1
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
2
|
Martinez-D’Alto A, Yan X, Detomasi TC, Sayler RI, Thomas WC, Talbot NJ, Marletta MA. Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Proc Natl Acad Sci U S A 2023; 120:e2215426120. [PMID: 36791100 PMCID: PMC9974505 DOI: 10.1073/pnas.2215426120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Blast disease in cereal plants is caused by the fungus Magnaporthe oryzae and accounts for a significant loss in food crops. At the outset of infection, expression of a putative polysaccharide monooxygenase (MoPMO9A) is increased. MoPMO9A contains a catalytic domain predicted to act on cellulose and a carbohydrate-binding domain that binds chitin. A sequence similarity network of the MoPMO9A family AA9 showed that 220 of the 223 sequences in the MoPMO9A-containing cluster of sequences have a conserved unannotated region with no assigned function. Expression and purification of the full length and two MoPMO9A truncations, one containing the catalytic domain and the domain of unknown function (DUF) and one with only the catalytic domain, were carried out. In contrast to other AA9 polysaccharide monooxygenases (PMOs), MoPMO9A is not active on cellulose but showed activity on cereal-derived mixed (1→3, 1→4)-β-D-glucans (MBG). Moreover, the DUF is required for activity. MoPMO9A exhibits activity consistent with C4 oxidation of the polysaccharide and can utilize either oxygen or hydrogen peroxide as a cosubstrate. It contains a predicted 3-dimensional fold characteristic of other PMOs. The DUF is predicted to form a coiled-coil with six absolutely conserved cysteines acting as a zipper between the two α-helices. MoPMO9A substrate specificity and domain architecture are different from previously characterized AA9 PMOs. The results, including a gene ontology analysis, support a role for MoPMO9A in MBG degradation during plant infection. Consistent with this analysis, deletion of MoPMO9A results in reduced pathogenicity.
Collapse
Affiliation(s)
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, UK
| | - Tyler C. Detomasi
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Richard I. Sayler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - William C. Thomas
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, UK
| | - Michael A. Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
3
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
4
|
Tong X, He Z, Zheng L, Pande H, Ni Y. Enzymatic treatment processes for the production of cellulose nanomaterials: A review. Carbohydr Polym 2023; 299:120199. [PMID: 36876810 DOI: 10.1016/j.carbpol.2022.120199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Cellulose nanomaterials have attracted much attention in recent years because of their unique properties. Commercial or semi-commercial production of nanocellulose has been reported in recent years. Mechanical treatments for nanocellulose production are viable but highly energy-intensive. Chemical processes are well reported; however, these chemical processes are not only costly, but also cause environmental concerns and end-use related challenges. This review summarizes recent researches on enzymatic treatment of cellulose fibers for the production of cellulose nanomaterials, with focus on novel enzymatic processes with xylanase and lytic polysaccharide monooxygenases (LPMO) to enhance the efficacy of cellulase. Different enzymes are discussed, including endoglucanase, exoglucanase and xylanase, as well as LPMO, with emphasis on the accessibility and hydrolytic specificity of LPMO enzymes to cellulose fiber structures. LPMO acts in a synergistic way with cellulase to cause significant physical and chemical changes to the cellulose fiber cell-wall structures, which facilitate the nano-fibrillation of the fibers.
Collapse
Affiliation(s)
- Xin Tong
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Zhibin He
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada.
| | - Linqiang Zheng
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada
| | - Harshad Pande
- Domtar Corporation, 395 Blvd Maisonneuve West, Montreal, PQ H3A 1L6, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB E3B5A3, Canada
| |
Collapse
|
5
|
Mattila H, Österman-Udd J, Mali T, Lundell T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:837605. [PMID: 37746164 PMCID: PMC10512322 DOI: 10.3389/ffunb.2022.837605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Our review includes a genomic survey of a multitude of reactive oxygen species (ROS) related intra- and extracellular enzymes and proteins among fungi of Basidiomycota, following their taxonomic classification within the systematic classes and orders, and focusing on different fungal lifestyles (saprobic, symbiotic, pathogenic). Intra- and extracellular ROS metabolism-involved enzymes (49 different protein families, summing 4170 protein models) were searched as protein encoding genes among 63 genomes selected according to current taxonomy. Extracellular and intracellular ROS metabolism and mechanisms in Basidiomycota are illustrated in detail. In brief, it may be concluded that differences between the set of extracellular enzymes activated by ROS, especially by H2O2, and involved in generation of H2O2, follow the differences in fungal lifestyles. The wood and plant biomass degrading white-rot fungi and the litter-decomposing species of Agaricomycetes contain the highest counts for genes encoding various extracellular peroxidases, mono- and peroxygenases, and oxidases. These findings further confirm the necessity of the multigene families of various extracellular oxidoreductases for efficient and complete degradation of wood lignocelluloses by fungi. High variations in the sizes of the extracellular ROS-involved gene families were found, however, among species with mycorrhizal symbiotic lifestyle. In addition, there are some differences among the sets of intracellular thiol-mediation involving proteins, and existence of enzyme mechanisms for quenching of intracellular H2O2 and ROS. In animal- and plant-pathogenic species, extracellular ROS enzymes are absent or rare. In these fungi, intracellular peroxidases are seemingly in minor role than in the independent saprobic, filamentous species of Basidiomycota. Noteworthy is that our genomic survey and review of the literature point to that there are differences both in generation of extracellular ROS as well as in mechanisms of response to oxidative stress and mitigation of ROS between fungi of Basidiomycota and Ascomycota.
Collapse
Affiliation(s)
| | | | | | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Wang Y, Li L, Xia Y, Zhang T. Reliable and Scalable Identification and Prioritization of Putative Cellulolytic Anaerobes With Large Genome Data. FRONTIERS IN BIOINFORMATICS 2022; 2:813771. [PMID: 36304268 PMCID: PMC9580877 DOI: 10.3389/fbinf.2022.813771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the era of high-throughput sequencing, genetic information that is inherently whispering hints of the microbes’ functional niches is becoming easily accessible; however, properly identifying and characterizing these genetic hints to infer the microbes’ functional niches remains a challenge. Regarding genome-centric interpretation on the specific functional niche of cellulose hydrolysis for anaerobes, often encountered in practice is a lack of confidence in predicting the anaerobes’ real cellulolytic competency based solely on abundances of the varying carbohydrate-active enzyme modules annotated or on their taxonomy affiliation. Recognition of the synergy machineries that include but not limited to the cellulosome gene clusters is equally important as the annotation of individual carbohydrate-active modules or genes. In the interpretation of complete genomes of 2,768 microbe strains whose phenotypes have been well documented, with the incorporation of an automatic recognition of synergy among the carbohydrate active elements annotated, an explicit genotype–phenotype correlation was evidenced to be feasible for cellulolytic anaerobes, and a bioinformatic pipeline was developed accordingly. This genome-centric pipeline would categorize putative cellulolytic anaerobes into six genotype groups based on differential cellulose-hydrolyzing capacity and varying synergy mechanisms. Suggested in this genotype–phenotype correlation analysis was a finer categorization of the cellulosome gene clusters: although cellulosome complexes, by their nature, could enable the assembly of a number of carbohydrate-active units, they do not certainly guarantee the formation of the cellulose–enzyme–microbe complex or the cellulose-hydrolyzing activity of the corresponding anaerobe strains, for example, the well-known Clostridium acetobutylicum strains. Also, recognized in this genotype-phenotype correlation analysis was the genetic foundation of a previously unrecognized machinery that may mediate the microbe–cellulose adhesion, to be specific, enzymes encoded by genes harboring both the surface layer homology and cellulose-binding CBM modules. Applicability of this pipeline on scalable annotation of large genome datasets was further tested with the annotation of 7,902 reference genomes downloaded from NCBI, from which 14 genomes of putative paradigm cellulose-hydrolyzing anaerobes were identified. We believe the pipeline developed in this study would be a good add as a bioinformatic tool for genome-centric interpretation of uncultivated anaerobes, specifically on their functional niche of cellulose hydrolysis.
Collapse
Affiliation(s)
- Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
| | - Yu Xia
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Tong Zhang,
| |
Collapse
|
7
|
Prasad HSN, Ananda A, Lohith T, Prabhuprasad P, Jayanth H, Krishnamurthy N, Sridhar M, Mallesha L, Mallu P. Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021; 11:1900. [PMID: 34944542 PMCID: PMC8699090 DOI: 10.3390/biom11121900] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
To reduce anthropological pressure on the environment, the implementation of novel technologies in present and future economies is needed for sustainable development. The food industry, with dairy and meat production in particular, has a significant environmental impact. Global poultry production is one of the fastest-growing meat producing sectors and is connected with the generation of burdensome streams of manure, offal and feather waste. In 2020, the EU alone produced around 3.2 million tonnes of poultry feather waste composed primarily of keratin, a protein biopolymer resistant to conventional proteolytic enzymes. If not managed properly, keratin waste can significantly affect ecosystems, contributing to environmental pollution, and pose a serious hazard to human and livestock health. In this article, the application of keratinolytic enzymes and microorganisms for promising novel keratin waste management methods with generation of new value-added products, such as bioactive peptides, vitamins, prion decontamination agents and biomaterials were reviewed.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.S.); (I.J.)
| |
Collapse
|
9
|
Espersen R, Huang Y, Falco FC, Hägglund P, Gernaey KV, Lange L, Svensson B. Exceptionally rich keratinolytic enzyme profile found in the rare actinomycetes Amycolatopsis keratiniphila D2 T. Appl Microbiol Biotechnol 2021; 105:8129-8138. [PMID: 34605969 DOI: 10.1007/s00253-021-11579-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
The non-spore forming Gram-positive actinomycetes Amycolatopsis keratiniphila subsp. keratiniphila D2T (DSM 44,409) has a high potential for keratin valorization as demonstrated by a novel biotechnological microbial conversion process consisting of a bacterial growth phase and a keratinolytic phase, respectively. Compared to the most gifted keratinolytic Bacillus species, a very large number of 621 putative proteases are encoded by the genome of Amycolatopsis keratiniphila subsp. keratiniphila D2T, as predicted by using Peptide Pattern Recognition (PPR) analysis. Proteome analysis by using LC-MS/MS on aliquots of the supernatant of A. keratiniphila subsp. keratiniphila D2T culture on slaughterhouse pig bristle meal, removed at 24, 48, 96 and 120 h of growth, identified 43 proteases. This was supplemented by proteome analysis of specific fractions after enrichment of the supernatant by anion exchange chromatography leading to identification of 50 proteases. Overall 57 different proteases were identified corresponding to 30% of the 186 proteins identified from the culture supernatant and distributed as 17 metalloproteases from 11 families, including an M36 protease, 38 serine proteases from 4 families, and 13 proteolytic enzymes from other families. Notably, M36 keratinolytic proteases are prominent in fungi, but seem not to have been discovered in bacteria previously. Two S01 family peptidases, named T- and C-like proteases, prominent in the culture supernatant, were purified and shown to possess a high azo-keratin/azo-casein hydrolytic activity ratio. The C-like protease revealed excellent thermostability, giving promise for successful applications in biorefinery processes. Notably, the bacterium seems not to secrete enzymes for cleavage of disulfides in the keratinous substrates. KEY POINTS: • A. keratiniphila subsp. keratiniphila D2T is predicted to encode 621 proteases. • This actinomycete efficiently converts bristle meal to a protein hydrolysate. • Proteome analysis identified 57 proteases in its secretome.
Collapse
Affiliation(s)
- Roall Espersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 224, DK 2800 Kgs., Lyngby, Denmark
- Center for Vaccine Research, Statens Serum Institut, Artillerivej 5 Building 81, DK 2300, Copenhagen S, Denmark
| | - Yuhong Huang
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 227, DK 2800 Kgs., Lyngby, Denmark
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, People's Republic of China
| | - Francesco C Falco
- Process and Systems Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 228 A, DK 2800 Kgs., Lyngby, Denmark
| | - Per Hägglund
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 224, DK 2800 Kgs., Lyngby, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK 2200, Copenhagen N, Denmark
| | - Krist V Gernaey
- Process and Systems Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 228 A, DK 2800 Kgs., Lyngby, Denmark
| | - Lene Lange
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 227, DK 2800 Kgs., Lyngby, Denmark
- Bioeconomy, Research & Advisory, Karensgade 5, DK 2500, Valby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 224, DK 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
10
|
Bei Q, Moser G, Müller C, Liesack W. Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147036. [PMID: 33895508 DOI: 10.1016/j.scitotenv.2021.147036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Knowledge on how grassland microbiota responds on gene expression level to winter-summer change of seasons is poor. Here, we used a combination of quantitative PCR-based assays and metatranscriptomics to assess the impact of seasonality on the rhizospheric microbiota in temperate European grassland. Bacteria dominated, being at least one order of magnitude more abundant than fungi. Despite a fivefold summer increase in bacterial community size, season had nearly no effect on microbiome diversity. It, however, had a marked impact on taxon-specific gene expression, with 668 genes significantly differing in relative transcript abundance between winter and summer samples. Acidobacteria, Bacteroidetes, Planctomycetes, and Proteobacteria showed a greater relative gene expression activity in winter, while mRNA of Actinobacteria and Fungi was, relative to other taxa, significantly enriched in summer. On functional level, mRNA involved in protein turnover (e.g., transcription and translation) and cell maintenance (e.g., chaperones that protect against cell freezing damage such as GroEL and Hsp20) were highly enriched in winter. By contrast, mRNA involved in central carbon and amino acid metabolisms had a greater abundance in summer. Among carbohydrate-active enzymes, transcripts of GH36 family (hemicellulases) were highly enriched in winter, while those encoding GH3 family (cellulases) showed increased abundance in summer. The seasonal differences in plant polymer breakdown were linked to a significantly greater microbial network complexity in winter than in summer. Conceptually, the winter-summer change in microbiome functioning can be well explained by a shift from stress-tolerator to high-yield life history strategy.
Collapse
Affiliation(s)
- Qicheng Bei
- Research Group Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Gerald Moser
- Department of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Christoph Müller
- Department of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science, University College Dublin, Ireland
| | - Werner Liesack
- Research Group Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| |
Collapse
|
11
|
Li Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front Microbiol 2021; 12:674345. [PMID: 34248885 PMCID: PMC8260994 DOI: 10.3389/fmicb.2021.674345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinases belong to a class of proteases that are able to degrade keratins into amino acids. Microbial keratinases play important roles in turning keratin-containing wastes into value-added products by participating in the degradation of keratin. Keratin is found in human and animal hard tissues, and its complicated structures make it resistant to degradation by common proteases. Although breaking disulfide bonds are involved in keratin degradation, keratinase is responsible for the cleavage of peptides, making it attractive in pharmaceutical and feather industries. Keratinase can serve as an important tool to convert keratin-rich wastes such as feathers from poultry industry into diverse products applicable to many fields. Despite of some progress made in isolating keratinase-producing microorganisms, structural studies of keratinases, and biochemical characterization of these enzymes, effort is still required to expand the biotechnological application of keratinase in diverse fields by identifying more keratinases, understanding the mechanism of action and constructing more active enzymes through molecular biology and protein engineering. Herein, this review covers structures, applications, biochemistry of microbial keratinases, and strategies to improve its efficiency in keratin degradation.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Zarattini M, Corso M, Kadowaki MA, Monclaro A, Magri S, Milanese I, Jolivet S, de Godoy MO, Hermans C, Fagard M, Cannella D. LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic fungus B. cinerea. Commun Biol 2021; 4:727. [PMID: 34117349 PMCID: PMC8196058 DOI: 10.1038/s42003-021-02226-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) are powerful redox enzymes able to oxidatively cleave recalcitrant polysaccharides. Widely conserved across biological kingdoms, LPMOs of the AA9 family are deployed by phytopathogens to deconstruct cellulose polymers. In response, plants have evolved sophisticated mechanisms to sense cell wall damage and thus self-triggering Damage Triggered Immunity responses. Here, we show that Arabidopsis plants exposed to LPMO products triggered the innate immunity ultimately leading to increased resistance to the necrotrophic fungus Botrytis cinerea. We demonstrated that plants undergo a deep transcriptional reprogramming upon elicitation with AA9 derived cellulose- or cello-oligosaccharides (AA9_COS). To decipher the specific effects of native and oxidized LPMO-generated AA9_COS, a pairwise comparison with cellobiose, the smallest non-oxidized unit constituting cellulose, is presented. Moreover, we identified two leucine-rich repeat receptor-like kinases, namely STRESS INDUCED FACTOR 2 and 4, playing a crucial role in signaling the AA9_COS-dependent responses such as camalexin production. Furthermore, increased levels of ethylene, jasmonic and salicylic acid hormones, along with deposition of callose in the cell wall was observed. Collectively, our data reveal that LPMOs might play a crucial role in plant-pathogen interactions. Zarattini et al. confirm the capacity of Lytic Polysaccharide Monooxygenases (LPMO) active on cellulose to trigger immune responses in Arabidopsis. These results bring insight to the field of cell wall modifying enzymes and their roles in plant defense mechanisms.
Collapse
Affiliation(s)
- Marco Zarattini
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium
| | - Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Marco Antonio Kadowaki
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium
| | - Antonielle Monclaro
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium
| | - Silvia Magri
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium
| | - Irma Milanese
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium
| | - Sylvie Jolivet
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Mariana Ortiz de Godoy
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit-BioCat, Crop Production and Biostimulation Laboratory CPBL and BTL, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
13
|
Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community. Appl Environ Microbiol 2021; 87:AEM.00318-21. [PMID: 33771785 PMCID: PMC8208141 DOI: 10.1128/aem.00318-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Our results highlight the importance of soil microorganisms in plant disease suppression and the possibility to steer soil microbial community composition by applying organic amendments to the soil. Enhancing soil suppressiveness against plant pathogens or pests is a promising alternative strategy to chemical pesticides. Organic amendments have been shown to reduce crop diseases and pests, with chitin products the most efficient against fungal pathogens. To study which characteristics of organic products are correlated with disease suppression, an experiment was designed in which 10 types of organic amendments with different physicochemical properties were tested against the soilborne pathogen Rhizoctonia solani in sugar beet seedlings. Organic amendments rich in keratin or chitin reduced Rhizoctonia solani disease symptoms in sugar beet plants. The bacterial and fungal microbial communities in amended soils were distinct from the microbial communities in nonamended soil, as well as those in soils that received other nonsuppressive treatments. The Rhizoctonia-suppressive amended soils were rich in saprophytic bacteria and fungi that are known for their keratinolytic and chitinolytic properties (i.e., Oxalobacteraceae and Mortierellaceae). The microbial community in keratin- and chitin-amended soils was associated with higher zinc, copper, and selenium, respectively. IMPORTANCE Our results highlight the importance of soil microorganisms in plant disease suppression and the possibility to steer soil microbial community composition by applying organic amendments to the soil.
Collapse
|
14
|
A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. J Biol Chem 2021; 296:100504. [PMID: 33675751 PMCID: PMC8047454 DOI: 10.1016/j.jbc.2021.100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.
Collapse
|
15
|
Jagadeeswaran G, Veale L, Mort AJ. Do Lytic Polysaccharide Monooxygenases Aid in Plant Pathogenesis and Herbivory? TRENDS IN PLANT SCIENCE 2021; 26:142-155. [PMID: 33097402 DOI: 10.1016/j.tplants.2020.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs), copper-dependent enzymes mainly found in fungi, bacteria, and viruses, are responsible for enabling plant infection and degradation processes. Since their discovery 10 years ago, significant progress has been made in understanding the major role these enzymes play in biomass conversion. The recent discovery of additional LPMO families in fungi and oomycetes (AA16) as well as insects (AA15) strongly suggests that LPMOs might also be involved in biological processes such as overcoming plant defenses. In this review, we aim to give a comprehensive overview of the potential role of different LPMO families from the perspective of plant defense and their multiple implications in devising new strategies for achieving crop protection from plant pathogens and insect pests.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lawrie Veale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Andrew J Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
16
|
Bunterngsook B, Mhuantong W, Kanokratana P, Iseki Y, Watanabe T, Champreda V. Identification and characterization of a novel AA9-type lytic polysaccharide monooxygenase from a bagasse metagenome. Appl Microbiol Biotechnol 2020; 105:197-210. [PMID: 33230603 DOI: 10.1007/s00253-020-11002-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are auxiliary enzymes catalyzing oxidative cleavages of cellulose chains in crystalline regions, resulting in their increasing accessibility to the hydrolytic enzyme counterparts and hence higher released sugars from biomass saccharification. In this study, a novel auxiliary protein family 9 LPMO (BgAA9) was identified from a metagenomic library derived from a thermophilic microbial community in bagasse collection site where diverse AA9 and AA10 putative sequences were annotated. The enzyme showed highest similarity to a glycoside hydrolase family 61 from Chaetomium thermophilum. Recombinant BgAA9 expressed in Pichia pastoris cleaved cellohexaose (DP6) into shorter cellooligosaccharides (DP2, DP3, and DP4). Supplementation BgAA9 to a commercial cellulase, Accellerase® 1500 showed strong synergistic effect on saccharification of Avicel® PH101, decrystallized cellulose, filter paper, and alkaline-pretreated sugarcane bagasse, resulting in 63-93% increase in the total reducing sugar yield after incubation at 50 °C for 72 h. Strong synergism was shown between BgAA9 and the cellulase with the highest total fermentable sugar yield obtained from 75:25% of Accellerase®1500:BgAA9 which released 39 mg glucose/FPU (filter paper unit) equivalent to 38.7% higher than Accellerase®1500 alone at the same total protein dosage of 5 mg/g substrate according to the mixture design study. The enzyme represented the first characterized LPMO from environmental metagenome and a potent auxiliary component for biomass saccharification. KEY POINTS: • BgAA9 represents the first characterized LPMO from metagenome. • 12 AA families were annotated in thermophilic bagasse fosmid library by NGS. • BgAA9 showed homology to Cel61 in Chaetomium thermophilum. • BgAA9 oxidized cellohexaose and PASC to DP2, DP4, and DP6. • BgAA9 showed strong synergism to Accellerase on bagasse hydrolysis.
Collapse
Affiliation(s)
- Benjarat Bunterngsook
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Yu Iseki
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Watanabe
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Verawat Champreda
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
17
|
Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol Adv 2020; 44:107607. [PMID: 32768519 PMCID: PMC7405893 DOI: 10.1016/j.biotechadv.2020.107607] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Keratin is an insoluble and protein-rich epidermal material found in e.g. feather, wool, hair. It is produced in substantial amounts as co-product from poultry processing plants and pig slaughterhouses. Keratin is packed by disulfide bonds and hydrogen bonds. Based on the secondary structure, keratin can be classified into α-keratin and β-keratin. Keratinases (EC 3.4.-.- peptide hydrolases) have major potential to degrade keratin for sustainable recycling of the protein and amino acids. Currently, the known keratinolytic enzymes belong to at least 14 different protease families: S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, M55 (MEROPS database). The various keratinolytic enzymes act via endo-attack (proteases in families S1, S8, S16, M4, M16, M36), exo-attack (proteases in families S9, S10, M14, M28, M38, M55) or by action only on oligopeptides (proteases in families M3, M32), respectively. Other enzymes, particularly disulfide reductases, also play a key role in keratin degradation as they catalyze the breakage of disulfide bonds for better keratinase catalysis. This review aims to contribute an overview of keratin biomass as an enzyme substrate and a systematic analysis of currently sequenced keratinolytic enzymes and their classification and reaction mechanisms. We also summarize and discuss keratinase assays, available keratinase structures and finally examine the available data on uses of keratinases in practical biorefinery protein upcycling applications.
Collapse
|
18
|
Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules. Nat Catal 2020. [DOI: 10.1038/s41929-020-00507-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Huang Y, Łężyk M, Herbst FA, Busk PK, Lange L. Novel keratinolytic enzymes, discovered from a talented and efficient bacterial keratin degrader. Sci Rep 2020; 10:10033. [PMID: 32572051 PMCID: PMC7308268 DOI: 10.1038/s41598-020-66792-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Huge quantities of keratinaceous waste are a substantial and almost totally unexploited protein resource which could be upgraded for use as high value-added products by efficient keratinolytic enzymes. In this study, we found that Bacillus sp. 8A6 can efficiently degrade chicken feather after 24 h growth. According to phylogenetic analysis, the strain (formerly identified as Bacillus pumilus 8A6) belongs to the B. pumilus species clade but it is more closely related to B. safensis. Hotpep predicted 233 putative proteases from Bacillus sp. 8A6 genome. Proteomic analysis of culture broths from Bacillus sp. 8A6 cultured on chicken feathers or on a mixture of bristles and hooves showed high abundance of proteins with functions related to peptidase activity. Five proteases (one from family M12, one from family S01A, two from family S08A and one from family T3) and four oligopeptide and dipeptide binding proteins were highly expressed when Bacillus sp. 8A6 was grown in keratin media compared to LB medium. This study is the first to report that bacterial proteases in families M12, S01A and T3 are involved in keratin degradation together with proteases from family S08.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mateusz Łężyk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Peter Kamp Busk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Lene Lange
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark.
- Bioeconomy, Research & Advisory, Karensgade 5, DK-2500, Valby, Denmark.
| |
Collapse
|
20
|
Barbosa FC, Silvello MA, Goldbeck R. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol Lett 2020; 42:875-884. [DOI: 10.1007/s10529-020-02875-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/04/2023]
|
21
|
Database Mining for Novel Bacterial β-Etherases, Glutathione-Dependent Lignin-Degrading Enzymes. Appl Environ Microbiol 2020; 86:AEM.02026-19. [PMID: 31676477 DOI: 10.1128/aem.02026-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022] Open
Abstract
Lignin is the most abundant aromatic polymer in nature and a promising renewable source for the provision of aromatic platform chemicals and biofuels. β-Etherases are enzymes with a promising potential for application in lignin depolymerization due to their selectivity in the cleavage of β-O-4 aryl ether bonds. However, only a very limited number of these enzymes have been described and characterized so far. Using peptide pattern recognition (PPR) as well as phylogenetic analyses, 96 putatively novel β-etherases have been identified, some even originating from bacteria outside the order Sphingomonadales A set of 13 diverse enzymes was selected for biochemical characterization, and β-etherase activity was confirmed for all of them. Some enzymes displayed up to 3-fold higher activity than previously known β-etherases. Moreover, conserved sequence motifs specific for either LigE- or LigF-type enzymes were deduced from multiple-sequence alignments and the PPR-derived peptides. In combination with structural information available for the β-etherases LigE and LigF, insight into the potential structural and/or functional role of conserved residues within these sequence motifs is provided. Phylogenetic analyses further suggest the presence of additional bacterial enzymes with potential β-etherase activity outside the classical LigE- and LigF-type enzymes as well as the recently described heterodimeric β-etherases.IMPORTANCE The use of biomass as a renewable source and replacement for crude oil for the provision of chemicals and fuels is of major importance for current and future societies. Lignin, the most abundant aromatic polymer in nature, holds promise as a renewable starting material for the generation of required aromatic structures. However, a controlled and selective lignin depolymerization to yield desired aromatic structures is a very challenging task. In this regard, bacterial β-etherases are especially interesting, as they are able to cleave the most abundant bond type in lignin with high selectivity. With this study, we significantly expanded the toolbox of available β-etherases for application in lignin depolymerization and discovered more active as well as diverse enzymes than previously known. Moreover, the identification of further β-etherases by sequence database mining in the future will be facilitated considerably through our deduced etherase-specific sequence motifs.
Collapse
|
22
|
Roy A, Jayaprakash A, Rajeswary T R, Annamalai A, Lakshmi PTV. Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales. Mycology 2020; 11:56-70. [PMID: 32128282 PMCID: PMC7033727 DOI: 10.1080/21501203.2019.1706656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 11/01/2022] Open
Abstract
Fusarium wilt caused by soil borne ascomycetes fungi Fusarium oxysporum which has host-specific forms known as formae speciales (ff. spp.), apparently requires plant cell wall degrading enzymes (PCWDE) for successful invasion. In this study, 12 F. oxysporum ff. spp. were taken for genome-wide annotation and comparative analysis of CAZymes, with an assessment of secretory PCWDE and orthologues identification in the three legumes infecting ff. spp. Further, transcriptomic analysis in two legumes infecting ff. spp. using publically available data was also done. The comparative studies showed Glycoside hydrolase (GH) families to be abundant and Principle Component Analysis (PCA) formed two distinct clusters of ff. spp. based on the CAZymes modules and families. Nearly half of the CAZymes in the legumes infecting ff. spp. coded for signal peptides. The orthologue clusters of secretory CAZymes common in all the three legume infecting ff. spp. mostly belonged to families of AA9, GH28, CE5 and PL1 and the expression analysis revealed the abundant PCWDE were differentially expressed in these legumes infecting ff. spp. Therefore, this study gave an insight into the distribution of CAZymes especially extracellular PCWDE in legumes infecting ff. spp. with further shedding light onto some of the key PCWDE families through differential expression analysis.
Collapse
Affiliation(s)
- Abhijeet Roy
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aiswarya Jayaprakash
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Raja Rajeswary T
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - A. Annamalai
- PG and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, India
| | - PTV Lakshmi
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
23
|
Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization. Appl Environ Microbiol 2019; 85:AEM.01408-19. [PMID: 31540984 PMCID: PMC6856335 DOI: 10.1128/aem.01408-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/14/2019] [Indexed: 11/20/2022] Open
Abstract
The thermophilic biomass-degrader Malbranchea cinnamomea exhibits poor growth on cellulose but excellent growth on hemicelluloses as the sole carbon source. This is surprising considering that its genome encodes eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), enzymes known for their high potential in accelerating cellulose depolymerization. We characterized four of the eight (M. cinnamomea AA9s) McAA9s, namely, McAA9A, McAA9B, McAA9F, and McAA9H, to gain a deeper understanding about their roles in the fungus. The characterized McAA9s were active on hemicelluloses, including xylan, glucomannan, and xyloglucan, and furthermore, in accordance with transcriptomics data, differed in substrate specificity. Of the McAA9s, McAA9H is unique, as it preferentially cleaves residual xylan in phosphoric acid-swollen cellulose (PASC). Moreover, when exposed to cellulose-xylan blends, McAA9H shows a preference for xylan and for releasing (oxidized) xylooligosaccharides. The cellulose dependence of the xylan activity suggests that a flat conformation, with rigidity similar to that of cellulose microfibrils, is a prerequisite for productive interaction between xylan and the catalytic surface of the LPMO. McAA9H showed a similar trend on xyloglucan, underpinning the suggestion that LPMO activity on hemicelluloses strongly depends on the polymers' physicochemical context and conformation. Our results support the notion that LPMO multiplicity in fungal genomes relates to the large variety of copolymeric polysaccharide arrangements occurring in the plant cell wall.IMPORTANCE The Malbranchea cinnamomea LPMOs (McAA9s) showed activity on a broad range of soluble and insoluble substrates, suggesting their involvement in various steps of biomass degradation besides cellulose decomposition. Our results indicate that the fungal AA9 family is more diverse than originally thought and able to degrade almost any kind of plant cell wall polysaccharide. The discovery of an AA9 that preferentially cleaves xylan enhances our understanding of the physiological roles of LPMOs and enables the use of xylan-specific LPMOs in future applications.
Collapse
|
24
|
Mondo SJ, Jiménez DJ, Hector RE, Lipzen A, Yan M, LaButti K, Barry K, van Elsas JD, Grigoriev IV, Nichols NN. Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:229. [PMID: 31572496 PMCID: PMC6757388 DOI: 10.1186/s13068-019-1569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/13/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.
Collapse
Affiliation(s)
- Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521 USA
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102 USA
| | - Nancy N. Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| |
Collapse
|
25
|
Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone. Microorganisms 2019; 7:microorganisms7100375. [PMID: 31547186 PMCID: PMC6843230 DOI: 10.3390/microorganisms7100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Fungi represent a common and diverse part of the microbial communities that associate with plants. They also commonly colonise various plant parts asymptomatically. The molecular mechanisms of these interactions are, however, poorly understood. In this study we use transcriptomic data from Eucalyptus grandis, to demonstrate that RNA-seq data are a neglected source of information to study fungal–host interactions, by exploring the fungal transcripts they inevitably contain. We identified fungal transcripts from E. grandis data based on their sequence dissimilarity to the E. grandis genome and predicted biological functions. Taxonomic classifications identified, amongst other fungi, many well-known pathogenic fungal taxa in the asymptomatic tissue of E. grandis. The comparison of a clone of E. grandis resistant to Chrysoporthe austroafricana with a susceptible clone revealed a significant difference in the number of fungal transcripts, while the number of fungal taxa was not substantially affected. Classifications of transcripts based on their respective biological functions showed that the fungal communities of the two E. grandis clones associate with fundamental biological processes, with some notable differences. To shield the greater host defence machinery in the resistant E. grandis clone, fungi produce more secondary metabolites, whereas the environment for fungi associated with the susceptible E. grandis clone is more conducive for building fungal cellular structures and biomass growth. Secreted proteins included carbohydrate active enzymes that potentially are involved in fungal–plant and fungal–microbe interactions. While plant transcriptome datasets cannot replace the need for designed experiments to probe plant–microbe interactions at a molecular level, they clearly hold potential to add to the understanding of the diversity of plant–microbe interactions.
Collapse
|
26
|
de Gouvêa PF, Gerolamo LE, Bernardi AV, Pereira LMS, Uyemura SA, Dinamarco TM. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis. Protein Pept Lett 2019; 26:377-385. [DOI: 10.2174/0929866526666190228163629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
Lytic Polysaccharide Monooxygenases (LPMOs) are auxiliary accessory
enzymes that act synergistically with cellulases and which are increasingly being used in secondgeneration
bioethanol production from biomasses. Several LPMOs have been identified in various
filamentous fungi, including Aspergillus fumigatus. However, many LPMOs have not been characterized
yet.
Objective:
To report the role of uncharacterized A. fumigatus AfAA9_B LPMO.
Methods:
qRT-PCR analysis was employed to analyze the LPMO gene expression profile in different
carbon sources. The gene encoding an AfAA9_B (Afu4g07850) was cloned into the vector pET-
28a(+), expressed in the E. coli strain RosettaTM (DE3) pLysS, and purified by a Ni2+-nitrilotriacetic
(Ni-NTA) agarose resin. To evaluate the specific LPMO activity, the purified protein peroxidase
activity was assessed. The auxiliary LPMO activity was investigated by the synergistic activity in
Celluclast 1.5L enzymatic cocktail.
Results:
LPMO was highly induced in complex biomass like sugarcane bagasse (SEB), Avicel®
PH-101, and CM-cellulose. The LPMO gene encoded a protein comprising 250 amino acids, without
a CBM domain. After protein purification, the AfAA9_B molecular mass estimated by SDSPAGE
was 35 kDa. The purified protein specific peroxidase activity was 8.33 ± 1.9 U g-1. Upon
addition to Celluclast 1.5L, Avicel® PH-101 and SEB hydrolysis increased by 18% and 22%, respectively.
Conclusion:
A. fumigatus LPMO is a promising candidate to enhance the currently available enzymatic
cocktail and can therefore be used in second-generation ethanol production.
Collapse
Affiliation(s)
- Paula Fagundes de Gouvêa
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Luis Eduardo Gerolamo
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Aline Vianna Bernardi
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Matheus Soares Pereira
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sergio Akira Uyemura
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Taisa Magnani Dinamarco
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
27
|
Corrêa TLR, Júnior AT, Wolf LD, Buckeridge MS, dos Santos LV, Murakami MT. An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:117. [PMID: 31168322 PMCID: PMC6509861 DOI: 10.1186/s13068-019-1449-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/22/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction. They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones. RESULTS The enzyme KpLPMO10A from the actinomycete Kitasatospora papulosa was cloned and overexpressed in Escherichia coli cells in the functional form with native N-terminal. The enzyme can release oxidized species from chitin (C1-type oxidation) and cellulose (C1/C4-type oxidation) similarly to other AA10 members from clade II (subclade A). Interestingly, KpLPMO10A also cleaves isolated xylan (not complexed with cellulose, C4-type oxidation), a rare activity among LPMOs not described yet for the AA10 family. The synergistic effect of KpLPMO10A with Celluclast® and an endo-β-1,4-xylanase also supports this finding. The crystallographic elucidation of KpLPMO10A at 1.6 Å resolution along with extensive structural analyses did not indicate any evident difference with other characterized AA10 LPMOs at the catalytic interface, tempting us to suggest that these enzymes might also be active on xylan or that the ability to attack both crystalline and non-crystalline substrates involves yet obscure mechanisms of substrate recognition and binding. CONCLUSIONS This work expands the spectrum of substrates recognized by AA10 family, opening a new perspective for the understanding of the synergistic effect of these enzymes with canonical glycoside hydrolases to deconstruct ligno(hemi)cellulosic biomass.
Collapse
Affiliation(s)
- Thamy Lívia Ribeiro Corrêa
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Atílio Tomazini Júnior
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Lúcia Daniela Wolf
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | | | - Leandro Vieira dos Santos
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Mario Tyago Murakami
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| |
Collapse
|
28
|
Basotra N, Dhiman SS, Agrawal D, Sani RK, Tsang A, Chadha BS. Characterization of a novel Lytic Polysaccharide Monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydr Res 2019; 478:46-53. [DOI: 10.1016/j.carres.2019.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
|
29
|
Reina R, Kellner H, Hess J, Jehmlich N, García-Romera I, Aranda E, Hofrichter M, Liers C. Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS One 2019; 14:e0212769. [PMID: 30822315 PMCID: PMC6396904 DOI: 10.1371/journal.pone.0212769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
The basidiomycete Chondrostereum purpureum (Silverleaf fungus) is a saprotroph and plant pathogen commercially used for combatting forest "weed" trees in vegetation management. However, little is known about its lignocellulose-degrading capabilities and the enzymatic machinery that is responsible for the degradative potential, and it is not yet clear to which group of wood-rot fungi it actually belongs. Here, we sequenced and analyzed the draft genome of C. purpureum (41.2 Mbp) and performed a quantitative proteomic approach during growth in submerged and solid-state cultures based on soybean meal suspension or containing beech wood supplemented with phenol-rich olive mill residues, respectively. The fungus harbors characteristic lignocellulolytic hydrolases (GH6 and GH7) and oxidoreductases (e.g. laccase, heme peroxidases). High abundance of some of these genes (e.g. 45 laccases, nine GH7) can be explained by gene expansion, e.g. identified for the laccase orthogroup ORTHOMCL11 that exhibits a total of 18 lineage-specific duplications. Other expanded genes families encode for proteins more related to a pathogenic lifestyle (e.g. protease and cytochrome P450s). The fungus responds to the presence of complex growth substrates (lignocellulose, phenolic residues) by the secretion of most of these lignocellulolytic and lignin-modifying enzymes (e.g. alcohol and aryl alcohol oxidases, laccases, GH6, GH7). Based on the genetic and enzymatic constitution, we consider the 'marasmioid' fungus C. purpureum as a 'phytopathogenic' white-rot fungus (WRF) that possesses a complex extracellular enzyme machinery to accomplish efficient lignocellulose degradation during both saprotrophic and phytopathogenic life phases.
Collapse
Affiliation(s)
- Rocio Reina
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Harald Kellner
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Immaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Martin Hofrichter
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Christiane Liers
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| |
Collapse
|
30
|
Lange L, Pilgaard B, Herbst FA, Busk PK, Gleason F, Pedersen AG. Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Liu B, Krishnaswamyreddy S, Muraleedharan MN, Olson Å, Broberg A, Ståhlberg J, Sandgren M. Side-by-side biochemical comparison of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare on their activity against crystalline cellulose and glucomannan. PLoS One 2018; 13:e0203430. [PMID: 30183773 PMCID: PMC6124812 DOI: 10.1371/journal.pone.0203430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Our comparative studies reveal that the two lytic polysaccharide monooxygenases HiLPMO9B and HiLPMO9I from the white-rot conifer pathogen Heterobasidion irregulare display clear difference with respect to their activity against crystalline cellulose and glucomannan. HiLPMO9I produced very little soluble sugar on bacterial microcrystalline cellulose (BMCC). In contrast, HiLPMO9B was much more active against BMCC and even released more soluble sugar than the H. irregulare cellobiohydrolase I, HiCel7A. Furthermore, HiLPMO9B was shown to cooperate with and stimulate the activity of HiCel7A, both when the BMCC was first pretreated with HiLPMO9B, as well as when HiLPMO9B and HiCel7A were added together. No such stimulation was shown by HiLPMO9I. On the other hand, HiLPMO9I was shown to degrade glucomannan, using a C4-oxidizing mechanism, whereas no oxidative cleavage activity of glucomannan was detected for HiLPMO9B. Structural modeling and comparison with other glucomannan-active LPMOs suggest that conserved sugar-interacting residues on the L2, L3 and LC loops may be essential for glucomannan binding, where 4 out of 7 residues are shared by HiLPMO9I, but only one is found in HiLPMO9B. The difference shown between these two H. irregulare LPMOs may reflect distinct biological roles of these enzymes within deconstruction of different plant cell wall polysaccharides during fungal colonization of softwood.
Collapse
Affiliation(s)
- Bing Liu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Madhu Nair Muraleedharan
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
32
|
Marjamaa K, Kruus K. Enzyme biotechnology in degradation and modification of plant cell wall polymers. PHYSIOLOGIA PLANTARUM 2018; 164:106-118. [PMID: 29987848 DOI: 10.1111/ppl.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Lignocelluloses are abundant raw materials for production of fuels, chemicals and materials. The purpose of this paper is to review the enzyme-types and enzyme-technologies studied and applied in the processing of the lignocelluloses into different products. The enzymes here are mostly glycoside hydrolases, esterases and different redox enzymes. Enzymatic hydrolysis of lignocellulosic polysaccharides to platform sugars has been widely studied leading to development of advanced commercial products for this purpose. Restricted hydrolysis or oxidation of cellulosic fibers have been applied in processing of pulps to paper products, nanocelluloses and textile fibers. Oxidation, transglycosylation and derivatization have been utilized in functionalization of fibers, cellulosic surfaces and polysaccharides. Enzymatic polymerization, depolymerization and grafting methods are being developed for lignin valorization.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, Espoo, 02044, Finland
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, Espoo, 02044, Finland
| |
Collapse
|
33
|
Hangasky JA, Iavarone AT, Marletta MA. Reactivity of O 2 versus H 2O 2 with polysaccharide monooxygenases. Proc Natl Acad Sci U S A 2018; 115:4915-4920. [PMID: 29686097 PMCID: PMC5949000 DOI: 10.1073/pnas.1801153115] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on H2O2 Reported here is a detailed analysis of PMO reactivity with H2O2 and O2, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O2 in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize H2O2 (peroxygenase activity) produced from the uncoupled reduction of O2 Both cosubstrates require Cu reduction to Cu(I), but the reaction with H2O2 leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O2 reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O2 reactive intermediate. Moreover, H2O2 does not influence the ability of secretome from Neurospora crassa to degrade Avicel, providing evidence that molecular oxygen is a physiologically relevant cosubstrate for PMOs.
Collapse
Affiliation(s)
- John A Hangasky
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Michael A Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720;
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Liu B, Kognole AA, Wu M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M. Structural and molecular dynamics studies of a C1‐oxidizing lytic polysaccharide monooxygenase from
Heterobasidion irregulare
reveal amino acids important for substrate recognition. FEBS J 2018; 285:2225-2242. [DOI: 10.1111/febs.14472] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Bing Liu
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - Abhishek A. Kognole
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Miao Wu
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology, and Food Science Norwegian University of Life Sciences Ås Norway
| | | | - Seonah Kim
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| | - Maria Dimarogona
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
- Department of Chemical Engineering University of Patras Greece
| | - Christina M. Payne
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
- Directorate of Engineering Division of Chemical, Bioengineering, Environmental, and Transport Systems National Science Foundation Alexandria VA USA
| | - Mats Sandgren
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
35
|
Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Chem Rev 2018; 118:2593-2635. [PMID: 29155571 PMCID: PMC5982588 DOI: 10.1021/acs.chemrev.7b00421] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural carbohydrate polymers such as starch, cellulose, and chitin provide renewable alternatives to fossil fuels as a source for fuels and materials. As such, there is considerable interest in their conversion for industrial purposes, which is evidenced by the established and emerging markets for products derived from these natural polymers. In many cases, this is achieved via industrial processes that use enzymes to break down carbohydrates to monomer sugars. One of the major challenges facing large-scale industrial applications utilizing natural carbohydrate polymers is rooted in the fact that naturally occurring forms of starch, cellulose, and chitin can have tightly packed organizations of polymer chains with low hydration levels, giving rise to crystalline structures that are highly recalcitrant to enzymatic degradation. The topic of this review is oxidative cleavage of carbohydrate polymers by lytic polysaccharide mono-oxygenases (LPMOs). LPMOs are copper-dependent enzymes (EC 1.14.99.53-56) that, with glycoside hydrolases, participate in the degradation of recalcitrant carbohydrate polymers. Their activity and structural underpinnings provide insights into biological mechanisms of polysaccharide degradation.
Collapse
Affiliation(s)
- Katlyn K. Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M. Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thijs Kaper
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Martijn J. Koetsier
- DuPont Industrial Biosciences, Netherlands, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Bradley Kelemen
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| |
Collapse
|
36
|
Bertini L, Breglia R, Lambrughi M, Fantucci P, De Gioia L, Borsari M, Sola M, Bortolotti CA, Bruschi M. Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations. Inorg Chem 2017; 57:86-97. [PMID: 29232119 DOI: 10.1021/acs.inorgchem.7b02005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes that facilitate the degradation of recalcitrant polysaccharides by the oxidative cleavage of glycosidic bonds. They are gaining rapidly increasing attention as key players in biomass conversion, especially for the production of second-generation biofuels. Elucidation of the detailed mechanism of the LPMO reaction is a major step toward the assessment and optimization of LPMO efficacy in industrial biotechnology, paving the way to utilization of sustainable fuel sources. Here, we used density functional theory calculations to study the reaction pathways suggested to date, exploiting a very large active-site model for a fungal AA9 LPMO and using a celloheptaose unit as a substrate mimic. We identify a copper oxyl intermediate as being responsible for H-atom abstraction from the substrate, followed by a rapid, water-assisted hydroxyl rebound, leading to substrate hydroxylation.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Raffaella Breglia
- Department of Earth and Environmental Sciences, University of Milan-Bicocca , Piazza della Scienza 1, 20126 Milan, Italy
| | | | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milan-Bicocca , Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
37
|
Liu B, Olson Å, Wu M, Broberg A, Sandgren M. Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation. PLoS One 2017; 12:e0189479. [PMID: 29228039 PMCID: PMC5724852 DOI: 10.1371/journal.pone.0189479] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 12/05/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMO) are important redox enzymes produced by microorganisms for the degradation of recalcitrant natural polysaccharides. Heterobasidion irregulare is a white-rot phytopathogenic fungus that causes wood decay in conifers. The genome of this fungus encodes 10 putative Auxiliary Activity family 9 (AA9) LPMOs. We describe the first biochemical characterization of H. irregulare LPMOs through heterologous expression of two CBM-containing LPMOs from this fungus (HiLPMO9H, HiLPMO9I) in Pichia pastoris. The oxidization preferences and substrate specificities of these two enzymes were determined. The two LPMOs were shown to cleave different carbohydrate components of plant cell walls. HiLPMO9H was active on cellulose and oxidized the substrate at the C1 carbon of the pyranose ring at β-1,4-glycosidic linkages, whereas HiLPMO9I cleaved cellulose with strict oxidization at the C4 carbon of glucose unit at internal bonds, and also showed activity against glucomannan. We propose that the two LPMOs play different roles in the plant-cell-wall degrading system of H. irregulare for degradation of softwood and that the lignocellulose degradation mediated by this white-rot fungus may require collective efforts from multi-types of LPMOs.
Collapse
Affiliation(s)
- Bing Liu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Miao Wu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
38
|
Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Int J Biol Macromol 2017; 102:771-778. [DOI: 10.1016/j.ijbiomac.2017.04.077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
|
39
|
Meng Q, Fan H, Li Y, Zhang L. Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9611-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Malgas S, Thoresen M, van Dyk JS, Pletschke BI. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzyme Microb Technol 2017; 103:1-11. [DOI: 10.1016/j.enzmictec.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
41
|
Patel S, Rauf A, Meher BR. In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond. Microb Pathog 2017; 110:519-526. [PMID: 28760454 DOI: 10.1016/j.micpath.2017.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Chitin binding domain 3, known by the acronym ChtBD3, is a domain in the enzymes and proteins of several pathogenic virus, bacteria and fungi. As this domain is evolutionarily-conserved in virulence factors of these infectious agents, its detailed investigation is of clinical interest. In this regard, the current in silico study analyzed ChtBD3 domain distribution in bacterial proteins present in publicly-available SMART (simple modular architecture research tool) database. Also, the co-occurring domains of ChtBD3 in the studied proteins were mapped to understand positional rearrangement of the domain and consequent functional diversity. Custom-made scripts were used to interpret the data and to derive patterns. As expected, interesting results were obtained. ChtBD3 domain co-occurred with other critical domains like peptidase, glycol_hydrolase, kinase, hemagglutinin-acting, collagen-binding, among others. The findings are expected to be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Biswa Ranjan Meher
- Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi, 835205, Jharkhand, India
| |
Collapse
|
42
|
Wilding M, Nachtschatt M, Speight R, Scott C. An improved and general streamlined phylogenetic protocol applied to the fatty acid desaturase family. Mol Phylogenet Evol 2017; 115:50-57. [PMID: 28739372 DOI: 10.1016/j.ympev.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Numerous tools to generate phylogenetic estimates are available, but there is no single protocol that will produce an accurate phylogenetic tree for any dataset. Here, we investigated some of those tools, paying particular attention to different alignment algorithms, in order to produce a phylogeny for the integral membrane fatty acid desaturase (FAD) family. Herein, we report a novel streamlined protocol which utilises peptide pattern recognition (PPR). This protocol can theoretically be applied universally to generate accurate multiple sequence alignments and improve downstream phylogenetic analyses. Applied to the desaturases, the protocol generated the first detailed phylogenetic estimates for the family since 2003, which suggested they may have evolved from three functionally distinct desaturases and further, that desaturases evolved first in cyanobacteria. In addition to the phylogenetic outputs, we mapped PPR sequence motifs onto an X-ray protein structure to provide insights into biochemical function and demonstrate the complementarity of PPR and phylogenetics.
Collapse
Affiliation(s)
- Matthew Wilding
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia.
| | - Matthias Nachtschatt
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia; Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Robert Speight
- Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Colin Scott
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiol Mol Biol Rev 2017; 81:81/3/e00015-17. [PMID: 28659491 DOI: 10.1128/mmbr.00015-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.
Collapse
|
44
|
Ezeilo UR, Zakaria II, Huyop F, Wahab RA. Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1330124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
45
|
Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function. BMC Bioinformatics 2017; 18:214. [PMID: 28403817 PMCID: PMC5389127 DOI: 10.1186/s12859-017-1625-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. RESULTS We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. CONCLUSIONS Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.
Collapse
|
46
|
Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils. PLoS One 2017; 12:e0170254. [PMID: 28379953 PMCID: PMC5381763 DOI: 10.1371/journal.pone.0170254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022] Open
Abstract
Aspergillus hancockii sp. nov., classified in Aspergillus subgenus Circumdati section Flavi, was originally isolated from soil in peanut fields near Kumbia, in the South Burnett region of southeast Queensland, Australia, and has since been found occasionally from other substrates and locations in southeast Australia. It is phylogenetically and phenotypically related most closely to A. leporis States and M. Chr., but differs in conidial colour, other minor features and particularly in metabolite profile. When cultivated on rice as an optimal substrate, A. hancockii produced an extensive array of 69 secondary metabolites. Eleven of the 15 most abundant secondary metabolites, constituting 90% of the total area under the curve of the HPLC trace of the crude extract, were novel. The genome of A. hancockii, approximately 40 Mbp, was sequenced and mined for genes encoding carbohydrate degrading enzymes identified the presence of more than 370 genes in 114 gene clusters, demonstrating that A. hancockii has the capacity to degrade cellulose, hemicellulose, lignin, pectin, starch, chitin, cutin and fructan as nutrient sources. Like most Aspergillus species, A. hancockii exhibited a diverse secondary metabolite gene profile, encoding 26 polyketide synthase, 16 nonribosomal peptide synthase and 15 nonribosomal peptide synthase-like enzymes.
Collapse
|
47
|
Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J. Lignocellulases: a review of emerging and developing enzymes, systems, and practices. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0146-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Agger JW, Busk PK, Pilgaard B, Meyer AS, Lange L. A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition. Front Microbiol 2017; 8:309. [PMID: 28293230 PMCID: PMC5329029 DOI: 10.3389/fmicb.2017.00309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Glucuronoyl esterases are a novel type of enzymes believed to catalyze the hydrolysis of ester linkages between lignin and glucuronoxylan in lignocellulosic biomass, linkages known as lignin carbohydrate complexes. These complexes contribute to the recalcitrance of lignocellulose. Glucuronoyl esterases are a part of the microbial machinery for lignocellulose degradation and coupling their role to the occurrence of lignin carbohydrate complexes in biomass is a desired research goal. Glucuronoyl esterases have been assigned to CAZymes family 15 of carbohydrate esterases, but only few examples of characterized enzymes exist and the exact activity is still uncertain. Here peptide pattern recognition is used as a bioinformatic tool to identify and group new CE15 proteins that are likely to have glucuronoyl esterase activity. 1024 CE15-like sequences were drawn from GenBank and grouped into 24 groups. Phylogenetic analysis of these groups made it possible to pinpoint groups of putative fungal and bacterial glucuronoyl esterases and their sequence variation. Moreover, a number of groups included previously undescribed CE15-like sequences that are distinct from the glucuronoyl esterases and may possibly have different esterase activity. Hence, the CE15 family is likely to comprise other enzyme functions than glucuronoyl esterase alone. Gene annotation in a variety of fungal and bacterial microorganisms showed that coprophilic fungi are rich and diverse sources of CE15 proteins. Combined with the lifestyle and habitat of coprophilic fungi, they are predicted to be excellent candidates for finding new glucuronoyl esterase genes.
Collapse
Affiliation(s)
- Jane W Agger
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark Lyngby, Denmark
| | - Peter K Busk
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark Lyngby, Denmark
| | - Bo Pilgaard
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark Lyngby, Denmark
| | - Anne S Meyer
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark Lyngby, Denmark
| | - Lene Lange
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark Lyngby, Denmark
| |
Collapse
|
49
|
Voshol GP, Vijgenboom E, Punt PJ. The discovery of novel LPMO families with a new Hidden Markov model. BMC Res Notes 2017; 10:105. [PMID: 28222763 PMCID: PMC5320794 DOI: 10.1186/s13104-017-2429-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Background Renewable biopolymers, such as cellulose, starch and chitin are highly resistance to enzymatic degradation. Therefore, there is a need to upgrade current degradation processes by including novel enzymes. Lytic polysaccharide mono-oxygenases (LPMOs) can disrupt recalcitrant biopolymers, thereby enhancing hydrolysis by conventional enzymes. However, novel LPMO families are difficult to identify using existing methods. Therefore, we developed a novel profile Hidden Markov model (HMM) and used it to mine genomes of ascomycetous fungi for novel LPMOs. Results We constructed a structural alignment and verified that the alignment was correct. In the alignment we identified several known conserved features, such as the histidine brace and the N/Q/E-X-F/Y motif and previously unidentified conserved proline and glycine residues. These residues are distal from the active site, suggesting a role in structure rather than activity. The multiple protein alignment was subsequently used to build a profile Hidden Markov model. This model was initially tested on manually curated datasets and proved to be both sensitive (no false negatives) and specific (no false positives). In some of the genomes analyzed we identified a yet unknown LPMO family. This new family is mostly confined to the phyla of Ascomycota and Basidiomycota and the class of Oomycota. Genomic clustering indicated that at least some members might be involved in the degradation of β-glucans, while transcriptomic data suggested that others are possibly involved in the degradation of pectin. Conclusions The newly developed profile hidden Markov Model was successfully used to mine fungal genomes for a novel family of LPMOs. However, the model is not limited to bacterial and fungal genomes. This is illustrated by the fact that the model was also able to identify another new LPMO family in Drosophila melanogaster. Furthermore, the Hidden Markov model was used to verify the more distant blast hits from the new fungal family of LPMOs, which belong to the Bivalves, Stony corals and Sea anemones. So this Hidden Markov model (Additional file 3) will help the broader scientific community in identifying other yet unknown LPMOs. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2429-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerben P Voshol
- Molecular Microbiology and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Microbiology and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Peter J Punt
- Molecular Microbiology and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands. .,Dutch DNA Biotech B.V., Utrechtseweg 48, 3703HE, Zeist, The Netherlands.
| |
Collapse
|
50
|
Lange L. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0007-2016. [PMID: 28155810 PMCID: PMC11687429 DOI: 10.1128/microbiolspec.funk-0007-2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.
Collapse
Affiliation(s)
- Lene Lange
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|