1
|
Zhao W, Lin L, Kelly KM, Opsasnick LA, Needham BL, Liu Y, Sen S, Smith JA. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2025; 20:2445447. [PMID: 39825881 DOI: 10.1080/15592294.2024.2445447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes NDUFS5, AK1RIN1, NCF4 and ADSSL1. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.
Collapse
Affiliation(s)
- Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Wang S, Shen X, Chen G, Zhang W, Tan B. Application and development of CRISPR-Cas12a methods for the molecular diagnosis of cancer: A review. Anal Chim Acta 2025; 1341:343603. [PMID: 39880493 DOI: 10.1016/j.aca.2024.343603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Rapid, sensitive, and specific molecular detection methods are crucial for diagnosing, treating and prognosing cancer patients. With advancements in biotechnology, molecular diagnostic technology has garnered significant attention as a fast and accurate method for cancer diagnosis. CRISPR-Cas12a (Cpf1), an important CRISPR-Cas family member, has revolutionized the field of molecular diagnosis since its introduction. CRISPR-Cas technologies are a new generation of molecular tools that are widely used in the detection of pathogens, cancers, and other diseases. Liquid biopsy methods based on CRISPR-Cas12a have demonstrated remarkable success in cancer diagnosis, encompassing the detection of DNA mutations, DNA methylation, tumor-related viruses, and non-nucleic acid molecule identification. This review systematically discusses the developmental history, key technologies, and principles of CRISPR-Cas12a-based molecular diagnostic techniques and their applications in cancer diagnosis. This review has also discussed the future development directions of CRISPR-Cas12a, aiming for it to become a reliable new technology that can be used in clinical application.
Collapse
Affiliation(s)
- Sidan Wang
- Nanchang University Queen Mary School, China
| | - Xiaoyu Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Guanxiao Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Buzhen Tan
- Department of Obstetrics and Gynecology the Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
3
|
Frazer L, Chu T, Shaw P, Boufford C, Naief LT, Ednie M, Ritzert L, Green CP, Good M, Peters D. Detection of an intestinal cell DNA methylation signature in blood samples from neonates with necrotizing enterocolitis. Epigenomics 2025:1-11. [PMID: 39894787 DOI: 10.1080/17501911.2025.2459552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an often fatal intestinal injury that primarily affects preterm infants for which screening tools are lacking. We performed a pilot analysis of DNA methylation in peripheral blood samples from preterm infants with and without NEC to identify potential NEC biomarkers. METHODS Peripheral blood samples were collected from infants at NEC diagnosis (n = 15) or from preterm controls (n = 13). Targeted genome-wide analysis was performed to identify DNA methylation differences between cases and controls. RESULTS Broad differences between NEC cases and controls were identified in distinct genomic elements. Differences between surgical NEC cases and controls were frequently associated with inflammation. Deconvolution analysis to identify cell type-specific DNA signatures revealed increases in ileal, vascular endothelial, and cardiomyocyte cell type proportions and decreases in colonic and neuronal cell type proportions in blood from NEC cases relative to controls. CONCLUSIONS We identified marked differences in DNA methylation of peripheral blood samples from preterm infants with and without NEC. Increased ileal cell-specific methylation signatures in the blood of infants with NEC relative to controls, with a marked increase seen in surgical cases, provides rationale for further analysis of intestinal DNA methylation signatures as biomarkers of NEC.
Collapse
Affiliation(s)
- Lauren Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camille Boufford
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Tavares Naief
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michaela Ednie
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laken Ritzert
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin P Green
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Peters
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Zhang Z, Zhao M, Zhou Z, Ren X, He Y, Shen T, Zeng H, Li K, Zhang Y. Identification and validation of matrix metalloproteinase hub genes as potential biomarkers for Skin Cutaneous Melanoma. Front Oncol 2024; 14:1471267. [PMID: 39493455 PMCID: PMC11527786 DOI: 10.3389/fonc.2024.1471267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives The role of matrix metalloproteinases (MMPs) in Skin Cutaneous Melanoma (SKCM) development and progression is unclear so far. This comprehensive study delved into the intricate role of MMPs in SKCM development and progression. Methods RT-qPCR, bisulfite sequencing, and WES analyzed MMP gene expression, promoter methylation, and mutations in SKCM cell lines. TCGA datasets validated findings. DrugBank and molecular docking identified potential regulatory drugs, and cell line experiments confirmed the role of key MMP genes in tumorigenesis. Results Our findings unveiled significant up-regulation of MMP9, MMP12, MMP14, and MMP16, coupled with hypomethylation of their promoters in SKCM cell lines, implicating their involvement in disease progression. Mutational analysis highlighted a low frequency of mutations in these genes, indicating less involvement of mutations in the expression regulatory mechanisms. Prognostic assessments showcased a significant correlation between elevated expression of these genes and poor overall survival (OS) in SKCM patients. Additionally, functional experiments involving gene silencing revealed a potential impact on cellular proliferation, further emphasizing the significance of MMP9, MMP12, MMP14, and MMP16 in SKCM pathobiology. Conclusion This study identifies Estradiol and Calcitriol as potential drugs for modulating MMP expression in SKCM, highlighting MMP9, MMP12, MMP14, and MMP16 as key diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zhongyi Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei Zhao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodan Ren
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunliang He
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongping Zeng
- Department of Combined Chinese and Western Pulmonary Diseases, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Kai Li
- Sichuan Institute of Tourism College of Great Health Industry, Chengdu, Sichuan, China
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Lavoro A, Falzone L, Gattuso G, Conti GN, Caltabiano R, Madonna G, Capone M, McCubrey JA, Ascierto PA, Libra M, Candido S. Identification of SLC22A17 DNA methylation hotspot as a potential biomarker in cutaneous melanoma. J Transl Med 2024; 22:887. [PMID: 39358721 PMCID: PMC11445995 DOI: 10.1186/s12967-024-05622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cancer onset and progression are driven by genetic and epigenetic alterations leading to oncogene activation and the silencing of tumor suppressor genes. Among epigenetic mechanisms, DNA methylation (methDNA) is gaining growing interest in cancer. Promoter hypomethylation is associated with oncogene activation while intragenic methDNA can be involved in transcriptional elongation, alternative spicing, and the activation of cryptic start sites. Several genes involved in the modulation of the tumor microenvironment are regulated by methDNA, including the Solute Carrier Family 22 Member 17 (SLC22A17), which is involved in iron trafficking and extracellular matrix remodeling cooperating with the Gelatinase-Associated Lipocalin (NGAL) ligand. However, the exact role of intragenic methDNA in cancer has not been fully investigated. Therefore, the aim of the present study is to explore the role of methDNA in the regulation of SLC22A17 in cutaneous melanoma (CM), used as a tumor model. METHODS Correlation and differential analyses between SLC22A17 expression and methDNA were performed using the data contained in The Cancer Genome Atlas and Gene Expression Omnibus databases. Functional studies on melanoma cell lines treated with 5-Azacytidine (5-Aza) were conducted to assess the correlation between methDNA and SLC22A17 expression. A validation study on the diagnostic potential of the in silico-identified SLC22A17 methDNA hotspot was finally performed by analyzing tissue samples obtained from CM patients and healthy controls. RESULTS The computational analyses revealed that SLC22A17 was significantly downregulated in CM, and its expression was related to promoter hypomethylation and intragenic hypermethylation. Moreover, SLC22A17 overexpression and hypermethylation of two intragenic methDNA hotspots were associated with a better clinical outcome in CM patients. The correlation between SLC22A17 methDNA and expression was confirmed in 5-Aza-treated cells. In agreement with in silico analyses, the SLC22A17 promoter methylation hotspot showed higher methDNA levels in CM samples compared to nevi. In addition, the methDNA levels of this hotspot were positively correlated with advanced CM. CONCLUSIONS The SLC22A17 methDNA hotspot could represent a promising biomarker for CM, highlighting the regulatory role of methDNA on SLC22A17 expression. These results pave the way for the identification of novel epigenetic biomarkers and therapeutic targets for the management of CM patients.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, I-95123, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, I-95123, Italy.
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, I-95123, Italy
| | - Giuseppe N Conti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, I-95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, I-95123, Italy
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, I-80131, Italy
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, I-80131, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Paolo A Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, I-80131, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, I-95123, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, I- 95123, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, I-95123, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, I- 95123, Italy
| |
Collapse
|
6
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
7
|
Lukyanchuk A, Muraki N, Kawai T, Sato T, Hata K, Ito T, Tajima A. Long-term exposure to diesel exhaust particles induces concordant changes in DNA methylation and transcriptome in human adenocarcinoma alveolar basal epithelial cells. Epigenetics Chromatin 2024; 17:24. [PMID: 39103936 DOI: 10.1186/s13072-024-00549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant. RESULTS DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites. CONCLUSIONS To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.
Collapse
Affiliation(s)
- Alexandra Lukyanchuk
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Krasnoyarsk State Medical University Named After Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Naomi Muraki
- Health Effects Research Group, Environment Research Division, Japan Automobile Research Institute, Tsukuba, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuyoshi Ito
- Health Effects Research Group, Environment Research Division, Japan Automobile Research Institute, Tsukuba, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| |
Collapse
|
8
|
Kolli RT, Glenn TC, Bringolf RB, Henderson M, Cummings BS, Kenneke JF. Changes in CpG Methylation of the Vitellogenin 1 Promoter in Adult Male Zebrafish after Exposure to 17α-Ethynylestradiol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1547-1556. [PMID: 38785270 DOI: 10.1002/etc.5879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
Numerous pharmaceutical and industrial chemicals are classified as endocrine-disrupting chemicals (EDCs) that interfere with hormonal homeostasis, leading to developmental disorders and other pathologies. The synthetic estrogen 17α-ethynylestradiol (EE2) is used in oral contraceptives and other hormone therapies. EE2 and other estrogens are inadvertently introduced into aquatic environments through municipal wastewater and agricultural effluents. Exposure of male fish to estrogens increases expression of the egg yolk precursor protein vitellogenin (Vtg), which is used as a molecular marker of exposure to estrogenic EDCs. The mechanisms behind Vtg induction are not fully known, and we hypothesized that it is regulated via DNA methylation. Adult zebrafish were exposed to either dimethyl sulfoxide or 20 ng/L EE2 for 14 days. Messenger RNA (mRNA) expression and DNA methylation were assessed in male zebrafish livers at 0, 0.25, 0.5, 1, 4, 7, and 14 days of exposure; and those of females were assessed at 13 days (n ≥ 4/group/time point). To test the persistence of any changes, we included a recovery group that received EE2 for 7 days and did not receive any for the following 7 days, in the total 14-day study. Methylation of DNA at the vtg1 promoter was assessed with targeted gene bisulfite sequencing in livers of adult male and female zebrafish. A significant increase in vtg1 mRNA was observed in the EE2-exposed male fish as early as 6 h. Interestingly, DNA methylation changes were observed at 4 days. Decreases in the overall methylation of the vtg1 promoter in exposed males resulted in levels comparable to those in female controls, suggesting feminization. Importantly, DNA methylation levels in males remained significantly impacted after 7 days post-EE2 removal, unlike mRNA levels. These data identify an epigenetic mark of feminization that may serve as an indicator of not only estrogenic exposure but also previous exposure to EE2. Environ Toxicol Chem 2024;43:1547-1556. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Ramya T Kolli
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
- Student Services Authority, Athens, Georgia, USA
| | - Travis C Glenn
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
- Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Robert B Bringolf
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, Georgia
| | - Brian S Cummings
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
- Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - John F Kenneke
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Athens, Georgia
| |
Collapse
|
9
|
Achilla C, Chorti A, Papavramidis T, Angelis L, Chatzikyriakidou A. Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition. Int J Mol Sci 2024; 25:7161. [PMID: 39000267 PMCID: PMC11241224 DOI: 10.3390/ijms25137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid malignancy with an increased female incidence ratio. The specific traits of X chromosome inheritance may be implicated in gender differences of PTC predisposition. The aim of this study was to investigate the association of two X-linked genes, Forkhead Box P3 (FOXP3) and Protein Phosphatase 1 Regulatory Subunit 3F (PPP1R3F), with PTC predisposition and gender disparity. One hundred thirty-six patients with PTC and an equal number of matched healthy volunteers were enrolled in the study. Genotyping for rs3761548 (FOXP3) and rs5953283 (PPP1R3F) was performed using polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP). The methylation status of FOXP3 was assessed using the combined bisulfite restriction analysis (COBRA) method. The SPSS software was used for statistical analyses. Gender stratification analysis revealed that the CA and AA genotypes and the A allele of FOXP3 rs3761548 variant are associated with PTC predisposition only in females. Moreover, different methylation status was observed up to the promoter locus of FOXP3 between PTC female patients, carrying the CA and CC genotype, and controls. Both revealed associations may explain the higher PTC incidence in females through reducing FOXP3 expression as reported in immune related blood cells.
Collapse
Affiliation(s)
- Charoula Achilla
- Laboratory of Medical Biology and Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Chorti
- First Propedeutic Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodosios Papavramidis
- First Propedeutic Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology and Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Cordani M, Dando I, Ambrosini G, González-Menéndez P. Signaling, cancer cell plasticity, and intratumor heterogeneity. Cell Commun Signal 2024; 22:255. [PMID: 38702718 PMCID: PMC11067149 DOI: 10.1186/s12964-024-01643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024] Open
Abstract
Cancer's complexity is in part due to the presence of intratumor heterogeneity and the dynamic nature of cancer cell plasticity, which create substantial obstacles in effective cancer management. Variability within a tumor arises from the existence of diverse populations of cancer cells, impacting the progression, spread, and resistance to treatments. At the core of this variability is the concept of cellular plasticity - the intrinsic ability of cancer cells to alter their molecular and cellular identity in reaction to environmental and genetic changes. This adaptability is a cornerstone of cancer's persistence and progression, making it a formidable target for treatments. Emerging studies have emphasized the critical role of such plasticity in fostering tumor diversity, which in turn influences the course of the disease and the effectiveness of therapeutic strategies. The transformative nature of cancer involves a network of signal transduction pathways, notably those that drive the epithelial-to-mesenchymal transition and metabolic remodeling, shaping the evolutionary path of cancer cells. Despite advancements, our understanding of the precise molecular machinations and signaling networks driving these changes is still evolving, underscoring the necessity for further research. This editorial presents a series entitled "Signaling Cancer Cell Plasticity and Intratumor Heterogeneity" in Cell Communication and Signaling, dedicated to unraveling these complex processes and proposing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, 37134, Italy.
| | - Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, 37134, Italy.
| | - Pedro González-Menéndez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, Oviedo, 33006, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, 33006, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Oviedo, 33011, Spain.
| |
Collapse
|
11
|
Lee MK, Azizgolshani N, Zhang Z, Perreard L, Kolling FW, Nguyen LN, Zanazzi GJ, Salas LA, Christensen BC. Associations in cell type-specific hydroxymethylation and transcriptional alterations of pediatric central nervous system tumors. Nat Commun 2024; 15:3635. [PMID: 38688903 PMCID: PMC11061294 DOI: 10.1038/s41467-024-47943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors, we utilize a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identify a preponderance differential Cytosine-phosphate-Guanine site hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like histone deacetylase 4 and insulin-like growth factor 1 receptor, are associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric central nervous system tumors.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Laurent Perreard
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lananh N Nguyen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - George J Zanazzi
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
12
|
Nazari A, Ghasemi T, Khalaj-Kondori M, Fathi R. Promoter of lncRNA MORT is aberrantly methylated in colorectal cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:111-123. [PMID: 38619194 DOI: 10.1080/15257770.2024.2328732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
Aberrant DNA methylation plays essential roles in the colorectal cancer (CRC) carcinogenesis and has been demonstrated as a promising marker for cancer early detection. In this project, methylation status of the MORT promoter was studied in CRC and their marginal tissues using qMSP assay. Furthermore, we investigated the molecular function of MORT in CRC progression using computational analysis. The results showed a high methylation level of MORT promoter in CRC tissues. By in silico analysis, we found that MORT downregulation could promote the proliferation of CRC cells via sponging of has-miR-574-5p and has-miR-31-5p, and alteration of their targets expression pattern such as MYOCD and FOXP2. In conclusion, based on our results, promoter hypermethylation of MORT might be considered as a potential biomarker for CRC detection.
Collapse
Affiliation(s)
- Aylar Nazari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ramin Fathi
- Department of Genetics, Molecular Cell Group, Faculty of Basic Science, Islamic Azad University of Ahar, Ahar, Iran
| |
Collapse
|
13
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
14
|
Hameed H, Faheem S, Zaman M, Khan MA, Ghumman SA, Sarwar HS, Mahmood A. Multiomics approaches in cancer. BIOLOGICAL INSIGHTS OF MULTI-OMICS TECHNOLOGIES IN HUMAN DISEASES 2024:53-72. [DOI: 10.1016/b978-0-443-23971-7.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Huang S, Chang S, Liao T, Yang M. Detection and clinical significance of CEACAM5 methylation in colorectal cancer patients. Cancer Sci 2024; 115:270-282. [PMID: 37942534 PMCID: PMC10823287 DOI: 10.1111/cas.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Colorectal cancer (CRC) is a globally common cancer, and the serum carcinoembryonic antigen (sCEA) is widely applied as a diagnostic and prognostic tumor marker in CRC. This study aimed to elucidate the mechanism of CEA expression and corresponding clinical features to improve prognostic assessments. In CRC cells, hypomethylation of the CEACAM5 promoter enhanced CEA expression in HCT116 and HT29 cells with 5-aza-2'-deoxycytidine (5-Aza-dC) treatment. Our clinical data indicated that 64.7% (101/156) of CRC patients had an sCEA level above the normal range, and 76.2% (77/101) of those patients showed a lower average CpG methylation level of the CEACAM5 promoter. The methylation analysis showed that both CRC cell lines and patient samples shared the same critical methylation CpG regions at -200 to -500 and -1000 to -1400 bp of the CEACAM5 promoter. Patients with hypermethylation of the CEACAM5 promoter showed features of a BRAF mutation, TGFB2 mutation, microsatellite instability-high, and preference for right-sided colorectal cancer and peritoneal seeding presentation that had a similar clinical character to the consensus molecular subtype 1 (CMS1) of colorectal cancer. Additionally, hypermethylation of the CEACAM5 promoter combined with evaluated sCEA demonstrated the worst survival among the patients. Therefore, the methylation status of the CEACAM5 promoter also served as an effective biomarker for assessing disease prognosis. Results indicated that DNA methylation is a major regulatory mechanism for CEA expression in colorectal cancer. Moreover, our data also highlighted that patients in a subgroup who escaped from inactivation by DNA methylation had distinct clinical and pathological features and the worst survival.
Collapse
Affiliation(s)
- Sheng‐Chieh Huang
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Colorectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
- Faculty of Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Shih‐Ching Chang
- Division of Colorectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
- Faculty of Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tsai‐Tsen Liao
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
- Cancer Research CenterTaipei Medical University HospitalTaipeiTaiwan
| | - Muh‐Hwa Yang
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Cancer and Immunology Research CenterNational Yang Ming Chiao UniversityTaipeiTaiwan
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| |
Collapse
|
16
|
Wang Y, Gao X, Yang Z, Yan X, He X, Guo T, Zhao S, Zhao H, Chen ZJ. Deciphering the DNA methylome in women with PCOS diagnosed using the new international evidence-based guidelines. Hum Reprod 2023; 38:ii69-ii79. [PMID: 37982419 DOI: 10.1093/humrep/dead191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/16/2023] [Indexed: 11/21/2023] Open
Abstract
STUDY QUESTION Is there any methylome alteration in women with PCOS who were diagnosed using the new international evidence-based guidelines? SUMMARY ANSWER A total of 264 differentially methylated probes (DMPs) and 53 differentially methylated regions (DMRs) were identified in patients with PCOS and healthy controls. WHAT IS KNOWN ALREADY PCOS is a common endocrine disorder among women of reproductive age and polycystic ovarian morphology (PCOM) is one of the main features of the disease. Owing to the availability of more sensitive ultrasound machines, the traditional diagnosis of PCOM according to the Rotterdam criteria (≥12 antral follicles per ovary) is currently debated as there is a risk of overdiagnosis. The new international evidence-based guidelines set the threshold for PCOM as ≥20 antral follicles per ovary when using endovaginal ultrasound transducers with a frequency bandwidth that includes 8 MHz. However, current DNA methylation studies in PCOS are still based on the Rotterdam criteria. This study aimed to explore aberrant DNA methylation in patients diagnosed with PCOS according to the new evidence-based guidelines. STUDY DESIGN, SIZE, DURATION This cross-sectional case-control study included 34 PCOS cases diagnosed using new international evidence-based guidelines and 36 controls. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 70 women, including 34 PCOS cases and 36 controls, were recruited. DNA extracted from whole blood samples of participants were profiled using array technology. Data quality control, preprocessing, annotation, and statistical analyses were performed. Least absolute shrinkage and selection operator (LASSO) regression were used to build a PCOS diagnosis model with DNA methylation sites. MAIN RESULTS AND THE ROLE OF CHANCE We identified 264 DMPs between PCOS cases and controls, which were mainly located in intergenic regions or gene bodies of the genome, CpG open sea sites, and heterochromatin of functional elements. Pathway enrichment analysis showed that DMPs were significantly enriched in biological processes involved in triglyceride regulation. Three of these DMPs overlapped with the PCOS susceptibility genes thyroid adenoma-associated protein (THADA), aminopeptidase O (AOPEP), and tripartite motif family-like protein 2 (TRIML2). Fifty-three DMRs were identified and their annotated genes were largely enriched in allograft rejection, thyroid hormone production, and peripheral downstream signaling effects. Two DMRs were closely related to the PCOS susceptibility genes, potassium voltage-gated channel subfamily A member 4 (KCNA4) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1). Finally, based on LASSO regression, we built a methylation marker model with high accuracy for PCOS diagnosis (AUC=0.952). LIMITATIONS, REASONS FOR CAUTION The study cohort was single-center and the sample size was relatively limited. Further analyses with a larger number of participants are required. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to identify DNA methylation alterations in women with PCOS diagnosed using the new international evidence-based guideline, and it provided new molecular insight into the application of the new guidelines. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2021YFC2700400), Basic Science Center Program of NSFC (31988101), CAMS Innovation Fund for Medical Sciences (2021-I2M-5-001), National Natural Science Foundation of China (32370916, 82071606, 82101707, 82192874, and 31871509), Shandong Provincial Key Research and Development Program (2020ZLYS02), Taishan Scholars Program of Shandong Province (ts20190988), and Fundamental Research Funds of Shandong University. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yuteng Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xueying Gao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Yang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xueqi Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xinmiao He
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Błoch M, Gasperowicz P, Gerus S, Rasiewicz K, Lebioda A, Skiba P, Płoski R, Patkowski D, Karpiński P, Śmigiel R. Epigenetic Findings in Twins with Esophageal Atresia. Genes (Basel) 2023; 14:1822. [PMID: 37761962 PMCID: PMC10531363 DOI: 10.3390/genes14091822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Esophageal atresia (EA) is the most common malformation of the upper gastrointestinal tract. The estimated incidence of EA is 1 in 3500 births. EA is more frequently observed in boys and in twins. The exact cause of isolated EA remains unknown; a multifactorial etiology, including epigenetic gene expression modifications, is considered. The study included six pairs of twins (three pairs of monozygotic twins and three pairs of dizygotic twins) in which one child was born with EA as an isolated defect, while the other twin was healthy. DNA samples were obtained from the blood and esophageal tissue of the child with EA as well as from the blood of the healthy twin. The reduced representation bisulfite sequencing (RRBS) technique was employed for a whole-genome methylation analysis. The analyses focused on comparing the CpG island methylation profiles between patients with EA and their healthy siblings. Hypermethylation in the promoters of 219 genes and hypomethylation in the promoters of 78 genes were observed. A pathway enrichment analysis revealed the statistically significant differences in methylation profile of 10 hypermethylated genes in the Rho GTPase pathway, previously undescribed in the field of EA (ARHGAP36, ARHGAP4, ARHGAP6, ARHGEF6, ARHGEF9, FGD1, GDI1, MCF2, OCRL, and STARD8).
Collapse
Affiliation(s)
- Michal Błoch
- Department of Family and Pediatric Nursing, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, 04-768 Warsaw, Poland
| | - Sylwester Gerus
- Department of Pediatric Surgery and Urology, Medical University of Wroclaw, 51-618 Wroclaw, Poland; (S.G.)
| | - Katarzyna Rasiewicz
- Department of Pediatric Surgery and Urology, Medical University of Wroclaw, 51-618 Wroclaw, Poland; (S.G.)
| | - Arleta Lebioda
- Division of Molecular Techniques, Department of Forensic Medicine, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Pawel Skiba
- Department of Genetics, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Rafal Płoski
- Department of Medical Genetics, Medical University of Warsaw, 04-768 Warsaw, Poland
| | - Dariusz Patkowski
- Department of Pediatric Surgery and Urology, Medical University of Wroclaw, 51-618 Wroclaw, Poland; (S.G.)
| | - Pawel Karpiński
- Department of Genetics, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Medical University of Wroclaw, 51-618 Wroclaw, Poland
| |
Collapse
|
18
|
Itai Y, Rappoport N, Shamir R. Integration of gene expression and DNA methylation data across different experiments. Nucleic Acids Res 2023; 51:7762-7776. [PMID: 37395437 PMCID: PMC10450176 DOI: 10.1093/nar/gkad566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Integrative analysis of multi-omic datasets has proven to be extremely valuable in cancer research and precision medicine. However, obtaining multimodal data from the same samples is often difficult. Integrating multiple datasets of different omics remains a challenge, with only a few available algorithms developed to solve it. Here, we present INTEND (IntegratioN of Transcriptomic and EpigeNomic Data), a novel algorithm for integrating gene expression and DNA methylation datasets covering disjoint sets of samples. To enable integration, INTEND learns a predictive model between the two omics by training on multi-omic data measured on the same set of samples. In comprehensive testing on 11 TCGA (The Cancer Genome Atlas) cancer datasets spanning 4329 patients, INTEND achieves significantly superior results compared with four state-of-the-art integration algorithms. We also demonstrate INTEND's ability to uncover connections between DNA methylation and the regulation of gene expression in the joint analysis of two lung adenocarcinoma single-omic datasets from different sources. INTEND's data-driven approach makes it a valuable multi-omic data integration tool. The code for INTEND is available at https://github.com/Shamir-Lab/INTEND.
Collapse
Affiliation(s)
- Yonatan Itai
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nimrod Rappoport
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Gao X, Bu H, Ge J, Gao X, Wang Y, Zhang Z, Wang L. A Comprehensive Analysis of the Prognostic, Immunological and Diagnostic Role of CCNF in Pan-cancer. J Cancer 2023; 14:2431-2442. [PMID: 37670965 PMCID: PMC10475360 DOI: 10.7150/jca.86597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Cyclin F (CCNF) represents a pivotal constituent within the family of cell cycle proteins, which also belongs to the F-box protein family and acts as a critical regulatory factor in cell cycle transition. Its heightened expression has been consistently identified across various cancer types, including breast, pancreatic, and colorectal cancer. Nonetheless, a comprehensive exploration of CCNF's involvement in pan-cancer remains lacking. Methods: This study collected transcriptomic data and clinical information from several databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and BioGPS detabase. Employing bioinformatics methods, we investigated the potential oncogenic role of CCNF, utilizing various databases such as cBioPortal, Human Protein Atlas (HPA), TIMER2, UALCAN, GEPIA, GSCALite, and CTD detabase. These analyses focused on exploring CCNF expression, prognosis, gene mutations, immune cell infiltration, DNA methylation levels, and targeted chemical drugs across different tumor types. Additionally, we obtained CCNF-related genes from GeneMANIA and GEPIA databases and conducted GO and KEGG enrichment analyses to gain deeper insights into the biological processes associated with CCNF. Furthermore, we validated the differential expression of CCNF in normal human breast cancer and breast cancer cell lines using experimental verification. Results: CCNF exhibited upregulation in the majority of cancer types, demonstrating early diagnostic potential in 15 cancers and prognostic implications for adverse outcomes across numerous malignancies. Furthermore, CCNF was found to be linked with markers of the tumor immune microenvironment in various cancers. Additionally, CCNF expression influenced genetic alterations in pan-cancer. Enrichment analysis revealed that CCNF primarily participates in crucial biological pathways such as the cell cycle, p53 signaling pathway, and cellular senescence pathways. RT-qpcr and WB assays further confirmed that CCNF expression was higher in human cancer cell lines than in normal cell lines. Conclusion: The underlying role and mechanism of CCNF in pan-cancer were elucidated through comprehensive bioinformatics analysis and experimental validation. CCNF holds promise as an invaluable early detection indicator and tumor biomarker, offering potential targets for tumor treatment and prevention.
Collapse
Affiliation(s)
- Xiaofeng Gao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Huitong Bu
- College of Biology, Hunan University, Hunan, Changsha, 410012, PR China
| | - Juanjuan Ge
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Xuzheng Gao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Ying Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Zhenwang Zhang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| | - Long Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- Medicine Research Institute /Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, PR China
| |
Collapse
|
20
|
Tram VTN, Khoa Ta HD, Anuraga G, Dung PVT, Xuan DTM, Dey S, Wang CY, Liu YN. Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. Int J Mol Sci 2023; 24:11930. [PMID: 37569304 PMCID: PMC10418609 DOI: 10.3390/ijms241511930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men, yet its pathogenic pathways remain poorly understood. Transcriptomics and high-throughput sequencing can help uncover cancer diagnostic targets and understand biological circuits. Using prostate adenocarcinoma (PRAD) datasets of various web-based applications (GEPIA, UALCAN, cBioPortal, SR Plot, hTFtarget, Genome Browser, and MetaCore), we found that upregulated dysbindin domain-containing 1 (DBNDD1) expression in primary prostate tumors was strongly correlated with pathways involving the cell cycle, mitotic in KEGG, WIKI, and REACTOME database, and transcription factor-binding sites with the DBNDD1 gene in prostate samples. DBNDD1 gene expression was influenced by sample type, cancer stage, and promoter methylation levels of different cancers, such as PRAD, liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). Regulation of glycogen synthase kinase (GSK)-3β in bipolar disorder and ATP/ITP/GTP/XTP/TTP/CTP/UTP metabolic pathways was closely correlated with the DBNDD1 gene and its co-expressed genes in PCa. DBNDD1 gene expression was positively associated with immune infiltration of B cells, Myeloid-derived suppressor cell (MDSC), M2 macrophages, andneutrophil, whereas negatively correlated with CD8+ T cells, T follicular helper cells, M1 macrophages, and NK cells in PCa. These findings suggest that DBNDD1 may serve as a viable prognostic marker not only for early-stage PCa but also for immunotherapies.
Collapse
Affiliation(s)
- Van Thi Ngoc Tram
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Laboratory, University Medical Center Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
21
|
Xie J, Herr S, Ma D, Wu S, Zhao H, Sun S, Ma Z, Chan MYL, Li K, Yang Y, Huang F, Shi R, Yuan C. Acute Transcriptomic and Epigenetic Alterations at T12 After Rat T10 Spinal Cord Contusive Injury. Mol Neurobiol 2023; 60:2937-2953. [PMID: 36750527 DOI: 10.1007/s12035-023-03250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Spinal cord injury is a severely debilitating condition affecting a significant population in the USA. Spinal cord injury patients often have increased risk of developing persistent neuropathic pain and other neurodegenerative conditions beyond the primary lesion center later in their life. The molecular mechanism conferring to the "latent" damages at distal tissues, however, remains elusive. Here, we studied molecular changes conferring abnormal functionality at distal spinal cord (T12) beyond the lesion center (T10) by combining next-generation sequencing (RNA- and bisulfite sequencing), super-resolution microscopy, and immunofluorescence staining at 7 days post injury. We observed significant transcriptomic changes primarily enriched in neuroinflammation and synaptogenesis associated pathways. Transcription factors (TFs) that regulate neurogenesis and neuron plasticity, including Egr1, Klf4, and Myc, are significantly upregulated. Along with global changes in chromatin arrangements and DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), bisulfite sequencing further reveals the involvement of DNA methylation changes in regulating cytokine, growth factor, and ion channel expression. Collectively, our results pave the way towards understanding transcriptomic and epigenomic mechanism in conferring long-term disease risks at distal tissues away from the primary lesion center and shed light on potential molecular targets that govern the regulatory mechanism at distal spinal cord tissues.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Seth Herr
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Donghan Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Siyuan Sun
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Matthew Yan-Lok Chan
- Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Katherine Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Fang Huang
- Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Ben Guebila M, Wang T, Lopes-Ramos CM, Fanfani V, Weighill D, Burkholz R, Schlauch D, Paulson JN, Altenbuchinger M, Shutta KH, Sonawane AR, Lim J, Calderer G, van IJzendoorn DGP, Morgan D, Marin A, Chen CY, Song Q, Saha E, DeMeo DL, Padi M, Platig J, Kuijjer ML, Glass K, Quackenbush J. The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks. Genome Biol 2023; 24:45. [PMID: 36894939 PMCID: PMC9999668 DOI: 10.1186/s13059-023-02877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.
Collapse
Affiliation(s)
- Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Des Weighill
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebekka Burkholz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
| | - Daniel Schlauch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Genospace, LLC, Boston, MA, USA
| | - Joseph N Paulson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michael Altenbuchinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine H Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhijeet R Sonawane
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - James Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- Present Address: Monoceros Biosystems, LLC, San Diego, CA, USA
| | - Genis Calderer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - David G P van IJzendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Present Address: Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Daniel Morgan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: School of Biomedical Sciences, Hong Kong University, Pokfulam, Hong Kong
| | | | - Cho-Yi Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Present Address: Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Qi Song
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marieke L Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University, Leiden, The Netherlands
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
23
|
Lee MK, Azizgolshani N, Zhang Z, Perreard L, Kolling FW, Nguyen LN, Zanazzi GJ, Salas LA, Christensen BC. Hydroxymethylation alterations in progenitor-like cell types of pediatric central nervous system tumors are associated with cell type-specific transcriptional changes. RESEARCH SQUARE 2023:rs.3.rs-2517758. [PMID: 36909536 PMCID: PMC10002842 DOI: 10.21203/rs.3.rs-2517758/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors we utilized a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identified a preponderance differential CpG hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like HDAC4 and IGF1R, were associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric CNS tumors.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Cardiothoracic Surgery, Columbia University Medical Center, New York, NY, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Laurent Perreard
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lananh N Nguyen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - George J Zanazzi
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
24
|
Abstract
There is no evidence showing that the expression of procollagen C-endopeptidase enhancer (PCOLCE) is associated with human tumors, and pan-cancer analysis is not available. Based on public databases such as the cancer genome atlas, we investigated the potential role of PCOLCE expression in 33 different human tumors. PCOLCE expression in 11 tumors was significantly correlated with tumor prognosis and was a prognostic predictor for pancreatic adenocarcinoma, thymoma and CES. We also found that PCOLCE expression correlated with the immune microenvironment of tumors and the level of cancer-associated fibroblast infiltration. PCOLCE is a potential predictor of small molecule targeted drugs and immune checkpoint inhibitors. Finally, we found by enrichment analysis that PCOLCE localizes to extracellular structures and the extracellular matrix and exerts substantial effects on tumors through the PI3K-Akt and AGE-RAGE signaling pathways. We have a preliminary and relatively comprehensive understanding of the role of PCOLCE in various tumors.
Collapse
Affiliation(s)
- Hui Gao
- Department of Breast Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, PR China
| | - Qiuyun Li
- Department of Breast Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, PR China
- * Correspondence: Qiuyun Li, Department of Breast Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530000, PR China (e-mail: )
| |
Collapse
|
25
|
Jalilvand A, Yari K, Heydarpour F. Role of polymorphisms on the Recurrent Pregnancy Loss: A systematic review, Meta-analysis and bioinformatic analysis. Gene 2022; 844:146804. [PMID: 35998845 DOI: 10.1016/j.gene.2022.146804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/16/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Recurrent miscarriage (RM) is a major reproductive health issue. RM is a multi-factorial disease, and is affected by environmental, genetic, and epigenetic factors. Genetics has a common role in recurrent miscarriage occurrence. It seems that molecular genetics has a great role in RSA incidence. So, in these years, RM has become for a major subject of genetics research. There are many genes that are involved in each phase for successful reproduction. This research aimed to evaluate the effect of all studied polymorphisms in studies on RSA that have not been included in any meta-analysis. PubMed, Scopus, and Web of Science databases were recruited to investigate the related articles. The systematic review results identified 143 studies worldwide. Thirteen genes have been included in assessing the case-control studies. Sixty-four SNPs were recruited to assess the association between genetic factors and RSA susceptibility. Ninety-two studies containing twenty two SNPs (from 10 genes) were included in the quantitative analysis. Bioinformatic analysis indicated that rs12722482 showed "Damaging Status" by double servers, and rs315952 and rs854560 had "Possibly damaging" status in the PolyPhen-2 server. MethPrimer server indicated that there is "CpG Island" in the rs10895068, rs1130355, and rs41557518 variants, and rs10895068-G allele makes a CpG dinucleotide which can change the gene methylation and result in altering the gene expression. So, further studies on rs12722482 and rs10895068 can demonstrate valuable results. To the best of our knowledge, this systematic review has covered the all studied polymorphisms of HLA-C, HLA-G, PON1, AGTR1, TAFI, FAS, FAS-L, ESR1, PGR, CTLA-4, MMP-2, MMP-3, MMP-9, and IL1RN for the first time. Also, we did a novel meta-analysis for AGTR1 rs5186, TAFI rs1926447, rs3742264, HLA-G rs1063320, rs1233334, rs1736936, rs2249863, PON1 rs662, rs854560, FAS rs2234767, rs1800682, FAS-L rs763110, ESR1, rs9340799, rs3798759, PGR rs1042838, CTLA4 rs4553808, rs5742909, rs231775, rs3087243, and MMP-2 rs243865 and updated statistical finding for rs2234693 and rs371194629. Rs2234693, rs9340799, rs231775, and rs371194629 demonstrated a significant association with RSA risk. Some variations showed significant association, while further studies are suggested to confirm the results. Finally, Rs4553808 and rs5742909 revealed no significant deviation in the results. It is suggested that these SNPs may be excluded from subsequent case-control studies or other analyses.
Collapse
Affiliation(s)
- Amin Jalilvand
- Researcher in Molecular Genetics, Kermanshah ACECR Institute of Higher Education, Kermanshah, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Fatemeh Heydarpour
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Comparative Transcriptomics and Methylomics Reveal Adaptive Responses of Digestive and Metabolic Genes to Dietary Shift in Giant and Red Pandas. Genes (Basel) 2022; 13:genes13081446. [PMID: 36011357 PMCID: PMC9407821 DOI: 10.3390/genes13081446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to the order Carnivora, but have changed their dietary habits to eating bamboo exclusively. The convergent evolution characteristics of their morphology, genome and gut flora have been found in the two pandas. However, the research on the convergent adaptation of their digestion and metabolism to the bamboo diet, mediated by the dietary shift of the two pandas at the gene-expression and epigenetic regulation levels, is still lacking. We therefore used RNA sequencing among five species (two pandas and three non-herbivore mammals) and bisulfite sequencing among three species (two pandas and a carnivore ferret) to sequence key digestion and metabolism tissues (stomach and small intestine). Our results provide evidence that the convergent differentially expressed genes (related to carbohydrate utilization, bile secretion, Lys and Arg metabolism, vitamin B12 utilization and cyanide detoxification) of the two pandas are adaptive responses to the bamboo diet containing low lipids, low Lys and Arg, low vitamin B12 and high cyanide. We also profiled the genome-wide methylome maps of giant panda, red panda and ferret, and the results indicated that the promoter methylation of the two pandas may regulate digestive and metabolic genes to adapt to sudden environmental changes, and then, transmit genetic information to future generations to evolve into bamboo eaters. Taken together, our study provides new insights into the molecular mechanisms of the dietary shift and the adaptation to a strict bamboo diet in both pandas using comparative transcriptomics and methylomics.
Collapse
|
27
|
Hao X, Zhang J, Chen G, Cao W, Chen H, Chen S. Aberrant expression of GSTM5 in lung adenocarcinoma is associated with DNA hypermethylation and poor prognosis. BMC Cancer 2022; 22:685. [PMID: 35729618 PMCID: PMC9214983 DOI: 10.1186/s12885-022-09711-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutathione-S transferases (GSTs) comprise a series of critical enzymes involved in detoxification of endogenous or xenobiotic compounds. Among several GSTs, Glutathione S-transferases mu (GSTM) has been implicated in a number of cancer types. However, the prognostic value and potential functions of the GSTM family genes have not been investigated in lung adenocarcinoma (LUAD). METHODS We examined the expression of GSTM5 in LUAD and identified associations among GSTM5 expression, clinicopathological features, survival data from the Cancer Genome Atlas (TCGA). The correlation between GSTM5 DNA methylation and its expression was analyzed using the MEXPRESS tool and UCSC Xena browser. The methylation status of GSTM5 in the promoter region in lung cancer cells was measured by methylation-specific PCR (MSP). After 5-aza-2'-deoxycytidine treatment of lung cancer cells, expression of GSTM5, cell proliferation and migration were assessed by RT-PCR, CCK-8 and transwell assays, respectively. RESULTS The results showed that GSTM5 was abnormally down-regulated in LUAD patients' tissues, and patients with low GSTM5 expression level had significantly shorter OS. Cox regression analyses revealed that GSTM5 was associated with overall survival (OS) of LUAD patients, which expression was an independent prognostic indicator in terms of OS (hazard ratio: 0.848; 95% CI: 0.762-0.945; P = 0.003). In addition, we found the promoter region of GSTM5 was hypermethylated in the tumor tissue compared with adjacent normal tissues, and the average methylation level of GSTM5 were moderately correlated with its expression. Moreover, methylation-specific PCR also showed that the GSTM5 gene promoter was hypermethylated in lung cancer cells, and treatment with 5-Aza-CdR can restore the gene expression and inhibit cell proliferation and migration. Finally, Gene Set Enrichment Analysis (GSEA) revealed that low GSTM5 expression was significantly related to DNA repair pathways. CONCLUSION Our data demonstrate that low GSTM5 expression and its high DNA methylation status may act as a novel putative molecular target gene for LUAD.
Collapse
Affiliation(s)
- Xuewei Hao
- Department of Biochemistry, Inspection Institute, Harbin Medical University-Daqing, Daqing, China
| | - Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoyou Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China
| | - Weiwei Cao
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China
| | - Hongyang Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, No. 39 Xinyang Street, High-tech Zone, Daqing, 163319, Heilongjiang Province, China.
| |
Collapse
|
28
|
Wang W, Tan S, Yang Y, Zhou T, Xing D, Su B, Wang J, Li S, Shang M, Gao D, Dunham R, Liu Z. Feminization of channel catfish with 17β-oestradiol involves methylation and expression of a specific set of genes independent of the sex determination region. Epigenetics 2022; 17:1820-1837. [PMID: 35703353 DOI: 10.1080/15592294.2022.2086725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exogenous oestrogen 17β-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish (Ictalurus punctatus) during early sex differentiation after E2 treatment. Overall, the levels of global DNA methylation after E2 treatment were not significantly different from those of controls. However, a specific set of genes were differentially methylated, which included many sex differentiation-related pathways, such as MARK signalling, adrenergic signalling, Wnt signalling, GnRH signalling, ErbB signalling, and ECM-receptor interactions. Many genes involved in these pathways were also differentially expressed after E2 treatment. Specifically, E2 treatments resulted in upregulation of female-related genes and downregulation of male-related genes in genetic males during sex reversal. However, E2-induced sex reversal did not cause sex-specific changes in methylation profiles or gene expression within the sex determination region (SDR) on chromosome 4, suggesting that E2-induced sex reversal was a downstream process independent of the sex determination process that was regulated by sex-specific methylation within the SDR.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
29
|
PTPRJ is downregulated in cervical squamous cell carcinoma. J Genet 2022. [DOI: 10.1007/s12041-022-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Integrated Multi-Omics Maps of Lower-Grade Gliomas. Cancers (Basel) 2022; 14:cancers14112797. [PMID: 35681780 PMCID: PMC9179546 DOI: 10.3390/cancers14112797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Multi-omics high-throughput technologies produce data sets which are not restricted to only one but consist of multiple omics modalities, often as patient-matched tumour specimens. The integrative analysis of these omics modalities is essential to obtain a holistic view on the otherwise fragmented information hidden in this data. We present an intuitive method enabling the combined analysis of multi-omics data based on self-organizing maps machine learning. It "portrays" the expression, methylation and copy number variations (CNV) landscapes of each tumour using the same gene-centred coordinate system. It enables the visual evaluation and direct comparison of the different omics layers on a personalized basis. We applied this combined molecular portrayal to lower grade gliomas, a heterogeneous brain tumour entity. It classifies into a series of molecular subtypes defined by genetic key lesions, which associate with large-scale effects on DNA methylation and gene expression, and in final consequence, drive with cell fate decisions towards oligodendroglioma-, astrocytoma- and glioblastoma-like cancer cell lineages with different prognoses. Consensus modes of concerted changes of expression, methylation and CNV are governed by the degree of co-regulation within and between the omics layers. The method is not restricted to the triple-omics data used here. The similarity landscapes reflect partly independent effects of genetic lesions and DNA methylation with consequences for cancer hallmark characteristics such as proliferation, inflammation and blocked differentiation in a subtype specific fashion. It can be extended to integrate other omics features such as genetic mutation, protein expression data as well as extracting prognostic markers.
Collapse
|
31
|
Ma J, Zhang L, Huang Y, Shen F, Wu H, Yang Z, Hou R, Song Z, Yue B, Zhang X. Epigenomic profiling indicates a role for DNA methylation in the postnatal liver and pancreas development of giant pandas. Genomics 2022; 114:110342. [PMID: 35306168 DOI: 10.1016/j.ygeno.2022.110342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 01/14/2023]
Abstract
Giant pandas are unique within Carnivora with a strict bamboo diet. Here, the epigenomic profiles of giant panda liver and pancreas tissues collected from three important feeding stages were investigated using BS-seq. Few differences in DNA methylation profiles were exhibited between no feeding and suckling groups in both tissues. However, we observed a tendency toward a global loss of DNA methylation in the gene-body and promoter region of metabolism-related genes from newborn to adult. Correlation analysis revealed a significant negative correlation between the changes in methylation levels within gene promoters and gene expression. The majority of genes related to nutrition metabolism had lost DNA methylation with increased mRNA expression in adult giant pandas. The few galactose metabolism and unsaturated fatty acid metabolism related genes that were hypomethylated and highly-expressed at early stages of giant panda development may meet the nutritional requirement of this species' highly altricial neonates.
Collapse
Affiliation(s)
- Jinnan Ma
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, 98 Tongjiang Road, Dujiangyan, Chengdu, Sichuan 611800, China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, 98 Tongjiang Road, Dujiangyan, Chengdu, Sichuan 611800, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Zhaobin Song
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
32
|
Dehdari H, Moradian F, Barzegar A, Ebrahimzadeh MA. CYP1A1 contiguous hypermethylation within a putative CpG block is associated with breast cancer progression: Feasibility to define boundary motives. Exp Cell Res 2022; 413:113062. [PMID: 35167827 DOI: 10.1016/j.yexcr.2022.113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
Having broad specificity for xenobiotics metabolism throughout the body, cytochrome P450 (CYP) isoform 1A1 is of key relevance for carcinogenesis. However, the oncogenic potential of its altered transcription and the underlying mechanism has not been well-established in breast cancer. Direct bisulfite sequencing PCR (BSP) of the CYP1A1 promoter, enriched by 113 CpGs within and flanking the xenobiotic response elements (XREs) 2 to 10, in paired cancerous and normal tissues from 40 breast cancer patients revealed three distinctly methylated patterns; unmethylated (XREs 2 to 6) and completely methylated (XREs 7 and 8) CpGs, in common for the normal and cancerous tissues, and a putative 171bp CpG block (XREs 9 and 10) contiguously hypermethylated in the tumor tissues. Increased transcription of CYP1A1, observed for the cancerous tissues, was correlated with the hypermethylation of given CpG block, besides simultaneously being associated with upregulation of the anti-apoptotic BCL-2. Clinical value of the methylation changes, investigated based on the comparisons between the tissue cohorts of different clinicopathological features, exhibited gradual hypermethylation of the corresponding CpG block following disease progression as well as lymphatic involvement. Hypermethylation of given CpG block may has potential to be used as a biomarker for diagnosis and progression of breast cancer.
Collapse
Affiliation(s)
- Hossein Dehdari
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Fatemeh Moradian
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Barzegar
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
33
|
Kraveka JM, Lewis EC, Bergendahl G, Ferguson W, Oesterheld J, Kim E, Nagulapally AB, Dykema KJ, Brown VI, Roberts WD, Mitchell D, Eslin D, Hanson D, Isakoff MS, Wada RK, Harrod VL, Rawwas J, Hanna G, Hendricks WPD, Byron SA, Snuderl M, Serrano J, Trent JM, Saulnier Sholler GL. A pilot study of genomic-guided induction therapy followed by immunotherapy with difluoromethylornithine maintenance for high-risk neuroblastoma. Cancer Rep (Hoboken) 2022; 5:e1616. [PMID: 35355452 PMCID: PMC9675391 DOI: 10.1002/cnr2.1616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.
Collapse
Affiliation(s)
| | - Elizabeth C. Lewis
- Wayne State University School of MedicineDetroitMichiganUSA,Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA
| | | | | | | | - Elizabeth Kim
- Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA,Wesleyan UniversityMiddletownConnecticutUSA
| | | | - Karl J. Dykema
- Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA
| | - Valerie I. Brown
- Penn State Children's Hospital at the Milton S. Hershey Medical Center and Penn State College of MedicineHersheyPennsylvaniaUSA
| | - William D. Roberts
- Rady Children's Hospital San Diego and UC San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Deanna Mitchell
- Helen DeVos Children's Hospital at Spectrum HealthGrand RapidsMichiganUSA
| | - Don Eslin
- St. Joseph's Children's HospitalTampaFloridaUSA
| | - Derek Hanson
- Hackensack University Medical CenterHackensackNew JerseyUSA
| | - Michael S. Isakoff
- Center for Cancer and Blood DisordersConnecticut Children's Medical CenterHartfordConnecticutUSA
| | - Randal K. Wada
- Kapiolani Medical Center for Women & ChildrenHonoluluHawaiiUSA
| | | | - Jawhar Rawwas
- Children's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
| | - Gina Hanna
- Orlando Health Cancer InstituteOrlandoFloridaUSA
| | | | - Sara A. Byron
- Translational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Matija Snuderl
- NYU Langone Health and NYU Grossman School of MedicineNew York CityNew YorkUSA
| | - Jonathan Serrano
- NYU Langone Health and NYU Grossman School of MedicineNew York CityNew YorkUSA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | | |
Collapse
|
34
|
Epigenome-Wide DNA Methylation Profiling in Colorectal Cancer and Normal Adjacent Colon Using Infinium Human Methylation 450K. Diagnostics (Basel) 2022; 12:diagnostics12010198. [PMID: 35054365 PMCID: PMC8775085 DOI: 10.3390/diagnostics12010198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023] Open
Abstract
The aims were to profile the DNA methylation in colorectal cancer (CRC) and to explore cancer-specific methylation biomarkers. Fifty-four pairs of CRCs and the adjacent normal tissues were subjected to Infinium Human Methylation 450K assay and analysed using ChAMP R package. A total of 26,093 differentially methylated probes were identified, which represent 6156 genes; 650 probes were hypermethylated, and 25,443 were hypomethylated. Hypermethylated sites were common in CpG islands, while hypomethylated sites were in open sea. Most of the hypermethylated genes were associated with pathways in cancer, while the hypomethylated genes were involved in the PI3K-AKT signalling pathway. Among the identified differentially methylated probes, we found evidence of four potential probes in CRCs versus adjacent normal; HOXA2 cg06786372, OPLAH cg17301223, cg15638338, and TRIM31 cg02583465 that could serve as a new biomarker in CRC since these probes were aberrantly methylated in CRC as well as involved in the progression of CRC. Furthermore, we revealed the potential of promoter methylation ADHFE1 cg18065361 in differentiating the CRC from normal colonic tissue from the integrated analysis. In conclusion, aberrant DNA methylation is significantly involved in CRC pathogenesis and is associated with gene silencing. This study reports several potential important methylated genes in CRC and, therefore, merit further validation as novel candidate biomarker genes in CRC.
Collapse
|
35
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Ko H, Ahn HJ, Kim YI. Methylation and mutation of the inhibin‑α gene in human melanoma cells and regulation of PTEN expression and AKT/PI3K signaling by a demethylating agent. Oncol Rep 2021; 47:37. [PMID: 34958114 DOI: 10.3892/or.2021.8248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Inhibin suppresses the pituitary secretion of follicle‑stimulating hormone and has been reported to act as a tumor suppressor gene in the gonad in mice. Epigenetic modifications, mutations, changes in the loss of heterozygosity (LOH) of the inhibin‑α gene and regulation of gene expression in response to a demethylating agent [5‑aza‑2'‑deoxycytidine (5‑Aza‑dC)] in human melanoma cells were assessed. In addition, the association between a mutation in the 5'‑untranslated region (5'‑UTR) of the inhibin‑α subunit and the expression of phosphatidylinositol 3,4,5‑trisphosphate‑dependent Rac exchanger 2 (PREX2) and phosphatase and tensin homolog (PTEN) as well as AKT/PI3K signaling was determined. The methylation status of the CpG sites of the inhibin‑α promoter was analyzed by methylation‑specific PCR in bisulfite‑treated DNA. Cell viability was counted using the trypan blue assay, mRNA expression was examined via reverse transcription‑quantitative PCR, and protein expression was examined via western blot analysis. The inhibin‑α promoter was hypermethylated in G361, SK‑MEL‑3, SK‑MEL‑24 and SK‑MEL‑28 cells and moderately methylated in SK‑MEL‑5 cells. Inhibin‑α gene mutations were observed in the 5'‑UTR exon 1 of G361, SK‑MEL‑5, SK‑MEL‑24 and SK‑MEL‑28 cells as well as in exon 2 of SK‑MEL‑3 cells. Allelic imbalance, including LOH, in the inhibin‑α gene was detected in human melanoma cells. Treatment with 5‑Aza‑dC increased inhibin‑α mRNA and protein levels, inhibited cell proliferation, and delayed the doubling times of surviving melanoma cells. In 5‑Aza‑dC‑treated cells, PREX2 protein expression was slightly increased in G361 and SK‑MEL‑24 cells and decreased in SK‑MEL3, SK‑MEL‑5 and SK‑MEL‑28 cells. However, the protein expression of PTEN was decreased in melanoma cells. In addition, AKT and PI3K protein phosphorylation levels increased in all melanoma cells, except of G361 cells, demonstrating decreased PI3K protein phosphorylation. These data provided evidence that methylation, mutation and LOH are observed in the inhibin α‑subunit gene and gene locus in human melanoma cells. Furthermore, the demethylating agent reactivated inhibin‑α gene expression and regulated PREX2 expression. AKT/PI3K signaling increased as PTEN expression decreased. In addition, mutations in the tumor suppressor inhibin‑α, PTEN and p53 genes were not associated with transcriptional silencing, gene expression and cell growth as analyzed through experiments and literature reviews. These data demonstrated that methylation and mutations were associated with the inhibin‑α gene in human melanoma cells and indicated the regulation of PTEN expression and AKT/PI3K signaling by a demethylating agent.
Collapse
Affiliation(s)
- Hyunmin Ko
- Department of Surgery, College of Medicine, Kyung Hee University, Dongdaemun, Seoul 02447, Republic of Korea
| | - Hyung Joon Ahn
- Department of Surgery, College of Medicine, Kyung Hee University, Dongdaemun, Seoul 02447, Republic of Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Dongdaemun, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Heery R, Schaefer MH. DNA methylation variation along the cancer epigenome and the identification of novel epigenetic driver events. Nucleic Acids Res 2021; 49:12692-12705. [PMID: 34871444 PMCID: PMC8682778 DOI: 10.1093/nar/gkab1167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
While large-scale studies applying various statistical approaches have identified hundreds of mutated driver genes across various cancer types, the contribution of epigenetic changes to cancer remains more enigmatic. This is partly due to the fact that certain regions of the cancer genome, due to their genomic and epigenomic properties, are more prone to dysregulated DNA methylation than others. Thus, it has been difficult to distinguish which promoter methylation changes are really driving carcinogenesis from those that are mostly just a reflection of their genomic location. By developing a novel method that corrects for epigenetic covariates, we reveal a small, concise set of potential epigenetic driver events. Interestingly, those changes suggest different modes of epigenetic carcinogenesis: first, we observe recurrent inactivation of known cancer genes across tumour types suggesting a higher convergence on common tumour suppressor pathways than previously anticipated. Second, in prostate cancer, a cancer type with few recurrently mutated genes, we demonstrate how the epigenome primes tumours towards higher tolerance of other aberrations.
Collapse
Affiliation(s)
- Richard Heery
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Martin H Schaefer
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
38
|
N M, Am M, M Z, Sh A, F HN, S M. The Effect of B 9 and B 12 Vitamins Deficiency on Hypomethylation of MMP-9 gene Promoter Among Women With Preterm Parturition. Biochem Genet 2021; 60:336-350. [PMID: 34224039 DOI: 10.1007/s10528-021-10099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 10/20/2022]
Abstract
Preterm birth is one of the problems that pregnant women may encounter during pregnancy. Over-expression of Matrix metalloproteinases (MMPs) has the main role in the untimely remodeling of the extracellular matrix (ECM) and preterm delivery, but its exact mechanism is unknown. This study was undertaken to examine the methylation and expression patterns of this gene in women delivering preterm and also to analyze the correlation of serum B9 and B12 vitamins levels with expression and methylation of MMP-9 gene. The MMP-9 RNA and protein levels in 50 women delivering preterm and 50 women delivering at term were determined by Real-time PCR and enzyme-linked immunosorbent assay (ELISA) methods. Methylation pattern of this gene was evaluated by Epitect Methyl-II PCR assay and methylation-sensitive restriction enzymes combined with PCR amplification method; then, their correlation with serum B9 and B12 vitamins was studied. Placental MMP-9 RNA and protein levels were higher (P < 0.03, P < 0.01) in women delivering preterm as compared to those delivering at term. We also observed significant hypomethylation of promoter of this gene in preterm samples (P < 0.012). Moreover, significant negative correlation between B9 and B12 vitamins concentration and hypomethylation of MMP-9 gene was seen (r = - 0.68 P < 0.001). Our study suggests an impressive role of deficiency of B9 and B12 vitamins concentration on the hypomethylation and overexpression of MMP-9 gene which may lead to preterm parturition of pregnant women.
Collapse
Affiliation(s)
- Moeini N
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran
- Faculty of Science, Department of Genetic, Islamic Azad University, Qom branch, Qom, Iran
| | - Momeni Am
- Khatam Medical Genetic Lab, Qazvin, Iran
| | - Zargar M
- Faculty of Science, Department of Microbiology, Islamic Azad University, Qom branch, Qom, Iran
| | - Abotorabi Sh
- Department of Obstetrics and Gynecology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Habibi Nozari F
- Department of Obstetrics and Gynecology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Moghbelinejad S
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran.
- Khatam Medical Genetic Lab, Qazvin, Iran.
| |
Collapse
|
39
|
Tabassum A, Samdani MN, Dhali TC, Alam R, Ahammad F, Samad A, Karpiński TM. Transporter associated with antigen processing 1 (TAP1) expression and prognostic analysis in breast, lung, liver, and ovarian cancer. J Mol Med (Berl) 2021; 99:1293-1309. [PMID: 34047812 PMCID: PMC8367907 DOI: 10.1007/s00109-021-02088-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Abstract Transporter associated with antigen processing 1 (TAP1) is a transporter protein that represent tumor antigen in the MHC I or HLA complex. Any defect in the TAP1 gene resulting in inadequate tumor tracking. TAP1 influences multidrug resistance (MDR) in human cancer cell lines and hinders the treatment during chemotherapeutic. The association of TAP1 in cancer progression remains mostly unknown and further study of the gene in relation with cancer need to conduct. Thus, the study has designed to analyze the association between the TAP1 with cancer by computationally. The expression pattern of the gene has determined by using ONCOMINE, GENT2, and GEPIA2 online platforms. The protein level of TAP1 was examined by the help of Human Protein Atlas. Samples with different clinical outcomes were investigated to evaluate the expression and promoter methylation in cancer vs. normal tissues by using UALCAN server. The copy number alteration, mutation frequency, and expression level of the gene in different cancer were analyzed by using cBioPortal server. The PrognoScan and KM plotter platforms were used to perform the survival analysis and represented graphically. Additionally, pathway and gene ontology (GO) features correlated to the TAP1 gene were analyzed and presented by bar charts. After arranging the data in a single panel like correlating expression to prognosis, mutational and alterations characteristic, and pathways analysis, we observed some interesting insights that emphasized the importance of the gene in cancer progression. The study found the relationship between the TAP1 expression pattern and prognosis in different cancer tissues and shows how TAP1 affects the clinical characteristics. The analytical data presented in the study is vital to learn about the effect of TAP1 in tumor tissue, where previously studies showing contradicting expression of TAP1 in cancer tissue. The analyzed data can also be utilized further to evade the threats against chemotherapy. Overall, the study provided a new aspect to consider the role of TAP1 gene in cancer progression and survival status. Key messages • This study demonstrated, for the first time, a correlation between the TAP1 gene and tumor progression. • An upregulation of TAP1 mRNA was demonstrated in various cancer types. • This study reported a significant negative correlation for TAP1 gene expression and the survival rate in different cancer types. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02088-w.
Collapse
Affiliation(s)
- Anika Tabassum
- Biochemistry Department, School of Life Sciences, Independent University, Dhaka, 1229, Bangladesh
| | - Md Nazmus Samdani
- Department of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tarak Chandra Dhali
- Department of Biotechnology and Genetic Engineering, Khulna University, Khulna, 9208, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh. .,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh. .,Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, 21589, Saudi Arabia.
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh. .,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712, Poznań, Poland.
| |
Collapse
|
40
|
Ma JH, Huang Y, Liu LY, Feng Z. An 8-gene DNA methylation signature predicts the recurrence risk of cervical cancer. J Int Med Res 2021; 49:3000605211018443. [PMID: 34034542 PMCID: PMC8161886 DOI: 10.1177/03000605211018443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective This study examined the predictive utility of DNA methylation for cervical cancer recurrence. Methods DNA methylation and RNA expression data for patients with cervical cancer were downloaded from The Cancer Genome Atlas. Differentially methylated genes (DMGs) and differentially expressed genes were screened and extracted via correlation analysis. A support vector machine (SVM)-based recurrence prediction model was established using the selected DMGs. Cox regression analysis and receiver operating characteristic curve analysis were used for self-evaluation. The Gene Expression Omnibus (GEO) database was applied for external validation. Functional enrichment was determined using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Results An eight-gene DNA methylation signature identified patients with a high risk of recurrence (area under the curve = 0.833). The SVM score was an independent risk factor for recurrence (hazard ratio [HR] = 0.418; 95% confidence interval [CI] = 0.26–0.67). The independent GEO database analysis further supported the result. Conclusion An eight-gene DNA methylation signature predictive of cervical cancer recurrence was identified in this study, and this signature may help identify patients at high risk of recurrence and improve clinical treatment.
Collapse
Affiliation(s)
- Jing-Hang Ma
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gynecology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Huang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu-Yao Liu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Feng
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Tompa M, Kajtar B, Galik B, Gyenesei A, Kalman B. DNA methylation and protein expression of Wnt pathway markers in progressive glioblastoma. Pathol Res Pract 2021; 222:153429. [PMID: 33857857 DOI: 10.1016/j.prp.2021.153429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wnt signaling plays important roles in tumorigenesis, invasiveness and therapeutic resistance of glioblastoma (GBM). METHODS We simultaneously investigated six Wnt pathway markers (Wnt5a, Fzd-2, beta-catenin, Wnt3a, Wnt7b, Fzd-10) at epigenetic and protein levels in 21 sequential formalin-fixed paraffin-embedded GBM pairs and controls. RESULTS Expression levels of Wnt5a, beta-catenin and Wnt3a proteins either moderately or significantly increased, while those of Fzd-2, Wnt7b and Fzd-10 decreased in the primary (GBM-P) and recurrent (GBM-R) tumors compared to the controls. Methylation levels within promoters and genes showed corresponding decreases for Wnt5a, beta-catenin and Wnt3a in tumors vs. controls, while that of Fzd-10 was uniformly high. Comparing the GBM-P and GBM-R pairs, proteins of Fzd-2, beta-catenin and Wnt3a were either moderately or significantly up-, while that of Wnt7b was downregulated in GBM-R, but these patterns were not accompanied by inverse methylation patterns in the corresponding promoters and genes over time. No methylation differences were noted within promoters and genes of the same markers in 112 pairs of primary and recurrent GBMs in a database, suggesting that the observed changes in protein expression levels may not be explained by CpG methylation status alone. The promoter and gene methylation rate was the highest for Fzd-10 in the database cohort too, supporting the noted low Fzd-10 protein expression. DISCUSSION These analyses underscore the relevance of Wnt pathway molecules in the context of their methylation profiles in the development and evolution of GBM, and suggest that Wnt pathway regulation as a potential treatment target merits further studies.
Collapse
Affiliation(s)
- Marton Tompa
- Department of Laboratory Medicine, University of Pecs, School of Medicine, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - Bela Kajtar
- Department of Pathology, University of Pecs, School of Medicine, Pecs, Hungary.
| | - Bence Galik
- Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland.
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland.
| | - Bernadette Kalman
- Department of Laboratory Medicine, University of Pecs, School of Medicine, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|
42
|
Ranjan N, Pandey V, Panigrahi MK, Klumpp L, Naumann U, Babu PP. The Tumor Suppressor MTUS1/ATIP1 Modulates Tumor Promotion in Glioma: Association with Epigenetics and DNA Repair. Cancers (Basel) 2021; 13:cancers13061245. [PMID: 33809019 PMCID: PMC7999421 DOI: 10.3390/cancers13061245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Despite multidisciplinary treatments, survival remains poor in glioma patients. Although novel therapeutic approaches are being explored, no outstanding effects on the survival have been achieved so far, which substantiates the need to develop new therapeutic strategies. To understand the mechanisms responsible for its high malignancy and obligatory recurrence, we examined the impact of MTUS1, a tumor-suppressor gene (TSG), coding for ATIP1, in glioma malignancy as well as how its expression might influence glioma therapy. We confirmed that in glioma cells, elevated ATIP1 expression damps tumor progression by mitigating proliferation and motility. Additionally, MTUS1/ATIP1 can be used as a biological marker to predict therapy outcomes. In glioma cell lines, glioma sphere cultures (GSC), high-grade glioma (HGG) and especially in glioma recurrence, MTUS1/ATIP1 expression is downregulated, probably by promoter hypermethylation. However, in GBM, high ATIP1 expression might interfere with radiation-therapy since elevated expression of MTUS1/ATIP1 drives double-strand break (DSB) DNA repair. Abstract Glioblastoma (GBM) is a highly aggressive brain tumor. Resistance mechanisms in GBM present an array of challenges to understand its biology and to develop novel therapeutic strategies. We investigated the role of a TSG, MTUS1/ATIP1 in glioma. Glioma specimen, cells and low passage GBM sphere cultures (GSC) were analyzed for MTUS1/ATIP1 expression at the RNA and protein level. Methylation analyses were done by bisulfite sequencing (BSS). The consequence of chemotherapy and irradiation on ATIP1 expression and the influence of different cellular ATIP1 levels on survival was examined in vitro and in vivo. MTUS1/ATIP1 was downregulated in high-grade glioma (HGG), GSC and GBM cells and hypermethylation at the ATIP1 promoter region seems to be at least partially responsible for this downregulation. ATIP1 overexpression significantly reduced glioma progression by mitigating cell motility, proliferation and facilitate cell death. In glioma-bearing mice, elevated MTUS1/ATIP1 expression prolonged their survival. Chemotherapy, as well as irradiation, recovered ATIP1 expression both in vitro and in vivo. Surprisingly, ATIP1 overexpression increased irradiation-induced DNA-damage repair, resulting in radio-resistance. Our findings indicate that MTUS1/ATIP1 serves as TSG-regulating gliomagenesis, progression and therapy resistance. In HGG, higher MTUS1/ATIP1 expression might interfere with tumor irradiation therapy.
Collapse
Affiliation(s)
- Nikhil Ranjan
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana 500046, India
- Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - Manas Kumar Panigrahi
- Department of Neurosurgery and Pathology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana 500003, India
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Phanithi Prakash Babu
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| |
Collapse
|
43
|
Involvement of the Catecholamine Pathway in Glioblastoma Development. Cells 2021; 10:cells10030549. [PMID: 33806345 PMCID: PMC7998903 DOI: 10.3390/cells10030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the central nervous system (CNS). The standard of care improves the overall survival of patients only by a few months. Explorations of new therapeutic targets related to molecular properties of the tumor are under way. Even though neurotransmitters and their receptors normally function as mediators of interneuronal communication, growing data suggest that these molecules are also involved in modulating the development and growth of GBM by acting on neuronal and glioblastoma stem cells. In our previous DNA CpG methylation studies, gene ontology analyses revealed the involvement of the monoamine pathway in sequential GBM. In this follow-up study, we quantitated the expression levels of four selected catecholamine pathway markers (alpha 1D adrenergic receptor-ADRA1D; adrenergic beta receptor kinase 1 or G protein-coupled receptor kinase 2-ADRBK1/GRK2; dopamine receptor D2-DRD2; and synaptic vesicle monoamine transporter-SLC18A2) by immunohistochemistry, and compared the histological scores with the methylation levels within the promoters + genes of these markers in 21 pairs of sequential GBM and in controls. Subsequently, we also determined the promoter and gene methylation levels of the same markers in an independent database cohort of sequential GBM pairs. These analyses revealed partial inverse correlations between the catecholamine protein expression and promoter + gene methylation levels, when the tumor and control samples were compared. However, we found no differences in the promoter + gene methylation levels of these markers in either our own or in the database primary-recurrent GBM pairs, despite the higher protein expression of all markers in the primary samples. This observation suggests that regulation of catecholamine expression is only partially related to CpG methylation within the promoter + gene regions, and additional mechanisms may also influence the expression of these markers in progressive GBM. These analyses underscore the involvement of certain catecholamine pathway markers in GBM development and suggest that these molecules mediating or modulating tumor growth merit further exploration.
Collapse
|
44
|
Kashima K, Kawai T, Nishimura R, Shiwa Y, Urayama KY, Kamura H, Takeda K, Aoto S, Ito A, Matsubara K, Nagamatsu T, Fujii T, Omori I, Shimizu M, Hyodo H, Kugu K, Matsumoto K, Shimizu A, Oka A, Mizuguchi M, Nakabayashi K, Hata K, Takahashi N. Identification of epigenetic memory candidates associated with gestational age at birth through analysis of methylome and transcriptional data. Sci Rep 2021; 11:3381. [PMID: 33564054 PMCID: PMC7873311 DOI: 10.1038/s41598-021-83016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
Preterm birth is known to be associated with chronic disease risk in adulthood whereby epigenetic memory may play a mechanistic role in disease susceptibility. Gestational age (GA) is the most important prognostic factor for preterm infants, and numerous DNA methylation alterations associated with GA have been revealed by epigenome-wide association studies. However, in human preterm infants, whether the methylation changes relate to transcription in the fetal state and persist after birth remains to be elucidated. Here, we identified 461 transcripts associated with GA (range 23-41 weeks) and 2093 candidate CpG sites for GA-involved epigenetic memory through analysis of methylome (110 cord blood and 47 postnatal blood) and transcriptional data (55 cord blood). Moreover, we discovered the trends of chromatin state, such as polycomb-binding, among these candidate sites. Fifty-four memory candidate sites showed correlation between methylation and transcription, and the representative corresponding gene was UCN, which encodes urocortin.
Collapse
Affiliation(s)
- Kohei Kashima
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Riki Nishimura
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuh Shiwa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Kevin Y Urayama
- Department of Social Medicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazue Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Saki Aoto
- Medical Genome Center, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Ito
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Isaku Omori
- Department of Neonatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Mitsumasa Shimizu
- Department of Neonatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hironobu Hyodo
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Koji Kugu
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan.,Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Akira Oka
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Naoto Takahashi
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
45
|
Bedon L, Dal Bo M, Mossenta M, Busato D, Toffoli G, Polano M. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients. Int J Mol Sci 2021; 22:1075. [PMID: 33499054 PMCID: PMC7865606 DOI: 10.3390/ijms22031075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although extensive advancements have been made in treatment against hepatocellular carcinoma (HCC), the prognosis of HCC patients remains unsatisfied. It is now clearly established that extensive epigenetic changes act as a driver in human tumors. This study exploits HCC epigenetic deregulation to define a novel prognostic model for monitoring the progression of HCC. We analyzed the genome-wide DNA methylation profile of 374 primary tumor specimens using the Illumina 450 K array data from The Cancer Genome Atlas. We initially used a novel combination of Machine Learning algorithms (Recursive Features Selection, Boruta) to capture early tumor progression features. The subsets of probes obtained were used to train and validate Random Forest models to predict a Progression Free Survival greater or less than 6 months. The model based on 34 epigenetic probes showed the best performance, scoring 0.80 accuracy and 0.51 Matthews Correlation Coefficient on testset. Then, we generated and validated a progression signature based on 4 methylation probes capable of stratifying HCC patients at high and low risk of progression. Survival analysis showed that high risk patients are characterized by a poorer progression free survival compared to low risk patients. Moreover, decision curve analysis confirmed the strength of this predictive tool over conventional clinical parameters. Functional enrichment analysis highlighted that high risk patients differentiated themselves by the upregulation of proliferative pathways. Ultimately, we propose the oncogenic MCM2 gene as a methylation-driven gene of which the representative epigenetic markers could serve both as predictive and prognostic markers. Briefly, our work provides several potential HCC progression epigenetic biomarkers as well as a new signature that may enhance patients surveillance and advances in personalized treatment.
Collapse
Affiliation(s)
- Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| |
Collapse
|
46
|
Menyhárt O, Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput Struct Biotechnol J 2021; 19:949-960. [PMID: 33613862 PMCID: PMC7868685 DOI: 10.1016/j.csbj.2021.01.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics and 2 Department of Pediatrics, H-1094 Budapest, Hungary
- Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics and 2 Department of Pediatrics, H-1094 Budapest, Hungary
- Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| |
Collapse
|
47
|
El Aliani A, El-Abid H, El Mallali Y, Attaleb M, Ennaji MM, El Mzibri M. Association between Gene Promoter Methylation and Cervical Cancer Development: Global Distribution and A Meta-analysis. Cancer Epidemiol Biomarkers Prev 2021; 30:450-459. [DOI: 10.1158/1055-9965.epi-20-0833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
|
48
|
Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, Sarecka-Hujar B, Jakiel G. Pediatrics Consequences of Caesarean Section-A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8031. [PMID: 33142727 PMCID: PMC7662709 DOI: 10.3390/ijerph17218031] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cesarean section is a surgical procedure, which is the most frequently performed in gynecology and obstetrics. It is commonly believed that an operative delivery is a less painful and safer mode of delivery, which translates into an increasing number of the procedures performed without medical indications. The maternal sequelae of cesarean sections are well elucidated and widely discussed in the literature, while long-term neonatal consequences still remain the issue of research and scientific dispute. The aim of the present paper was to perform a systematic review of current literature regarding pediatrics consequences of cesarean section. METHODS We reviewed available data from PubMed, Science Direct as well as Google Scholar bases concerning early and long-term neonatal sequelae of operative deliveries. The following key words were used: "cesarean section", "caesarean section", "neonatal outcomes", "respiratory disorders", "asthma", "obesity", "overweight", and "neurological disorders". A total of 1636 papers were retrieved out of which 27 were selected for the final systematic review whereas 16 articles provided data for meta-analysis. Statistical analyses were performed using RevMan 5.4. To determine the strength of association between the caesarean section and respiratory tract infections, asthma, diabetes type 1 as well as obesity the pooled odds ratios (OR) with the 95% confidence intervals (CI) were calculated. RESULTS Conducted meta-analyses revealed that caesarean section is a risk factor for respiratory tract infections (pooled OR = 1.30 95%CI 1.06-1.60, p = 0.001), asthma (pooled OR = 1.23 95%CI 1.14-1.33, p < 0.00001) as well as obesity (pooled OR = 1.35 95%CI 1.29-1.41, p < 0.00001) in offspring. CONCLUSIONS The results of the studies included indicated that children delivered by cesarean section more commonly developed respiratory tract infections, obesity and the manifestations of asthma than children delivered vaginally. The risk of developing diabetes mellitus type 1 or neurological disorders in offspring after caesarean section is still under discussion.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland; (J.K.S.); (G.J.)
| | - Jacek Krzysztof Szymański
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland; (J.K.S.); (G.J.)
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Cegłowska 80 Street, 01-809 Warsaw, Poland;
| | - Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3 Street, 41-200 Sosnowiec, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland; (J.K.S.); (G.J.)
| |
Collapse
|
49
|
Chiacchiarini M, Trocchianesi S, Besharat ZM, Po A, Ferretti E. Role of tissue and circulating microRNAs and DNA as biomarkers in medullary thyroid cancer. Pharmacol Ther 2020; 219:107708. [PMID: 33091426 DOI: 10.1016/j.pharmthera.2020.107708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor comprising hereditary or sporadic form with frequent mutations in the rearranged during transfection (RET) or RAS genes. Diagnosis is based on the presence of thyroid tumor mass with altered levels of calcitonin (Ctn) and carcinoembryonal antigen (CEA) in the serum and/or in the cytological smears from fine needle aspiration biopsies. Treatment consists of total thyroidectomy, followed by tyrosine kinase inhibitors (TKi) in case of disease persistence. During TKi treatment, Ctn and CEA levels can fluctuate regardless of tumor volume, metastasis or response to therapy. Research for more reliable non-invasive biomarkers in MTC is still underway. In this context, circulating nucleic acids, namely circulating microRNAs (miRNAs) and cell free DNA (cfDNA), have been evaluated by different research groups. Aiming to shed light on whether miRNAs and cfDNA are suitable as MTC biomarkers we searched three different databases, PubMed, Scopus, WOS and reviewed the literature. We classified 83 publications fulfilling our search criteria and summarized the results. We report data on miRNAs and cfDNA that can be evaluated for validation in independent studies and clinical application.
Collapse
Affiliation(s)
| | - Sofia Trocchianesi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
50
|
Wu JY, Wang F, Wu ZC, Wu SL, Bao WB. Regulatory Effect of Methylation of the Porcine AQP3 Gene Promoter Region on Its Expression Level and Porcine Epidemic Diarrhea Virus Resistance. Genes (Basel) 2020; 11:genes11101167. [PMID: 33036186 PMCID: PMC7599489 DOI: 10.3390/genes11101167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
As an important carrier for intestinal secretion and water absorption, aquaporin 3 (AQP3) is closely related to diarrhea. In this study, we investigated the mechanisms of AQP3 gene expression regulation in porcine epidemic diarrhea virus (PEDV)-induced diarrhea confirmed by PCR amplification and sequencing. Evaluation of intestinal pathology showed that diarrhea caused by PEDV infection destroyed the intestinal barrier of piglets. qPCR analysis showed that AQP3 expression in the small intestine of PEDV-infected piglets was extremely significantly decreased. qPCR and Bisulfite sequencing PCR revealed an increase in the methylation levels of both CpG islands in the AQP3 promoter region in the jejunum of PEDV-infected piglets. The methylation of mC-20 and mC-10 sites within the two CpG islands showed a significant negative correlation with AQP3 expression. Chromatin Co-Immunoprecipitation (ChIP)-PCR showed that the Sp1 transcription factor was bound to the AQP3 promoter region containing these two CpG sites. AQP3 expression was also extremely significantly reduced in Sp1-inhibited IPEC-J2 cells, indicating that abnormal methylation at the mC-20 site of CpG1 and the mC-10 site of CpG2 reduces its expression in PEDV-infected piglet jejunum by inhibiting the binding of Sp1 to the AQP3 promoter. These findings provide a theoretical basis for further functional studies of porcine AQP3.
Collapse
Affiliation(s)
- Jia-Yun Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
| | - Fang Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
| | - Zheng-Chang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Long Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wen-Bin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8797-9316
| |
Collapse
|