1
|
van Gelderen TA, Debnath P, Joly S, Bertomeu E, Duncan N, Furones D, Ribas L. Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response. Funct Integr Genomics 2025; 25:29. [PMID: 39883212 DOI: 10.1007/s10142-025-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum. The findings indicate that following infection, testes exhibited more pronounced alterations in both the miRNome and transcriptome. Specifically, males showed approximately 26% more differentially expressed genes in testicular genes compared to females (2,624 vs. 101 DEGs). Additionally, four miRNAs (miR-183-5p, miR-191-3p, miR-451-5p, and miR-724-5p) were significantly expressed post-infection in males, while none were identified in females. Interestingly, upon deep analysis of sexual dimorphic gene modules, a larger number of miRNAs were identified in infected females targeting genes related to the immune system compared to infected males. These results suggest that fish ovaries demonstrate greater resilience in response to infections by suppressing genes related to the immune system through a post-transcriptional mechanism performed by miRNAs. In contrast, testes activate genes related to the immune system and repress genes related to cellular processes to cope with the infection. In particular, the crosstalk between the miRNome and transcriptome in infected males revealed a pivotal gene, namely, insulin-like growth factor binding protein (igfbp), acting as a gene network hub in which miR-192-3p was connected. The current study elucidated the need to comprehend the basic immune regulatory responses associated with miRNAs and gene regulation networks that depend on fish sex. The data reveal the importance of considering sex as a factor in interpreting the immune system in fish to generate efficient protocols to prevent outbreaks in fish farms.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Pinky Debnath
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Silvia Joly
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Edgar Bertomeu
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Neil Duncan
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Dolors Furones
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.
| |
Collapse
|
2
|
Schneider RF, Dubin A, Marten S, Roth O. Parent-Specific Transgenerational Immune Priming Enhances Offspring Defense-Unless Heat Stress Negates It All. Ecol Evol 2024; 14:e70552. [PMID: 39588349 PMCID: PMC11586686 DOI: 10.1002/ece3.70552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024] Open
Abstract
Transgenerational immune priming (TGIP) adjusts offspring's immune responses based on parental immunological experiences. It is predicted to be adaptive when parent-offspring environmental conditions match, while mismatches negate those advantages, rendering TGIP potentially costly. We tested these cost-benefit dynamics in the pipefish Syngnathus typhle (Syngnathidae). Because of their unique male pregnancy, egg production and rearing occur in different sexes, providing both parents multiple avenues for TGIP. Parental bacteria exposure in our pipefish was simulated through vaccinations with heat-killed Vibrio aestuarianus before mating the fish to each other or to controls. The resulting offspring were exposed to V. aestuarianus in control or heat stress environments, after which transcriptome and microbiome compositions were investigated. Transcriptomic TGIP effects were only observed in Vibrio-exposed offspring at control temperatures, arguing for low costs of TGIP in non-matching microbiota environments. Transcriptomic phenotypes elicited by maternal and paternal TGIP had limited overlap and were not additive. Parentally induced transcriptomic responses were associated with immune functions, and specifically, the paternal response to the innate immune branch, possibly hinting at trained immunity. TGIP of both parents reduced the relative abundance of the experimental Vibrio in exposed offspring, showcasing its ecological benefits. Despite TGIP's significance in matching biotic environments, no TGIP-associated phenotypes were observed for heat-treated offspring, illustrating its limitations. Heat spikes caused by climate change thus threaten TGIP benefits, potentially increasing susceptibility to emerging marine diseases. We demonstrate the urgent need to understand how animals cope with climate-induced changes in microbial assemblages to assess their vulnerability in light of climate change.
Collapse
Affiliation(s)
- Ralf F. Schneider
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Arseny Dubin
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Silke‐Mareike Marten
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Olivia Roth
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| |
Collapse
|
3
|
Ghani MU, Chen J, Khosravi Z, Wu Q, Liu Y, Zhou J, Zhong L, Cui H. Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management. Front Immunol 2024; 15:1378111. [PMID: 39483482 PMCID: PMC11524855 DOI: 10.3389/fimmu.2024.1378111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The pattern recognition receptor (PRR), which drives innate immunity, shields the host against invasive pathogens. Fish and other aquatic species with poorly developed adaptive immunity mostly rely on their innate immunity, regulated by PRRs such as inherited-encoded toll-like receptors (TLRs). The discovery of 21 unique TLR variations in various aquatic animals over the past several years has sparked interest in using TLRs to improve aquatic animal's immune response and disease resistance. This comprehensive review provides an overview of the latest investigations on the various characteristics of TLRs in aquatic animals. It emphasizes their categorization, insights into 3D architecture, ligand recognition, signaling pathways, TLRs mediated immune responses under biotic and abiotic stressors, and expression variations during several developmental stages. It also highlights the differences among aquatic animals' TLRs and their mammal counterparts, which signifies the unique roles that TLRs play in aquatic animal's immune systems. This article summarizes current aquaculture research to enhance our understanding of fish immune systems for effective aquaculture -related disease management.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qishu Wu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yujie Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jingjie Zhou
- Medical Research Institute, Southwest University, Chongqing, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Caballero-Huertas M, Salazar-Moscoso M, Ribas L. Sex is a Crucial Factor in the Immune Response: An Ichthyological Perspective. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2024:1-21. [DOI: 10.1080/23308249.2024.2390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Marta Caballero-Huertas
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marcela Salazar-Moscoso
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
5
|
Parker J, Marten SM, Ó Corcora TC, Rajkov J, Dubin A, Roth O. The effects of primary and secondary bacterial exposure on the seahorse (Hippocampus erectus) immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105136. [PMID: 38185263 DOI: 10.1016/j.dci.2024.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Evolutionary adaptations in the Syngnathidae teleost family (seahorses, pipefish and seadragons) culminated in an array of spectacular morphologies, key immune gene losses, and the enigmatic male pregnancy. In seahorses, genome modifications associated with immunoglobulins, complement, and major histocompatibility complex (MHC II) pathway components raise questions concerning their immunological efficiency and the evolution of compensatory measures that may act in their place. In this investigation heat-killed bacteria (Vibrio aestuarianus and Tenacibaculum maritimum) were used in a two-phased experiment to assess the immune response dynamics of Hippocampus erectus. Gill transcriptomes from double and single-exposed individuals were analysed in order to determine the differentially expressed genes contributing to immune system responses towards immune priming. Double-exposed individuals exhibited a greater adaptive immune response when compared with single-exposed individuals, while single-exposed individuals, particularly with V. aestuarianus replicates, associated more with the innate branch of the immune system. T. maritimum double-exposed replicates exhibited the strongest immune reaction, likely due to their immunological naivety towards the bacterium, while there are also potential signs of innate trained immunity. MHC II upregulated expression was identified in selected V. aestuarianus-exposed seahorses, in the absence of other pathway constituents suggesting a possible alternative or non-classical MHC II immune function in seahorses. Gene Ontology (GO) enrichment analysis highlighted prominent angiogenesis activity following secondary exposure, which could be linked to an adaptive immune process in seahorses. This investigation highlights the prominent role of T-cell mediated adaptive immune responses in seahorses when exposed to sequential foreign bacteria exposures. If classical MHC II pathway function has been lost, innate trained immunity in syngnathids could be a potential compensatory mechanism.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Silke-Mareike Marten
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Tadhg C Ó Corcora
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Jelena Rajkov
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Arseny Dubin
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
6
|
Tanger IS, Stefanschitz J, Schwert Y, Roth O. The source of microbial transmission influences niche colonization and microbiome development. Proc Biol Sci 2024; 291:20232036. [PMID: 38320611 PMCID: PMC10846951 DOI: 10.1098/rspb.2023.2036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Early life microbial colonizers shape and support the immature vertebrate immune system. Microbial colonization relies on the vertical route via parental provisioning and the horizontal route via environmental contribution. Vertical transmission is mostly a maternal trait making it hard to determine the source of microbial colonization in order to gain insight into the establishment of the microbial community during crucial development stages. The evolution of unique male pregnancy in pipefishes and seahorses enables the disentanglement of both horizontal and vertical transmission, but also facilitates the differentiation of maternal versus paternal provisioning ranging from egg development, to male pregnancy and early juvenile development. Using 16S rRNA amplicon sequencing and source-tracker analyses, we revealed how the distinct origins of transmission (maternal, paternal and horizontal) shaped the juvenile internal and external microbiome establishment in the broad-nosed pipefish Syngnathus typhle. Our data suggest that transovarial maternal microbial contribution influences the establishment of the juvenile gut microbiome whereas paternal provisioning mainly shapes the juvenile external microbiome. The identification of juvenile key microbes reveals crucial temporal shifts in microbial development and enhances our understanding of microbial transmission routes, colonization dynamics and their impact on lifestyle evolution.
Collapse
Affiliation(s)
- Isabel S. Tanger
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrookerweg 20, 24105 Kiel, Germany
- Zoological Institute, Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Julia Stefanschitz
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Yannick Schwert
- Zoological Institute, Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrookerweg 20, 24105 Kiel, Germany
- Zoological Institute, Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
7
|
Franke A, Beemelmanns A, Miest JJ. Are fish immunocompetent enough to face climate change? Biol Lett 2024; 20:20230346. [PMID: 38378140 PMCID: PMC10878809 DOI: 10.1098/rsbl.2023.0346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany
| | - Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V0A6 Québec, Canada
| | - Joanna J. Miest
- School of Psychology and Life Sciences, Canterbury, Kent CT1 1QU, UK
- School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
8
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
9
|
van Gelderen TA, Ladisa C, Salazar-Moscoso M, Folgado C, Habibi HR, Ribas L. Metabolomic and transcriptomic profiles after immune stimulation in the zebrafish testes. Genomics 2023; 115:110581. [PMID: 36796654 DOI: 10.1016/j.ygeno.2023.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Fish farms are prone to disease outbreaks and stress due to high-density rearing conditions in tanks and sea cages, adversely affecting growth, reproduction, and metabolism. To understand the molecular mechanisms affected in the gonads of breeder fish after an immune challenge, we investigated the metabolome and the transcriptome profiles in zebrafish testes after inducing an immune response. After 48 h of the immune challenge, ultra-high-performance liquid chromatography (LC-MS) and transcriptomic analysis by RNA-seq (Illumina) resulted in 20 different released metabolites and 80 differentially expressed genes. Among these, glutamine and succinic acid were the most abundant metabolites released and 27,5% of the genes belong to either the immune or reproduction systems. Pathway analysis based on metabolomic and transcriptomic crosstalk identified cad and iars genes that act simultaneously with succinate metabolite. This study deciphers interactions between reproduction and immune systems and provides a basis to improve protocols in generating more resistant broodstock.
Collapse
Affiliation(s)
- T A van Gelderen
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - M Salazar-Moscoso
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Folgado
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - H R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - L Ribas
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain.
| |
Collapse
|
10
|
Parker J, Dubin A, Schneider R, Wagner KS, Jentoft S, Böhne A, Bayer T, Roth O. Immunological tolerance in the evolution of male pregnancy. Mol Ecol 2023; 32:819-840. [PMID: 34951070 DOI: 10.1111/mec.16333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
The unique male pregnancy in pipefishes and seahorses ranges from basic attachment (pouch-less species: Nerophinae) of maternal eggs to specialized internal gestation in pouched species (e.g. Syngnathus and Hippocampus) with many transitions in between. Due to this diversity, male pregnancy offers a unique platform for assessing physiological and molecular adaptations in pregnancy evolution. These insights will contribute to answering long-standing questions of why and how pregnancy evolved convergently in so many vertebrate systems. To understand the molecular congruencies and disparities in male pregnancy evolution, we compared transcriptome-wide differentially expressed genes in four syngnathid species, at four pregnancy stages (nonpregnant, early, late and parturition). Across all species and pregnancy forms, metabolic processes and immune dynamics defined pregnancy stages, especially pouched species shared expression features akin to female pregnancy. The observed downregulation of adaptive immune genes in early-stage pregnancy and its reversed upregulation during late/parturition in pouched species, most notably in Hippocampus, combined with directionless expression in the pouch-less species, suggests immune modulation to be restricted to pouched species that evolved placenta-like systems. We propose that increased foeto-paternal intimacy in pouched syngnathids commands immune suppression processes in early gestation, and that the elevated immune response during parturition coincides with pouch opening and reduced progeny reliance. Immune response regulation in pouched species supports the recently described functional MHC II pathway loss as critical in male pregnancy evolution. The independent co-option of similar genes and pathways both in male and female pregnancy highlights immune modulation as crucial for the evolutionary establishment of pregnancy.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Arseny Dubin
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ralf Schneider
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kim Sara Wagner
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Astrid Böhne
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Till Bayer
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
11
|
Valero Y, Mercado L, Arizcun M, Cuesta A, Chaves-Pozo E. Priming European Sea Bass Female Broodstock Improves the Antimicrobial Immunity of Their Offspring. Animals (Basel) 2023; 13:ani13030415. [PMID: 36766303 PMCID: PMC9913748 DOI: 10.3390/ani13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Acquiring immunocompetence is essential in the development of fish embryos, as they are exposed to environmental pathogens even before they are fertilized. Despite the importance of the antimicrobial function as the first line of defense against foreign microorganisms, little knowledge is available about its role in larval development. In vertebrates, transgenerational immune priming influences the acquisition of immunocompetence of specimens, regulating the selective allocation of nongenetic resources to their progeny and modulating their development. In this work, we primed teleost European sea bass broodstock females with a viral protein expression vector in order to evaluate the innate immunity development of their offspring. Several antimicrobial functions, the pattern of expression of gene coding for different antimicrobial peptides (AMPs), and their protein levels, were evaluated in eggs and larvae during development. Our data determined the presence of antimicrobial proteins of maternal origin in eggs, and that female vaccination increases antimicrobial activities and the transcription and synthesis of AMPs during larval development.
Collapse
Affiliation(s)
- Yulema Valero
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
- Correspondence: ; Tel.: +34-968153339; Fax: +34-968153934
| |
Collapse
|
12
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
13
|
Greenspoon PB, Spencer HG, M'Gonigle LK. Epigenetic induction may speed up or slow down speciation with gene flow. Evolution 2022; 76:1170-1182. [PMID: 35482931 PMCID: PMC9321097 DOI: 10.1111/evo.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
Speciation is less likely to occur when there is gene flow between nascent species. Natural selection can oppose gene flow and promote speciation if there is variation in ecological conditions among the nascent species' locations. Previous theory on ecological speciation with gene flow has focused primarily on the role of genetic variation in ecological traits, largely neglecting the role of nongenetic inheritance or transgenerational plasticity. Here, we build and analyze models incorporating both genetic and epigenetic inheritance, the latter representing a form of nongenetic inheritance. We investigate the rate of speciation for a population that inhabits two patches connected by migration, and find that adaptively biased epigenetic induction can speed up or slow down speciation, depending on the form of the map from genotype and epigenotype to phenotype. While adaptively relevant epigenetic variation can speed up speciation by reducing the fitness of migrants and hybrids, it can also slow down speciation. This latter effect occurs when the epialleles are able to achieve adaptation faster than the genetic alleles, thereby weakening selection on the latter.
Collapse
|
14
|
Potts AS, Hunter MD. Unraveling the roles of genotype and environment in the expression of plant defense phenotypes. Ecol Evol 2021; 11:8542-8561. [PMID: 34257915 PMCID: PMC8258211 DOI: 10.1002/ece3.7639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed, Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype-by-environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.Overall, our data reveal powerful genotype-by-environment interactions on the expression of most resistance traits in milkweed.
Collapse
Affiliation(s)
- Abigail S. Potts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
15
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
16
|
Goehlich H, Sartoris L, Wagner KS, Wendling CC, Roth O. Pipefish Locally Adapted to Low Salinity in the Baltic Sea Retain Phenotypic Plasticity to Cope With Ancestral Salinity Levels. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibriobacteria) stressor using six different populations of the broad-nosed pipefishSyngnathus typhlethat originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected withVibrio alginolyticusbacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation,trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.
Collapse
|
17
|
Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis. Int J Mol Sci 2021; 22:ijms22031440. [PMID: 33535506 PMCID: PMC7867084 DOI: 10.3390/ijms22031440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator-prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes.
Collapse
|
18
|
Abstract
The innate immune system acts rapidly in an identical and nonspecific way every time the body is exposed to pathogens. As such, it cannot build and maintain immunological memory to help prevent reinfection. Researchers contend that trained immunity is influenced by intracellular metabolic pathways and epigenetic remodeling. The purpose of this review was to explore the topic of trained innate immunity based on the results of relevant previous studies. This systematic review entailed identifying articles related to trained innate immunity. The sources were obtained from PubMed using different search terms that included "trained innate immunity," "trained immunity," "trained," "innate," "immunity," and "immune system." Boolean operators were used to combine terms and phrases. A review of previous study results revealed that little is currently known about the molecular and cellular processes that mediate or induce a trained immune response in animals. However, it is believed that alterations in the phenotypes of cell populations and the numbers of specific cells may play a critical role in mediating the trained immune response. Increasing evidence shows that the protective processes and actions that occur during a secondary infection are not entirely linked to the adaptive immune system. Instead, these events also involve heightened activation of innate immune cells. While trained innate immune cells may have a shorter memory, they assist in the fight against pathogens and provide cross-protection. Identification of the mechanisms and molecules that underlie trained innate immunity has highlighted important features of the human immune response. Such advances continue to open doors for future research on how the body responds to disease-causing pathogens.
Collapse
Affiliation(s)
- Borros Arneth
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Hospital of the Universities of Giessen and Marburg, UKGM, Feulgenstr 12, 35339, Giessen, Germany.
| |
Collapse
|
19
|
Mondotte JA, Gausson V, Frangeul L, Suzuki Y, Vazeille M, Mongelli V, Blanc H, Failloux AB, Saleh MC. Evidence For Long-Lasting Transgenerational Antiviral Immunity in Insects. Cell Rep 2020; 33:108506. [PMID: 33326778 PMCID: PMC7758158 DOI: 10.1016/j.celrep.2020.108506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Transgenerational immune priming (TGIP) allows memory-like immune responses to be transmitted from parents to offspring in many invertebrates. Despite increasing evidence for TGIP in insects, the mechanisms involved in the transfer of information remain largely unknown. Here, we show that Drosophila melanogaster and Aedes aegypti transmit antiviral immunological memory to their progeny that lasts throughout generations. We observe that TGIP, which is virus and sequence specific but RNAi independent, is initiated by a single exposure to disparate RNA viruses and also by inoculation of a fragment of viral double-stranded RNA. The progeny, which inherit a viral DNA that is only a fragment of the viral RNA used to infect the parents, display enriched expression of genes related to chromatin and DNA binding. These findings represent a demonstration of TGIP for RNA viruses in invertebrates, broadly increasing our understanding of the immune response, host genome plasticity, and antiviral memory of the germline.
Collapse
Affiliation(s)
- Juan A Mondotte
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Valérie Gausson
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Lionel Frangeul
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Yasutsugu Suzuki
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Marie Vazeille
- Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Vanesa Mongelli
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Hervé Blanc
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | | | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France.
| |
Collapse
|
20
|
Hellmann JK, Carlson ER, Bell AM. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific. J Anim Ecol 2020; 89:2800-2812. [PMID: 33191513 PMCID: PMC7902365 DOI: 10.1111/1365-2656.13365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Transgenerational plasticity (TGP) occurs when the environment encountered by one generation (F0) alters the phenotypes of one or more future generations (e.g. F1 and F2). Sex selective TGP, via specific lineages or to only male or female descendants, has been underexplored in natural systems, and may be adaptive if it allows past generations to fine-tune the phenotypes of future generations in response to sex-specific life-history strategies. We sought to understand if exposing males to predation risk can influence grandoffspring via sperm in three-spined stickleback Gasterosteus aculeatus. We specifically tested the hypothesis that grandparental effects are transmitted in a sex-specific way down the male lineage, from paternal grandfathers to F2 males. We reared F1 offspring of unexposed and predator-exposed F0 males under 'control' conditions and used them to generate F2s with control grandfathers, a predator-exposed maternal grandfather (i.e. predator-exposed F0 males to F1 daughters to F2s), a predator-exposed paternal grandfather (i.e. predator-exposed F0 males to F1 sons to F2s) or two predator-exposed grandfathers. We then assayed male and female F2s for a variety of traits related to antipredator defence. We found little evidence that transgenerational effects were mediated to only male descendants via the paternal lineage. Instead, grandpaternal effects depended on lineage and were mediated largely across sexes, from F1 males to F2 females and from F1 females to F2 males. When their paternal grandfather was exposed to predation risk, female F2s were heavier and showed a reduced change in behaviour in response to a simulated predator attack relative to grandoffspring of control, unexposed grandparents. In contrast, male F2s showed reduced antipredator behaviour when their maternal grandfather was exposed to predation risk. However, these patterns were only evident when one grandfather, but not both grandfathers, was exposed to predation risk, suggesting the potential for non-additive interactions across lineages. If sex-specific and lineage effects are common, then grandparental effects are likely underestimated in the literature. These results draw attention to the importance of sex-selective inheritance of environmental effects and raise new questions about the proximate and ultimate causes of selective transmission across generations.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Erika R Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
21
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Lee W, Salinas S, Lee Y, Siskidis JA, Mangel M, Munch SB. Thermal transgenerational effects remain after two generations. Ecol Evol 2020; 10:11296-11303. [PMID: 33144965 PMCID: PMC7593139 DOI: 10.1002/ece3.6767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Transgenerational plasticity (TGP) is increasingly recognized as a mechanism by which organisms can respond to environments that change across generations. Although recent empirical and theoretical studies have explored conditions under which TGP is predicted to evolve, it is still unclear whether the effects of the parental environment will remain beyond the offspring generation. Using a small cyprinodontid fish, we explored multigenerational thermal TGP to address two related questions. First (experiment 1), does the strength of TGP decline or accumulate across multiple generations? Second (experiment 2), how does the experience of a temperature novel to both parents and offspring affect the strength of TGP? In the first experiment, we found a significant interaction between F1 and F2 temperatures and juvenile growth, but no effect of egg diameter. The strength of TGP between F0 and F1 generations was similar in both experiments but declined in subsequent generations. Further, experience of a novel temperature accelerated the decline. This pattern, although similar to that found in other species, is certainly not universally observed, suggesting that theoretical and empirical effort is needed to understand the multigenerational dynamics of TGP.
Collapse
Affiliation(s)
- Who‐Seung Lee
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
- Environmental Assessment GroupKorea Environment InstituteSejongKorea
| | | | - Young‐Rog Lee
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
| | | | - Marc Mangel
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- Department of BiologyUniversity of BergenBergenNorway
| | - Stephan B. Munch
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
| |
Collapse
|
23
|
Sagonas K, Meyer BS, Kaufmann J, Lenz TL, Häsler R, Eizaguirre C. Experimental Parasite Infection Causes Genome-Wide Changes in DNA Methylation. Mol Biol Evol 2020; 37:2287-2299. [PMID: 32227215 PMCID: PMC7531312 DOI: 10.1093/molbev/msaa084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental, and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.
Collapse
Affiliation(s)
- Kostas Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Britta S Meyer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Joshka Kaufmann
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Republic of Ireland
- Department for Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
King SE, Skinner MK. Epigenetic Transgenerational Inheritance of Obesity Susceptibility. Trends Endocrinol Metab 2020; 31:478-494. [PMID: 32521235 PMCID: PMC8260009 DOI: 10.1016/j.tem.2020.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
The prevalence of obesity and associated diseases has reached pandemic levels. Obesity is often associated with overnutrition and a sedentary lifestyle, but clearly other factors also increase the susceptibility of metabolic disease states. Ancestral and direct exposures to environmental toxicants and altered nutrition have been shown to increase susceptibility for obesity and metabolic dysregulation. Environmental insults can reprogram the epigenome of the germline (sperm and eggs), which transmits the susceptibility for disease to future generations through epigenetic transgenerational inheritance. In this review, we discuss current evidence and molecular mechanisms for epigenetic transgenerational inheritance of obesity susceptibility. Understanding ancestral environmental insults and epigenetic transgenerational impacts on future generations will be critical to fully understand the etiology of obesity and to develop preventative therapy options.
Collapse
Affiliation(s)
- Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
25
|
Byrne KA, Loving CL, McGill JL. Innate Immunomodulation in Food Animals: Evidence for Trained Immunity? Front Immunol 2020; 11:1099. [PMID: 32582185 PMCID: PMC7291600 DOI: 10.3389/fimmu.2020.01099] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant problem in health care, animal health, and food safety. To limit AMR, there is a need for alternatives to antibiotics to enhance disease resistance and support judicious antibiotic usage in animals and humans. Immunomodulation is a promising strategy to enhance disease resistance without antibiotics in food animals. One rapidly evolving field of immunomodulation is innate memory in which innate immune cells undergo epigenetic changes of chromatin remodeling and metabolic reprogramming upon a priming event that results in either enhanced or suppressed responsiveness to secondary stimuli (training or tolerance, respectively). Exposure to live agents such as bacille Calmette-Guerin (BCG) or microbe-derived products such as LPS or yeast cell wall ß-glucans can reprogram or "train" the innate immune system. Over the last decade, significant advancements increased our understanding of innate training in humans and rodent models, and strategies are being developed to specifically target or regulate innate memory. In veterinary species, the concept of enhancing the innate immune system is not new; however, there are few available studies which have purposefully investigated innate training as it has been defined in human literature. The development of targeted approaches to engage innate training in food animals, with the practical goal of enhancing the capacity to limit disease without the use of antibiotics, is an area which deserves attention. In this review, we provide an overview of innate immunomodulation and memory, and the mechanisms which regulate this long-term functional reprogramming in other animals (e.g., humans, rodents). We focus on studies describing innate training, or similar phenomenon (often referred to as heterologous or non-specific protection), in cattle, sheep, goats, swine, poultry, and fish species; and discuss the potential benefits and shortcomings of engaging innate training for enhancing disease resistance.
Collapse
Affiliation(s)
- Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
26
|
Whittington CM, Friesen CR. The evolution and physiology of male pregnancy in syngnathid fishes. Biol Rev Camb Philos Soc 2020; 95:1252-1272. [PMID: 32372478 DOI: 10.1111/brv.12607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022]
Abstract
The seahorses, pipefishes and seadragons (Syngnathidae) are among the few vertebrates in which pregnant males incubate developing embryos. Syngnathids are popular in studies of sexual selection, sex-role reversal, and reproductive trade-offs, and are now emerging as valuable comparative models for the study of the biology and evolution of reproductive complexity. These fish offer the opportunity to examine the physiology, behavioural implications, and evolutionary origins of embryo incubation, independent of the female reproductive tract and female hormonal milieu. Such studies allow us to examine flexibility in regulatory systems, by determining whether the pathways underpinning female pregnancy are also co-opted in incubating males, or whether novel pathways have evolved in response to the common challenges imposed by incubating developing embryos and releasing live young. The Syngnathidae are also ideal for studies of the evolution of reproductive complexity, because they exhibit multiple parallel origins of complex reproductive phenotypes. Here we assay the taxonomic distribution of syngnathid parity mode, examine the selective pressures that may have led to the emergence of male pregnancy, describe the biology of syngnathid reproduction, and highlight pressing areas for future research. Experimental tests of a range of hypotheses, including many generated with genomic tools, are required to inform overarching theories about the fitness implications of pregnancy and the evolution of male pregnancy. Such information will be widely applicable to our understanding of fundamental reproductive and evolutionary processes in animals.
Collapse
Affiliation(s)
- Camilla M Whittington
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, 2006, Australia.,The University of Sydney, Sydney School of Veterinary Science, Sydney, New South Wales, 2006, Australia
| | - Christopher R Friesen
- The University of Wollongong, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
27
|
Schulz NKE, Sell MP, Ferro K, Kleinhölting N, Kurtz J. Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle Tribolium castaneum. Front Physiol 2019; 10:98. [PMID: 30837885 PMCID: PMC6389831 DOI: 10.3389/fphys.2019.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Immune priming, the increased chance to survive a secondary encounter with a pathogen, has been described for many invertebrate species, which lack the classical adaptive immune system of vertebrates. Priming can be specific even for closely related bacterial strains, last up to the entire lifespan of an individual, and in some species, it can also be transferred to the offspring and is then called transgenerational immune priming (TGIP). In the red flour beetle Tribolium castaneum, a pest of stored grains, TGIP has even been shown to be transferred paternally after injection of adult beetles with heat-killed Bacillus thuringiensis. Here we studied whether TGIP in T. castaneum is also transferred to the second filial generation, whether it can also occur after oral and injection priming of larvae and whether it has effects on offspring development. We found that paternal priming with B. thuringiensis does not only protect the first but also the second offspring generation. Also, fitness costs of the immune priming became apparent, when the first filial generation produced fewer offspring. Furthermore, we used two different routes of exposure to prime larvae, either by injecting them with heat-killed bacteria or orally feeding them B. thuringiensis spore culture supernatant. Neither of the parental larval priming methods led to any direct benefits regarding offspring resistance. However, the injections slowed down development of the injected individuals, while oral priming with both a pathogenic and a non-pathogenic strain of B. thuringiensis delayed offspring development. The long-lasting transgenerational nature of immune priming and its impact on offspring development indicate that potentially underlying epigenetic modifications might be stable over several generations. Therefore, this form of phenotypic plasticity might impact pest control and should be considered when using products of bacterial origin against insects.
Collapse
Affiliation(s)
- Nora K E Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Marie Pauline Sell
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Kevin Ferro
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Nico Kleinhölting
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Zhang Z, Chi H, Dalmo RA. Trained Innate Immunity of Fish Is a Viable Approach in Larval Aquaculture. Front Immunol 2019; 10:42. [PMID: 30740103 PMCID: PMC6355669 DOI: 10.3389/fimmu.2019.00042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
The general understanding has been that only adaptive immunity is capable of immunological memory, but this concept has been challenged in recent years by studies showing that innate immune systems can mount resistance to reinfection-as the innate immune system can adapt its function following an insult. Innate immune training offers an attractive approach in intensive fish larval rearing, especially since the adaptive immune system is not fully developed. Trained innate immunity will potentially favor robust fish in terms of resistance to viral and bacterial diseases. So-called immunostimulants such as ß-glucans have for decades been used both in laboratories and in intensive fish aquaculture. Treatment of fish by ß-glucans (and by other substances with pathogen-associated molecular patterns) often induces activation of non-specific/innate immune mechanisms and induces higher disease resistance. The reported effects of e.g., ß-glucans fit nicely into the concept "trained innate immunity," but the research on fish does not yet include analysis of epigenetic changes that may be a prerequisite for long-lasting trained innate immunity. In this "perspective," we will discuss how in practical terms and based on prior knowledge one can introduce innate immune training in brood stock fish, and their offspring, and whether innate immune training by ß-glucans is a viable approach in larval aquaculture.
Collapse
Affiliation(s)
- Zuobing Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Research Group Aquaculture and Environment, Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economy, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Research Group Aquaculture and Environment, Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economy, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
29
|
Crocker KC, Hunter MD. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:69-78. [PMID: 29890170 DOI: 10.1016/j.jinsphys.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
An animal's phenotype may be shaped by its genes, but also reflects its own environment and often that of its parents. Nongenetic parental effects are often mediated by steroid hormones, and operate between parents and offspring through mechanisms that are well described in vertebrate and model systems. However, less is understood about the strength and frequency of hormone mediated nongenetic parental effects across more than one generation of descendants, and in nonmodel systems. Here we show that the concentration of active ecdysteroid hormones provided by a female house cricket (Acheta domesticus) affects the growth rate of her offspring. We also reveal that variation in the active ecdysteroid hormones provided by a female house cricket to her eggs derives primarily from the quality of nutrition available to her maternal grandmother, regardless of genetic background. This finding is in stark contrast to most previous work that documents a decline in the strength of environmentally based parental effects with each passing generation. Strong grandparental effects may be adaptive under predictable, cyclical changes in the environment. Our results also suggest that hormone-mediated grand-maternal effects represent an important potential mechanism by which organisms can respond to environmental variability, and that further study of hormone-mediated carryover effects in this context could be profitable.
Collapse
Affiliation(s)
- Katherine C Crocker
- 1105 North University Ave, Kraus Natural Sciences Building, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| | - Mark D Hunter
- 1105 North University Ave, Kraus Natural Sciences Building, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
30
|
Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb) 2018; 121:225-238. [PMID: 29915335 DOI: 10.1038/s41437-018-0101-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
Collapse
|
31
|
Freyne B, Donath S, Germano S, Gardiner K, Casalaz D, Robins-Browne RM, Amenyogbe N, Messina NL, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Influences Cytokine Responses to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis 2018; 217:1798-1808. [PMID: 29415180 PMCID: PMC11491830 DOI: 10.1093/infdis/jiy069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 04/13/2024] Open
Abstract
Background BCG vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain, but long-term modulation of the innate immune response (trained immunity) may be involved. Methods Whole-blood specimens, collected 7 days after randomization from 212 neonates enrolled in a randomized trial of neonatal BCG vaccination, were stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. Results BCG-vaccinated infants had increased production of interleukin 6 (IL-6) in unstimulated samples and decreased production of interleukin 1 receptor antagonist, IL-6, and IL-10 and the chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and monocyte chemoattractant protein 1 (MCP-1) following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Conclusions Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterized by decreased antiinflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine whether there is an association between these findings and the beneficial nonspecific (heterologous) effects of BCG vaccine on all-cause mortality.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Germano
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- School of Medicine, University of Tasmania, Launceston Australia
- Department of Immunology and Pathology, Monash University, Clayton, Australia
| | - Tobias Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
32
|
Keller IS, Salzburger W, Roth O. Parental investment matters for maternal and offspring immune defense in the mouthbrooding cichlid Astatotilapia burtoni. BMC Evol Biol 2017; 17:264. [PMID: 29262789 PMCID: PMC5738712 DOI: 10.1186/s12862-017-1109-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/06/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. RESULTS Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. CONCLUSION Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure.
Collapse
Affiliation(s)
- Isabel S. Keller
- Evolutionary Ecology of Marine Fishes, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Olivia Roth
- Evolutionary Ecology of Marine Fishes, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
33
|
Wilson AB. MHC and adaptive immunity in teleost fishes. Immunogenetics 2017; 69:521-528. [DOI: 10.1007/s00251-017-1009-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
34
|
Roth O, Landis SH. Trans-generational plasticity in response to immune challenge is constrained by heat stress. Evol Appl 2017; 10:514-528. [PMID: 28515783 PMCID: PMC5427669 DOI: 10.1111/eva.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/23/2017] [Indexed: 12/24/2022] Open
Abstract
Trans‐generational plasticity (TGP) is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent–offspring environments. In a global change scenario, several performance‐related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of TGP. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans‐generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat‐killed bacterial epitope treatment. Differential gene expression (immune genes and DNA‐ and histone‐modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans‐generational effects are limited. Temperature is the master regulator of trans‐generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of TGP as a short‐term option to buffer environmental variation in the light of climate change.
Collapse
Affiliation(s)
- Olivia Roth
- GEOMAR Evolutionary Ecology of Marine Fishes Helmholtz Centre for Ocean Research Kiel Germany
| | - Susanne H Landis
- GEOMAR Evolutionary Ecology of Marine Fishes Helmholtz Centre for Ocean Research Kiel Germany
| |
Collapse
|