1
|
Dong Z, Song X, Dong D, Cai Z. Increased serum leptin levels are associated with metabolic syndrome and semen parameters in patients with infertility. Medicine (Baltimore) 2024; 103:e40353. [PMID: 39496062 PMCID: PMC11537641 DOI: 10.1097/md.0000000000040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
This study aims to ascertain the associations between serum leptin levels and metabolic syndrome and semen parameters in patients with infertility. A total of 200 patients who were diagnosed as primary infertility in our hospital were enrolled in this study, and they were divided into MetS group and non-MetS group. About 30 healthy men were enrolled as the control group. The general information, blood lipids, reproductive hormones and semen parameters were collected. We used the Student t test, the Chi-square test, the Kruskal-Wallis test, and the spearman correlation analysis to analyze their relationships. BMI, glucose, TG, follicle-stimulating hormone (FSH), and leptin were significantly higher in MetS infertile patients (P < .001; P < .005; P < .001; P < .001; and P < .001, respectively). While T and high-density lipoprotein (HDL) were significantly lower in MetS infertile patients (P < .01, and P < .001, respectively). Leptin was correlated with sperm progressive motility (R = -0.312, P < .01), and normal morphology (R = -0.458, P < .001). Moreover, sperm concentration was correlated with FSH (R = -0.268, P < .001) and inhibin B (R = 0.401, P < .001), and normal morphology was correlated with HDL (R = 0.233, P < .001) and TG (R = -0.182, P < .01). In primary infertile patients, sperm normal morphology were found to be depressed and related to MetS. Leptin was increased in patients diagnosed with MetS and associated with semen parameters.
Collapse
Affiliation(s)
- Zhen Dong
- Department of Urology, Hai'an People's Hospital, Hai'an, Jiangsu, China
| | - Xin Song
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Deping Dong
- Department of Urology, Hai'an People's Hospital, Hai'an, Jiangsu, China
| | - Zhikang Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
2
|
Wang C, Wang W, Dong J, Li X, Ye T, Zeng F, Jiang M, Shi J, Wang X, Zhang L. Isatin improves oligoasthenospermia caused by busulfan by regulating GSH/GPX4 axis to inhibit ferroptosis. Front Pharmacol 2024; 15:1489956. [PMID: 39545065 PMCID: PMC11561459 DOI: 10.3389/fphar.2024.1489956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Ferroptosis, induced by iron overload and an imbalance in redox homeostasis, promotes the generation of reactive oxygen species (ROS), leading to iron-dependent lipid peroxides (LPO) and oxidative stress. Lipid peroxidation induced by reactive oxygen species is essential for the progression of spermatogenesis. However, its imbalance can lead to reproductive system damage and oligoasthenospermia, a critical cause of oligoasthenospermia. Isatin (ISA) is a naturally occurring compound that is widely distributed in lobsters, crustaceans, shellfish and various plants. It exhibits significant antioxidant and anti-aging properties, suggesting its potential as a therapeutic agent for the treatment of oligoasthenospermia. This study aimed to investigate the effects and mechanisms of ISA on oligoasthenospermia and to elucidate the underlying molecular pathways. Methods All mice were divided into normal group, model group and treatment group. Both model group and treatment group received a single intraperitoneal injection of 30 mg/kg BUS to create the model of oligoasthenospermia. After 2 weeks, the treatment group received different doses of 25, 50 and 100 mg/kg ISA by gavage for 28 days, and then mice were sacrificed and tested. Results The results demonstrated that ISA effectively reversed busulfan-induced reproductive system damage in mice. This included the restoration of testicular histomorphology, improvement in sperm concentration and motility, regulation of serum sex hormone levels, and normalization of various oxidative indices in testicular tissue. Furthermore, ISA successfully reversed testicular ferroptosis by restraining the translocation of nuclear factor erythroid 2-related factor 2 (NRF2) into the nucleus and improved oligoasthenospermia through the glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis. Discussion ISA was found to effectively ameliorate oligoasthenospermia in mice, presenting a potential therapeutic option for patients with this condition.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Weizhen Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Fanshuo Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Mingyu Jiang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Verón GL, Manjon AA, Arévalo L, Santiago J, Vazquez-Levin MH. Impact of heat waves on semen quality: A retrospective study in Argentina between 2005 and 2023. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173813. [PMID: 38848914 DOI: 10.1016/j.scitotenv.2024.173813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Heat waves, defined as periods with daily temperatures surpassing the historical average for a specific region, have become more frequent worldwide in recent years. Previous studies have reported a negative association between temperature and semen quality, but the focus has mainly been on Asian and European populations. The study included 54,926 men (18-60 years) undergoing routine semen analysis between 2005 and 2023 at CEUSA-LAEH andrology unit, in Buenos Aires, Argentina. Hourly temperature readings were provided by the Servicio Meteorológico Nacional. R programming (R Studio v2022.07.2) was used to define heat waves, calculate key characteristics, visualize results, and perform statistical tests at the IBYME laboratory. During the period studied, a total of 124 days had heat waves (defined after at least 3 consecutive days with 32.3 °C and 22 °C). Men exposed to heat waves during spermatogenesis exhibited lower sperm number (concentration and count; P < 0.0001) and decreased normal morphology (percentage of normal sperm and normal motile count; P < 0.05) compared to those not exposed. These differences were most pronounced between semen samples from years with several heat waves (2013, 2023) and none (2005, 2007, 2016), displaying 4-5 times higher fold changes (P < 0.05). Further analysis employing multiple regression revealed a significantly negative association between semen quality and heat wave length, suggesting that a prolonged exposure may be more detrimental than an acute exposure. Subsequent analysis focusing on prolonged exposure (≥6-days heat wave) during spermatogenesis revealed a negative (P < 0.05) association between early exposure (spermatocytogenesis: 64-90 days prior semen collection) and semen quality. This study underscores the negative association between early exposure to heat waves during sperm development and semen quality, raising concerns about its possible association with the worldwide declining male fertility. A comprehensive collaborative approach is crucial, involving global governmental policies, sustainable practices, and coordinated efforts across scientific, healthcare, and policy domains.
Collapse
Affiliation(s)
- Gustavo Luis Verón
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ania Antonella Manjon
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Ning X, Wang L, Wang JS, Ji J, Jin S, Sun J, Ye Y, Mei S, Zhang Y, Cao J, Sun X. High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. TOXICS 2024; 12:395. [PMID: 38922075 PMCID: PMC11209182 DOI: 10.3390/toxics12060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001-0.5 μg/L and 0.002-1 μg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7-116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4-129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Lulu Wang
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA;
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
- Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| |
Collapse
|
5
|
De Jonge CJ, Barratt CLR, Aitken RJ, Anderson RA, Baker P, Chan DYL, Connolly MP, Eisenberg ML, Garrido N, Jørgensen N, Kimmins S, Krausz C, McLachlan RI, Niederberger C, O’Bryan MK, Pacey A, Priskorn L, Rautakallio-Hokkanen S, Serour G, Veltman JA, Vogel DL, Vazquez-Levin MH. Current global status of male reproductive health. Hum Reprod Open 2024; 2024:hoae017. [PMID: 38699533 PMCID: PMC11065475 DOI: 10.1093/hropen/hoae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The widespread interest in male reproductive health (MRH), fueled by emerging evidence, such as the global decline in sperm counts, has intensified concerns about the status of MRH. Consequently, there is a pressing requirement for a strategic, systematic approach to identifying critical questions, collecting pertinent information, and utilizing these data to develop evidence-based strategies. The methods for addressing these questions and the pathways toward their answers will inevitably vary based on the variations in cultural, geopolitical, and health-related contexts. To address these issues, a conjoint ESHRE and Male Reproductive Health Initiative (MRHI) Campus workshop was convened. OBJECTIVE AND RATIONALE The three objectives were: first, to assess the current state of MRH around the world; second, to identify some of the key gaps in knowledge; and, third, to examine how MRH stakeholders can collaboratively generate intelligent and effective paths forward. SEARCH METHODS Each expert reviewed and summarized the current literature that was subsequently used to provide a comprehensive overview of challenges related to MRH. OUTCOMES This narrative report is an overview of the data, opinions, and arguments presented during the workshop. A number of outcomes are presented and can be summarized by the following overarching themes: MRH is a serious global issue and there is a plethora of gaps in our understanding; there is a need for widespread international collaborative networks to undertake multidisciplinary research into fundamental issues, such as lifestyle/environmental exposure studies, and high-quality clinical trials; and there is an urgent requirement for effective strategies to educate young people and the general public to safeguard and improve MRH across diverse population demographics and resources. LIMITATIONS REASONS FOR CAUTION This was a workshop where worldwide leading experts from a wide range of disciplines presented and discussed the evidence regarding challenges related to MRH. While each expert summarized the current literature and placed it in context, the data in a number of areas are limited and/or sparse. Equally, important areas for consideration may have been missed. Moreover, there are clear gaps in our knowledge base, which makes some conclusions necessarily speculative and warranting of further study. WIDER IMPLICATIONS Poor MRH is a global issue that suffers from low awareness among the public, patients, and heathcare professionals. Addressing this will require a coordinated multidisciplinary approach. Addressing the significant number of knowledge gaps will require policy makers prioritizing MRH and its funding. STUDY FUNDING/COMPETING INTERESTS The authors would like to extend their gratitude to ESHRE for providing financial support for the Budapest Campus Workshop, as well as to Microptic S.L. (Barcelona) for kindly sponsoring the workshop. P.B. is the Director of the not-for-profit organization Global Action on Men's Health and receives fees and expenses for his work, (which includes the preparation of this manuscript). Conflicts of interest: C.J.D.J., C.L.R.B., R.A.A., P.B., M.P.C., M.L.E., N.G., N.J., C.K., AAP, M.K.O., S.R.-H., M.H.V.-L.: ESHRE Campus Workshop 2022 (Travel support-personal). C.J.D.J.: Cambridge University Press (book royalties-personal). ESHRE Annual Meeting 2022 and Yale University Panel Meeting 2023 (Travel support-personal). C.L.R.B.: Ferring and IBSA (Lecture), RBMO editor (Honorarium to support travel, etc.), ExSeed and ExScentia (University of Dundee), Bill & Melinda Gates Foundation (for research on contraception). M.P.C.: Previously received funding from pharmaceutical companies for health economic research. The funding was not in relation to this work and had no bearing on the contents of this work. No funding from other sources has been provided in relation to this work (funding was provided to his company Global Market Access Solutions). M.L.E.: Advisor to Ro, Doveras, Next, Hannah, Sandstone. C.K.: European Academy of Andrology (Past president UNPAID), S.K.: CEO of His Turn, a male fertility Diagnostic and Therapeutic company (No payments or profits to date). R.I.M.: www.healthymale.org.au (Australian Government funded not for profit in men's health sector (Employed as Medical Director 0.2 FET), Monash IVF Pty Ltd (Equity holder)). N.J.: Merck (consulting fees), Gedeon Richter (honoraria). S.R.-H.: ESHRE (Travel reimbursements). C.N.: LLC (Nursing educator); COMMIT (Core Outcomes Measures for Infertility Trials) Advisor, meeting attendee, and co-author; COMMA (Core Outcomes in Menopause) Meeting attendee, and co-author; International Federation of Gynecology and Obstetrics (FIGO) Delegate Letters and Sciences; ReproNovo, Advisory board; American Board of Urology Examiner; American Urological Association Journal subsection editor, committee member, guidelines co-author Ferring Scientific trial NexHand Chief Technology Officer, stock ownership Posterity Health Board member, stock ownership. A.P.: Economic and Social Research Council (A collaborator on research grant number ES/W001381/1). Member of an advisory committee for Merck Serono (November 2022), Member of an advisory board for Exceed Health, Speaker fees for educational events organized by Mealis Group; Chairman of the Cryos External Scientific Advisory Committee: All fees associated with this are paid to his former employer The University of Sheffield. Trustee of the Progress Educational Trust (Unpaid). M.K.O.: National Health and Medical Research Council and Australian Research Council (Funding for research of the topic of male fertility), Bill and Melinda Gates Foundation (Funding aimed at the development of male gamete-based contraception), Medical Research Future Fund (Funding aimed at defining the long-term consequences of male infertility). M.H.V.-L.: Department of Sexual and Reproductive Health and Research (SRH)/Human Reproduction Programme (HRP) Research Project Panel RP2/WHO Review Member; MRHI (Core Group Member), COMMIT (member), EGOI (Member); Human Reproduction (Associate Editor), Fertility and Sterility (Editor), AndroLATAM (Founder and Coordinator).
Collapse
Affiliation(s)
- Christopher J De Jonge
- Department of Urology, University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - R John Aitken
- Discipline of Biological Sciences, School of Environment and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | | - David Y L Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Mark P Connolly
- Health Economics, Global Market Access Solutions LLC, Mooresville, NC, USA
- University Medical Center Groningen, Groningen, The Netherlands
| | - Michael L Eisenberg
- Department of Urology and Obstetrics & Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Niels Jørgensen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, ‘Mario Serio’, University of Florence, University Hospital of Careggi (AOUC), Florence, Italy
| | - Robert I McLachlan
- Hudson Institute of Medical Research, Monash University, Melbourne, Australia
- Monash IVF Group, Cremorne, Australia
| | - Craig Niederberger
- Clarence C. Department of Urology, University of Illinois Chicago (UIC), College of Medicine, Department of Bioengineering, UIC College of Engineering, Chicago, IL,USA
| | - Moira K O’Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Gamal Serour
- The International Islamic Center for Population Studies and Research, Al-Azhar University, Maadi, Cairo, Egypt
- Egyptian IVF Center, Maadi, Cairo, Egypt
| | - Joris A Veltman
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Donna L Vogel
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mónica H Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina—Fundación IBYME, Buenos Aires, Argentina
| |
Collapse
|
6
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
7
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Huang B, Wang Z, Kong Y, Jin M, Ma L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019: an analysis of global burden of disease study. BMC Public Health 2023; 23:2195. [PMID: 37940907 PMCID: PMC10631182 DOI: 10.1186/s12889-023-16793-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Many countries and regions have experienced male fertility problems due to various influencing factors, especially in less developed countries. Unlike female infertility, male infertility receives insufficient attention. Understanding the changing patterns of male infertility in the world, different regions and different countries is crucial for assessing the global male fertility and reproductive health. METHODS We obtained data on prevalence, years of life lived with disability (YLD), age-standardized rates of prevalence (ASPR) and age-standardized YLD rate (ASYR) from the Global Burden of Disease Study 2019. We analyzed the burden of male infertility at all levels, including global, regional, national, age stratification and Socio-demographic Index (SDI). RESULTS In 2019, the global prevalence of male infertility was estimated to be 56,530.4 thousand (95% UI: 31,861.5-90,211.7), reflecting a substantial 76.9% increase since 1990. Furthermore, the global ASPR stood at 1,402.98 (95% UI: 792.24-2,242.45) per 100,000 population in 2019, representing a 19% increase compared to 1990. The regions with the highest ASPR and ASYR for male infertility in 2019 were Western Sub-Saharan Africa, Eastern Europe, and East Asia. Notably, the prevalence and YLD related to male infertility peaked in the 30-34 year age group worldwide. Additionally, the burden of male infertility in the High-middle SDI and Middle SDI regions exceeded the global average in terms of both ASPR and ASYR. CONCLUSION The global burden of male infertility has exhibited a steady increase from 1990 to 2019, as evidenced by the rising trends in ASPR and ASYR, particularly in the High-middle and Middle SDI regions. Notably, the burden of male infertility in these regions far exceeds the global average. Additionally, since 2010, there has been a notable upward trend in the burden of male infertility in Low and Middle-low SDI regions. Given these findings, it is imperative to prioritize efforts aimed at improving male fertility and reproductive health.
Collapse
Affiliation(s)
- Baoyi Huang
- The Reproductive Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, No.628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Zhaojun Wang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, No.628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Yanxiang Kong
- The Reproductive Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, No.628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Mengqi Jin
- The Reproductive Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, No.628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Lin Ma
- The Reproductive Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, No.628, Zhenyuan Rd, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Henriques MC, Santiago J, Patrício A, Herdeiro MT, Loureiro S, Fardilha M. Smoking Induces a Decline in Semen Quality and the Activation of Stress Response Pathways in Sperm. Antioxidants (Basel) 2023; 12:1828. [PMID: 37891907 PMCID: PMC10604710 DOI: 10.3390/antiox12101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Male infertility is a prevalent concern affecting couples worldwide. While genetic factors, hormonal imbalances, and reproductive system defects play significant roles, emerging evidence suggests that lifestyle choices also profoundly impact male fertility. This study aimed to explore the effects of several lifestyle factors, including tobacco and alcohol consumption, physical activity, and dietary habits, on semen quality parameters and molecular biomarkers. Thirty healthy male volunteers were recruited in the Urology service at Hospital Infante D. Pedro, Aveiro, Portugal. Participants completed lifestyle questionnaires and provided semen samples, which were analyzed according to the World Health Organization criteria by experienced technicians. We also analyzed the expression levels of antioxidant enzymes and heat-shock response-related proteins to explore the activation of signaling pathways involved in stress response within sperm cells. Our results revealed that tobacco consumption reduced semen volume and total sperm count. Although the changes in the percentage of total motility and normal morphology in the smokers' group did not reach statistical significance, a slight decrease was observed. Moreover, we identified for the first time a significant association between tobacco consumption and increased levels of heat shock protein 27 (HSP27) and phosphorylated HSP27 (p-HSP27) in sperm cells, indicating the potential detrimental effects of tobacco on the reproductive system. This study highlights that lifestyle factors reduce semen quality, possibly by inducing stress in sperm, raising awareness about the effects of these risk factors among populations at risk of male infertility.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| | - António Patrício
- Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, EPE, 3810-096 Aveiro, Portugal
| | - Maria Teresa Herdeiro
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| | - Susana Loureiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| |
Collapse
|
10
|
Dai X, Chen G, Zhang M, Mei K, Liu Y, Ding C, Chang Y, Wu Z, Huang H. Exposure to ambient particulate matter affects semen quality: A case study in Wenzhou, China. Andrology 2023; 11:444-455. [PMID: 36252264 DOI: 10.1111/andr.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Particulate matter (PM), including PM2.5 (PM ≤ 2.5 µm in aerodynamic diameter) and PM10 (PM ≤ 10 µm in aerodynamic diameter), is a component of air pollutants, which is linked to semen quality. However, the available evidence of association needs to be strengthened, and some studies have conflicting results. OBJECTIVES To evaluate the potential impacts of PM on semen quality during the full (0-90 days before semen examination) and three key sperm development windows (0-9, 10-14, and 70-90 days before semen examination). METHODS We included 1494 infertile men in the main urban area in Wenzhou, China, who had undergone semen examinations for fertility between 2014 and 2019. The impacts were assessed by multivariable linear regression models. RESULTS Overall, during the full sperm development window, PM2.5 and PM10 exposures were associated with declined progressive sperm motility (%) (β: -0.6; 95% confidence intervals (CIs): -1.07, -0.13 and -0.46; -0.59, -0.33) and total sperm motility (%) (-1.95; -2.67, -1.23 and -1.32; -1.82, -0.82), and associated with increased sperm concentration (106 /ml) (0.02; 0.006, 0.023 and 0.007; 0.001, 0.013) and total sperm number (106 ) (0.02; 0.01, 0.03 and 0.011; 0.004, 0.017). Furthermore, only PM2.5 exposure during the 10-14 days window was significantly associated with declined progressive motility (%) (-0.207; -0.395, -0.023). CONCLUSIONS During the full sperm development window, PM exposure has an adverse impact on sperm motility and positive impacts on sperm concentration and total sperm number. The adverse impact was more severe in the 10-14 days window.
Collapse
Affiliation(s)
- Xuchao Dai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Mengqi Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Kun Mei
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Cheng Ding
- Department of Respiratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanxiang Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Reproductive Health Research Center, Health Assessment Center of Wenzhou Medical University, Wenzhou, China
| | - Hong Huang
- Research Center for Healthy China, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Dai XC, Zhang MQ, Chen G, Mei K, Liu YL, Huang H, Wu ZG. Will male semen quality improve with environmental quality? Asian J Androl 2023; 25:252-258. [PMID: 35848705 PMCID: PMC10069693 DOI: 10.4103/aja202239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wenzhou has improved its environmental quality because of comprehensive environmental remediation; nevertheless, the semen quality of infertile males remains unclear. This study determined whether better environmental quality improved semen quality in this region. We recorded semen quality data from 22 962 infertile males from January 2014 to November 2019 at the Center for Reproductive Health of The First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China). Patients were predominantly 30-35 years old (33.1%) and workers (82.0%), with high school education or lower (77.6%); more than a half of the patients (52.6%) were Wenzhou household registration; and most patients (77.5%) had abnormal semen quality. Patients who were older than 40 years and workers, and those with Wenzhou household registration, had significantly worse semen quality (all P < 0.05). From 2014 to 2019, progressive sperm motility, total sperm motility, and semen volume showed increasing linear trends in all patients (P = 0.021, 0.030, and 0.005, respectively), yet normal sperm morphology showed a linearly decreasing trend (P = 0.046). Sensitivity analyses for subgroups yielded similar results. In conclusion, the improvement of environmental quality and better function of the accessory glands are associated with progressive sperm motility, total sperm motility, and semen volume. Normal sperm morphology is influenced by occupational exposures and personal lifestyle and does not improve with environmental quality.
Collapse
Affiliation(s)
- Xu-Chao Dai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng-Qi Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Gang Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Kun Mei
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan-Long Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Huang
- Research Center for Healthy China, Wenzhou Medical University, Wenzhou 325035, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou 325035, China
| | - Zhi-Gang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.,Reproductive Health Research Center, Health Assessment Center of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
Sun Z, Wen Y, Wang B, Deng S, Zhang F, Fu Z, Yuan Y, Zhang D. Toxic effects of per- and polyfluoroalkyl substances on sperm: Epidemiological and experimental evidence. Front Endocrinol (Lausanne) 2023; 14:1114463. [PMID: 36891048 PMCID: PMC9986484 DOI: 10.3389/fendo.2023.1114463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
As emerging organic contaminants, per- and polyfluoroalkyl substances (PFASs) have aroused worldwide concern due to their environmental persistence, ubiquitous presence, bioaccumulation, and potential toxicity. It has been demonstrated that PFASs can accumulate in human body and cause multiple adverse health outcomes. Notably, PFASs have been detected in the semen of human, posing a potential hazard to male fecundity. This article reviews the evidence about the toxic effects of exposure to PFASs on male reproduction, focusing on the sperm quality. Epidemiological studies showed that PFASs, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were adversely associated with the semen parameters in humans, including sperm count, morphology and motility. Experimental results also confirmed that PFAS exposure led to testicular and epididymal damage, therefore impairing spermatogenesis and sperm quality. The mechanisms of reproductive toxicity of PFASs may be involved in blood-testosterone barrier destruction, testicular apoptosis, testosterone synthesis disorder, and membrane lipid composition alteration, oxidative stress and Ca2+ influx in sperm. In conclusion, this review highlighted the potential threat of exposure to PFASs to human spermatozoa.
Collapse
Affiliation(s)
- Zhangbei Sun
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yiqian Wen
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Binhui Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiyi Deng
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Fan Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhendong Fu
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
- *Correspondence: Dalei Zhang,
| |
Collapse
|
13
|
Auger J, Eustache F, Chevrier C, Jégou B. Spatiotemporal trends in human semen quality. Nat Rev Urol 2022; 19:597-626. [PMID: 35978007 PMCID: PMC9383660 DOI: 10.1038/s41585-022-00626-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
Over the past four decades, studies of various designs have reported spatial and temporal trends in human semen quality. Several standardized-methodology studies in homogeneous populations that compare specific cities within a country or a continent provide clear evidence of geographical differences in sperm production, even over short distances within the same country. Human sperm production is widely believed to be declining over time, but evidence from the scientific literature is less clear. Studies based on repeated cross-sectional data from a single centre have shown mixed results. Among the numerous retrospective studies conducted in a single centre, only some included homogeneous groups of men and appropriate methods, and most of them suggest a temporal decrease in human sperm production in the geographical areas considered. Conclusions reporting temporal trends in sperm production that came from existing retrospective multicentre studies based on individual semen data and those using means, medians or estimates of sperm production are questionable, owing to intrinsic limitations in the studies performed. Regardless of study design, studies on the percentage of motile or morphologically normal spermatozoa are still limited by the inherent variability in assessment. Overall, available data do not enable us to conclude that human semen quality is deteriorating worldwide or in the Western world, but that a trend is observed in some specific areas. To understand these trends and contrasts in sperm and semen quality, prospective studies should be encouraged and combined with assessment of the male exposome. Several studies over the past few decades have suggested that sperm quality varies by geographical region and might be subject to a temporal decline worldwide. However, the data supporting these conclusions have come from studies of various methodologies and heterogeneous populations, making them unreliable. In this in-depth Review, Chevrier and colleagues discuss the data surrounding discussion of spatiotemporal trends in semen parameters and consider how these trends and the factors promoting them interact. The vast literature on human semen quality trends is extremely heterogeneous in terms of the populations studied and study designs, and so these studies have been unable to draw firm conclusions. Understanding the data around spatiotemporal semen trends requires a focus on the methodological choices and application of criteria to filter findings from the studies with optimal design. Numerous appropriately designed studies suggest unambiguous geographical contrasts in human sperm production; however, evidence of a decline in sperm production is reliable only in specific populations and cities in which studies with a complete set of quality criteria have been conducted. By contrast, suggestions of a worldwide drop in human semen quality on the basis of retrospective multicentre studies cannot be substantiated, owing to intrinsic limitations in the studies performed. Many and varied factors of variation, in particular the diverse modalities of assessment, do not enable us to conclude that clear temporal trends of sperm motility and normal morphology are present. Progress in our understanding of the highlighted trends and their causal factors requires prospective studies that minimize all known biases combined with the assessment of men’s exposome.
Collapse
Affiliation(s)
- Jacques Auger
- INSERM U1016-Equipe "Génomique, Epigénétique et Physiologie de la Reproduction", Institut Cochin, Université Paris Descartes-Paris, Paris, France
| | - Florence Eustache
- INSERM U1016-Equipe "Génomique, Epigénétique et Physiologie de la Reproduction", Institut Cochin, Université Paris Descartes-Paris, Paris, France.,CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Jean Verdier and Service de Biologie de la Reproduction, Hôpitaux Universitaires Paris Nord Val de Seine, Hôpital Bichat, Paris, France
| | - Cécile Chevrier
- Université Rennes, INSERM, EHESP, IRSET-UMR_S 1085, Rennes, France.
| | - Bernard Jégou
- Université Rennes, INSERM, EHESP, IRSET-UMR_S 1085, Rennes, France
| |
Collapse
|
14
|
Spaggiari G, Romeo M, Casarini L, Granata ARM, Simoni M, Santi D. Human fertility and sleep disturbances: A narrative review. Sleep Med 2022; 98:13-25. [PMID: 35772248 DOI: 10.1016/j.sleep.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Many factors may be hidden behind the global fertility decline observed in Western countries. Alongside the progressively increased age of infertile couples, environmental and behavioural factors, including non-optimal lifestyle habits, should be considered. Among these, sleep disorders have been suggested to be linked to human fertility. METHODS This is a narrative review, describing first sleep physiology, its disturbances, and the tools able to quantify sleep dysfunction. Then, we consider all available studies aimed at investigating the connection between sleep disorders and human fertility, providing a comprehensive view on this topic. RESULTS Forty-two studies investigating the relationship between sleep habits and human reproduction were included. All the published evidence was grouped according to the aspect of human fertility considered, i.e. i) female reproductive functions, ii) male reproductive functions, iii) natural conception and iv) assisted reproduction. For each of the sub-groups considered, the connection between sleep dysregulation and human fertility was classified according to specific sleep characteristics, such as sleep duration, quality, and habits. In addition, possible physio-pathological mechanisms proposed to support the link between sleep and fertility were summarized. CONCLUSION This review summarizes the most relevant findings about the intricate and still largely unknown network of molecular pathways involved in the regulation of circadian homeostasis, to which sleep contributes, essential for reproductive physiology. Thus, many mechanisms seem correlate sleep disorders to reproductive health, such as adrenal activation, circadian dysregulation, and genetic influences. This review highlights the need to properly designed trials on the topic.
Collapse
Affiliation(s)
- Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Marilina Romeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio R M Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
15
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
16
|
Molina EM, Kavazis AN, Mendonça MT, Akingbemi BT. Effects of different DDE exposure paradigms on testicular steroid hormone secretion and hepatic oxidative stress in male Long-Evans rats. Gen Comp Endocrinol 2022; 317:113963. [PMID: 34902316 DOI: 10.1016/j.ygcen.2021.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Chronic exposure to low doses of anthropogenic chemicals in the environment continues to be a major health issue. Due to concerns about the effects in humans and wildlife, use of persistent organic pollutants, such as dichlorodiphenyltrichloroethane (DDT), is prohibited. However, their ubiquitous nature and persistence allows them to remain in the environment at low levels for decades. Dichlorodiphenyldichloroethylene (DDE) is the most persistent metabolite of DDT and has been shown to cause hepatotoxicity, nephrotoxicity, hormonal disorders, and induce oxidative stress in many organisms. Although the effects of acute exposure to DDT and its metabolite DDE have been extensively studied, the chronic effects of sub-lethal DDE exposure at levels comparable to those found in the environment have not been well documented. Long-Evans male rats were used to determine the effect of relatively chronic and short term DDE (doses ranged from 0.001 to 100 μg/L) exposure on endocrine function and oxidative stress at different developmental time points. We found that circulating serum testosterone (T) levels were significantly decreased and T secretion in testicular explants were significantly influenced in a dose dependent manner in both pre-pubertal and pubertal male rats after DDE exposure, with pubertal rats being the most affected contrary to our original prediction. Additionally, exposure to DDE increased expression of protein oxidation indicating a possible increase in cellular damage caused by oxidative stress. This study suggests that chronic exposures to environmentally relevant levels of DDE affected testicular function and decreased T secretion with implications for reproductive capacity.
Collapse
Affiliation(s)
- Erica M Molina
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College St, Auburn, AL 36849, USA.
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, 287 Kinesiology Building, 301 Wire Road, Auburn, AL 36849, USA.
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College St, Auburn, AL 36849, USA.
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, 1130 Wire Road, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Jørgensen N, Lamb DJ, Levine H, Pastuszak AW, Sigalos JT, Swan SH, Eisenberg ML. Are worldwide sperm counts declining? Fertil Steril 2021; 116:1457-1463. [PMID: 34836581 DOI: 10.1016/j.fertnstert.2021.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Niels Jørgensen
- University Department of Growth and Reproduction, University of Copenhagen, Copenhagen, Denmark
| | - Dolores J Lamb
- Department of Urology, Weill Cornell Medical College, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York; Center for Reproductive Genomics, Weill Cornell Medical College, New York, New York
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, Hadassah-Hebrew University, Jerusalem, Israel
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah Health Science Center, Salt Lake City, Utah
| | - John T Sigalos
- Department of Urology, University of California Los Angeles, Los Angeles, California
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael L Eisenberg
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California; Department of Urology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|