1
|
Batra V, Dagar K, Diwakar MP, Kumaresan A, Kumar R, Datta TK. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front Physiol 2024; 15:1413817. [PMID: 39005499 PMCID: PMC11239549 DOI: 10.3389/fphys.2024.1413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Buffalo is a dominant dairy animal in many agriculture-based economies. However, the poor reproductive efficiency (low conception rate) of the buffalo bulls constrains the realization of its full production potential. This in turn leads to economic and welfare issues, especially for the marginal farmers in such economies. The mammalian sperm surface proteins have been implicated in the regulation of survival and function of the spermatozoa in the female reproductive tract (FRT). Nonetheless, the lack of specific studies on buffalo sperm surface makes it difficult for researchers to explore and investigate the role of these proteins in the regulation of mechanisms associated with sperm protection, survival, and function. This study aimed to generate a buffalo sperm surface-specific proteomic fingerprint (LC-MS/MS) and to predict the functional roles of the identified proteins. The three treatments used to remove sperm surface protein viz. Elevated salt, phosphoinositide phospholipase C (PI-PLC) and in vitro capacitation led to the identification of N = 1,695 proteins (≥1 high-quality peptide-spectrum matches (PSMs), p < 0.05, and FDR<0.01). Almost half of these proteins (N = 873) were found to be involved in crucial processes relevant in the context of male fertility, e.g., spermatogenesis, sperm maturation and protection in the FRT, and gamete interaction or fertilization, amongst others. The extensive sperm-surface proteomic repertoire discovered in this study is unparalleled vis-à-vis the depth of identification of reproduction-specific cell-surface proteins and can provide a potential framework for further studies on the functional aspects of buffalo spermatozoa.
Collapse
Affiliation(s)
- Vipul Batra
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Maharana Pratap Diwakar
- Cell Science and Molecular Biology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Southern Regional Station of ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
2
|
Munipalli SB, Yenugu S. Uroplakin 1a Interacts with Regucalcin and Proteasome Subunit Beta 1. Reprod Sci 2023; 30:3520-3528. [PMID: 37468792 DOI: 10.1007/s43032-023-01292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Uroplakins (UPKs) are specialized proteins that plan an important role in protecting the epithelium of the bladder from toxic waste. We recently demonstrated the expression pattern of UPKs in the male reproductive tract and their importance in sperm function in murine models. However, the exact mechanisms through which UPKs affect spermatogenesis are not reported. In this study, using yeast two-hybrid screening was conducted to determine the interaction partners of Uroplakin 1a (UPK1A). Y2H Gold yeast strain overexpressing UPK1A was mated with Y187 yeast strain overexpressing human testis cDNA library and the mutants were plated on SD agar plates containing selection media. Colonies that grew on SD/-Trp, SD/-Leu, SD/-His, and SD/-Ade plates were isolated and evaluated to identify the interacting partners of UPK1A. Regucalcin (RGN) and proteasome subunit beta 1 (PSMB1) were identified as potential interaction partners. Using HEK cells that overexpress UPK1A and RGN or PMSB1, the co-localization and interaction were estimated with high-resolution microscopy and Pearson's coefficient. In light of the fact that UPK1A knockout caused subfertility and that the role of RGN and PSMB1 in spermatogenesis is documented, an interaction between UPK1A and RGN or PSMB1 could be required for spermatogenesis.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Khrustalev VV, Khrustaleva TA, Popinako AV. Germline mutations directions are different between introns of the same gene: case study of the gene coding for amyloid-beta precursor protein. Genetica 2023; 151:61-73. [PMID: 36129589 DOI: 10.1007/s10709-022-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.
Collapse
Affiliation(s)
| | | | - Anna Vladimirovna Popinako
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Proteomic Analysis of Intracellular and Membrane-Associated Fractions of Canine (Canis lupus familiaris) Epididymal Spermatozoa and Sperm Structure Separation. Animals (Basel) 2022; 12:ani12060772. [PMID: 35327169 PMCID: PMC8944539 DOI: 10.3390/ani12060772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epididymal spermatozoa have great potential in current dog reproductive technologies. In the case of azoospermia or when the male dies, the recovery of epididymal spermatozoa opens new possibilities for reproduction. It is of great importance to analyze the quality of the sperm in such cases. Proteomic studies contribute to explaining the role of proteins at various stages of epididymal sperm maturation and offer potential opportunities to use them as markers of sperm quality. The present study showed, for the first time, mass spectrometry and bioinformatic analysis of intracellular and membrane-associated proteins of canine epididymal spermatozoa. Additionally, sonication was used for the separation of dog epididymal sperm morphological elements (heads, tails and acrosomes). The results revealed the presence of differentially abundant proteins in both sperm protein fractions significant for sperm function and fertilizing ability. It was also shown that these proteins participate in important sperm metabolic pathways, which may suggest their potential as sperm quality biomarkers. Abstract This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.
Collapse
|
5
|
Serebrovska ZO, Xi L, Tumanovska LV, Shysh AM, Goncharov SV, Khetsuriani M, Kozak TO, Pashevin DA, Dosenko VE, Virko SV, Kholin VA, Grib ON, Utko NA, Egorov E, Polischuk AO, Serebrovska TV. Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life (Basel) 2022; 12:life12030432. [PMID: 35330183 PMCID: PMC8953753 DOI: 10.3390/life12030432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer’s disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aβ expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.
Collapse
Affiliation(s)
- Zoya O. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
- Correspondence: (Z.O.S.); (L.X.)
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
- Correspondence: (Z.O.S.); (L.X.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Angela M. Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Michael Khetsuriani
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Taisia O. Kozak
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Denis A. Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Victor E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028 Kyiv, Ukraine;
| | - Viktor A. Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Oksana N. Grib
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Natalie A. Utko
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Egor Egorov
- CELLGYM Technologies GmbH, 14193 Berlin, Germany;
| | - Anna O. Polischuk
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Tetiana V. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| |
Collapse
|
6
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
8
|
Lundin K, Sepponen K, Väyrynen P, Liu X, Yohannes DA, Survila M, Ghimire B, Känsäkoski J, Katayama S, Partanen J, Vuoristo S, Paloviita P, Rahman N, Raivio T, Luiro K, Huhtaniemi I, Varjosalo M, Tuuri T, Tapanainen JS. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6574364. [PMID: 35471239 PMCID: PMC9308958 DOI: 10.1093/molehr/gaac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- K Lundin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K Sepponen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - P Väyrynen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - X Liu
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - D A Yohannes
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Immunology & Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - M Survila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - B Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - J Känsäkoski
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - S Katayama
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Partanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - S Vuoristo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - P Paloviita
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - N Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - T Raivio
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, HUH, Helsinki, Finland
| | - K Luiro
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Metabolism, Endocrinology and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - M Varjosalo
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - T Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, Oulu, Finland
- Corresponding author. Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, PO Box 140, 00029 Helsinki, Finland. Tel: +358-94711; E-mail:
| |
Collapse
|
9
|
Platelet APP Processing: Is It a Tool to Explore the Pathophysiology of Alzheimer's Disease? A Systematic Review. Life (Basel) 2021; 11:life11080750. [PMID: 34440494 PMCID: PMC8401829 DOI: 10.3390/life11080750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The processing of the amyloid precursor protein (APP) is a critical event in the formation of amyloid plaques. Platelets contain most of the enzymatic machinery required for APP processing and correlates of intracerebral abnormalities have been demonstrated in platelets of patients with AD. The goal of the present paper was to analyze studies exploring platelet APP metabolism in Alzheimer's disease patients trying to assess potential reliable peripheral biomarkers, to offer new therapeutic solutions and to understand the pathophysiology of the AD. According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to June 2020 with the search terms: "((((((APP) OR Amyloid Precursor Protein) OR AbetaPP) OR Beta Amyloid) OR Amyloid Beta) OR APP-processing) AND platelet". Thirty-two studies were included in this systematic review. The papers included are analytic observational studies, namely twenty-nine cross sectional studies and three longitudinal studies, specifically prospective cohort study. The studies converge in an almost unitary way in affirming that subjects with AD show changes in APP processing compared to healthy age-matched controls. However, the problem of the specificity and sensitivity of these biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
10
|
Do HQ, Hewetson A, Borcik CG, Hastert MC, Whelly S, Wylie BJ, Sutton RB, Cornwall GA. Cross-seeding between the functional amyloidogenic CRES and CRES3 family members and their regulation of Aβ assembly. J Biol Chem 2021; 296:100250. [PMID: 33384380 PMCID: PMC7948811 DOI: 10.1074/jbc.ra120.015307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that amyloids perform biological roles. We previously showed that an amyloid matrix composed of four members of the CRES subgroup of reproductive family 2 cystatins is a normal component of the mouse epididymal lumen. The cellular mechanisms that control the assembly of these and other functional amyloid structures, however, remain unclear. We speculated that cross-seeding between CRES members could be a mechanism to control the assembly of the endogenous functional amyloid. Herein we used thioflavin T assays and negative stain transmission electron microscopy to explore this possibility. We show that CRES3 rapidly formed large networks of beaded chains that possessed the characteristic cross-β reflections of amyloid when examined by X-ray diffraction. The beaded amyloids accelerated the amyloidogenesis of CRES, a less amyloidogenic family member, in seeding assays during which beads transitioned into films and fibrils. Similarly, CRES seeds expedited CRES3 amyloidogenesis, although less efficiently than the CRES3 seeding of CRES. These studies suggest that CRES and CRES3 hetero-oligomerize and that CRES3 beaded amyloids may function as stable preassembled seeds. The CRES3 beaded amyloids also facilitated assembly of the unrelated amyloidogenic precursor Aβ by providing a surface for polymerization though, intriguingly, CRES3 (and CRES) monomer/early oligomer profoundly inhibited Aβ assembly. The cross-seeding between the CRES subgroup members is similar to that which occurs between bacterial curli proteins suggesting that it may be an evolutionarily conserved mechanism to control the assembly of some functional amyloids. Further, interactions between unrelated amyloidogenic precursors may also be a means to regulate functional amyloid assembly.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sandra Whelly
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
11
|
Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Bailey ST, Chen X, Oyen K, Didion EM, Chakraborty S, Lee RE, Denlinger DL, Matter SF, Attardo GM, Weirauch MT, Benoit JB. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci Rep 2020; 10:19791. [PMID: 33188214 PMCID: PMC7666147 DOI: 10.1038/s41598-020-76139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
Collapse
Affiliation(s)
- Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sonya Nandyal
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Carlie Perretta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Drew E Spacht
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Huang D, Zhang B, Han T, Liu G, Chen X, Zhao Z, Feng J, Yang J, Wang T. Genome-wide prediction and comparative transcriptomic analysis reveals the G protein-coupled receptors involved in gonadal development of Apostichopus japonicus. Genomics 2020; 113:967-978. [PMID: 33144216 DOI: 10.1016/j.ygeno.2020.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/26/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023]
Abstract
The sea cucumber Apostichopus japonicus is dioecious, with seasonal reproduction. G protein-coupled receptor (GPCR)-mediated signaling systems might play critical roles in the reproductive control of A. japonicus. Here, we classified GPCR from the genome in silico and used transcriptomic analyses to further mine those that function in gonadal-development control. Totally, 487 GPCRs were predicted from A. japonicus, and 183 of these were further annotated to molecular pathways. Transcriptome analysis revealed 327 GPCRs expressed in gonads, and these were classified into four families and 19 subfamilies. Three pathways were apparently associated with reproduction, including neuroactive ligand-receptor interaction, the mTOR and Wnt signaling pathways. Seven and eight ovary- and testis-specific GPCRs were filtered, and the gene expression profiles were determined in multiple tissues and gonads at different developmental stages by qPCR. These results provide new insights into the discovery of GPCR-mediated signaling control in sea cucumber reproduction, especially in gonadal development control.
Collapse
Affiliation(s)
- Dexiang Huang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Bing Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, 316022, Zhoushan, Zhejiang, People's Republic of China
| | - Guangbin Liu
- Marine Biology Institute of Shandong Province, 266104 Qingdao, Shandong, People's Republic of China
| | - Xu Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zihao Zhao
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jiaqian Feng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China; National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China; National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| |
Collapse
|
13
|
Alzheimer's Disease Mouse as a Model of Testis Degeneration. Int J Mol Sci 2020; 21:ijms21165726. [PMID: 32785075 PMCID: PMC7460847 DOI: 10.3390/ijms21165726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer’s disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.
Collapse
|
14
|
Martins AD, Panner Selvam MK, Agarwal A, Alves MG, Baskaran S. Alterations in seminal plasma proteomic profile in men with primary and secondary infertility. Sci Rep 2020; 10:7539. [PMID: 32372034 PMCID: PMC7200760 DOI: 10.1038/s41598-020-64434-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Proteome of seminal plasma provides profound information related to the male reproductive health. This pilot study was conducted to characterize proteomic profile of seminal plasma from men with primary, or secondary infertility and compare it with proven fertile men. Study participants (n = 59) were recruited at the Cleveland Clinic and divided according to their fertility status: proven fertile (n = 39); primary infertility (n = 11) and secondary infertility (n = 9). Proteomic shotgun analysis revealed a total of 515 peptides common to primary infertility and control group; whereas 523 peptides were common to secondary infertility and control group. Bioinformatic analysis revealed dysregulation of biological processes such as cell secretion and vesicle mediated transport in primary infertility, whereas immune system response, regulation of proteolysis and iron homeostasis were dysregulated in secondary infertility. Western blot validation showed overexpression of ANXA2 and CDC42, and underexpression of SEMG2 proteins in primary infertility; and overexpression of ANXA2 and APP proteins in secondary infertility. This study elucidates the potential role of differentially expressed proteins in the seminal plasma as diagnostic biomarker for primary and secondary infertility. Furthermore, our results suggest maturation failure and immune reaction response as the main cause of infertility in men with primary and secondary infertility, respectively. Additional validation of the proteins involved in the above pathways is warranted.
Collapse
Affiliation(s)
- Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | | | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
15
|
Serebrovska ZO, Serebrovska TV, Kholin VA, Tumanovska LV, Shysh AM, Pashevin DA, Goncharov SV, Stroy D, Grib ON, Shatylo VB, Bachinskaya NY, Egorov E, Xi L, Dosenko VE. Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study. Int J Mol Sci 2019; 20:E5405. [PMID: 31671598 PMCID: PMC6862463 DOI: 10.3390/ijms20215405] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) affects not only the central nervous system, but also peripheral blood cells including neutrophils and platelets, which actively participate in pathogenesis of AD through a vicious cycle between platelets aggregation and production of excessive amyloid beta (Aβ). Platelets adhesion on amyloid plaques also increases the risk of cerebral microcirculation disorders. Moreover, activated platelets release soluble adhesion molecules that cause migration, adhesion/activation of neutrophils and formation of neutrophil extracellular traps (NETs), which may damage blood brain barrier and destroy brain parenchyma. The present study examined the effects of intermittent hypoxic-hyperoxic training (IHHT) on elderly patients with mild cognitive impairment (MCI), a precursor of AD. Twenty-one participants (age 51-74 years) were divided into three groups: Healthy Control (n = 7), MCI+Sham (n = 6), and MCI+IHHT (n = 8). IHHT was carried out five times per week for three weeks (total 15 sessions). Each IHHT session consisted of four cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Cognitive parameters, Aβ and amyloid precursor protein (APP) expression, microRNA 29, and long non-coding RNA in isolated platelets as well as NETs in peripheral blood were investigated. We found an initial decline in cognitive function indices in both MCI+Sham and MCI+IHHT groups and significant correlations between cognitive test scores and the levels of circulating biomarkers of AD. Whereas sham training led to no change in these parameters, IHHT resulted in the improvement in cognitive test scores, along with significant increase in APP ratio and decrease in Aβ expression and NETs formation one day after the end of three-week IHHT. Such effects on Aβ expression and NETs formation remained more pronounced one month after IHHT. In conclusion, our results from this pilot study suggested a potential utility of IHHT as a new non-pharmacological therapy to improve cognitive function in pre-AD patients and slow down the development of AD.
Collapse
Affiliation(s)
- Zoya O Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | | | - Viktor A Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Lesya V Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Angela M Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Denis A Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Sergii V Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Dmytro Stroy
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Oksana N Grib
- Department of Clinical Physiology and Pathology of Internal Organs, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Valeriy B Shatylo
- Department of Clinical Physiology and Pathology of Internal Organs, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Natalia Yu Bachinskaya
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Egor Egorov
- CellAir Constructions GmbH, Schorndorf 73614, Germany.
| | - Lei Xi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| |
Collapse
|
16
|
Pandey A, Yadav SK, Vishvkarma R, Singh B, Maikhuri JP, Rajender S, Gupta G. The dynamics of gene expression during and post meiosis sets the sperm agenda. Mol Reprod Dev 2019; 86:1921-1939. [DOI: 10.1002/mrd.23278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aastha Pandey
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Rahul Vishvkarma
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Bineta Singh
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Singh Rajender
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Gopal Gupta
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
17
|
Velho A, Wang H, Koenig L, Grant KE, Menezes ES, Kaya A, Moura A, Memili E. Expression dynamics of Integrin Subunit Beta 5 in bovine gametes and embryos imply functions in male fertility and early embryonic development. Andrologia 2019; 51:e13305. [PMID: 31090238 DOI: 10.1111/and.13305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
Integrins have been shown to act as signalling receptors, and they primarily recognise extracellular matrix ligands on the oocyte surface. However, their possible roles in oocyte activation and embryo development are not clearly understood. The objectives of this study were to evaluate expression of Integrin Subunit Beta 5 (ITGβ5) in bovine sperm, oocytes, and early embryos and to ascertain the evolutionary conservation of ITGβ5. To accomplish these objectives, we used western blotting to study expression levels of ITGβ5 protein in sperm and RT-qPCR to determine expression levels of ITGβ5 transcripts in oocytes and embryos. We have also used bioinformatic analysis to determine the evolutionary conservation of the ITGβ5 protein among various species. Western blotting showed that ITGβ5 protein was detectable in bull sperm. Moreover, results of RT-qPCR showed that levels of ITGβ5 were significantly higher in the two-cell embryos, followed by the 8-16-cell embryos. However, no significant difference in expression levels were noted for the morula and blastocyst stages as compared to MII oocytes. Bioinformatic analysis revealed that ITGβ5 is conserved among various species. We conclude that expression of ITGβ5 in bovine gametes and embryos implies an important role in fertilisation and embryogenesis.
Collapse
Affiliation(s)
- Ana Velho
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, Mississippi.,Department of Animal Sciences, Federal University of Ceara, Fortaleza, Brazil
| | - Hongfeng Wang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, Mississippi
| | - Leslie Koenig
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, Mississippi
| | - Kamilah E Grant
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, Mississippi
| | - Erika S Menezes
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, Mississippi
| | - Abdullah Kaya
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | - Arlindo Moura
- Department of Animal Sciences, Federal University of Ceara, Fortaleza, Brazil
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, Mississippi
| |
Collapse
|
18
|
Abstract
Proteins play a key role in many functions such as metabolic activity, differentiation, as cargos, and cell fate regulators. It is necessary to know about the proteins involved in male fertility to develop remedies for the treatment of male infertility. However, the role of the proteins is not limited to particular aspect in the biological systems. Some of the proteins act as ion channels such as catsper, and protein such as Nanos is a translational repressor in germ cells and expressed in prenatal period whose role in male fertility is not clearly understood. Rbm5 is a pre-mRNA splicing factor necessary for sperm differentiation whose loss results in deficit in sperm production. DEFB114 is a beta-defensin family protein necessary for sperm motility in lipopolysaccharide-challenged mice. TEX101 is a plasma membrane specific germ cell protein whose function is not clearly identified. Gpr56 is an another adhesion protein whose null mutation leads to arrest of production of pupps. Amyloid precursor protein in Alzheimer's disease plays a role in male fertility whose function is uncertain which has to be considered while targeting them. The study on amyloid precursor protein in male fertility is a novel thing, but requires further study in correlation to Alzheimer's disease.
Collapse
Affiliation(s)
- Eswari Beeram
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Bukke Suman
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Bysani Divya
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
19
|
Gerber H, Mosser S, Boury-Jamot B, Stumpe M, Piersigilli A, Goepfert C, Dengjel J, Albrecht U, Magara F, Fraering PC. The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease. Acta Neuropathol Commun 2019; 7:13. [PMID: 30704515 PMCID: PMC6354426 DOI: 10.1186/s40478-019-0660-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
The adipocyte plasma membrane-associated protein APMAP is expressed in the brain where it associates with γ-secretase, a protease responsible for the generation of the amyloid-β peptides (Aβ) implicated in the pathogenesis of Alzheimer's disease (AD). In this study, behavioral investigations revealed spatial learning and memory deficiencies in our newly generated mouse line lacking the protein APMAP. In a mouse model of AD, the constitutive deletion of APMAP worsened the spatial memory phenotype and led to increased Aβ production and deposition into senile plaques. To investigate at the molecular level the neurobiological functions of APMAP (memory and Aβ formation) and a possible link with the pathological hallmarks of AD (memory impairment and Aβ pathology), we next developed a procedure for the high-grade purification of cellular APMAP protein complexes. The biochemical characterization of these complexes revealed a series of new APMAP interactomers. Among these, the heat shock protein HSPA1A and the cation-dependent mannose-6-phosphate receptor (CD-M6PR) negatively regulated APP processing and Aβ production, while clusterin, calnexin, arginase-1, PTGFRN and the cation-independent mannose-6-phosphate receptor (CI-M6PR/IGF2R) positively regulated APP and Aβ production. Several of the newly identified APMAP interactomers contribute to the autophagy-lysosome system, further supporting an emergent agreement that this pathway can modulate APP metabolism and Aβ generation. Importantly, we have also demonstrated increased alternative splicing of APMAP and lowered levels of the Aβ controllers HSPA1A and CD-M6PR in human brains from neuropathologically verified AD cases.
Collapse
Affiliation(s)
- Hermeto Gerber
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Sebastien Mosser
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland
| | - Benjamin Boury-Jamot
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015, Lausanne, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Alessandra Piersigilli
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012, Bern, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Christine Goepfert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012, Bern, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Joern Dengjel
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Fulvio Magara
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015, Lausanne, Switzerland
| | - Patrick C Fraering
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland.
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland.
| |
Collapse
|
20
|
Ayaz A, Agarwal A, Sharma R, Kothandaraman N, Cakar Z, Sikka S. Proteomic analysis of sperm proteins in infertile men with high levels of reactive oxygen species. Andrologia 2018; 50:e13015. [PMID: 29656391 DOI: 10.1111/and.13015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a significant risk factor for male infertility. A pro-oxidant testicular environment may alter the expression profile of functional sperm proteins and result in poor sperm quality. Patients and donors were divided into ROS (-) and ROS (+) groups. Using computational studies, and data mining of available literature on spermatozoa, oxidative stress and proteomics, we identified three core regulatory proteins angiotensin-converting enzyme (ACE), heat-shock protein (Hsp70) family A member 2 (HSPA2) and ribosomal protein subunit 27A (RPS27A) and seven interlink proteins NOS2, SUMO2, UBL4A, FBXO25, MAP3K3, APP and UBC. HSPA2 was validated by Western Blot, while the localisation of ACE, RPS27A, MAP3K3 and APP was identified by immunocytochemistry. The obtained results showed that HSPA2 was 1.2 (ROS+) and 2.1 (ROS-) fold downregulated in spermatozoa from patients with high levels of reactive oxygen species (ROS). ACE and APP were localised in the post-acrosomal region of spermatozoa, whereas RPS27A and MAP3K3 were localised either in the tail or sperm neck area. Our data show that these proteins may play a role in ROS-induced male infertility.
Collapse
Affiliation(s)
- A Ayaz
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Urology, Tulane Medical Center, New Orleans, LA, USA
| | - A Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - R Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - N Kothandaraman
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Z Cakar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - S Sikka
- Department of Urology, Tulane Medical Center, New Orleans, LA, USA
| |
Collapse
|
21
|
Yoon S, Goltsev AV, Mendes JFF. Structural stability of interaction networks against negative external fields. Phys Rev E 2018; 97:042311. [PMID: 29758737 DOI: 10.1103/physreve.97.042311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 06/08/2023]
Abstract
We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k-cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k-core organization and so-called "corona" clusters belonging to the k-cores.
Collapse
Affiliation(s)
- S Yoon
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A V Goltsev
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
- A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
| | - J F F Mendes
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Felgueiras J, Silva JV, Fardilha M. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools. J Proteomics 2018; 171:127-140. [DOI: 10.1016/j.jprot.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 02/02/2023]
|
23
|
Budge KM, Neal ML, Richardson JR, Safadi FF. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease. Mol Neurobiol 2017; 55:5167-5176. [PMID: 28856541 DOI: 10.1007/s12035-017-0707-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Neurodegeneration is characterized by severe neuronal loss leading to the cognitive and physical impairments that define various neurodegenerative diseases. Neuroinflammation is one hallmark of neurodegenerative diseases and can ultimately contribute to disease progression. Increased inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1 β), and tumor necrosis factor-α (TNF-α) are associated with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Unfortunately, current therapeutic options lack ability to stop or effectively slow progression of these diseases and are primarily aimed at alleviating symptoms. Thus, it is crucial to discover novel treatment candidates for neurodegenerative diseases. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type-I transmembrane glycoprotein first identified in a melanoma cell line. GPNMB augments bone mineral deposition by stimulating osteoblast differentiation. Aside from its anabolic function in the bone, emerging evidence suggests that GPNMB has anti-inflammatory and reparative functions. GPNMB has also been demonstrated to be neuroprotective in an animal model of ALS, cerebral ischemia, and other disease models. Given these discoveries, GPNMB should be investigated as a potential therapeutic option for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin M Budge
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Matthew L Neal
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA. .,School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
24
|
Biza KV, Nastou KC, Tsiolaki PL, Mastrokalou CV, Hamodrakas SJ, Iconomidou VA. The amyloid interactome: Exploring protein aggregation. PLoS One 2017; 12:e0173163. [PMID: 28249044 PMCID: PMC5383009 DOI: 10.1371/journal.pone.0173163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Protein-protein interactions are the quintessence of physiological activities, but also participate in pathological conditions. Amyloid formation, an abnormal protein-protein interaction process, is a widespread phenomenon in divergent proteins and peptides, resulting in a variety of aggregation disorders. The complexity of the mechanisms underlying amyloid formation/amyloidogenicity is a matter of great scientific interest, since their revelation will provide important insight on principles governing protein misfolding, self-assembly and aggregation. The implication of more than one protein in the progression of different aggregation disorders, together with the cited synergistic occurrence between amyloidogenic proteins, highlights the necessity for a more universal approach, during the study of these proteins. In an attempt to address this pivotal need we constructed and analyzed the human amyloid interactome, a protein-protein interaction network of amyloidogenic proteins and their experimentally verified interactors. This network assembled known interconnections between well-characterized amyloidogenic proteins and proteins related to amyloid fibril formation. The consecutive extended computational analysis revealed significant topological characteristics and unraveled the functional roles of all constituent elements. This study introduces a detailed protein map of amyloidogenicity that will aid immensely towards separate intervention strategies, specifically targeting sub-networks of significant nodes, in an attempt to design possible novel therapeutics for aggregation disorders.
Collapse
Affiliation(s)
- Konstantina V. Biza
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Katerina C. Nastou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Paraskevi L. Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Chara V. Mastrokalou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- * E-mail:
| |
Collapse
|
25
|
Gelatin Binding Proteins in Reproductive Physiology. Indian J Microbiol 2016; 56:383-393. [PMID: 27784933 DOI: 10.1007/s12088-016-0618-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022] Open
Abstract
In order to advance the assisted reproductive technologies used in animals and human beings, it is important to accumulate basic informations about underlying molecular mechanisms that shape the biological processes of reproduction. From within seminal plasma, proteins perform a wide variety of distinct functions that regulate major reproductive events such as fertilization. The ability of such proteins to bind and interact with different antagonistic ions and biomolecules such as polysaccharides, lipids, and other proteins present in the male and female reproductive tract define these capabilities. Over the last two decades, extensive work has been undertaken in an attempt to define the role of seminal plasma proteins, of which, Gelatin binding proteins (GBPs) represent a large family. GBPs comprise of known group of Bovine seminal plasma (BSP) protein family, matrix metallo proteinases (MMP 2 and MMP 9) and fibronectin, which have been widely studied. The presence of a type II repeat is a characteristic feature of GBPs, which is similar in structure to the fibronectin type II domain (fn2), which has ability to bind multiple ligands including gelatin, glycosaminoglycans, choline phospholipids, and lipoproteins. Two fn2 domains are present within the BSP protein family, while, three fn2 domains are found in gelatinases (MMP-2 and MMP9), and ELSPBP1 (Epididymosomes Transfer Epididymal Sperm Binding Protein 1) contains four long fn2 domains. For the most part BSP proteins are exclusively expressed in seminal vesicles although mBSPH1, mBSPH2 and hBSPH1 are all expressed in the epididymis. The expression of gelatinases has been demonstrated in several organs and tissues such as the prostate, testis, epididymis, ovary, human placenta, cervix and endometrial wall. This review intends to bring current updates on the role of GBPs in reproductive physiology to light, which may act as basis for future studies on GBPs.
Collapse
|
26
|
Thomas J, Seo D, Sael L. Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders. Int J Mol Sci 2016; 17:ijms17060862. [PMID: 27258269 PMCID: PMC4926396 DOI: 10.3390/ijms17060862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023] Open
Abstract
How can complex relationships among molecular or clinico-pathological entities of neurological disorders be represented and analyzed? Graphs seem to be the current answer to the question no matter the type of information: molecular data, brain images or neural signals. We review a wide spectrum of graph representation and graph analysis methods and their application in the study of both the genomic level and the phenotypic level of the neurological disorder. We find numerous research works that create, process and analyze graphs formed from one or a few data types to gain an understanding of specific aspects of the neurological disorders. Furthermore, with the increasing number of data of various types becoming available for neurological disorders, we find that integrative analysis approaches that combine several types of data are being recognized as a way to gain a global understanding of the diseases. Although there are still not many integrative analyses of graphs due to the complexity in analysis, multi-layer graph analysis is a promising framework that can incorporate various data types. We describe and discuss the benefits of the multi-layer graph framework for studies of neurological disease.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
- Department of Computer Science, State University New York Korea, Incheon 406-840, Korea.
| | - Dongmin Seo
- Korea Institute of Science and Technology Information, 245 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Lee Sael
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
- Department of Computer Science, State University New York Korea, Incheon 406-840, Korea.
| |
Collapse
|