1
|
Petretto E, Luigi-Sierra MG, Vacca GM, Martínez A, Delgado JV, Fernández Álvarez J, Castelló A, Pazzola M, Jordana J, Dettori ML, Amills M. The African introgression of Murciano Granadina goats has a Moroccan origin and displays remarkable levels of inter-individual variability. Anim Genet 2024; 55:843-848. [PMID: 39291549 DOI: 10.1111/age.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
There is evidence that Murciano Granadina (MG), the most important caprine dairy breed in Spain, has been introgressed by African goats, but the precise geographic origin of such introgression has not been identified yet. Moreover, an accurate estimate of the magnitude of this African introgression is lacking, since current estimates are based on small numbers of sampled individuals. The aim of our work was to tackle these two issues by genotyping 500 MG goats with the Goat SNP50 BeadChip and comparing their genotypes with those of reference populations from Spain (Bermeya), France (Saanen), Morocco (Barcha, Draa, Ghazalia, Noire de Atlas, Nord, Moroccan), Egypt (Barki, Oasis, Saidi), Algeria (Arabia, Makatia, M'Zabite, Kabyle), Tunisia (Tunisian native breeds) and Sudan (Desert, Nilotic, Taggar). The population of 500 MG goats was subdivided into 10 datasets of 50 individuals to ensure that sample sizes of the target (MG) and reference populations are balanced. Performance of an unsupervised ADMIXTURE analysis demonstrated that MG goats have a North African ancestry, with an average proportion of 4.4 ± 2.3%. Next, we did a supervised ADMIXTURE analysis that revealed that the Moroccan genetic component reaches a proportion of 4.01 ± 3.9% in MG goats, while the Algerian (0.001 ± 0.001%), Egyptian (0.2 ± 0.1%), Sudanese (0.1 ± 0.1%) and Tunisian (0.3 ± 0.4%) components are present in extremely small proportions. The historical circumstances of this introgression event are currently unknown, but several plausible scenarios are outlined. Moreover, our results show considerable inter-individual heterogeneity regarding the magnitude of the Moroccan introgression of MG goats (0%- 12% depending on the MG data set under analysis). This result implies that reliable estimates about the introgression of autochthonous livestock by exotic breeds can only be obtained by extensively sampling target populations.
Collapse
Affiliation(s)
- E Petretto
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
- Departament de Ciència Animal i Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M G Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - G M Vacca
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - A Martínez
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - J V Delgado
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - J Fernández Álvarez
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - A Castelló
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Pazzola
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - J Jordana
- Departament de Ciència Animal i Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M L Dettori
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
2
|
Li C, Wang X, Li H, Ahmed Z, Luo Y, Qin M, Yang Q, Long Z, Lei C, Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Anim Genet 2024; 55:575-587. [PMID: 38806279 DOI: 10.1111/age.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.
Collapse
Affiliation(s)
- Chuanqing Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianglin Wang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Mao Qin
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Qiong Yang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Zhangcheng Long
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| |
Collapse
|
3
|
Belay S, Belay G, Nigussie H, Ahbara AM, Tijjani A, Dessie T, Tarekegn GM, Jian-Lin H, Mor S, Woldekiros HS, Dobney K, Lebrasseur O, Hanotte O, Mwacharo JM. Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats. Sci Rep 2024; 14:14908. [PMID: 38942813 PMCID: PMC11213886 DOI: 10.1038/s41598-024-65303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.
Collapse
Affiliation(s)
- Shumuye Belay
- Tigray Agricultural Research Institute, Mekelle, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Helen Nigussie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abulgasim M Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Department of Zoology, Misurata University, Misurata, Libya
| | - Abdulfatai Tijjani
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Getinet M Tarekegn
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Institute of Biotechnology (IoB), Addis Ababa University, Addis Ababa, Ethiopia
| | - Han Jian-Lin
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siobhan Mor
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helina S Woldekiros
- Department of Anthropology, Washington University in St. Louis, St. Louis, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- University of Sydney, Sydney, Australia
| | - Ophelie Lebrasseur
- Palaeogenomics and Bioarchaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK.
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Huang C, Zhao Q, Chen Q, Su Y, Ma Y, Ye S, Zhao Q. Runs of Homozygosity Detection and Selection Signature Analysis for Local Goat Breeds in Yunnan, China. Genes (Basel) 2024; 15:313. [PMID: 38540373 PMCID: PMC10970279 DOI: 10.3390/genes15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes associated with specific traits in livestock. In this study, we analyzed the resequencing data from 10 local goat breeds in Yunnan province of China and five additional goat populations obtained from a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific genes related to economic traits such as coat color and weight variation. These candidate genes include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some putative genes associated with high-altitude adaptability and immune. This study uncovers genetic diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification of specific genes associated with economic traits and adaptability provides actionable insights for utilization and conservation efforts.
Collapse
Affiliation(s)
- Chang Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yinxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| |
Collapse
|
6
|
Vlaic BA, Vlaic A, Russo IR, Colli L, Bruford MW, Odagiu A, Orozco-terWengel P. Analysis of Genetic Diversity in Romanian Carpatina Goats Using SNP Genotyping Data. Animals (Basel) 2024; 14:560. [PMID: 38396528 PMCID: PMC10886219 DOI: 10.3390/ani14040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Animal husbandry is one of man's oldest occupations. It began with the domestication of animals and developed continuously, in parallel with the evolution of human society. The selection and improvement of goats in Romania was not a clearly defined objective until around 1980. In recent years, with the increasing economic value given to goats, breeding programs are becoming established. In Romania, a few goat genetic studies using microsatellites and mtDNA have been carried out; however, a systematic characterization of the country's goat genomic resources remains missing. In this study, we analyzed the genetic variability of Carpatina goats from four distinct geographical areas (northern, north-eastern, eastern and southern Romania), using the Illumina OvineSNP60 (RefSeq ARS1) high-density chip for 67 goats. Heterozygosity values, inbreeding coefficients and effective population size across all autosomes were calculated for those populations that inhabit high- and low-altitude and high- and low-temperature environments. Diversity, as measured by expected heterozygosity (HE), ranged from 0.413 in the group from a low-temperature environment to 0.420 in the group from a high-temperature environment. Within studied groups, the HT (high temperature) goats were the only group with a positive but low average inbreeding coefficient value, which was 0.009. After quality control (QC) analysis, 46,965 SNPs remained for analysis (MAF < 0.01). LD was calculated for each chromosome separately. The Ne has been declining since the time of domestication, having recently reached 123, 125, 185 and 92 for the HA (high altitude), LA (low altitude), HT (high temperature) and LT (low temperature) group, respectively. Our study revealed a low impact of inbreeding in the Carpatina population, and the Ne trend also indicated a steep decline in the last hundred years. These results will contribute to the genetic improvement of the Carpatina breed.
Collapse
Affiliation(s)
- Bogdan Alin Vlaic
- Department of Animal Breeding, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Augustin Vlaic
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Isa-Rita Russo
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense n. 84, 29122 Piacenza, PC, Italy;
| | - Michael William Bruford
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Antonia Odagiu
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania
| | - Pablo Orozco-terWengel
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | | |
Collapse
|
7
|
Senczuk G, Macrì M, Di Civita M, Mastrangelo S, Del Rosario Fresno M, Capote J, Pilla F, Delgado JV, Amills M, Martínez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genet Sel Evol 2024; 56:2. [PMID: 38172652 PMCID: PMC10763158 DOI: 10.1186/s12711-023-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Martina Macrì
- Animal Breeding Consulting S.L., 14014, Córdoba, Spain
- Universidad de Córdoba, 14071, Córdoba, Spain
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | | | - Juan Capote
- Instituto Canario de Investigaciones Científicas, 38260, Tenerife, Spain
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | | | - Marcel Amills
- CRAG, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
8
|
Manunza A, Ramirez-Diaz J, Cozzi P, Lazzari B, Tosser-Klopp G, Servin B, Johansson AM, Grøva L, Berg P, Våge DI, Stella A. Genetic diversity and historical demography of underutilised goat breeds in North-Western Europe. Sci Rep 2023; 13:20728. [PMID: 38007600 PMCID: PMC10676416 DOI: 10.1038/s41598-023-48005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023] Open
Abstract
In the last decade, several studies aimed at dissecting the genetic architecture of local small ruminant breeds to discover which variations are involved in the process of adaptation to environmental conditions, a topic that has acquired priority due to climate change. Considering that traditional breeds are a reservoir of such important genetic variation, improving the current knowledge about their genetic diversity and origin is the first step forward in designing sound conservation guidelines. The genetic composition of North-Western European archetypical goat breeds is still poorly exploited. In this study we aimed to fill this gap investigating goat breeds across Ireland and Scandinavia, including also some other potential continental sources of introgression. The PCA and Admixture analyses suggest a well-defined cluster that includes Norwegian and Swedish breeds, while the crossbred Danish landrace is far apart, and there appears to be a close relationship between the Irish and Saanen goats. In addition, both graph representation of historical relationships among populations and f4-ratio statistics suggest a certain degree of gene flow between the Norse and Atlantic landraces. Furthermore, we identify signs of ancient admixture events of Scandinavian origin in the Irish and in the Icelandic goats. The time when these migrations, and consequently the introgression, of Scandinavian-like alleles occurred, can be traced back to the Viking colonisation of these two isles during the Viking Age (793-1066 CE). The demographic analysis indicates a complicated history of these traditional breeds with signatures of bottleneck, inbreeding and crossbreeding with the improved breeds. Despite these recent demographic changes and the historical genetic background shaped by centuries of human-mediated gene flow, most of them maintained their genetic identity, becoming an irreplaceable genetic resource as well as a cultural heritage.
Collapse
Affiliation(s)
- Arianna Manunza
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy.
| | - Johanna Ramirez-Diaz
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| | - Paolo Cozzi
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| | | | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007, Uppsala, Sweden
| | - Lise Grøva
- Norwegian Institute of Bioeconomy Research, Gunnars vei 6, NO-6630, Tingvoll, Norway
| | - Peer Berg
- Faculty of Biosciences, NMBU, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, ÅS, Norway
| | - Dag Inge Våge
- Faculty of Biosciences, NMBU, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, ÅS, Norway
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| |
Collapse
|
9
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The genome-wide relationships of the critically endangered Quadricorna sheep in the Mediterranean region. PLoS One 2023; 18:e0291814. [PMID: 37851594 PMCID: PMC10584175 DOI: 10.1371/journal.pone.0291814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Nowadays most of the sheep European breeds derive from the second wave which is supposed to have largely replaced oldest genetic signatures, with the exception of several primitive breeds confined on the very edge of Northern Europe. Despite this, some populations also in the Mediterranean region are characterised by the presence of phenotypic traits considered ancestral such as the policeraty, large horns in the ram, short tail, and a moulting fleece. Italy is home of a large number of local breeds, albeit some are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterised by several traits considered as ancestral. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 41 breeds from the Mediterranean region and Middle-East, with the specific aim to reconstruct its origin. After retaining 32,862 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. The Quadricorna breed exhibit genetic diversity indices comparable with those of most of the other analysed breeds, however, the two populations showed opposing patterns of genetic diversity suggesting different levels of genomic inbreeding and drift (FIS and FROH). In general, all the performed genome-wide analyses returned complementary results, indicating a westward longitudinal cline compatible with human migrations from the Middle-East and several additional genetic footprints which might mirror more recent historical events. Interestingly, among the Italian breeds, the original Quadricorna (QUAD_SA) first separated showing its own ancestral component. In addition, the admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of this population. On the other hand, both the neighbor-joining tree and the treemix analysis seem to suggest a proximity of the Quadricorna populations to breeds of South-Eastern Mediterranean origin. Although our results do not support a robust link between the genetics of the first wave and the presence of primitive traits, the observed genetic uniqueness together with the inferred phylogeograpic reconstruction would suggest an ancient presence of the Quadricorna breed in the Italian Peninsula. Because of this singularity, urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
10
|
Zhong T, Wang X, Huang C, Yang L, Zhao Q, Chen X, Freitas-de-Melo A, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Niu L. A genome-wide perspective on the diversity and selection signatures in indigenous goats using 53 K single nucleotide polymorphism array. Animal 2023; 17:100706. [PMID: 36758301 DOI: 10.1016/j.animal.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Tibetan goats, Taihang goats, Jining grey goats, and Meigu goats are the representative indigenous goats in China, found in Qinghai-Tibet Plateau, Western pastoral area, Northern and Southern agricultural regions. Very few studies have conducted a comprehensive analysis of the genomic diversity and selection of these breeds. We genotyped 96 unrelated individuals, using goat 53 K Illumina BeadChip array, of the following goat breeds: Tibetan (TG), Taihang (THG), Jining grey (JGG), and Meigu (MGG). A total of 45 951 single nucleotide polymorphisms were filtered to estimate the genetic diversity and selection signatures. All breeds had a high proportion (over 95%) of polymorphic loci. The observed and excepted heterozygosity ranged from 0.338 (MGG) to 0.402 (JGG) and 0.339 (MGG) to 0.395 (JGG), respectively. Clustering analysis displayed a genetically distinct lineage for each breed, and their Fst were greater than 0.25, indicating that they had a higher genetic differentiation between groups. Furthermore, effective population size reduced in all four populations, indicating a loss of genetic diversity. In addition, runs of homozygosity were mainly distributed in 5-10 Mb. Lastly, we identified signature genes, which were closely related to high-altitude adaptation (ADIRF) and prolificity (CNTROB, SMC3, and PTEN). This study provides a valuable resource for future studies on genome-wide perspectives on the diversity and selection signatures of Chinese indigenous goats.
Collapse
Affiliation(s)
- Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlu Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Understanding Mendelian errors in SNP arrays data using a Gochu Asturcelta pig pedigree: genomic alterations, family size and calling errors. Sci Rep 2022; 12:19686. [PMID: 36385499 PMCID: PMC9668983 DOI: 10.1038/s41598-022-24340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Up to 478 Gochu Asturcelta pig parents-offspring trios (61 different families) were genotyped using the Axiom_PigHDv1 Array to identify the causes of Mendelian errors (ME). Up to 545,364 SNPs were retained. Up to 40,540 SNPs gathering 292,297 allelic mismatches were identified and were overlapped with SINEs and LINEs (Sscrofa genome 11.1). Copy number variations (CNV) were called using PennCNV. ME were classified into eight different classes according to the trio member ("Trio" meaning no assignment) and the allele on which ME was identified: TrioA/B, FatherA/B, MotherA/B, OffspringA/B. Most ME occurred due to systematic causes: (a) those assigned to the Father, Mother or Offspring occurred by null or partial null alleles characterized by heterozygote deficiency, varied with family size, involved a low number of loci (6506), and gathered most mismatches (228,145); (b) TrioB errors varied with family size, covaried with SINEs, LINEs and CNV, and involved most ME loci (33,483) and mismatches (65,682); and (c) TrioA errors were non-systematic ME with no sampling bias involving 1.2% of mismatches only and a low number of loci (1939). The influence of TrioB errors on the overall genotyping quality may be low and, since CNV vary among populations, their removal should be considered in each particular dataset. ME assignable to the Father, Mother or Offspring may be consistent within technological platforms and may bias severely linkage or association studies. Most ME caused by null or partial null alleles can be removed using heterozygote deficiency without affecting the size of the datasets.
Collapse
|
12
|
Tolone M, Sardina MT, Senczuk G, Chessari G, Criscione A, Moscarelli A, Riggio S, Rizzuto I, Di Gerlando R, Portolano B, Mastrangelo S. Genomic Tools for the Characterization of Local Animal Genetic Resources: Application in Mascaruna Goat. Animals (Basel) 2022; 12:2840. [PMID: 36290231 PMCID: PMC9597745 DOI: 10.3390/ani12202840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/06/2024] Open
Abstract
Italy contains a large number of local goat populations, some of which do not have a recognized genetic structure. The "Mascaruna" is a goat population reared for milk production in Sicily. In this study, a total of 72 individuals were genotyped with the Illumina Goat_IGGC_65K_v2 BeadChip with the aim to characterize the genetic diversity, population structure and relatedness with another 31 Italian goat populations. The results displayed a moderate level of genetic variability for Mascaruna, in concordance with the estimated values for Italian goats. Runs of homozygosity islands are linked to genes involved in milk production, immune response and local adaptation. Population structure analyses separated Mascaruna from the other goat populations, indicating a clear genetic differentiation. Although they are not conclusive, our current results represent a starting point for the creation of monitoring and conservation plans. Additional analyses and a wider sampling would contribute to refine and validate these results. Finally, our study describing the diversity and structure of Mascaruna confirms the usefulness of applied genomic analyses as valid tools for the study of the local uncharacterized genetic resources.
Collapse
Affiliation(s)
- Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, 95131 Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, 95131 Catania, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Ilaria Rizzuto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
13
|
Chokoe TC, Hadebe K, Muchadeyi FC, Nephawe KA, Dzomba EF, Mphahlele TD, Matelele TC, Mtileni BJ. Conservation status and historical relatedness of South African communal indigenous goat populations using a genome-wide single-nucleotide polymorphism marker. Front Genet 2022; 13:909472. [PMID: 36017496 PMCID: PMC9395594 DOI: 10.3389/fgene.2022.909472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Indigenous goats form the majority of populations in smallholder, low input, low output production systems and are considered an important genetic resource due to their adaptability to different production environments and support of communal farming. Effective population size (Ne), inbreeding levels, and the runs of homozygosity (ROHs) are effective tools for exploring the genetic diversity and understanding the demographic history in efforts to support breeding strategies to use and conserve genetic resources. Across populations, the current Ne of Gauteng was the lowest at 371 animals, while the historical Ne across populations suggests that the ancestor Ne has decreased by 53.86%, 44.58%, 42.16%, and 41.16% in Free State (FS), North West (NW), Limpopo (LP), and Gauteng (GP), respectively, over the last 971 generations. Genomic inbreeding levels related to ancient kinship (FROH > 5 Mb) were highest in FS (0.08 ± 0.09) and lowest in the Eastern Cape (EC) (0.02 ± 0.02). A total of 871 ROH island regions which include important environmental adaptation and hermo-tolerance genes such as IL10RB, IL23A, FGF9, IGF1, EGR1, MTOR, and MAPK3 were identified (occurring in over 20% of the samples) in FS (n = 37), GP (n = 42), and NW (n = 2) populations only. The mean length of ROH across populations was 7.76 Mb and ranged from 1.61 Mb in KwaZulu-Natal (KZN) to 98.05 Mb (GP and NW). The distribution of ROH according to their size showed that the majority (n = 1949) of the detected ROH were > 5 Mb in length compared to the other categories. Assuming two hypothetical ancestral populations, the populations from KZN and LP are revealed, supporting PC 1. The genomes of KZN and LP share a common origin but have substantial admixture from the EC and NW populations. The findings revealed that the occurrence of high Ne and autozygosity varied largely across breeds in communal indigenous goat populations at recent and ancient events when a genome-wide single-nucleotide polymorphism (SNP) marker was used. The use of Illumina goat SNP50K BeadChip shows that there was a migration route of communal indigenous goat populations from the northern part (LP) of South Africa to the eastern areas of the KZN that confirmed their historical relatedness and coincides with the migration periods of the Bantu nation.
Collapse
Affiliation(s)
- T. C. Chokoe
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
- School of Agriculture & Environmental Sciences, University of Limpopo, Polokwane, South Africa
- *Correspondence: T. C. Chokoe,
| | - K. Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - F. C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - K. A. Nephawe
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - E. F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of Kwazulu-Natal, Scottsville, South African
| | - T. D. Mphahlele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - T. C. Matelele
- Farm Animal Genetic Resources, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - B. J. Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
14
|
Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Sci Rep 2022; 12:9891. [PMID: 35701479 PMCID: PMC9197946 DOI: 10.1038/s41598-022-14018-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Pakistan is third largest country in term of goat population with distinct characteristics of breeds and estimated population of 78.2 million. Punjab province has 37% of country's total population with seven important documented goat breeds namely Beetal, Daira Din Pannah, Nachi, Barbari, Teddi, Pahari and Pothwari. There is paucity of literature on GWAS for economically important traits i.e., body weight and morphometric measurements. Therefore, we performed GWAS using 50 K SNP Chip for growth in term of age adjusted body weight and morphometric measurements in order to identify genomic regions influencing these traits among Punjab goat breeds. Blood samples were collected from 879 unrelated animals of seven goat breeds along with data for body weight and morphometric measurements including body length, body height, pubic bone length, heart girth and chest length. Genomic DNA was extracted and genotyped using 50 K SNP bead chip. Association of genotypic data with the phenotypic data was performed using Plink 1.9 software. Linear mixed model was used for the association study. Genes were annotated from Capra hircus genome using assembly ARS1. We have identified a number of highly significant SNPs and respective candidate genes associated with growth and body conformation traits. The functional aspects of these candidate genes suggested their potential role in body growth. Moreover, pleiotropic effects were observed for some SNPs for body weight and conformation traits. The results of current study contributed to a better understanding of genes influencing growth and body conformation traits in goat.
Collapse
|
15
|
Criscione A, Mastrangelo S, D'Alessandro E, Tumino S, Di Gerlando R, Zumbo A, Marletta D, Bordonaro S. Genome-wide survey on three local horse populations with a focus on runs of homozygosity pattern. J Anim Breed Genet 2022; 139:540-555. [PMID: 35445758 PMCID: PMC9541879 DOI: 10.1111/jbg.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Purosangue Orientale Siciliano, Sanfratellano and Siciliano represent the Sicilian equine genetic resource. This study aimed to investigate the genetic diversity, population structure and the pattern of autozygosity of Sicilian horse populations using genome‐wide single‐nucleotide polymorphism (SNP) data generated with the Illumina Equine SNP70 array. The genotyping data of 17 European and Middle East populations were also included in the study. The patterns of genetic differentiation, model‐based clustering and Neighbour‐Net showed the expected positioning of Sicilian populations within the wide analysed framework and the close connections between the Purosangue Orientale Siciliano and the Arab as well as between Sanfratellano, Siciliano and Maremmano. The highest expected heterozygosity (He) and contemporary effective population size (cNe) were reported in Siciliano (He = 0.323, cNe = 397), and the lowest were reported in Purosangue Orientale Siciliano (He = 0.277, cNe = 10). The analysis of the runs of homozygosity and the relative derived inbreeding revealed high internal homogeneity in Purosangue Orientale Siciliano and Arab horses, intermediate values in Maremmano and Sanfratellano and high heterogeneity in the Siciliano population. The genome‐wide SNP analysis showed the selective pressure on Purosangue Orientale Siciliano towards traits related to endurance performance. Our results underline the importance of planning adequate conservation and exploitation programmes to reduce the level of inbreeding and, therefore, the loss of genetic diversity.
Collapse
Affiliation(s)
- Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | | | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Alessandro Zumbo
- Dipartimento di Scienze Veterinarie, Università di Messina, Messina, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Salvatore Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| |
Collapse
|
16
|
Cardoso TF, Luigi‐Sierra MG, Castelló A, Cabrera B, Noce A, Mármol‐Sánchez E, García‐González R, Fernández‐Arias A, Alabart JL, López‐Olvera JR, Mentaberre G, Granados‐Torres JE, Cardells‐Peris J, Molina A, Sànchez A, Clop A, Amills M. Assessing the levels of intraspecific admixture and interspecific hybridization in Iberian wild goats ( Capra pyrenaica). Evol Appl 2021; 14:2618-2634. [PMID: 34815743 PMCID: PMC8591326 DOI: 10.1111/eva.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
Iberian wild goats (Capra pyrenaica, also known as Iberian ibex, Spanish ibex, and Spanish wild goat) underwent strong genetic bottlenecks during the 19th and 20th centuries due to overhunting and habitat destruction. From the 1970s to 1990s, augmentation translocations were frequently carried out to restock Iberian wild goat populations (very often with hunting purposes), but they were not systematically planned or recorded. On the other hand, recent data suggest the occurrence of hybridization events between Iberian wild goats and domestic goats (Capra hircus). Augmentation translocations and interspecific hybridization might have contributed to increase the diversity of Iberian wild goats. With the aim of investigating this issue, we have genotyped 118 Iberian wild goats from Tortosa-Beceite, Sierra Nevada, Muela de Cortes, Gredos, Batuecas, and Ordesa and Monte Perdido by using the Goat SNP50 BeadChip (Illumina). The analysis of genotypic data indicated that Iberian wild goat populations are strongly differentiated and display low diversity. Only three Iberian wild goats out from 118 show genomic signatures of mixed ancestry, a result consistent with a scenario in which past augmentation translocations have had a limited impact on the diversity of Iberian wild goats. Besides, we have detected eight Iberian wild goats from Tortosa-Beceite with signs of domestic goat introgression. Although rare, hybridization with domestic goats could become a potential threat to the genetic integrity of Iberian wild goats; hence, measures should be taken to avoid the presence of uncontrolled herds of domestic or feral goats in mountainous areas inhabited by this iconic wild ungulate.
Collapse
Affiliation(s)
- Tainã Figueiredo Cardoso
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - María Gracia Luigi‐Sierra
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - Anna Castelló
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Betlem Cabrera
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antonia Noce
- Leibniz‐Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Emilio Mármol‐Sánchez
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | | | - Alberto Fernández‐Arias
- Servicio de Caza y PescaDepartamento de Agricultura, Ganadería y Medio AmbienteGobierno de AragónZaragozaSpain
| | - José Luis Alabart
- Unidad de Producción y Sanidad AnimalCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)Instituto Agroalimentario de Aragón ‐ IA2 (CITA‐Universidad de Zaragoza)Gobierno de AragónZaragozaSpain
| | - Jorge Ramón López‐Olvera
- Wildlife Ecology & Health Group and Servei d’Ecopatologia de Fauna Salvatge (SEFaS)Departament de Medicina i Cirurgia AnimalsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Gregorio Mentaberre
- Wildlife Ecology & Health Group and Departament de Ciència AnimalEscola Tècnica Superior d’Enginyeria Agraria (ETSEA)Universitat de Lleida (UdL)LleidaSpain
| | | | - Jesús Cardells‐Peris
- SAIGAS (Servicio de Análisis, Investigación y Gestión de Animales Silvestres) and Wildlife Ecology & Health Group, Faculty of VeterinaryUniversidad Cardenal Herrera‐CEU, CEU UniversitiesValenciaSpain
| | - Antonio Molina
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
| | - Armand Sànchez
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Alex Clop
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - Marcel Amills
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
17
|
Fabbri MC, Dadousis C, Tiezzi F, Maltecca C, Lozada-Soto E, Biffani S, Bozzi R. Genetic diversity and population history of eight Italian beef cattle breeds using measures of autozygosity. PLoS One 2021; 16:e0248087. [PMID: 34695128 PMCID: PMC8544844 DOI: 10.1371/journal.pone.0248087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
In the present study, GeneSeek GGP-LDv4 33k single nucleotide polymorphism chip was used to detect runs of homozygosity (ROH) in eight Italian beef cattle breeds, six breeds with distribution limited to Tuscany (Calvana, Mucca Pisana, Pontremolese) or Sardinia (Sarda, Sardo Bruna and Sardo Modicana) and two cosmopolitan breeds (Charolais and Limousine). ROH detection analyses were used to estimate autozygosity and inbreeding and to identify genomic regions with high frequency of ROH, which might reflect selection signatures. Comparative analysis among breeds revealed differences in length and distribution of ROH and inbreeding levels. The Charolais, Limousine, Sarda, and Sardo Bruna breeds were found to have a high frequency of short ROH (~ 15.000); Calvana and Mucca Pisana presented also runs longer than 16 Mbp. The highest level of average genomic inbreeding was observed in Tuscan breeds, around 0.3, while Sardinian and cosmopolitan breeds showed values around 0.2. The population structure and genetic distances were analyzed through principal component and multidimensional scaling analyses, and resulted in a clear separation among the breeds, with clusters related to productive purposes. The frequency of ROH occurrence revealed eight breed-specific genomic regions where genes of potential selective and conservative interest are located (e.g. MYOG, CHI3L1, CHIT1 (BTA16), TIMELESS, APOF, OR10P1, OR6C4, OR2AP1, OR6C2, OR6C68, CACNG2 (BTA5), COL5A2 and COL3A1 (BTA2)). In all breeds, we found the largest proportion of homozygous by descent segments to be those that represent inbreeding events that occurred around 32 generations ago, with Tuscan breeds also having a significant proportion of segments relating to more recent inbreeding.
Collapse
Affiliation(s)
- Maria Chiara Fabbri
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
- * E-mail:
| | - Christos Dadousis
- Dipartimento di Scienze Medico‐Veterinarie, Università di Parma, Parma, Italy
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Emmanuel Lozada-Soto
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Stefano Biffani
- Institute of Agricultural Biology and Biotechnology (CNR), Milano, Italy
| | - Riccardo Bozzi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| |
Collapse
|
18
|
Rovelli G, Luigi-Sierra MG, Guan D, Sbarra F, Quaglia A, Sarti FM, Amills M, Lasagna E. Evolution of inbreeding: a gaze into five Italian beef cattle breeds history. PeerJ 2021; 9:e12049. [PMID: 34692245 PMCID: PMC8483007 DOI: 10.7717/peerj.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023] Open
Abstract
In the last decades, intensive selection programs have led to sustained increases of inbreeding in dairy cattle, a feature that might have adverse consequences on the viability and phenotypic performance of their offspring. This study aimed to determine the evolution of inbreeding of five Italian beef cattle breeds (Marchigiana, Chianina, Romagnola, Maremmana, and Podolica) during a period of almost 20 years (2002–2019). The estimates of Ho, He, Fhat2, and Fped averaged across years (2002–2019) in the studied breeds fluctuated between 0.340–0.401, 0.348–0.392, –0.121–0.072, and 0.000–0.068, respectively. Moreover, annual rates of increase of the estimated inbreeding coefficients have been very low (Fhat2 = 0.01–0.02%; Fped = 0.003–0.004%). The use of a high number of bulls combined with strategies implemented by the Association of Italian Beef Cattle Breeders ANABIC to minimize inbreeding might explain these results. Despite the fact that diversity and inbreeding have remained quite stable during the last two decades, we have detected a sustained decrease of the population effective size of these five breeds. Such results should be interpreted with caution due to the inherent difficulty of estimating Ne from SNPs data in a reliable manner.
Collapse
Affiliation(s)
- Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Perugia, Italy.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Animal Science, University of California, Davis, Davis, CA, United States of America
| | - Fiorella Sbarra
- National Association of Italian Beef-Cattle Breeders (ANABIC), San Martino in Colle, Perugia, Italy
| | - Andrea Quaglia
- National Association of Italian Beef-Cattle Breeders (ANABIC), San Martino in Colle, Perugia, Italy
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Perugia, Italy
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Pogorevc N, Simčič M, Khayatzadeh N, Sölkner J, Berger B, Bojkovski D, Zorc M, Dovč P, Medugorac I, Horvat S. Post-genotyping optimization of dataset formation could affect genetic diversity parameters: an example of analyses with alpine goat breeds. BMC Genomics 2021; 22:546. [PMID: 34273960 PMCID: PMC8285797 DOI: 10.1186/s12864-021-07802-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/13/2021] [Indexed: 12/05/2022] Open
Abstract
Background Local breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. Our first objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia, and five and one local breeds from neighboring Austria and Italy, respectively. For optimal conservation and breeding programs of endangered local breeds, it is important to detect past admixture events and strive for preservation of purebred representatives of each breed with low or without admixture. In the second objective, we hence investigated the effect of inclusion or exclusion of outliers from datasets on genetic diversity and population structure parameters. Results Distinct genetic origin of the Drežnica goat was demonstrated as having closest nodes to Austrian and Italian breeds. A phylogenetic study of these breeds with other goat breeds having SNP data available in the DRYAD repository positioned them in the alpine, European and global context. Swiss breeds clustered with cosmopolitan alpine breeds and were closer to French and Spanish breeds. On the other hand, the Drežnica goat, Austrian and Italian breeds were closer to Turkish breeds. Datasets where outliers were excluded affected estimates of genetic diversity parameters within the breed and increased the pairwise genetic distances between most of the breeds. Alpine breeds, including Drežnica, Austrian and Italian goats analyzed here, still exhibit relatively high levels of genetic variability, homogeneous genetic structure and strong geographical partitioning. Conclusions Genetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps. The here employed outlier test and datasets optimization approaches provided an objective and statistically powerful tool for removal of admixed outliers. Importance of this test in selecting the representatives of each breed is warranted to obtain more objective diversity parameters and phylogenetic analysis. Such parameters are often the basis of breeding and management programs and are therefore important for preserving genetic variability and uniqueness of local rare breeds. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07802-z.
Collapse
Affiliation(s)
- Neža Pogorevc
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Mojca Simčič
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Negar Khayatzadeh
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str. 33, A-1180, Vienna, Austria
| | - Johann Sölkner
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str. 33, A-1180, Vienna, Austria
| | - Beate Berger
- Department Animal Genetic Resources, AREC Raumberg-Gumpenstein, Institute of Organic Farming and Biodiversity of Farm Animals, 4601 Thalheim b., Wels, Austria
| | - Danijela Bojkovski
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Minja Zorc
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Peter Dovč
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Straβe 48, 8215, Martinsried/Planegg, Germany
| | - Simon Horvat
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Sumreddee P, Hay EH, Toghiani S, Roberts A, Aggrey SE, Rekaya R. Grid search approach to discriminate between old and recent inbreeding using phenotypic, pedigree and genomic information. BMC Genomics 2021; 22:538. [PMID: 34256689 PMCID: PMC8278650 DOI: 10.1186/s12864-021-07872-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background Although inbreeding caused by the mating of animals related through a recent common ancestor is expected to have more harmful effects on phenotypes than ancient inbreeding (old inbreeding), estimating these effects requires a clear definition of recent (new) and ancient (old) inbreeding. Several methods have been proposed to classify inbreeding using pedigree and genomic data. Unfortunately, these methods are largely based on heuristic criteria such as the number of generations from a common ancestor or length of runs of homozygosity (ROH) segments. To mitigate these deficiencies, this study aimed to develop a method to classify pedigree and genomic inbreeding into recent and ancient classes based on a grid search algorithm driven by the assumption that new inbreeding tends to have a more pronounced detrimental effect on traits. The proposed method was tested using a cattle population characterized by a deep pedigree. Results Effects of recent and ancient inbreeding were assessed on four growth traits (birth, weaning and yearling weights and average daily gain). Thresholds to classify inbreeding into recent and ancient classes were trait-specific and varied across traits and sources of information. Using pedigree information, inbreeding generated in the last 10 to 11 generations was considered as recent. When genomic information (ROH) was used, thresholds ranged between four to seven generations, indicating, in part, the ability of ROH segments to characterize the harmful effects of inbreeding in shorter periods of time. Nevertheless, using the proposed classification method, the discrimination between new and old inbreeding was less robust when ROH segments were used compared to pedigree. Using several model comparison criteria, the proposed approach was generally better than existing methods. Recent inbreeding appeared to be more harmful across the growth traits analyzed. However, both new and old inbreeding were found to be associated with decreased yearling weight and average daily gain. Conclusions The proposed method provided a more objective quantitative approach for the classification of inbreeding. The proposed method detected a clear divergence in the effects of old and recent inbreeding using pedigree data and it was superior to existing methods for all analyzed traits. Using ROH data, the discrimination between old and recent inbreeding was less clear and the proposed method was superior to existing approaches for two out of the four analyzed traits. Deleterious effects of recent inbreeding were detected sooner (fewer generations) using genomic information than pedigree. Difference in the results using genomic and pedigree information could be due to the dissimilarity in the number of generations to a common ancestor. Additionally, the uncertainty associated with the identification of ROH segments and associated inbreeding could have an effect on the results. Potential biases in the estimation of inbreeding effects may occur when new and old inbreeding are discriminated based on arbitrary thresholds. To minimize the impact of inbreeding, mating designs should take the different inbreeding origins into consideration. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07872-z.
Collapse
Affiliation(s)
- Pattarapol Sumreddee
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA, 30602, USA
| | - El Hamidi Hay
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, 59301, USA.
| | - Sajjad Toghiani
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Andrew Roberts
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, 59301, USA
| | - Samuel E Aggrey
- Department of Poultry Science, The University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, The University of Georgia, Athens, GA, 30602, USA
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, The University of Georgia, Athens, GA, 30602, USA.,Department of Statistics, The University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
21
|
An Overview of the Use of Genotyping Techniques for Assessing Genetic Diversity in Local Farm Animal Breeds. Animals (Basel) 2021; 11:ani11072016. [PMID: 34359144 PMCID: PMC8300386 DOI: 10.3390/ani11072016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The number of local farm animal breeds is declining worldwide. However, these breeds have different degrees of genetic diversity. Measuring genetic diversity is important for the development of conservation strategies and, therefore, various genomic analysis techniques are available. The aim of the present work was to shed light on the use of these techniques in diversity studies of local breeds. In summary, a total of 133 worldwide studies that examined genetic diversity in local cattle, sheep, goat, chicken and pig breeds were reviewed. The results show that over time, almost all available genomic techniques were used and various diversity parameters were calculated. Therefore, the present results provide a comprehensive overview of the application of these techniques in the field of local breeds. This can provide helpful insights into the advancement of the conservation of breeds with high genetic diversity. Abstract Globally, many local farm animal breeds are threatened with extinction. However, these breeds contribute to the high amount of genetic diversity required to combat unforeseen future challenges of livestock production systems. To assess genetic diversity, various genotyping techniques have been developed. Based on the respective genomic information, different parameters, e.g., heterozygosity, allele frequencies and inbreeding coefficient, can be measured in order to reveal genetic diversity between and within breeds. The aim of the present work was to shed light on the use of genotyping techniques in the field of local farm animal breeds. Therefore, a total of 133 studies across the world that examined genetic diversity in local cattle, sheep, goat, chicken and pig breeds were reviewed. The results show that diversity of cattle was most often investigated with microsatellite use as the main technique. Furthermore, a large variety of diversity parameters that were calculated with different programs were identified. For 15% of the included studies, the used genotypes are publicly available, and, in 6%, phenotypes were recorded. In conclusion, the present results provide a comprehensive overview of the application of genotyping techniques in the field of local breeds. This can provide helpful insights to advance the conservation of breeds.
Collapse
|
22
|
Tarekegn GM, Khayatzadeh N, Liu B, Osama S, Haile A, Rischkowsky B, Zhang W, Tesfaye K, Dessie T, Mwai OA, Djikeng A, Mwacharo JM. Ethiopian indigenous goats offer insights into past and recent demographic dynamics and local adaptation in sub-Saharan African goats. Evol Appl 2021; 14:1716-1731. [PMID: 34295359 PMCID: PMC8287980 DOI: 10.1111/eva.13118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge on how adaptive evolution and human socio-cultural and economic interests shaped livestock genomes particularly in sub-Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio-climatic conditions. Using 52K genome-wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome-wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi-Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub-Saharan Africa indigenous goats.
Collapse
Affiliation(s)
- Getinet M. Tarekegn
- Department of Animal Production and TechnologySchool of Animal Sciences and Veterinary MedicineBahir Dar UniversityBahir DarEthiopia
- Department of Animal Breeding and GeneticsSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural SystemsDivision of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bin Liu
- Inner Mongolia Agricultural UniversityHohhotChina
| | - Sarah Osama
- The University of QueenslandSaint LuciaQLDAustralia
| | - Aynalem Haile
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | - Barbara Rischkowsky
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | | | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular BiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI)Addis AbabaEthiopia
| | - Okeyo A. Mwai
- International Livestock Research Institute (ILRI)NairobiKenya
| | - Appolinaire Djikeng
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| | - Joram M. Mwacharo
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| |
Collapse
|
23
|
Deniskova TE, Dotsev AV, Selionova MI, Reyer H, Sölkner J, Fornara MS, Aybazov AMM, Wimmers K, Brem G, Zinovieva NA. SNP-Based Genotyping Provides Insight Into the West Asian Origin of Russian Local Goats. Front Genet 2021; 12:708740. [PMID: 34276802 PMCID: PMC8282346 DOI: 10.3389/fgene.2021.708740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Specific local environmental and sociocultural conditions have led to the creation of various goat populations in Russia. National goat diversity includes breeds that have been selected for down and mohair production traits as well as versatile local breeds for which pastoralism is the main management system. Effective preservation and breeding programs for local goat breeds are missing due to the lack of DNA-based data. In this work, we analyzed the genetic diversity and population structure of Russian local goats, including Altai Mountain, Altai White Downy, Dagestan Downy, Dagestan Local, Karachaev, Orenburg, and Soviet Mohair goats, which were genotyped with the Illumina Goat SNP50 BeadChip. In addition, we addressed genetic relationships between local and global goat populations obtained from the AdaptMap project. Russian goats showed a high level of genetic diversity. Although a decrease in historical effective population sizes was revealed, the recent effective population sizes estimated for three generations ago were larger than 100 in all studied populations. The mean runs of homozygosity (ROH) lengths ranged from 79.42 to 183.94 Mb, and the average ROH number varied from 18 to 41. Short ROH segments (<2 Mb) were predominant in all breeds, while the longest ROH class (>16 Mb) was the least frequent. Principal component analysis, Neighbor-Net graph, and Admixture clustering revealed several patterns in Russian local goats. First, a separation of the Karachaev breed from other populations was observed. Moreover, genetic connections between the Orenburg and Altai Mountain breeds were suggested and the Dagestan breeds were found to be admixed with the Soviet Mohair breed. Neighbor-Net analysis and clustering of local and global breeds demonstrated the close genetic relations between Russian local and Turkish breeds that probably resulted from past admixture events through postdomestication routes. Our findings contribute to the understanding of the genetic relationships of goats originating in West Asia and Eurasia and may be used to design breeding programs for local goats to ensure their effective conservation and proper management.
Collapse
Affiliation(s)
| | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Marina I Selionova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Ali-Magomed M Aybazov
- All-Russian Research Institute of Sheep and Goat Breeding - Branch of the Federal State Budgetary Scientific Institution, North Caucasian Agrarian Center, Stavropol, Russia
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
24
|
Exploring genetic diversity and population structure of Punjab goat breeds using Illumina 50 K SNP bead chip. Trop Anim Health Prod 2021; 53:368. [PMID: 34169364 DOI: 10.1007/s11250-021-02825-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Pakistan has 35 goat breeds. Moreover, the province of Punjab has highest goat population constituting 37% of country's total population with seven goat breeds including Beetal, Daira Deen Panah, Nachi, Barbari, Teddi, Pahari, and Pothwari. The diversity study of breeds warrants the documentation of breeds particularly using genome wide panel of markers, i.e., SNP chip. The objective of the current study was to fill this gap of information. Therefore, in current study we collected total of 879 unrelated goat blood samples along with data on body weight measurements; genomic DNA was extracted, and genotyping was carried out using 50 K SNP bead chip. Quality control measures were performed in Plink 1.07. Genetic diversity was observed among studied populations using heterozygosity and pairwise FST estimates, principal component analysis, admixture analysis in Plink software with visualization in Clumpak, and constructing phylogenetic tree in Mega 7 software. Moderate to high level of heterozygosity was observed among the studied populations. Coefficient of inbreeding varied from 0.0186 ± 0.0327 in Pahari to 0.183 ± 0.0715 in Barbari. Barbari and Daira Deen Panah had quite higher level of inbreeding coefficient as compared to all other breeds with value of 0.183 ± 0.0715 and 0.1378 ± 0.0741, respectively. PCA identified three steps of subdividing the seven goat breeds at various levels of K. All the seven breeds made independent clusters at various levels of PCA. Admixture analysis revealed the distinctness of Teddi and Barbari breeds. Genetic sub-structuring was observed in the admixture patterns of Beetal breed. Moreover, high level of genetic admixture was observed in Nachi, Pahari, Pothwari, and Daira Deen Panah breeds. Admixture results were further interpreted by calculating pairwise FST values. Our results provided first insights about genetic diversity of Pakistani goat breeds based on genomic data. To conclude, the enriched goat breed diversity in Pakistan could provide valuable genetic reservoir for national breeding schemes.
Collapse
|
25
|
Genome-Wide Patterns of Homozygosity Reveal the Conservation Status in Five Italian Goat Populations. Animals (Basel) 2021; 11:ani11061510. [PMID: 34071004 PMCID: PMC8224610 DOI: 10.3390/ani11061510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In the local populations, the increase in inbreeding is a relevant problem for the reduction in production, reproduction, and adaptive traits. The application of genomic technologies has facilitated the assessment of inbreeding in these populations. The current study aims to investigate the patterns of homozygosity in five Italian local goat populations. The results showed the different selection histories and breeding schemes of these goat populations. The analysis also indicated the importance of this information to avoid future loss of diversity and to produce information for designing optimal breeding and conservation programs. Abstract The application of genomic technologies has facilitated the assessment of genomic inbreeding based on single nucleotide polymorphisms (SNPs). In this study, we computed several runs of homozygosity (ROH) parameters to investigate the patterns of homozygosity using Illumina Goat SNP50 in five Italian local populations: Argentata dell’Etna (N = 48), Derivata di Siria (N = 32), Girgentana (N = 59), Maltese (N = 16) and Messinese (N = 22). The ROH results showed well-defined differences among the populations. A total of 3687 ROH segments >2 Mb were detected in the whole sample. The Argentata dell’Etna and Messinese were the populations with the lowest mean number of ROH and inbreeding coefficient values, which reflect admixture and gene flow. In the Girgentana, we identified an ROH pattern related with recent inbreeding that can endanger the viability of the breed due to reduced population size. The genomes of Derivata di Siria and Maltese breeds showed the presence of long ROH (>16 Mb) that could seriously impact the overall biological fitness of these breeds. Moreover, the results confirmed that ROH parameters are in agreement with the known demography of these populations and highlighted the different selection histories and breeding schemes of these goat populations. In the analysis of ROH islands, we detected harbored genes involved with important traits, such as for milk yield, reproduction, and immune response, and are consistent with the phenotypic traits of the studied goat populations. Finally, the results of this study can be used for implementing conservation programs for these local populations in order to avoid further loss of genetic diversity and to preserve the production and fitness traits. In view of this, the availability of genomic data is a fundamental resource.
Collapse
|
26
|
Guan D, Castelló A, Luigi-Sierra MG, Landi V, Delgado JV, Martínez A, Amills M. Estimating the copy number of the agouti signaling protein (ASIP) gene in goat breeds with different color patterns. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Ressaissi Y, Amills M, Noce A, Ben Hamouda M. Characterizing the Mitochondrial Diversity of Arbi Goats from Tunisia. Biochem Genet 2021; 59:1225-1232. [PMID: 33743097 DOI: 10.1007/s10528-021-10058-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Arbi is one of the main local goat breeds in Tunisia, representing an important economic resource in arid and hot areas where cattle and sheep cannot thrive successfully. In the current work, we have characterized the mitochondrial diversity of 26 Arbi goats by partially sequencing the mitochondrial D-loop region. These sequences plus 10 retrieved from GenBank were analyzed with the DnaSP v.5.10.1, evidencing the existence of 12 different haplotypes. Nucleotide and haplotype diversities were 0.02 and 0.96. Moreover, median-joining network analysis showed that all D-loop sequences from Arbi goats correspond to haplogroup A and that in general they do not cluster with sequences from other goat breeds. The high diversity that has been observed in North African goats is compatible with the maritime diffusion of the Neolithic package 10,000-7000 YBP. Moreover, there are evidences that local Tunisian breeds have been extensively crossed with highly productive transboundary breeds in order to improve meat and milk yields. These uncontrolled crossing practices may lead to the loss of alleles that play key roles in the adaptation of Tunisian local breeds to a harsh environment.
Collapse
Affiliation(s)
- Yosra Ressaissi
- Institut National Agronomique de La Tunisie (INAT), 43 Avenue Charles Nicolle, 1082, Tunis, Tunisia.
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonia Noce
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mohamed Ben Hamouda
- Institut National de La Recherche Agronomique de Tunisie (INRAT), Rue Hédi Karray, 2049, Ariana, Tunisie
| |
Collapse
|
28
|
Sacarrão-Birrento L, de Almeida AM. The Portuguese Serrana goat breed: a review. Trop Anim Health Prod 2021; 53:114. [PMID: 33433712 DOI: 10.1007/s11250-020-02553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
Goats were among the first animals to be domesticated over 10,000 years ago and are part of human societies since the beginning of agriculture. Goats play a major role both in commercial farming systems and in subsistence agriculture systems, particularly in tropical, subtropical and Mediterranean regions where they are crucial for the supply of meat, milk, fibre and dung. This review concerns the Serrana breed, the most important and numerous indigenous goat breed from Portugal that was furthermore exported to other regions of the world, notably South America during the Portuguese colonization. Herein, we describe the origin and history of the breed as well as the productive performance and most common production systems. Finally, we address the local and traditional PDO (protected denomination of origin) and PGI (protected geographical indication) that are produced from these animals.
Collapse
Affiliation(s)
- Laura Sacarrão-Birrento
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André M de Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|
29
|
Genome-Wide Analysis Revealed Homozygosity and Demographic History of Five Chinese Sheep Breeds Adapted to Different Environments. Genes (Basel) 2020; 11:genes11121480. [PMID: 33317115 PMCID: PMC7764688 DOI: 10.3390/genes11121480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
Homozygosity of long sequence genotypes are a result of parents transmitting identical haplotypes, which can be used to estimate their auto-zygosity. Therefore, we used high-density SNP Chip data to characterize the auto-zygosity of each breed according to the occurrence and distribution of runs of homozygosity (ROH). Subsequently, we identified the genomic regions with high runs of homozygosity frequencies within individuals of each breed. We selected 96 sheep samples from five local Chinese sheep breeds belonging to different geographical locations. We identified 3046 ROHs within the study breed individuals, among which the longer segments (>1–5 Mb) were dominant. On average, ROH segments covered about 12% of the genomes; the coverage rate of OAR20 was the lowest and that of OAR2 was the highest. The distribution analysis of runs of homozygosity showed that the detected ROH mainly distributed between >26 and 28 Mb. The Hetian and Hu sheep showed the lowest ROH distribution. The estimation of homozygosity level reflects the history of modern and ancient inbreeding, which may affect the genomes of Chinese indigenous sheep breeds and indicate that some animals have experienced recent self-pollination events (Yabuyi, Karakul and Wadi). In these sheep breeds, the genomic regions were assumed to be under selection signatures frequently in line with long ROH. These regions included candidate genes associated with disease resistance traits (5S_rRNA), the innate and adaptive immune response (HERC2 and CYFIP1), digestion and metabolism (CENPJ), growth (SPP1), body size and developments (GJB2 and GJA3). This study highlighted new insights into the ROH patterns and provides a basis for future breeding and conservation strategies of Chinese sheep breeds.
Collapse
|
30
|
Diversity Analysis and Genetic Relationships among Local Brazilian Goat Breeds Using SSR Markers. Animals (Basel) 2020; 10:ani10101842. [PMID: 33050450 PMCID: PMC7600759 DOI: 10.3390/ani10101842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This study aimed to evaluate the genetic diversity of six groups of native Brazilian goats using a panel of single sequence repeats (SSRs). Results indicated a definite genetic differentiation among the Brazilian goat herd, which indicates the existence of at least four breeds according to the international concepts (Moxotó and Repartida; the Grauna and Serrana Azul; Canindé and Marota breeds). Abstract The genetic diversity of six Brazilian native goats was reported using molecular markers. Hair samples of 332 animals were collected from different goat breeds (Moxotó, Canindé, Serrana Azul, Marota, Repartida, and Graúna) from five states of Northeast Brazil (Paraíba, Pernambuco, Rio Grande do Norte, Bahia, and Piauí). A panel of 27 microsatellites or single sequence repeats (SSRs) were selected and amplified using a polymerase chain reaction (PCR) technique. All populations showed an average allele number of over six. The mean observed heterozygosity for Brazilian breeds was superior to 0.50. These results demonstrated the high genetic diversity in the studied populations with values ranging from 0.53 (Serrana Azul) to 0.62 (Repartida). The expected average heterozygosity followed the same trend ranging from 0.58 (Serrana Azul) to 0.65 (Repartida), and the values obtained are very similar for all six breeds. The fixation index (Fis) had values under 10% except for the Moxotó breed (13%). The mean expected heterozygosity of all Brazilian populations was over 0.50. Results indicated a within-breed genetic variability in the Brazilian breeds based on the average number of alleles and the average observed heterozygosity. The interbreed genetic diversity values showed proper genetic differentiation among local Brazilian goat breeds.
Collapse
|
31
|
Cendron F, Perini F, Mastrangelo S, Tolone M, Criscione A, Bordonaro S, Iaffaldano N, Castellini C, Marzoni M, Buccioni A, Soglia D, Schiavone A, Cerolini S, Lasagna E, Cassandro M. Genome-Wide SNP Analysis Reveals the Population Structure and the Conservation Status of 23 Italian Chicken Breeds. Animals (Basel) 2020; 10:E1441. [PMID: 32824706 PMCID: PMC7460279 DOI: 10.3390/ani10081441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/06/2023] Open
Abstract
The genomic variability of local Italian chicken breeds, which were monitored under a conservation plan, was studied using single nucleotide polymorphisms (SNPs) to understand their genetic diversity and population structure. A total of 582 samples from 23 local breeds and four commercial stocks were genotyped using the Affymetrix 600 K Chicken SNP Array. In general, the levels of genetic diversity, investigated through different approaches, were lowest in the local chicken breeds compared to those in the commercial stocks. The level of genomic inbreeding, based on runs of homozygosity (FROH), was markedly different among the breeds and ranged from 0.121 (Valdarnese) to 0.607 (Siciliana). In all breeds, short runs of homozygosity (ROH) (<4 Mb in length) were more frequent than long segments. The patterns of genetic differentiation, model-based clustering, and neighbor networks showed that most breeds formed non-overlapping clusters and were clearly separate populations, which indicated the presence of gene flow, especially among breeds that originated from the same geographical area. Four genomic regions were identified as hotspots of autozygosity (islands) among the breeds, where the candidate genes are involved in morphological traits, such as body weight and feed conversion ratio. We conclude that the investigated breeds have conserved authentic genetic patterns, and these results can improve conservation strategies; moreover, the conservation of local breeds may play an important role in the local economy as a source of high-quality products for consumers.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (F.C.); (M.C.)
| | - Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.P.); (C.C.)
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest sciences, University of Palermo, Viale delle Scienze, Ed. 4, 90128 Palermo, Italy; (S.M.); (M.T.)
| | - Marco Tolone
- Department of Agricultural, Food and Forest sciences, University of Palermo, Viale delle Scienze, Ed. 4, 90128 Palermo, Italy; (S.M.); (M.T.)
| | - Andrea Criscione
- Department of Agronomy, Food, and Environment, University of Catania, Via Valdisavoia, 5, 95100 Catania, Italy; (A.C.); (S.B.)
| | - Salvatore Bordonaro
- Department of Agronomy, Food, and Environment, University of Catania, Via Valdisavoia, 5, 95100 Catania, Italy; (A.C.); (S.B.)
| | - Nicolaia Iaffaldano
- Department of Agricultural, Environment and Food, University of Molise, Via De Sanctis s/n, 86100 Campobasso, Italy;
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.P.); (C.C.)
| | - Margherita Marzoni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, Via di San Bonaventura, 50145 Firenze, Italy;
| | - Dominga Soglia
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy; (D.S.); (A.S.)
| | - Achille Schiavone
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy; (D.S.); (A.S.)
| | - Silvia Cerolini
- Department of Veterinary Science, University of Milano, Via Trentacoste, 2, 20134 Milano, Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.P.); (C.C.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (F.C.); (M.C.)
| |
Collapse
|
32
|
Genome-Wide Assessment of Runs of Homozygosity in Chinese Wagyu Beef Cattle. Animals (Basel) 2020; 10:ani10081425. [PMID: 32824035 PMCID: PMC7460448 DOI: 10.3390/ani10081425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous regions that generally exist in the DNA sequence of diploid organisms. Identifications of ROH leading to reduction in performance can provide valuable insight into the genetic architecture of complex traits. Here, we evaluated genome-wide patterns of homozygosity and their association with important traits in Chinese Wagyu beef cattle. We identified a total of 29,271 ROH segments from 462 animals. Within each animal, an average number of ROH was 63.36 while an average length was 62.19 Mb. To evaluate the enrichment of ROH across genomes, we initially identified 280 ROH regions by merging ROH events across all individuals. Of these, nine regions containing 154 candidate genes, were significantly associated with six traits (body height, chest circumference, fat coverage, backfat thickness, ribeye area, and carcass length; p < 0.01). Moreover, we found 26 consensus ROH regions with frequencies exceeding 10%, and several regions overlapped with QTLs, which are associated with body weight, calving ease, and stillbirth. Among them, we observed 41 candidate genes, including BCKDHB, MAB21L1, SLC2A13, FGFR3, FGFRL1, CPLX1, CTNNA1, CORT, CTNNBIP1, and NMNAT1, which have been previously reported to be related to body conformation, meat quality, susceptibility, and reproductive traits. In summary, we assessed genome-wide autozygosity patterns and inbreeding levels in Chinese Wagyu beef cattle. Our study identified many candidate regions and genes overlapped with ROH for several important traits, which could be unitized to assist the design of a selection mating strategy in beef cattle.
Collapse
|
33
|
Álvarez I, Fernández I, Traoré A, Pérez-Pardal L, Menéndez-Arias NA, Goyache F. Ancient Homozygosity Segments in West African Djallonké Sheep Inform on the Genomic Impact of Livestock Adaptation to the Environment. Animals (Basel) 2020; 10:E1178. [PMID: 32664651 PMCID: PMC7401600 DOI: 10.3390/ani10071178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
A sample of Burkina Faso Djallonké (West African Dwarf) sheep was analyzed to identify stretches of homozygous segments (runs of homozygosity; ROH) overlapping with ancient homozygosity-by-descent (HBD) segments. HBD segments were considered ancient if they were likely to be inherited from ancestors living from 1024 to 2048 generations ago, roughly coinciding with the time in which sheep entered into West Africa. It is hypothesized that such homozygous segments can inform on the effect of the sheep genome of human-mediated selection for adaptation to this harsh environment. PLINK analyses allowed to identify a total of 510 ROH segments in 127 different individuals that could be summarized into 124 different ROH. A total of 32,968 HBD segments were identified on 119 individuals using the software ZooRoH. HBD segments inherited from ancestors living 1024 and 2048 generations ago were identified on 61 individuals. The overlap between consensus ROH identified using PLINK and HBD fragments putatively assigned to generations 1024 and 2048 gave 108 genomic areas located on 17 different ovine chromosomes which were considered candidate regions for gene-annotation enrichment analyses. Functional annotation allowed to identify six statistically significant functional clusters involving 50 candidate genes. Cluster 1 was involved in homeostasis and coagulation; functional clusters 2, 3, and 6 were associated to innate immunity, defense against infections, and white blood cells proliferation and migration, respectively; cluster 4 was involved in parasite resistance; and functional cluster 5, formed by 20 genes, was involved in response to stress. The current analysis confirms the importance of genomic areas associated to immunity, disease resistance, and response to stress for adaptation of sheep to the challenging environment of humid Sub-Saharan West Africa.
Collapse
Affiliation(s)
- Isabel Álvarez
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Iván Fernández
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Amadou Traoré
- Institut de l’Environnement et des RecherchesAgricoles (INERA), 8645 Ouagadougou BP, Burkina Faso;
| | | | - Nuria A. Menéndez-Arias
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| | - Félix Goyache
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394 Gijón, Spain; (I.Á.); (I.F.); (N.A.M.-A.)
| |
Collapse
|
34
|
Estimates of Autozygosity Through Runs of Homozygosity in Farmed Coho Salmon. Genes (Basel) 2020; 11:genes11050490. [PMID: 32365758 PMCID: PMC7290985 DOI: 10.3390/genes11050490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
The characterization of runs of homozygosity (ROH), using high-density single nucleotide polymorphisms (SNPs) allows inferences to be made about the past demographic history of animal populations and the genomic ROH has become a common approach to characterize the inbreeding. We aimed to analyze and characterize ROH patterns and compare different genomic and pedigree-based methods to estimate the inbreeding coefficient in two pure lines (POP A and B) and one recently admixed line (POP C) of coho salmon (Oncorhynchus kisutch) breeding nuclei, genotyped using a 200 K Affymetrix Axiom® myDesign Custom SNP Array. A large number and greater mean length of ROH were found for the two “pure” lines and the recently admixed line (POP C) showed the lowest number and smaller mean length of ROH. The ROH analysis for different length classes suggests that all three coho salmon lines the genome is largely composed of a high number of short segments (<4 Mb), and for POP C no segment >16 Mb was found. A high variable number of ROH, mean length and inbreeding values across chromosomes; positively the consequence of artificial selection. Pedigree-based inbreeding values tended to underestimate genomic-based inbreeding levels, which in turn varied depending on the method used for estimation. The high positive correlations between different genomic-based inbreeding coefficients suggest that they are consistent and may be more accurate than pedigree-based methods, given that they capture information from past and more recent demographic events, even when there are no pedigree records available.
Collapse
|
35
|
Dixit SP, Singh S, Ganguly I, Bhatia AK, Sharma A, Kumar NA, Dang AK, Jayakumar S. Genome-Wide Runs of Homozygosity Revealed Selection Signatures in Bos indicus. Front Genet 2020; 11:92. [PMID: 32153647 PMCID: PMC7046685 DOI: 10.3389/fgene.2020.00092] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/28/2020] [Indexed: 02/04/2023] Open
Abstract
Genome-wide runs of homozygosity (ROH) are suitable for understanding population history, calculating genomic inbreeding, deciphering genetic architecture of complex traits and diseases as well as identifying genes linked with agro-economic traits. Autozygosity and ROH islands, genomic regions with elevated ROH frequencies, were characterized in 112 animals of seven Indian native cattle breeds (B. indicus) using BovineHD BeadChip. In total, 4138 ROH were detected. The average number of ROH per animal was maximum in draft breed, Kangayam (63.62 ± 22.71) and minimum in dairy breed, Sahiwal (24.62 ± 11.03). The mean ROH length was maximum in Vechur (6.97 Mb) and minimum in Hariana (4.04 Mb). Kangayam revealed the highest ROH based inbreeding (FROH > 1Mb = 0.113 ± 0.059), whereas Hariana (FROH > 1Mb = 0.042 ± 0.031) and Sahiwal (FROH > 1Mb = 0.043 ± 0.048) showed the lowest. The high standard deviation observed in each breed highlights a considerable variability in autozygosity. Out of the total autozygous segments observed in each breed except Vechur, > 80% were of short length (< 8 Mb) and contributed almost 50% of the genome proportion under ROH. However, in Vechur cattle, long ROH contributed 75% of the genome proportion under ROH. ROH patterns revealed Hariana and Sahiwal breeds as less consanguineous, while recent inbreeding was apparent in Vechur. Maximum autozygosity observed in Kangayam is attributable to both recent and ancient inbreeding. The ROH islands were harbouring higher proportion of QTLs for production traits (20.68% vs. 14.64%; P≤ 0.05) but lower for reproductive traits (11.49% vs. 15.76%; P≤ 0.05) in dairy breeds compared to draft breed. In draft cattle, genes associated with resistant to diseases/higher immunity (LYZL1, SVIL, and GPX4) and stress tolerant (CCT4) were identified in ROH islands; while in dairy breeds, for milk production (PTGFR, CSN1S1, CSN2, CSN1S2, and CSN3). Significant difference in ROH islands among large and short statured breeds was observed at chromosome 3 and 5 involving genes like PTGFR and HMGA2 responsible for milk production and stature, respectively. PCA analysis on consensus ROH regions revealed distinct clustering of dairy, draft and short stature cattle breeds.
Collapse
Affiliation(s)
- S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sanjeev Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Indrajit Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Avnish Kumar Bhatia
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Anurodh Sharma
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - N Anand Kumar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ajay Kumar Dang
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Jayakumar
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
36
|
Genome analysis in local breeds: A case study on Olkuska sheep. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Michailidou S, Tsangaris GT, Tzora A, Skoufos I, Banos G, Argiriou A, Arsenos G. Analysis of genome-wide DNA arrays reveals the genomic population structure and diversity in autochthonous Greek goat breeds. PLoS One 2019; 14:e0226179. [PMID: 31830089 PMCID: PMC6907847 DOI: 10.1371/journal.pone.0226179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Goats play an important role in the livestock sector in Greece. The national herd consists mainly of two indigenous breeds, the Eghoria and Skopelos. Here, we report the population structure and genomic profiles of these two native goat breeds using Illumina’s Goat SNP50 BeadChip. Moreover, we present a panel of candidate markers acquired using different genetic models for breed discrimination. Quality control on the initial dataset resulted in 48,841 SNPs kept for downstream analysis. Principal component and admixture analyses were applied to assess population structure. The rate of inbreeding within breed was evaluated based on the distribution of runs of homozygosity in the genome and respective coefficients, the genomic relationship matrix, the patterns of linkage disequilibrium, and the historic effective population size. Results showed that both breeds exhibit high levels of genetic diversity. Level of inbreeding between the two breeds estimated by the Wright’s fixation index FST was low (Fst = 0.04362), indicating the existence of a weak genetic differentiation between them. In addition, grouping of farms according to their geographical locations was observed. This study presents for the first time a genome-based analysis on the genetic structure of the two indigenous Greek goat breeds and identifies markers that can be potentially exploited in future selective breeding programs for traceability purposes, targeted genetic improvement schemes and conservation strategies.
Collapse
Affiliation(s)
- S. Michailidou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
- * E-mail:
| | - G. Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A. Tzora
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - I. Skoufos
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - G. Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland's Rural College and The Roslin Institute University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - A. Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Runs of Homozygosity and NetView analyses provide new insight into the genome-wide diversity and admixture of three German cattle breeds. PLoS One 2019; 14:e0225847. [PMID: 31800604 PMCID: PMC6892555 DOI: 10.1371/journal.pone.0225847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022] Open
Abstract
Angler (RVA) and Red-and-White dual-purpose (RDN) cattle were in the past decades crossed with influential Red Holstein (RH) sires. However, genome-wide diversity studies in these breeds are lacking. The objective of the present study was to elucidate the genome-wide diversity and population structure of the three German cattle breeds. Using 40,851 single nucleotide polymorphism markers scored in 337 individuals, runs of homozygosity (ROH) were analysed in each breed. Clustering and a high-resolution network visualisation analyses were performed on an extended dataset that included 11 additional (outgroup) breeds. Genetic diversity levels were high with observed heterozygosity above 0.35 in all three breeds. Only RVA had a recent past effective population size (Ne) estimate above 100 at 5 generations ago. ROH length distribution followed a similar pattern across breeds and the majority of ROH were found in the length class of >5 to 10 Mb. Estimates of average inbreeding calculated from ROH (FROH) were 0.021 (RVA), 0.045 (RDN) and 0.053 (RH). Moderate to high positive correlations were found between FROH and pedigree inbreeding (FPED) and between FROH and inbreeding derived from the excess of homozygosity (FHOM), while the intercept of the regression of FROH on FPED was above zero. The population structure analysis showed strong evidence of admixture between RVA and RH. Introgression of RDN with RH genes was minimally detected and for the first time, the study uncovered Norwegian Red Cattle ancestry in RVA. Highly heterogeneous genetic background was found for RVA and RH and as expected, the breeds of the extended dataset effectively differentiated mostly based on geographical origin, validating our findings. The results of this study confirm the impact of RH sires on RVA and RDN populations. Furthermore, a close monitoring is suggested to curb further reduction of Ne in the breeds.
Collapse
|
39
|
Abstract
Genome-wide single nucleotide polymorphism (SNP) arrays can be used to explore homozygosity segments, where two haplotypes inherited from the parents are identical. In this study, we identified a total of 27,358 runs of homozygosity (ROH) with an average of 153 ROH events per animal in Chinese local cattle. The sizes of ROH events varied considerably ranging from 0.5 to 66 Mb, with an average length of 1.22 Mb. The highest average proportion of the genome covered by ROH (~11.54% of the cattle genome) was found in Nanda cattle (NDC) from South China, whereas the lowest average proportion (~3.1%) was observed in Yanhuang cattle (YHC). The average estimated FROH ranged from 0.03 in YHC to 0.12 in NDC. For each of three ROH classes with different sizes (Small 0.5-1 Mb, Medium 1-5 Mb and Large >5 Mb), the numbers and total lengths of ROH per individual showed considerable differences across breeds. Moreover, we obtained 993 to 3603 ROH hotspots (which were defined where ROH frequency at a SNP within each breed exceeded the 1% threshold) among eight cattle breeds. Our results also revealed several candidate genes embedded with ROH hotspots which may be related to environmental conditions and local adaptation. In conclusion, we generated baselines for homozygosity patterns in diverse Chinese cattle breeds. Our results suggested that selection has, at least partially, played a role with other factors in shaping the genomic patterns of ROH in Chinese local cattle and might provide valuable insights for understanding the genetic basis of economic and adaptive traits.
Collapse
|
40
|
Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes (Basel) 2019; 10:genes10110938. [PMID: 31744198 PMCID: PMC6895971 DOI: 10.3390/genes10110938] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2, TMEM200C, SF1, ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.
Collapse
|
41
|
Szpiech ZA, Mak ACY, White MJ, Hu D, Eng C, Burchard EG, Hernandez RD. Ancestry-Dependent Enrichment of Deleterious Homozygotes in Runs of Homozygosity. Am J Hum Genet 2019; 105:747-762. [PMID: 31543216 PMCID: PMC6817522 DOI: 10.1016/j.ajhg.2019.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Runs of homozygosity (ROH) are important genomic features that manifest when an individual inherits two haplotypes that are identical by descent. Their length distributions are informative about population history, and their genomic locations are useful for mapping recessive loci contributing to both Mendelian and complex disease risk. We have previously shown that ROH, and especially long ROH that are likely the result of recent parental relatedness, are enriched for homozygous deleterious coding variation in a worldwide sample of outbred individuals. However, the distribution of ROH in admixed populations and their relationship to deleterious homozygous genotypes is understudied. Here we analyze whole-genome sequencing data from 1,441 unrelated individuals from self-identified African American, Puerto Rican, and Mexican American populations. These populations are three-way admixed between European, African, and Native American ancestries and provide an opportunity to study the distribution of deleterious alleles partitioned by local ancestry and ROH. We re-capitulate previous findings that long ROH are enriched for deleterious variation genome-wide. We then partition by local ancestry and show that deleterious homozygotes arise at a higher rate when ROH overlap African ancestry segments than when they overlap European or Native American ancestry segments of the genome. These results suggest that, while ROH on any haplotype background are associated with an inflation of deleterious homozygous variation, African haplotype backgrounds may play a particularly important role in the genetic architecture of complex diseases for admixed individuals, highlighting the need for further study of these populations.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Department of Biological Sciences, Auburn University, Auburn, AL 36842, USA.
| | - Angel C Y Mak
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marquitta J White
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada; Genome Quebec Innovation Center, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
42
|
Nandolo W, Mészáros G, Banda LJ, Gondwe TN, Lamuno D, Mulindwa HA, Nakimbugwe HN, Wurzinger M, Utsunomiya YT, Woodward-Greene MJ, Liu M, Liu G, Van Tassell CP, Curik I, Rosen BD, Sölkner J. Timing and Extent of Inbreeding in African Goats. Front Genet 2019; 10:537. [PMID: 31214253 PMCID: PMC6558083 DOI: 10.3389/fgene.2019.00537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
Genetic characterization of African goats is one of the current priorities in the improvement of goats in the continent. This study contributes to the characterization effort by determining the levels and number of generations to common ancestors ("age") associated with inbreeding in African goat breeds and identifies regions that contain copy number variation mistyped as being homozygous. Illumina 50k single nucleotide polymorphism genotype data for 608 goats from 31 breeds were used to compute the level and age of inbreeding at both local (marker) and global levels (FG) using a model-based approach based on a hidden Markov model. Runs of homozygosity (ROH) segments detected using the Viterbi algorithm led to ROH-based inbreeding coefficients for all ROH (FROH) and for ROH longer than 2 Mb (FROH > 2Mb). Some of the genomic regions identified as having ROH are likely to be hemizygous regions (copy number deletions) mistyped as homozygous regions. Although the proportion of these miscalled ROH is small and does not substantially affect estimates of levels of inbreeding for individual animals, the inbreeding metrics were adjusted by removing these regions from the ROH. All the inbreeding metrics varied widely across breeds, with overall means of 0.0408, 0.0370, and 0.0691 and medians of 0.0125, 0.0098, and 0.0366 for FROH, FROH > 2Mb, and FG, respectively. Several breeds (including Menabe and Sofia from Madagascar) had high proportions of recent inbreeding, while Small East African, Ethiopian, and most of the West African breeds (including West African Dwarf) had more ancient inbreeding.
Collapse
Affiliation(s)
- Wilson Nandolo
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi.,Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Gábor Mészáros
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Liveness Jessica Banda
- Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Timothy N Gondwe
- Department of Animal Science, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Doreen Lamuno
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | | | - Maria Wurzinger
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Yuri T Utsunomiya
- School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (UNESP), São Paulo, Brazil
| | - M Jennifer Woodward-Greene
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - George Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Johann Sölkner
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
43
|
Genetic homogenization of indigenous sheep breeds in Northwest Africa. Sci Rep 2019; 9:7920. [PMID: 31138837 PMCID: PMC6538629 DOI: 10.1038/s41598-019-44137-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Northwest-African sheep represent an ideal case-study for assessing the potential impact of genetic homogenization as a threat to the future of traditional breeds that are adapted to local conditions. We studied ten Algerian and Moroccan breeds of sheep, including three transboundary breeds, distributed over a large part of the Maghreb region, which represents a geographically and historically coherent unit. Our analysis of the dataset that involved carrying out Genome-wide SNP genotyping, revealed a high level of homogenization (ADMIXTURE, NetView, fineSTRUCTURE and IBD segments analyses), in such a way that some breeds from different origins appeared genetically undistinguished: by grouping the eight most admixed populations, we obtained a mean global FST value of 0.0024. The sPCA analysis revealed that the major part of Morocco and the Northern part of Algeria were affected by the phenomenon, including most of the breeds considered. Unsupervised cross-breeding with the popular Ouled-Djellal breed was identified as a proximate cause of this homogenization. The issue of transboundary breeds was investigated, and the Hamra breed in particular was examined via ROH fragments analysis. Genetic diversity was considered in the light of historical archives and anthropological works. All of these elements taken together suggest that homogenization as a factor affecting the Maghrebin sheep stock, has been particularly significant over the last few decades, although this process probably started much earlier. In particular, we have identified the policies set by the French administration during the colonial period of the region’s history as a causal factor that probably contributed significantly to this process. The genetic homogenization that we have observed calls into question the integrity of the farm animal genomic resources represented by these local breeds, whose conservation is of critical importance to the future of the livestock sector.
Collapse
|
44
|
Berihulay H, Li Y, Liu X, Gebreselassie G, Islam R, Liu W, Jiang L, Ma Y. Genetic diversity and population structure in multiple Chinese goat populations using a SNP panel. Anim Genet 2019; 50:242-249. [PMID: 30883837 DOI: 10.1111/age.12776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 11/30/2022]
Abstract
Information about genetic diversity and population structure among goat breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds. Here, we measured genetic diversity and population structure in multiple Chinese goat populations, namely, Nanjiang, Qinggeda, Arbas Cashmere, Jining Grey, Luoping Yellow and Guangfeng goats. A total of 193 individuals were genotyped for about 47 401 autosomal single nucleotide polymorphisms (SNPs). We found a high proportion of informative SNPs, ranging from 69.5% in the Luoping Yellow to 93.9% in the Jining Grey goat breeds with an average mean of 84.7%. Diversity, as measured by expected heterozygosity, ranged from 0.371 in Luoping Yellow to 0.405 in Jining Grey goat populations. The average estimated pair-wise genetic differentiation (FST ) among the populations was 8.6%, ranging from 0.2% to 16% and indicating low to moderate genetic differentiation. Principal component analysis, genetic structure and phylogenetic tree analysis revealed a clustering of six Chinese goat populations according to geographic distribution. The results from this study can contribute valuable genetic information and can properly assist with within-breed diversity, which provides a good opportunity for sustainable utilization of and maintenance of genetic resource improvements in the Chinese goat populations.
Collapse
Affiliation(s)
- H Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Y Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - X Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - G Gebreselassie
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - R Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - W Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - L Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Y Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| |
Collapse
|
45
|
New world goat populations are a genetically diverse reservoir for future use. Sci Rep 2019; 9:1476. [PMID: 30728441 PMCID: PMC6365549 DOI: 10.1038/s41598-019-38812-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 01/02/2023] Open
Abstract
Western hemisphere goats have European, African and Central Asian origins, and some local or rare breeds are reported to be adapted to their environments and economically important. By-in-large these genetic resources have not been quantified. Using 50 K SNP genotypes of 244 animals from 12 goat populations in United States, Costa Rica, Brazil and Argentina, we evaluated the genetic diversity, population structure and selective sweeps documenting goat migration to the "New World". Our findings suggest the concept of breed, particularly among "locally adapted" breeds, is not a meaningful way to characterize goat populations. The USA Spanish goats were found to be an important genetic reservoir, sharing genomic composition with the wild ancestor and with specialized breeds (e.g. Angora, Lamancha and Saanen). Results suggest goats in the Americas have substantial genetic diversity to use in selection and promote environmental adaptation or product driven specialization. These findings highlight the importance of maintaining goat conservation programs and suggest an awaiting reservoir of genetic diversity for breeding and research while simultaneously discarding concerns about breed designations.
Collapse
|
46
|
Runs of Homozygosity and Population History of Three Horse Breeds With Small Population Size. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Cardoso TF, Amills M, Bertolini F, Rothschild M, Marras G, Boink G, Jordana J, Capote J, Carolan S, Hallsson JH, Kantanen J, Pons A, Lenstra JA. Patterns of homozygosity in insular and continental goat breeds. Genet Sel Evol 2018; 50:56. [PMID: 30449277 PMCID: PMC6241035 DOI: 10.1186/s12711-018-0425-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic isolation of breeds may result in a significant loss of diversity and have consequences on health and performance. In this study, we examined the effect of geographic isolation on caprine genetic diversity patterns by genotyping 480 individuals from 25 European and African breeds with the Goat SNP50 BeadChip and comparing patterns of homozygosity of insular and nearby continental breeds. RESULTS Among the breeds analysed, number and total length of ROH varied considerably and depending on breeds, ROH could cover a substantial fraction of the genome (up to 1.6 Gb in Icelandic goats). When compared with their continental counterparts, goats from Iceland, Madagascar, La Palma and Ireland (Bilberry and Arran) displayed a significant increase in ROH coverage, ROH number and FROH values (P value < 0.05). Goats from Mediterranean islands represent a more complex case because certain populations displayed a significantly increased level of homozygosity (e.g. Girgentana) and others did not (e.g. Corse and Sarda). Correlations of number and total length of ROH for insular goat populations with the distance between islands and the nearest continental locations revealed an effect of extremely long distances on the patterns of homozygosity. CONCLUSIONS These results indicate that the effects of insularization on the patterns of homozygosity are variable. Goats raised in Madagascar, Iceland, Ireland (Bilberry and Arran) and La Palma, show high levels of homozygosity, whereas those bred in Mediterranean islands display patterns of homozygosity that are similar to those found in continental populations. These results indicate that the diversity of insular goat populations is modulated by multiple factors such as geographic distribution, population size, demographic history, trading and breed management.
Collapse
Affiliation(s)
- Taina F. Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70.040-020 Brazil
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
| | - Max Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
| | - Gabriele Marras
- Bioinformatics Core Facility, Fondazione Parco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, LO Italy
| | - Geert Boink
- Stichting Zeldzame Huisdierrassen, De Drieslag 30, 8251 JZ Dronten, The Netherlands
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, 38108 La Laguna, Tenerife Spain
| | - Sean Carolan
- The Old Irish Goat Society, Mulranny, Co Mayo Ireland
| | - Jón H. Hallsson
- Faculty of Land and Animal Resources, Agricultural University of Iceland, Reykjavík, Iceland
| | - Juha Kantanen
- Department of Production Systems, Natural Resources Institute Finland, 31600 Jokioinen, Finland
| | - Agueda Pons
- Unitat de Races Autòctones, Servei de Millora Agrària i Pesquera (SEMILLA), 07198 Son Ferriol, Spain
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - The AdaptMap Consortium
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70.040-020 Brazil
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
- Bioinformatics Core Facility, Fondazione Parco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, LO Italy
- Stichting Zeldzame Huisdierrassen, De Drieslag 30, 8251 JZ Dronten, The Netherlands
- Instituto Canario de Investigaciones Agrarias, 38108 La Laguna, Tenerife Spain
- The Old Irish Goat Society, Mulranny, Co Mayo Ireland
- Faculty of Land and Animal Resources, Agricultural University of Iceland, Reykjavík, Iceland
- Department of Production Systems, Natural Resources Institute Finland, 31600 Jokioinen, Finland
- Unitat de Races Autòctones, Servei de Millora Agrària i Pesquera (SEMILLA), 07198 Son Ferriol, Spain
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Bertolini F, Cardoso TF, Marras G, Nicolazzi EL, Rothschild MF, Amills M. Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats. Genet Sel Evol 2018; 50:59. [PMID: 30449279 PMCID: PMC6241033 DOI: 10.1186/s12711-018-0424-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/15/2018] [Indexed: 01/15/2023] Open
Abstract
Background Patterns of homozygosity can be influenced by several factors, such as demography, recombination, and selection. Using the goat SNP50 BeadChip, we genotyped 3171 goats belonging to 117 populations with a worldwide distribution. Our objectives were to characterize the number and length of runs of homozygosity (ROH) and to detect ROH hotspots in order to gain new insights into the consequences of neutral and selection processes on the genome-wide homozygosity patterns of goats. Results The proportion of the goat genome covered by ROH is, in general, less than 15% with an inverse relationship between ROH length and frequency i.e. short ROH (< 3 Mb) are the most frequent ones. Our data also indicate that ~ 60% of the breeds display low FROH coefficients (< 0.10), while ~ 30 and ~ 10% of the goat populations show moderate (0.10 < FROH < 0.20) or high (> 0.20) FROH values. For populations from Asia, the average number of ROH is smaller and their coverage is lower in goats from the Near East than in goats from Central Asia, which is consistent with the role of the Fertile Crescent as the primary centre of goat domestication. We also observed that local breeds with small population sizes tend to have a larger fraction of the genome covered by ROH compared to breeds with tens or hundreds of thousands of individuals. Five regions on three goat chromosomes i.e. 11, 12 and 18, contain ROH hotspots that overlap with signatures of selection. Conclusions Patterns of homozygosity (average number of ROH of 77 and genome coverage of 248 Mb; FROH < 0.15) are similar in goats from different geographic areas. The increased homozygosity in local breeds is the consequence of their small population size and geographic isolation as well as of founder effects and recent inbreeding. The existence of three ROH hotspots that co-localize with signatures of selection demonstrates that selection has also played an important role in increasing the homozygosity of specific regions in the goat genome. Finally, most of the goat breeds analysed in this work display low levels of homozygosity, which is favourable for their genetic management and viability. Electronic supplementary material The online version of this article (10.1186/s12711-018-0424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark.
| | - Tainã Figueiredo Cardoso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus, Universitat Autonoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Gabriele Marras
- Fondazione Parco Tecnologico Padano (PTP), 26900, Lodi, Italy
| | | | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus, Universitat Autonoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
49
|
Kumar C, Song S, Dewani P, Kumar M, Parkash O, Ma Y, Malhi KK, Yang N, Mwacharo JM, He X, Jiang L. Population structure, genetic diversity and selection signatures within seven indigenous Pakistani goat populations. Anim Genet 2018; 49:592-604. [PMID: 30229969 DOI: 10.1111/age.12722] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Goat farming in Pakistan depends on indigenous breeds that have adapted to specific agro-ecological conditions. Pakistan has a rich resource of goat breeds, and the genetic diversity of these goat breeds is largely unknown. In this study, genetic diversity and population structure were characterized from seven indigenous goat breeds using the goat 50K SNP chip. The genetic diversity analysis showed that Bugi toori goats have the highest inbreeding level, consistent with the highest linkage disequilibrium, lowest diversity and long run of heterozygosity segments. This indicates that this breed should be prioritized in future conservation activities. The population structure analysis revealed four fairly distinct clusters (including Bugi toori, Bari, Black Tapri and some Kamori) and three other breeds that are seemingly the results of admixture between these or related groups (some Kamori, Pateri, Tapri and White Tapri). The selection signatures were evaluated in each breed. A total of 2508 putative selection signals were reported. The 26 significant windows were identified in more than four breeds, and selection signatures spanned several genes that directly or indirectly influence traits included coat colour variation (KIT), reproduction (BMPR1B, GNRHR, INSL6, JAK2 and EGR4), body size (SOCS2), ear size (MSRB3) and milk composition (ABCG2, SPP1, CSN1S2, CSN2, CSN3 and PROLACTIN).
Collapse
Affiliation(s)
- C Kumar
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan.,Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - S Song
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - P Dewani
- Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan
| | - M Kumar
- Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - O Parkash
- Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan
| | - Y Ma
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - K K Malhi
- Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - N Yang
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - J M Mwacharo
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - X He
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - L Jiang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| |
Collapse
|
50
|
Ouchene-Khelifi NA, Lafri M, Pompanon F, Ouhrouch A, Ouchene N, Blanquet V, Lenstra JA, Benjelloun B, Da Silva A. Genetic homogeneity of North-African goats. PLoS One 2018; 13:e0202196. [PMID: 30114267 PMCID: PMC6095539 DOI: 10.1371/journal.pone.0202196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
North Africa represents a rich and early reservoir of goat genetic diversity, from which the main African breeds have been derived. In this study, the genetic diversity of four indigenous Algerian goat breeds (i.e., Arabia, Makatia, M’Zabite and Kabyle, with n = 12 for each breed) has been investigated for the first time by genome-wide SNP genotyping; moreover in a broader context, genetic structuration of Algerian and Moroccan goats was explored (via FST, MDS, STRUCTURE, FineSTRUCTURE, BAPS, sPCA and DAPC analyses). At national level, the study revealed high level of genetic diversity and a significant phenomenon of admixture affecting all the Algerian breeds. At broader scale, clear global genetic homogeneity appeared considering both Algerian and Moroccan stocks. Indeed, genetic structuration was almost nonexistent among Arabia (from Algeria), Draa, Black and Nord (from Morocco), while the ancestral Kabyle and M’Zabite breeds, reared by Berber peoples, showed genetic distinctness. The study highlighted the threat to the Maghrebin stock, probably induced by unsupervised cross-breeding practices which have intensified in recent centuries. Moreover, it underlined the necessity to deepen our understanding of the genetic resources represented by the resilient North-African goat stock.
Collapse
Affiliation(s)
- Nadjet-Amina Ouchene-Khelifi
- Science Veterinary Institute, University of Blida, Blida, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - Mohamed Lafri
- Science Veterinary Institute, University of Blida, Blida, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - François Pompanon
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Abdessamad Ouhrouch
- National Institute of Agronomic Research (INRA Maroc), Regional Center of Agronomic Research, Beni Mellal, Morocco
- Laboratoire de Biotechnologies et Valorisation des Ressources Phytogénétiques (LBVRP), Université Sultan Moulay Slimane, Béni Mellal, Maroc
| | - Nassim Ouchene
- Science Veterinary Institute, University of Blida, Blida, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | | | | | - Badr Benjelloun
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- National Institute of Agronomic Research (INRA Maroc), Regional Center of Agronomic Research, Beni Mellal, Morocco
| | - Anne Da Silva
- Univ. Limoges, INRA, EA7500, USC1061 GAMAA, Limoges, France
- * E-mail:
| |
Collapse
|