Ltd., SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India
| | - Krishna Lalam
- AgriGenome Labs Pvt Ltd., SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India
| | - George Thomas
- AgriGenome Labs Pvt Ltd., SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India
| | - S J Mallikarjuna
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - G R Eswar
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - Gopalakrishna M Kadambari
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | | | - Keerthi Issa
- Regional Agricultural Research Station, ANGRAU, Tirupati, 517502, India
| | | | - C Srilakshmi
- Agricultural Research Station, ANGRAU, Nellore, India
| | - K Hariprasadreddy
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - P Rameshbabu
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - P Sudhakar
- Department of Crop Physiology, S.V Agricultural College, ANGRAU, Tirupati, 517502, India
| | - Saurabh Gupta
- AgriGenome Labs Pvt Ltd., SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India
| | - V B R Lachagari
- AgriGenome Labs Pvt Ltd., SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India.
| | - Lakshminarayana R Vemireddy
- Department of Genetics and Plant Breeding, S.V Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India.
| |
Collapse
|
22
|
Zhou Z, Gao H, Ming J, Ding Z, Lin X, Zhan R. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics 2020; 21:734. [PMID: 33092530 PMCID: PMC7579827 DOI: 10.1186/s12864-020-07133-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Elucidating the candidate genes and key metabolites responsible for pulp and peel coloration is essential for breeding pitaya fruit with new and improved appeal and high nutritional value. Here, we used transcriptome (RNA-Seq) and metabolome analysis (UPLC-MS/MS) to identify structural and regulatory genes and key metabolites associated with peel and pulp colors in three pitaya fruit types belonging to two different Hylocereus species. RESULT Our combined transcriptome and metabolome analyses suggest that the main strategy for obtaining red color is to increase tyrosine content for downstream steps in the betalain pathway. The upregulation of CYP76ADs is proposed as the color-breaking step leading to red or colorless pulp under the regulation by WRKY44 transcription factor. Supported by the differential accumulation of anthocyanin metabolites in red pulped pitaya fruit, our results showed the regulation of anthocyanin biosynthesis pathway in addition to betalain biosynthesis. However, no color-breaking step for the development of anthocyanins in red pulp was observed and no biosynthesis of anthocyanins in white pulp was found. Together, we propose that red pitaya pulp color is under the strict regulation of CYP76ADs by WRKYs and the anthocyanin coexistence with betalains is unneglectable. We ruled out the possibility of yellow peel color formation due to anthocyanins because of no differential regulation of chalcone synthase genes between yellow and green and no detection of naringenin chalcone in the metabolome. Similarly, the no differential regulation of key genes in the carotenoid pathway controlling yellow pigments proposed that the carotenoid pathway is not involved in yellow peel color formation. CONCLUSIONS Together, our results propose several candidate genes and metabolites controlling a single horticultural attribute i.e. color formation for further functional characterization. This study presents useful genomic resources and information for breeding pitaya fruit with commercially attractive peel and pulp colors. These findings will greatly complement the existing knowledge on the biosynthesis of natural pigments for their applications in food and health industry.
Collapse
Affiliation(s)
- Zhaoxi Zhou
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Hongmao Gao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianhong Ming
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xing'e Lin
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| |
Collapse
|