1
|
Hacham Y, Shitrit O, Nisimi O, Friebach M, Amir R. Elucidating the importance of the catabolic enzyme, methionine-gamma-lyase, in stresses during Arabidopsis seed development and germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1143021. [PMID: 37346132 PMCID: PMC10280021 DOI: 10.3389/fpls.2023.1143021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
The sulfur-containing essential amino acid, methionine, is a key metabolite in plant cells since it is used as a precursor for the synthesis of vital metabolites. The transcript level of methionine's catabolic enzyme, methionine γ-lyase (MGL), accumulates in the seeds to a high level compared to other organs. The aim of this study was to reveal the role of MGL during seed development and germination. Using [13C]S-methylmethionine (SMM), the mobile form of methionine that is used to feed flower stalks of wild-type (WT) plants, revealed that the contents of [13C]methionine in seeds were significantly reduced when the plants underwent heat and osmotic stresses. Moreover, the levels of [13C]isoleucine, a product of MGL, significantly increased. Also, using the MGL promoter and gene fused to the GUS reporter gene, it was demonstrated that the heat stress significantly increased the protein level in the seeds. Therefore, we can conclude that MGL became active under stresses apparently to produce isoleucine, which is used as an osmoprotectant and an energy source. Transgenic Arabidopsis thaliana RNAi seeds with targeted repression of AtMGL during the late developmental stages of seeds show that the seeds did not accumulate methionine when they were grown under standard growth conditions, unlike the mgl-2, a knockout mutant, which showed a three-fold higher level of methionine. Also, when the RNAi plants developed under mid-heat stress, the level of methionine significantly increased while the content of isoleucine decreased compared to the control seeds, which strengthened the assumption that MGL is active under stress. The germination efficiency of the RNAi lines and mgl seeds were similar to their controls. However, the seeds that developed during heat or salt stress showed significantly lower germination efficiency compared to the control seeds. This implies that MGL is important to maintain the ability of the seeds to germinate. The RNAi lines and mgl seeds that developed under regular conditions, but germinated during salt or osmotic stress, exhibited a lower germination rate, suggesting an essential role of MGL also during this process. The results of this study show the important role of AtMGL in seeds under stresses.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Odelia Shitrit
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Ortal Nisimi
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Meital Friebach
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| |
Collapse
|
2
|
Frankin S, Cna'ani A, Bonfil DJ, Tzin V, Nashef K, Degen D, Simhon Y, Baizerman M, Ibba MI, González Santoyo HI, Luna CV, Cervantes Lopez JF, Ogen A, Goldberg BZ, Abbo S, Ben-David R. New flavors from old wheats: exploring the aroma profiles and sensory attributes of local Mediterranean wheat landraces. Front Nutr 2023; 10:1059078. [PMID: 37275635 PMCID: PMC10234510 DOI: 10.3389/fnut.2023.1059078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/23/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction During the 20th century, the worldwide genetic diversity of wheat was sharply eroded by continual selection for high yields and industry demands for particular standardized qualities. A collection of Israeli and Palestinian landraces (IPLR) was established to represent genetic diversity, accumulated for ten millennia under diverse environments, which was mostly lost in this transition. As our long-term goal is to study this pre- Green Revolution genetic reservoir, herein we focus on its flour and bread quality and sensorial attributes. Methods Initially, a database was built for the entire IPLR collection (n=901) holding both Triticum durum (durum wheat) and T. aestivum (bread wheat) which included genetic and phenotypic characterization of agronomic traits, grain and flour quality. Then, a representative subset of the IPLR was selected and compared to modern varieties for dough quality, rheology, aroma and taste using both whole and refined flours and breads. The sensory panel used 40 subjects who evaluated common protocol or sourdough breads made by four artisan bakers. Results Results show modern durum cultivar C-9 had superior rheological properties (gluten index, elasticity, dough development time) as compared with landraces, while bread landrace 'Diar Alla' was markedly preferable for baking in relation to the modern cultivar Gadish. Baking tests and subsequent sensory evaluation clearly demonstrated a preference toward refined breads, apart from whole breads prepared using sourdough starters. In bread wheat, loaves baked using landrace flour were scored higher in several quality parameters, whereas in durum lines, the opposite trend was evident. Loaves baked from landraces 'Diar Alla' and to a lesser extent 'Hittia Soada' presented a markedly different aroma from the control loaves prepared from modern flours, both in terms of overall compositions and individual compounds, including classes such as pyranones, pyrazines, furans and pyrroles (maltol). Modern lines, on the other hand, were consistently richer in terpenes and phenylpropanoids. Further analysis demonstrated a significant association between specific aroma classes and sensory attributes scored by panelists. Discussion The findings of the study may help advance new niches in the local wheat market aimed at health and nutrition including adapting durum varieties to the bread market and developing flavor-enhanced wholemeal breads.
Collapse
Affiliation(s)
- Sivan Frankin
- Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Cna'ani
- Department of Food Sciences (UCPH-FOOD), Design and Consumer Behavior, University of Copenhagen, Frederiksberg, Denmark
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - David J. Bonfil
- Gilat Research Center, Agricultural Research Organization, Gilat, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Kamal Nashef
- Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion, Israel
| | - Doron Degen
- Gilat Research Center, Agricultural Research Organization, Gilat, Israel
| | - Yasmin Simhon
- Gilat Research Center, Agricultural Research Organization, Gilat, Israel
| | - Marina Baizerman
- Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion, Israel
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Heroica Veracruz, Mexico
| | | | - Cyntia Velazquez Luna
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Heroica Veracruz, Mexico
| | | | - Anomarel Ogen
- Bread Holdings Inc.-GAIL's The Bread Factory, Bertinet, United Kingdom
| | | | - Shahal Abbo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roi Ben-David
- Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 2023; 23:121. [PMID: 37039853 DOI: 10.1007/s10142-023-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The incidence of many diseases, such as cancer, cardiovascular diseases, and diabetes, is associated with malnutrition and an unbalanced daily diet. Vegetables are an important source of vitamins and essential compounds for human health. As a result, such metabolites have increasingly become the focus of breeding programs. Tomato is one of the most popular components of our daily diet. Therefore, the improvement of tomato's nutritional quality is an important goal. In the present study, we performed targeted metabolic profiling of an interspecific Solanum pimpinellifolium × S. lycopersicum inbred backcross line (IBL) population and identified quantitative trait loci responsible for the nutritional value of tomato. Transgressive segregation was apparent for many of the nutritional compounds such that some IBLs had extremely high levels of various amino acids and vitamins compared to their parents. A total of 117 QTLs for nutritional traits including 62 QTLs for amino acids, 18 QTLs for fatty acids, 12 QTLs for water-soluble vitamins, and 25 QTLs for fat-soluble vitamins were identified. Moreover, almost 24% of identified QTLs were confirmed in previous studies, and 40 possible gene candidates were found for 18 identified QTLs. These findings can help breeders to improve the nutritional value of tomato.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Mehmet Ülger
- MULTI Tarım Seed Company, Antalya, 07112, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey.
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
4
|
Song C, Acuña T, Adler-Agmon M, Rachmilevitch S, Barak S, Fait A. Leveraging a graft collection to develop metabolome-based trait prediction for the selection of tomato rootstocks with enhanced salt tolerance. HORTICULTURE RESEARCH 2022; 9:uhac061. [PMID: 35531316 PMCID: PMC9071376 DOI: 10.1093/hr/uhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.
Collapse
Affiliation(s)
- Chao Song
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Simon Barak
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
5
|
Effects of Maternal Environment on Seed Germination and Seedling Vigor of Petunia × hybrida under Different Abiotic Stresses. PLANTS 2021; 10:plants10030581. [PMID: 33808598 PMCID: PMC8003445 DOI: 10.3390/plants10030581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023]
Abstract
Seed germination and seedling vigor can be affected by environmental cues experienced by the mother plant. However, information about how the maternal environment affects seed quality is scarce in ornamental plants. This study aimed to investigate the effects of two different maternal environments on the seed germination and seedling vigor of Petunia × hybrida under a variety of abiotic stresses. Petunia mother plants were grown in either a greenhouse during the summer months or an indoor controlled-temperature-and-light environment. Collected seeds were subjected to external stressors, including polyethylene glycol (PEG), sodium chloride (NaCl), high temperature, and abscisic acid (ABA), to determine seed germination percentage and seedling vigor. Results indicated that seeds harvested from the mother plants grown in a controlled environment germinated better than seeds harvested from the mother plants grown in the greenhouse when suboptimal germination conditions were applied. Additionally, the seedlings from the controlled maternal environment performed better in both ABA and salinity stress tests than the greenhouse seedlings. Interestingly, the greenhouse seedlings displayed less reactive oxygen species (ROS) damage and lower electrolyte leakage than the controlled environment seedlings under dehydration stress. The difference in germination and seedling vigor of seeds from the two different maternal environments might be due to the epigenetic memory inherited from the mother plants. This study highlighted the strong impact of the maternal environment on seed germination and seedling vigor in Petunia and may assist in high-quality seed production in ornamental plants.
Collapse
|
6
|
Toubiana D, Maruenda H. Guidelines for correlation coefficient threshold settings in metabolite correlation networks exemplified on a potato association panel. BMC Bioinformatics 2021; 22:116. [PMID: 33691629 PMCID: PMC7945624 DOI: 10.1186/s12859-021-03994-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Correlation network analysis has become an integral tool to study metabolite datasets. Networks are constructed by omitting correlations between metabolites based on two thresholds-namely the r and the associated p-values. While p-value threshold settings follow the rules of multiple hypotheses testing correction, guidelines for r-value threshold settings have not been defined. RESULTS Here, we introduce a method that allows determining the r-value threshold based on an iterative approach, where different networks are constructed and their network topology is monitored. Once the network topology changes significantly, the threshold is set to the corresponding correlation coefficient value. The approach was exemplified on: (i) a metabolite and morphological trait dataset from a potato association panel, which was grown under normal irrigation and water recovery conditions; and validated (ii) on a metabolite dataset of hearts of fed and fasted mice. For the potato normal irrigation correlation network a threshold of Pearson's |r|≥ 0.23 was suggested, while for the water recovery correlation network a threshold of Pearson's |r|≥ 0.41 was estimated. For both mice networks the threshold was calculated with Pearson's |r|≥ 0.84. CONCLUSIONS Our analysis corrected the previously stated Pearson's correlation coefficient threshold from 0.4 to 0.41 in the water recovery network and from 0.4 to 0.23 for the normal irrigation network. Furthermore, the proposed method suggested a correlation threshold of 0.84 for both mice networks rather than a threshold of 0.7 as applied earlier. We demonstrate that the proposed approach is a valuable tool for constructing biological meaningful networks.
Collapse
Affiliation(s)
- David Toubiana
- Departamento de Ciencias - Química, Centro de Espectroscopia de Resonancia Magnética Nuclear (CERMN), Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Lima, Peru
| | - Helena Maruenda
- Departamento de Ciencias - Química, Centro de Espectroscopia de Resonancia Magnética Nuclear (CERMN), Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Lima, Peru.
| |
Collapse
|
7
|
Gyan NM, Yaakov B, Weinblum N, Singh A, Cna’ani A, Ben-Zeev S, Saranga Y, Tzin V. Variation Between Three Eragrostis tef Accessions in Defense Responses to Rhopalosiphum padi Aphid Infestation. FRONTIERS IN PLANT SCIENCE 2020; 11:598483. [PMID: 33363559 PMCID: PMC7752923 DOI: 10.3389/fpls.2020.598483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 05/12/2023]
Abstract
Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.
Collapse
Affiliation(s)
- Nathan M. Gyan
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nati Weinblum
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Alon Cna’ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Shiran Ben-Zeev
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| |
Collapse
|
8
|
Ren RJ, Wang P, Wang LN, Su JP, Sun LJ, Sun Y, Chen DF, Chen XW. Os4BGlu14, a monolignol β-Glucosidase, negatively affects seed longevity by influencing primary metabolism in rice. PLANT MOLECULAR BIOLOGY 2020; 104:513-527. [PMID: 32833149 DOI: 10.1007/s11103-020-01056-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/15/2020] [Indexed: 05/10/2023]
Abstract
Os4BGlu14, a monolignol β-glucosidase, plays a negative role in seed longevity by affecting primary metabolism during seed development and aging. Seed longevity is a crucial trait in agriculture and in the conservation of germplasm resources. β-Glucosidases (BGlus) are multifunctional enzymes that affect plant growth and their adaptation to the environment. The function of rice BGlus in seed longevity, however, remains unknown. We report here that Os4BGlu14, a rice β-Glucosidase, negatively affected seed longevity during accelerated aging. Os4BGlu14 was highly expressed in rice embryos and induced by accelerated aging. Compared to the wild type, rice lines overexpressing Os4BGlu14 had significantly greater grain length, but smaller grain width and thickness. Overexpressing (OE) lines also showed lower starch but higher glucose contents. After accelerated aging treatment, OE lines displayed a significantly lower germination percentage than the wild type. Additionally, these lines had higher lignin accumulation before and after accelerated aging. Metabolome analysis detected 217 metabolites in untreated and aged rice seeds. Comparison of the differential metabolites between WT and OE5 revealed that ten key metabolites, four of which (e.g., uridine 5'-diphosphoglucose-glucose, UDPG) were increased, while the other six (e.g., γ-aminobutyric acid and methionine) were decreased, might be the crucial factors that lead to seed deterioration. Further analysis confirmed higher UDPG levels and more severe programmed cell death in OE lines than in the wild type. Furthermore, OE lines presented a lower germination rate after abscisic acid and paclobutrazol treatment during germination, compared to the wild type. Our study provides a basis for understanding the function of Os4BGlu14 in seed longevity in rice.
Collapse
Affiliation(s)
- Rui-Juan Ren
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pei Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Na Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing-Ping Su
- Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Lin-Jing Sun
- Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Yue Sun
- Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - De-Fu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xi-Wen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Toubiana D, Cabrera R, Salas E, Maccera C, Franco dos Santos G, Cevallos D, Lindqvist‐Kreuze H, Lopez JM, Maruenda H. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2193-2210. [PMID: 32579242 PMCID: PMC7540292 DOI: 10.1111/tpj.14892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 05/03/2023]
Abstract
Potato (Solanum tuberosum L.) is one of the world's most important crops, but it is facing major challenges due to climatic changes. To investigate the effects of intermittent drought on the natural variability of plant morphology and tuber metabolism in a novel potato association panel comprising 258 varieties we performed an augmented block design field study under normal irrigation and under water-deficit and recovery conditions in Ica, Peru. All potato genotypes were profiled for 45 morphological traits and 42 central metabolites via nuclear magnetic resonance. Statistical tests and norm of reaction analysis revealed that the observed variations were trait specific, that is, genotypic versus environmental. Principal component analysis showed a separation of samples as a result of conditional changes. To explore the relational ties between morphological traits and metabolites, correlation-based network analysis was employed, constructing one network for normal irrigation and one network for water-recovery samples. Community detection and difference network analysis highlighted the differences between the two networks, revealing a significant correlational link between fumarate and plant vigor. A genome-wide association study was performed for each metabolic trait. Eleven single nucleotide polymorphism (SNP) markers were associated with fumarate. Gene Ontology analysis of quantitative trait loci regions associated with fumarate revealed an enrichment of genes regulating metabolic processes. Three of the 11 SNPs were located within genes, coding for a protein of unknown function, a RING domain protein and a zinc finger protein ZAT2. Our findings have important implications for future potato breeding regimes, especially in countries suffering from climate change.
Collapse
Affiliation(s)
- David Toubiana
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Rodrigo Cabrera
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Elisa Salas
- Genetics and Crop ImprovementInternational Potato CenterAv. La Molina 1895LimaLima 12Peru
| | - Chiara Maccera
- Genetics and Crop ImprovementInternational Potato CenterAv. La Molina 1895LimaLima 12Peru
| | - Gabriel Franco dos Santos
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Danny Cevallos
- Genetics and Crop ImprovementInternational Potato CenterAv. La Molina 1895LimaLima 12Peru
| | | | - Juan M. Lopez
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Helena Maruenda
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| |
Collapse
|
10
|
Ji J, Shi S, Chen W, Xie T, Du C, Sun J, Shi Z, Gao R, Jiang Z, Xiao W. Effects of exogenous γ-Aminobutyric acid on the regulation of respiration and protein expression in germinating seeds of mungbean (Vigna radiata) under salt conditions. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Pinto-Irish K, Coba de la Peña T, Ostria-Gallardo E, Ibáñez C, Briones V, Vergara A, Alvarez R, Castro C, Sanhueza C, Castro PA, Bascuñán-Godoy L. Seed characterization and early nitrogen metabolism performance of seedlings from Altiplano and coastal ecotypes of Quinoa. BMC PLANT BIOLOGY 2020; 20:343. [PMID: 32693791 PMCID: PMC7372889 DOI: 10.1186/s12870-020-02542-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Early seed germination and a functional root system development during establishment are crucial attributes contributing to nutrient competence under marginal nutrient soil conditions. Chenopodium quinoa Willd (Chenopodiaceae) is a rustic crop, able to grow in marginal areas. Altiplano and Coastal/Lowlands are two representative zones of quinoa cultivation in South America with contrasting soil fertility and edaphoclimatic conditions. In the present work, we hypothesize that the ecotypes of Quinoa from Altiplano (landrace Socaire) and from Coastal/Lowland (landrace Faro) have developed differential adaptive responses in order to survive under conditions of low availability of N in their respective climatic zones of Altiplano and Lowlands. In order to understand intrinsic differences for N competence between landraces, seed metabolite profile and germinative capacity were studied. Additionally, in order to elucidate the mechanisms of N uptake and assimilation at limiting N conditions during establishment, germinated seeds of both landraces were grown at either sufficient nitrate (HN) or low nitrate (LN) supply. We studied the photosynthetic performance, protein storage, root morphometrical parameters, activity and expression of N-assimilating enzymes, and the expression of nitrate transporters of roots in plants submitted to the different treatments. RESULTS Seeds from Socaire landrace presented higher content of free N-related metabolites and faster seed germination rate compared to Faro landrace. Seedlings of both ecotypes presented similar physiological performance at HN supply, but at LN supply their differences were exalted. At LN, Socaire plants showed an increased root biomass (including a higher number and total length of lateral roots), a differential regulation of a nitrate transporter (a NPF6.3-like homologue) belonging to the Low Affinity Transport System (LATS), and an upregulation of a nitrate transporter (a NRT2.1-like homologue) belonging to the High Affinity nitrate Transport System (HATS) compared to Faro. These responses as a whole could be linked to a higher amount of stored proteins in leaves, associated to an enhanced photochemical performance in Altiplano plants, in comparison to Lowland quinoa plants. CONCLUSIONS These differential characteristics of Socaire over Faro plants could involve an adaptation to enhanced nitrate uptake under the brutal unfavorable climate conditions of Altiplano.
Collapse
Affiliation(s)
| | | | | | - Cristian Ibáñez
- Departamento de Biología, Universidad de La Serena, Av. Raúl Bitrán 1305, 1710088, La Serena, Chile
| | - Vilbett Briones
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Alexander Vergara
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE901 83, Umeå, Sweden
| | - Rodrigo Alvarez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1710088, La Serena, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomás, La Serena, 1710172, Chile
| | - Catalina Castro
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
| | - Patricio A Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070386, Concepción, Chile.
| | - Luisa Bascuñán-Godoy
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1710088, La Serena, Chile.
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile.
| |
Collapse
|
12
|
Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance. Sci Rep 2020; 10:4489. [PMID: 32161322 PMCID: PMC7066199 DOI: 10.1038/s41598-020-61081-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Perennial grasses will account for approximately 16 billion gallons of renewable fuels by the year 2022, contributing significantly to carbon and nitrogen sequestration. However, perennial grasses productivity can be limited by severe freezing conditions in some geographical areas, although these risks could decrease with the advance of climate warming, the possibility of unpredictable early cold events cannot be discarded. We conducted a study on the model perennial grass Brachypodium sylvaticum to investigate the molecular mechanisms that contribute to cold and freezing adaption. The study was performed on two different B. sylvaticum accessions, Ain1 and Osl1, typical to warm and cold climates, respectively. Both accessions were grown under controlled conditions with subsequent cold acclimation followed by freezing stress. For each treatment a set of morphological parameters, transcription, metabolite, and lipid profiles were measured. State-of-the-art algorithms were employed to analyze cross-component relationships. Phenotypic analysis revealed higher adaption of Osl1 to freezing stress. Our analysis highlighted the differential regulation of the TCA cycle and the GABA shunt between Ain1 and Osl1. Osl1 adapted to freezing stress by repressing the GABA shunt activity, avoiding the detrimental reduction in fatty acid biosynthesis and the concomitant detrimental effects on membrane integrity.
Collapse
|
13
|
Batyrshina ZS, Yaakov B, Shavit R, Singh A, Tzin V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC PLANT BIOLOGY 2020; 20:19. [PMID: 31931716 PMCID: PMC6958765 DOI: 10.1186/s12870-019-2214-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Anuradha Singh
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
14
|
Priming of Solanum melongena L. Seeds Enhances Germination, Alters Antioxidant Enzymes, Modulates ROS, and Improves Early Seedling Growth: Indicating Aqueous Garlic Extract as Seed-Priming Bio-Stimulant for Eggplant Production. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current study was aimed to evaluate the seed priming potential of AGE (aqueous garlic extracts) to enhance seed germination and early seedling growth of eggplant. Different concentrations (100, 200, and 300 µg mL−1) of AGE were evaluated along with methyl jasmonate (MeJA) and salicylic acid (SA), plant growth regulators with reported seed priming potential whereas, water was taken as a control treatment. Eggplant seeds were primed for 4-, 8-, and 12-h and seed germination traits such germination rate index, germination percentage, mean germination time, and early seedling growth traits such as fresh and dry weights, root, and shoot lengths were observed. Moreover, plant antioxidant enzymes activities and lipid peroxidation levels, soluble protein contents and reactive oxygen species were monitored to establish the stimulatory/inhibitory effects of the treatments. Our results indicate priming potential of AGE, SA, and MeJA to enhance seed germination and early seedling growth in eggplant and the effects were obvious in various morphological and physiological traits. Seed priming significantly altered the antioxidant enzymes activities such as superoxide dismutase (SOD), and peroxidase (POD) with alteration in the reactive oxygen species (ROS). Interestingly, priming duration also affected the bioactivity of these chemicals because seed priming with 300 µg mL−1 AGE for 4 h had a positive influence, however, prolonged exposure to the same concentration inhibited the seed germination process and induced oxidative stress on the seedlings with elevated levels of malondialdehyde (MDA) content. We propose AGE seed priming as a bio-stimulant to enhance seed germination and early seedling growth in eggplant, and the results hence lay the foundation for the preparation of garlic-based compounds to improve vegetables production under plastic tunnels and greenhouse production units.
Collapse
|
15
|
Kazmi RH, Willems LAJ, Joosen RVL, Khan N, Ligterink W, Hilhorst HWM. Metabolomic analysis of tomato seed germination. Metabolomics 2017; 13:145. [PMID: 29104520 PMCID: PMC5653705 DOI: 10.1007/s11306-017-1284-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Seed germination is inherently related to seed metabolism, which changes throughout its maturation, desiccation and germination processes. The metabolite content of a seed and its ability to germinate are determined by underlying genetic architecture and environmental effects during development. OBJECTIVE This study aimed to assess an integrative approach to explore genetics modulating seed metabolism in different developmental stages and the link between seed metabolic- and germination traits. METHODS We have utilized gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) metabolite profiling to characterize tomato seeds during dry and imbibed stages. We describe, for the first time in tomato, the use of a so-called generalized genetical genomics (GGG) model to study the interaction between genetics, environment and seed metabolism using 100 tomato recombinant inbred lines (RILs) derived from a cross between Solanum lycopersicum and Solanum pimpinellifolium. RESULTS QTLs were found for over two-thirds of the metabolites within several QTL hotspots. The transition from dry to 6 h imbibed seeds was associated with programmed metabolic switches. Significant correlations varied among individual metabolites and the obtained clusters were significantly enriched for metabolites involved in specific biochemical pathways. CONCLUSIONS Extensive genetic variation in metabolite abundance was uncovered. Numerous identified genetic regions that coordinate groups of metabolites were detected and these will contain plausible candidate genes. The combined analysis of germination phenotypes and metabolite profiles provides a strong indication for the hypothesis that metabolic composition is related to germination phenotypes and thus to seed performance.
Collapse
Affiliation(s)
- Rashid H. Kazmi
- 0000 0001 0791 5666grid.4818.5Wageningen Seed Lab, Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Leo A. J. Willems
- 0000 0001 0791 5666grid.4818.5Wageningen Seed Lab, Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ronny V. L. Joosen
- 0000 0001 0791 5666grid.4818.5Wageningen Seed Lab, Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Noorullah Khan
- 0000 0001 0791 5666grid.4818.5Wageningen Seed Lab, Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Wilco Ligterink
- 0000 0001 0791 5666grid.4818.5Wageningen Seed Lab, Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henk W. M. Hilhorst
- 0000 0001 0791 5666grid.4818.5Wageningen Seed Lab, Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|