1
|
Jeanne F, Pilet S, Klett D, Combarnous Y, Bernay B, Dufour S, Favrel P, Sourdaine P. Characterization of gonadotropins and their receptors in a chondrichthyan, Scyliorhinus canicula, fills a gap in the understanding of their coevolution. Gen Comp Endocrinol 2024; 358:114614. [PMID: 39326529 DOI: 10.1016/j.ygcen.2024.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In Gnathostomes, reproduction is mainly controlled by the hypothalamic-pituitary-gonadal (HPG) axis, with the involvement of the pituitary gonadotropic hormones (GTH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which activate their cognate receptors, FSHR and LHR, expressed in gonads. Each GTH consists of a common α subunit and of a specific FSHβ or LHβ subunit. Chondrichthyes (holocephalans and elasmobranchs) is a sister group of bony vertebrates. This position is highly favorable for the understanding of the evolution of endocrine regulations of reproduction among gnathostomes. Surprisingly, the characterization of gonadotropins and their receptors is still limited in chondrichthyes. In the present study, GTH and GTHR sequences have been identified from several chondrichthyan genomes, and their primary structures were analyzed relative to human orthologs. 3D models of GTH/GTHR interaction were built, highlighting the importance of the receptor hinge region for ligand recognition. Functional hormone-receptor interactions have been studied in HEK cells using the small-spotted catshark (Scyliorhinus canicula) recombinant proteins and showed that LHR was specifically activated by LH whereas FSHR was activated by both FSH and LH. Expression profiles of GTHs and their receptors were explored by real-time PCR, in situ hybridization and immunohistochemistry during spermatogenesis, along the male genital tract and other tissues, as well as in some female tissues for comparison. Tissue-expression analyses showed that the highest levels were observed for fshr transcripts in testis and ovary and for lhr in specific extragonadal tissues. The two receptors were expressed at all stages of spermatogenesis by both germ cells and somatic cells, including undifferentiated spermatogonia, spermatocytes, spermatids, somatic precursors and Sertoli cells; differentiated Leydig cells being absent in the testis of S. canicula. Receptors were also expressed by the lymphomyeloid epigonal tissue and the testicular tubules. These results, suggest a wide range of gonadotropin-regulated functions in Elasmobranchs, as well as functional redundancy during spermatogenesis. These extended functions are discussed in an evolutionary context in which the specificity of gonadotropin signaling must have contributed to the evolution of gonadal cells' morphology and function.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Stanislas Pilet
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Danièle Klett
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Yves Combarnous
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Sylvie Dufour
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Favrel
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France.
| |
Collapse
|
2
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy S, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark Scyliorhinus canicula reveal the molecular bases of sensory organ evolution in jawed vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595469. [PMID: 39005470 PMCID: PMC11244906 DOI: 10.1101/2024.05.23.595469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electro-sensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the Transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
|
3
|
Bachar-Wikstrom E, Dhillon B, Gill Dhillon N, Abbo L, Lindén SK, Wikstrom JD. Mass Spectrometry Analysis of Shark Skin Proteins. Int J Mol Sci 2023; 24:16954. [PMID: 38069276 PMCID: PMC10707392 DOI: 10.3390/ijms242316954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage in which proteins play a key role. While proteins in the skin mucus layer of various common bony fish species have been explored, the proteins of shark skin mucus remain unexplored. In this pilot study, we examine the protein composition of the skin mucus in spiny dogfish sharks and chain catsharks through mass spectrometry (NanoLC-MS/MS). Overall, we identified 206 and 72 proteins in spiny dogfish (Squalus acanthias) and chain catsharks (Scyliorhinus retifer), respectively. Categorization showed that the proteins belonged to diverse biological processes and that most proteins were cellular albeit a significant minority were secreted, indicative of mucosal immune roles. The secreted proteins are reviewed in detail with emphasis on their immune potentials. Moreover, STRING protein-protein association network analysis showed that proteins of closely related shark species were more similar as compared to a more distantly related shark and a bony fish, although there were also significant overlaps. This study contributes to the growing field of molecular shark studies and provides a foundation for further research into the functional roles and potential human biomedical implications of shark skin mucus proteins.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Braham Dhillon
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, IFAS, University of Florida, Davie, FL 33314, USA
| | - Navi Gill Dhillon
- Department of Biological Sciences, Nova Southeastern University, Davie, FL 33314, USA
| | - Lisa Abbo
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Dermato-Venereology Clinic, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
4
|
Wagner CI, Kopp MEL, Thorburn J, Jones CS, Hoarau G, Noble LR. Characteristics of the spiny dogfish (Squalus acanthias) nuclear genome. G3 (BETHESDA, MD.) 2023; 13:jkad146. [PMID: 37395764 PMCID: PMC10468316 DOI: 10.1093/g3journal/jkad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
Sequenced shark nuclear genomes are underrepresented, with reference genomes available for only four out of nine orders so far. Here, we present the nuclear genome, with annotations, of the spiny dogfish (Squalus acanthias), a shark of interest to biomedical and conservation efforts, and the first representative of the second largest order of sharks (Squaliformes) with nuclear genome annotations available. Using Pacific Biosciences Continuous Long Read data in combination with Illumina paired-end and Hi-C sequencing, we assembled the genome de novo, followed by RNA-Seq-supported annotation. The final chromosome-level assembly is 3.7 Gb in size, has a BUSCO completeness score of 91.6%, and an error rate of less than 0.02%. Annotation predicted 33,283 gene models in the spiny dogfish's genome, of which 31,979 are functionally annotated.
Collapse
Affiliation(s)
- C Isabel Wagner
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Martina E L Kopp
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - James Thorburn
- School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Catherine S Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Leslie R Noble
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| |
Collapse
|
5
|
Jeanne F, Bernay B, Sourdaine P. Comparative Proteome Analysis of Four Stages of Spermatogenesis in the Small-Spotted Catshark ( Scyliorhinus canicula), Using High-Resolution NanoLC-ESI-MS/MS. J Proteome Res 2023. [PMID: 37290099 DOI: 10.1021/acs.jproteome.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spermatogenesis is a highly specialized process of cell proliferation and differentiation leading to the production of spermatozoa from spermatogonial stem cells. Due to its testicular anatomy, Scyliorhinus canicula is an interesting model to explore stage-based changes in proteins during spermatogenesis. The proteomes of four testicular zones corresponding to the germinative niche and to spermatocysts (cysts) with spermatogonia (zone A), cysts with spermatocytes (zone B), cysts with young spermatids (zone C), and cysts with late spermatids (zone D) have been analyzed by nanoLC-ESI-MS/MS. Gene ontology and KEGG annotations were also performed. A total of 3346 multiple protein groups were identified. Zone-specific protein analyses highlighted RNA-processing, chromosome-related processes, cilium organization, and cilium activity in zones A, D, C, and D, respectively. Analyses of proteins with zone-dependent abundance revealed processes related to cellular stress, ubiquitin-dependent degradation by the proteasome, post-transcriptional regulation, and regulation of cellular homeostasis. Our results also suggest that the roles of some proteins, such as ceruloplasmin, optineurin, the pregnancy zone protein, PA28β or the Culling-RING ligase 5 complex, as well as some uncharacterized proteins, during spermatogenesis could be further explored. Finally, the study of this shark species allows one to integrate these data in an evolutionary context of the regulation of spermatogenesis. Mass spectrometry data are freely accessible via iProX-integrated Proteome resources (https://www.iprox.cn/) for reuse purposes.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| |
Collapse
|
6
|
Kuraku S, Kaiya H, Tanaka T, Hyodo S. Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes. Annu Rev Anim Biosci 2023; 11:163-182. [PMID: 36400012 DOI: 10.1146/annurev-animal-050922-071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (a) the presence or absence of genes, (b) multiplication and maintenance of paralogs, (c) differential fates of duplicated paralogs, and (d) the evolutionary timing of gene origins.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; .,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroyuki Kaiya
- Grandsoul Research Institute of Immunology, Inc., Uda, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
7
|
Zhang Y, Zhang T, Xu L, Zhu Y, Zhao LL, Li XD, Yang WW, Chen J, Gu M, Gu XS, Yang J. Evolution of the ErbB gene family and analysis of regulators of Egfr expression during development of the rat spinal cord. Neural Regen Res 2022; 17:2484-2490. [PMID: 35535900 PMCID: PMC9120683 DOI: 10.4103/1673-5374.339010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Egfr, a member of the ErbB gene family, plays a critical role in tissue development and homeostasis, wound healing, and disease. However, expression and regulators of Egfr during spinal cord development remain poorly understood. In this study, we investigated ErbB evolution and analyzed co-expression modules, miRNAs, and transcription factors that may regulate Egfr expression in rats. We found that ErbB family members formed via Egfr duplication in the ancient vertebrates but diverged after speciation of gnathostomes. We identified a module that was co-expressed with Egfr, which involved cell proliferation and blood vessel development. We predicted 25 miRNAs and nine transcription factors that may regulate Egfr expression. Dual-luciferase reporter assays showed six out of nine transcription factors significantly affected Egfr promoter reporter activity. Two of these transcription factors (KLF1 and STAT3) inhibited the Egfr promoter reporter, whereas four transcription factors (including FOXA2) activated the Egfr promoter reporter. Real-time PCR and immunofluorescence experiments showed high expression of FOXA2 during the embryonic period and FOXA2 was expressed in the floor plate of the spinal cord, suggesting the importance of FOXA2 during embryonic spinal cord development. Considering the importance of Egfr in embryonic spinal cord development, wound healing, and disease (specifically in cancer), regulatory elements identified in this study may provide candidate targets for nerve regeneration and disease treatment in the future.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Tao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Di Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei-Wei Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Song Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
8
|
Bakke FK, Gundappa MK, Matz H, Stead DA, Macqueen DJ, Dooley H. Exploration of the Nurse Shark ( Ginglymostoma cirratum) Plasma Immunoproteome Using High-Resolution LC-MS/MS. Front Immunol 2022; 13:873390. [PMID: 35734164 PMCID: PMC9207270 DOI: 10.3389/fimmu.2022.873390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Many animals of scientific importance lack species-specific reagents (e.g., monoclonal antibodies) for in-depth studies of immune proteins. Mass spectrometry (MS)-based proteomics has emerged as a useful method for monitoring changes in protein abundance and modifications in non-model species. It can be used to quantify hundreds of candidate immune molecules simultaneously without the generation of new reagents. Here, we used MS-based proteomics to identify and quantify candidate immune proteins in the plasma of the nurse shark (Ginglymostoma cirratum), a cartilaginous fish and representative of the most basal extant vertebrate lineage with an immunoglobulin-based immune system. Mass spectrometry-based LC-MS/MS was performed on the blood plasma of nurse sharks immunized with human serum albumin (n=4) or sham immunized (n=1), and sampled at days 0 (baseline control), 1, 2, 3, 5, 7, 14, 21, 28, 25, 42 and 49. An antigen-specific antibody response was experimentally confirmed post-immunization. To provide a high-quality reference to identify proteins, we assembled and annotated a multi-tissue de novo transcriptome integrating long- and short-read sequence data. This comprised 62,682 contigs containing open reading frames (ORFs) with a length >80 amino acids. Using this transcriptome, we reliably identified 626 plasma proteins which were broadly categorized into coagulation, immune, and metabolic functional groups. To assess the feasibility of performing LC-MS/MS proteomics in nurse shark in the absence of species-specific protein annotations, we compared the results to an alternative strategy, mapping peptides to proteins predicted in the genome assembly of a related species, the whale shark (Rhincodon typus). This approach reliably identified 297 proteins, indicating that useful data on the plasma proteome may be obtained in many instances despite the absence of a species-specific reference protein database. Among the plasma proteins defined against the nurse shark transcriptome, fifteen showed consistent changes in abundance across the immunized shark individuals, indicating a role in the immune response. These included alpha-2-macroglobulin (A2M) and a novel protein yet to be characterized in diverse vertebrate lineages. Overall, this study enhances genetic and protein-level resources for nurse shark research and vastly improves our understanding of the elasmobranch plasma proteome, including its remodelling following immune stimulation.
Collapse
Affiliation(s)
- Fiona K. Bakke
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Hanover Matz
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology (IMET), University of Maryland School of Medicine, Baltimore, MD, United States
| | - David A. Stead
- Aberdeen Proteomics, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Dooley
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology (IMET), University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Alves LMF, Lemos MFL, Cabral H, Novais SC. Elasmobranchs as bioindicators of pollution in the marine environment. MARINE POLLUTION BULLETIN 2022; 176:113418. [PMID: 35150988 DOI: 10.1016/j.marpolbul.2022.113418] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Bioindicator species are increasingly valuable in environmental pollution monitoring, and elasmobranch species include many suitable candidates for that role. By measuring contaminants and employing biomarkers of effect in relevant elasmobranch species, scientists may gain important insights about the impacts of pollution in marine ecosystems. This review compiles biomarkers applied in elasmobranchs to assess the effect of pollutants (e.g., metals, persistent organic pollutants, and plastics), and the environmental changes induced by anthropogenic activities (e.g., shifts in marine temperature, pH, and oxygenation). Over 30 biomarkers measured in more than 12 species were examined, including biotransformation biomarkers (e.g., cytochrome P450 1A), oxidative stress-related biomarkers (e.g., superoxide anion, lipid peroxidation, catalase, and vitamins), stress proteins (e.g., heat shock protein 70), reproductive and endocrine biomarkers (e.g., vitellogenin), osmoregulation biomarkers (e.g., trimethylamine N-oxide, Na+/K+-ATPase, and plasma ions), energetic and neurotoxic biomarkers (e.g., lactate dehydrogenase, lactate, and cholinesterases), and histopathological and morphologic biomarkers (e.g., tissue lesions and gross indices).
Collapse
Affiliation(s)
- Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | | | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| |
Collapse
|
10
|
Hu X, Li H, Lin Y, Wang Z, Feng H, Zhou M, Shi L, Cao H, Ren Y. Genomic deciphering of sex determination and unique immune system of a potential model species rare minnow ( Gobiocypris rarus). SCIENCE ADVANCES 2022; 8:eabl7253. [PMID: 35108042 PMCID: PMC8809535 DOI: 10.1126/sciadv.abl7253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gobiocypris rarus is sensitive to environmental pollution, especially to heavy metal and grass carp reovirus (GCRV). Hence, it has potential utility as a biological monitor. Genetic deciphering of its unique immune system will advance our understanding of its unique adaptive strategies, which provide cues for its better application. A de novo genome of rare minnow was obtained, and its sex determination mechanism is ZZ/ZW. We identified several specific mutation genes and specific lost genes of rare minnow, and these might be related to the sensitivity of rare minnow to environmental stimuli. We also analyzed the gene expression level of different organs/tissues and found that several IFIT genes may play key roles in GCRV resistance. In addition, knockout of the gene PCDH10L indicates that PCDH10L affects Pb2+-induced mortality in rare minnow. Rare minnow is ready for genetic manipulation and shows potential as an emerging experimental model.
Collapse
Affiliation(s)
- Xudong Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yusheng Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haohao Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (Y.R.); (H.C.)
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
- Corresponding author. (Y.R.); (H.C.)
| |
Collapse
|
11
|
Hardenstine RS, He S, Cochran JEM, Braun CD, Cagua EF, Pierce SJ, Prebble CEM, Rohner CA, Saenz‐Angudelo P, Sinclair‐Taylor TH, Skomal GB, Thorrold SR, Watts AM, Zakroff CJ, Berumen ML. Pieces in a global puzzle: Population genetics at two whale shark aggregations in the western Indian Ocean. Ecol Evol 2022; 12:e8492. [PMID: 35127024 PMCID: PMC8796955 DOI: 10.1002/ece3.8492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
The whale shark Rhincodon typus is found throughout the world's tropical and warm-temperate ocean basins. Despite their broad physical distribution, research on the species has been concentrated at a few aggregation sites. Comparing DNA sequences from sharks at different sites can provide a demographically neutral understanding of the whale shark's global ecology. Here, we created genetic profiles for 84 whale sharks from the Saudi Arabian Red Sea and 72 individuals from the coast of Tanzania using a combination of microsatellite and mitochondrial sequences. These two sites, separated by approximately 4500 km (shortest over-water distance), exhibit markedly different population demographics and behavioral ecologies. Eleven microsatellite DNA markers revealed that the two aggregation sites have similar levels of allelic richness and appear to be derived from the same source population. We sequenced the mitochondrial control region to produce multiple global haplotype networks (based on different alignment methodologies) that were broadly similar to each other in terms of population structure but suggested different demographic histories. Data from both microsatellite and mitochondrial markers demonstrated the stability of genetic diversity within the Saudi Arabian aggregation site throughout the sampling period. These results contrast previously measured declines in diversity at Ningaloo Reef, Western Australia. Mapping the geographic distribution of whale shark lineages provides insight into the species' connectivity and can be used to direct management efforts at both local and global scales. Similarly, understanding historical fluctuations in whale shark abundance provides a baseline by which to assess current trends. Continued development of new sequencing methods and the incorporation of genomic data could lead to considerable advances in the scientific understanding of whale shark population ecology and corresponding improvements to conservation policy.
Collapse
Affiliation(s)
- Royale S. Hardenstine
- Division of Biological and Environmental Science and EngineeringRed Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Song He
- Division of Biological and Environmental Science and EngineeringRed Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Jesse E. M. Cochran
- Division of Biological and Environmental Science and EngineeringRed Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Camrin D. Braun
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Edgar Fernando Cagua
- School of Biological SciencesCentre for Integrative EcologyUniversity of CanterburyChristchurchNew Zealand
- WorldFishBayan LepasMalaysia
| | | | - Clare E. M. Prebble
- Marine Megafauna FoundationTruckeeCaliforniaUSA
- National Oceanography CentreUniversity of South HamptonSouth HamtonUK
| | | | - Pablo Saenz‐Angudelo
- Facultad de CienciasInstituo de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | - Gregory B. Skomal
- Massachusetts Division of Marine FisheriesNew BedfordMassachusettsUSA
| | - Simon R. Thorrold
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Alexandra M. Watts
- Marine Megafauna FoundationTruckeeCaliforniaUSA
- Ecological Genetics and Conservation LaboratoryManchester Metropolitan UniversityManchesterUK
| | - Casey J. Zakroff
- Division of Biological and Environmental Science and EngineeringRed Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Michael L. Berumen
- Division of Biological and Environmental Science and EngineeringRed Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
12
|
Wei L, Wang M, Xiang H, Jiang Y, Gong J, Su D, Al Azad MAR, Dong H, Feng L, Wu J, Chan LL, Yang N, Shi J. Bamboo Shark as a Small Animal Model for Single Domain Antibody Production. Front Bioeng Biotechnol 2021; 9:792111. [PMID: 34957081 PMCID: PMC8692893 DOI: 10.3389/fbioe.2021.792111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
The development of shark single domain antibodies (sdAbs) is hindered by the high cost and tediousness of large-sized shark farming. Here, we demonstrated white-spotted bamboo sharks (Chiloscyllium plagiosum) being cultivated commercially as a promising small animal model to produce sdAbs. We found that immunoglobulin new antigen receptor (IgNAR) presented in bamboo shark genome, transcriptome, and plasma. Four complete IgNAR clusters including variable domains (vNARs) were discovered in the germline, and the Variable–Joining pair from IgNAR1 cluster was dominant from immune repertoires in blood. Bamboo sharks developed effective immune responses upon green fluorescent protein (GFP), near-infrared fluorescent protein iRFP713, and Freund’s adjuvant immunization revealed by elevated lymphocyte counts and antigen specific IgNAR. Before and after immunization, the complementarity determining region 3 (CDR3) of IgNAR were the major determinant of IgNAR diversity revealed by 400-bp deep sequencing. To prove that bamboo sharks could produce high-affinity IgNAR, we isolated anti-GFP and anti-iRFP713 vNARs with up to 0.3 and 3.8 nM affinities, respectively, from immunized sharks. Moreover, we constructed biparatopic vNARs with the highest known affinities (20.7 pM) to GFP and validated the functions of anti-GFP vNARs as intrabodies in mammalian cells. Taken together, our study will accelerate the discovery and development of bamboo shark sdAbs for biomedical industry at low cost and easy operation.
Collapse
Affiliation(s)
- Likun Wei
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Jiang
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinhua Gong
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Su
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - M A R Al Azad
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongming Dong
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Feng
- Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Complete Genomics Inc., San Jose, CA, United States
| | - Jiahai Shi
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China.,Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Coppola U, Waxman JS. Origin and evolutionary landscape of Nr2f transcription factors across Metazoa. PLoS One 2021; 16:e0254282. [PMID: 34807940 PMCID: PMC8608329 DOI: 10.1371/journal.pone.0254282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nuclear Receptor Subfamily 2 Group F (Nr2f) orphan nuclear hormone transcription factors (TFs) are fundamental regulators of many developmental processes in invertebrates and vertebrates. Despite the importance of these TFs throughout metazoan development, previous work has not clearly outlined their evolutionary history. RESULTS We integrated molecular phylogeny with comparisons of intron/exon structure, domain architecture, and syntenic conservation to define critical evolutionary events that distinguish the Nr2f gene family in Metazoa. Our data indicate that a single ancestral eumetazoan Nr2f gene predated six main Bilateria subfamilies, which include single Nr2f homologs, here referred to as Nr2f1/2/5/6, that are present in invertebrate protostomes and deuterostomes, Nr2f1/2 homologs in agnathans, and Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs that are found in gnathostomes. Four cnidarian Nr2f1/2/5/6 and three agnathan Nr2f1/2 members are each due to independent expansions, while the vertebrate Nr2f1/Nr2f2 and Nr2f5/Nr2f6 members each form paralogous groups that arose from the established series of whole-genome duplications (WGDs). Nr2f6 members are the most divergent Nr2f subfamily in gnathostomes. Interestingly, in contrast to the other gnathostome Nr2f subfamilies, Nr2f5 has been independently lost in numerous vertebrate lineages. Furthermore, our analysis shows there are differential expansions and losses of Nr2f genes in teleosts following their additional rounds of WGDs. CONCLUSION Overall, our analysis of Nr2f gene evolution helps to reveal the origins and previously unrecognized relationships of this ancient TF family, which may allow for greater insights into the conservation of Nr2f functions that shape Metazoan body plans.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
14
|
Tan M, Redmond AK, Dooley H, Nozu R, Sato K, Kuraku S, Koren S, Phillippy AM, Dove ADM, Read T. The whale shark genome reveals patterns of vertebrate gene family evolution. eLife 2021; 10:e65394. [PMID: 34409936 PMCID: PMC8455134 DOI: 10.7554/elife.65394] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.
Collapse
Affiliation(s)
- Milton Tan
- Illinois Natural History Survey at University of Illinois Urbana-ChampaignChampaignUnited States
| | | | - Helen Dooley
- University of Maryland School of Medicine, Institute of Marine & Environmental TechnologyBaltimoreUnited States
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
| | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
- Okinawa Churaumi Aquarium, MotobuOkinawaJapan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research (BDR), RIKENKobeJapan
| | - Sergey Koren
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Timothy Read
- Department of Infectious Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
15
|
Almeida T, Ohta Y, Gaigher A, Muñoz-Mérida A, Neves F, Castro LFC, Machado AM, Esteves PJ, Veríssimo A, Flajnik MF. A Highly Complex, MHC-Linked, 350 Million-Year-Old Shark Nonclassical Class I Lineage. THE JOURNAL OF IMMUNOLOGY 2021; 207:824-836. [PMID: 34301841 DOI: 10.4049/jimmunol.2000851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/09/2021] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish, or Chondrichthyes, are the oldest extant vertebrates to possess the MHC and the Ig superfamily-based Ag receptors, the defining genes of the gnathostome adaptive immune system. In this work, we have identified a novel MHC lineage, UEA, a complex multigene nonclassical class I family found in sharks (division Selachii) but not detected in chimaeras (subclass Holocephali) or rays (division Batoidea). This new lineage is distantly related to the previously reported nonclassical class I lineage UCA, which appears to be present only in dogfish sharks (order Squaliformes). UEA lacks conservation of the nine invariant residues in the peptide (ligand)-binding regions (PBR) that bind to the N and C termini of bound peptide in most vertebrate classical class I proteins, which are replaced by relatively hydrophobic residues compared with the classical UAA. In fact, UEA and UCA proteins have the most hydrophobic-predicted PBR of all identified chondrichthyan class I molecules. UEA genes detected in the whale shark and bamboo shark genome projects are MHC linked. Consistent with UEA comprising a very large gene family, we detected weak expression in different tissues of the nurse shark via Northern blotting and RNA sequencing. UEA genes fall into three sublineages with unique characteristics in the PBR. UEA shares structural and genetic features with certain nonclassical class I genes in other vertebrates, such as the highly complex XNC nonclassical class I genes in Xenopus, and we anticipate that each shark gene, or at least each sublineage, will have a unique function, perhaps in bacterial defense.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Arnaud Gaigher
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Fabiana Neves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - L Filipe C Castro
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| |
Collapse
|
16
|
The gastrin-releasing peptide/bombesin system revisited by a reverse-evolutionary study considering Xenopus. Sci Rep 2021; 11:13315. [PMID: 34172791 PMCID: PMC8233351 DOI: 10.1038/s41598-021-92528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Bombesin is a putative antibacterial peptide isolated from the skin of the frog, Bombina bombina. Two related (bombesin-like) peptides, gastrin-releasing peptide (GRP) and neuromedin B (NMB) have been found in mammals. The history of GRP/bombesin discovery has caused little attention to be paid to the evolutionary relationship of GRP/bombesin and their receptors in vertebrates. We have classified the peptides and their receptors from the phylogenetic viewpoint using a newly established genetic database and bioinformatics. Here we show, by using a clawed frog (Xenopus tropicalis), that GRP is not a mammalian counterpart of bombesin and also that, whereas the GRP system is widely conserved among vertebrates, the NMB/bombesin system has diversified in certain lineages, in particular in frog species. To understand the derivation of GRP system in the ancestor of mammals, we have focused on the GRP system in Xenopus. Gene expression analyses combined with immunohistochemistry and Western blotting experiments demonstrated that GRP peptides and their receptors are distributed in the brain and stomach of Xenopus. We conclude that GRP peptides and their receptors have evolved from ancestral (GRP-like peptide) homologues to play multiple roles in both the gut and the brain as one of the ‘gut-brain peptide’ systems.
Collapse
|
17
|
Shark and ray genomics for disentangling their morphological diversity and vertebrate evolution. Dev Biol 2021; 477:262-272. [PMID: 34102168 DOI: 10.1016/j.ydbio.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Developmental studies of sharks and rays (elasmobranchs) have provided much insight into the process of morphological evolution of vertebrates. Although those studies are supposedly fueled by large-scale molecular sequencing information, whole-genome sequences of sharks and rays were made available only recently. One compelling difficulty of elasmobranch developmental biology is the low accessibility to embryonic study materials and their slow development. Another limiting factor is the relatively large size of their genomes. Moreover, their large body sizes restrict sustainable captive breeding, while their high body fluid osmolarity prevents reproducible cell culturing for in vitro experimentation, which has also limited our knowledge of their chromosomal organization for validation of genome sequencing products. This article focuses on egg-laying elasmobranch species used in developmental biology and provides an overview of the characteristics of the shark and ray genomes revealed to date. Developmental studies performed on a gene-by-gene basis are also reviewed from a whole-genome perspective. Among the popular regulatory genes studied in developmental biology, I scrutinize shark homologs of Wnt genes that highlight vanishing repertoires in many other vertebrate lineages, as well as Hox genes that underwent an unexpected modification unique to the elasmobranch lineage. These topics are discussed together with insights into the reconstruction of developmental programs in the common ancestor of vertebrates and its subsequent evolutionary trajectories that mark the features that are unique to, and those characterizing the diversity among, cartilaginous fishes.
Collapse
|
18
|
Des Roches S, Pendleton LH, Shapiro B, Palkovacs EP. Conserving intraspecific variation for nature's contributions to people. Nat Ecol Evol 2021; 5:574-582. [PMID: 33649544 DOI: 10.1038/s41559-021-01403-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The rapid loss of intraspecific variation is a hidden biodiversity crisis. Intraspecific variation, which includes the genomic and phenotypic diversity found within and among populations, is threatened by local extinctions, abundance declines, and anthropogenic selection. However, biodiversity assessments often fail to highlight this loss of diversity within species. We review the literature on how intraspecific variation supports critical ecological functions and nature's contributions to people (NCP). Results show that the main categories of NCP (material, non-material, and regulating) are supported by intraspecific variation. We highlight new strategies that are needed to further explore these connections and to make explicit the value of intraspecific variation for NCP. These strategies will require collaboration with local and Indigenous groups who possess critical knowledge on the relationships between intraspecific variation and ecosystem function. New genomic methods provide a promising set of tools to uncover hidden variation. Urgent action is needed to document, conserve, and restore the intraspecific variation that supports nature and people. Thus, we propose that the maintenance and restoration of intraspecific variation should be raised to a major global conservation objective.
Collapse
Affiliation(s)
- Simone Des Roches
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.,School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, USA
| | - Linwood H Pendleton
- Centre for the Fourth Industrial Revolution - Ocean, Lysaker, Norway.,Ifremer, CNRS, UMR 6308, AMURE, IUEM University of Western Brittany, Plouzané, France.,Global Change Institute, University of Queensland, Brisbane, Queensland, Australia.,Duke University, Durham, NC, USA
| | - Beth Shapiro
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
19
|
Möbius W, Hümmert S, Ruhwedel T, Kuzirian A, Gould R. New Species Can Broaden Myelin Research: Suitability of Little Skate, Leucoraja erinacea. Life (Basel) 2021; 11:136. [PMID: 33670172 PMCID: PMC7916940 DOI: 10.3390/life11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.
Collapse
Affiliation(s)
- Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Sophie Hümmert
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Alan Kuzirian
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02540, USA;
| | - Robert Gould
- Whitman Science Center, Marin Biological Laboratory, Woods Hole, MA 02540, USA
| |
Collapse
|
20
|
Mikalsen SO, í Kongsstovu S, Tausen M. Connexins during 500 Million Years-From Cyclostomes to Mammals. Int J Mol Sci 2021; 22:1584. [PMID: 33557313 PMCID: PMC7914757 DOI: 10.3390/ijms22041584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
It was previously shown that the connexin gene family had relatively similar subfamily structures in several vertebrate groups. Still, many details were left unclear. There are essentially no data between tunicates, which have connexins that cannot be divided into the classic subfamilies, and teleosts, where the subfamilies are easily recognized. There are also relatively few data for the groups that diverged between the teleosts and mammals. As many of the previously analyzed genomes have been improved, and many more genomes are available, we reanalyzed the connexin gene family and included species from all major vertebrate groups. The major results can be summarized as follows: (i) The same connexin subfamily structures are found in all Gnathostomata (jawed vertebrates), with some variations due to genome duplications, gene duplications and gene losses. (ii) In contrast to previous findings, birds do not have a lower number of connexins than other tetrapods. (iii) The cyclostomes (lampreys and hagfishes) possess genes in the alpha, beta, gamma and delta subfamilies, but only some of the genes show a phylogenetic affinity to specific genes in jawed vertebrates. Thus, two major evolutionary transformations have occurred in this gene family, from tunicates to cyclostomes and from cyclostomes to jawed vertebrates.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of Faroe Islands, FO-100 Tórshavn, Faroe Islands; (S.í.K.); (M.T.)
| | | | | |
Collapse
|
21
|
Dijkstra JM. A method for making alignments of related protein sequences that share very little similarity; shark interleukin 2 as an example. Immunogenetics 2021; 73:35-51. [PMID: 33512550 DOI: 10.1007/s00251-020-01191-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
An optimized alignment of related protein sequences helps to see their important shared features and to deduce their phylogenetic relationships. At low levels of sequence similarity, there are no suitable computer programs for making the best possible alignment. This review summarizes some guidelines for how in such instances, nevertheless, insightful alignments can be made. The method involves, basically, the understanding of molecular family features at both the protein and intron-exon level, and the collection of many related sequences so that gradual differences may be observed. The method is exemplified by identifying and aligning interleukin 2 (IL-2) and related sequences in Elasmobranchii (sharks/rays) and coelacanth, as other authors have expressed difficulty with their identification. From the point of general immunology, it is interesting that the unusual long "leader" sequence of IL-15, already known in other species, is even more impressively conserved in cartilaginous fish. Furthermore, sequence comparisons suggest that IL-2 in cartilaginous fish has lost its ability to bind an IL-2Rα/15Rα receptor chain, which would prohibit the existence of a mechanism for regulatory T cell regulation identical to mammals.
Collapse
Affiliation(s)
- Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengaku-gakubo 1-98Toyoake-shi, Aichi-ken, 470-1192, Japan.
| |
Collapse
|
22
|
Ocampo Daza D, Bergqvist CA, Larhammar D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front Endocrinol (Lausanne) 2021; 12:792644. [PMID: 35185783 PMCID: PMC8851675 DOI: 10.3389/fendo.2021.792644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The neuronal and neuroendocrine peptides oxytocin (OT) and vasotocin (VT), including vasopressins, have six cognate receptors encoded by six receptor subtype genes in jawed vertebrates. The peptides elicit a broad range of responses that are specifically mediated by the receptor subtypes including neuronal functions regulating behavior and hormonal actions on reproduction and water/electrolyte balance. Previously, we have demonstrated that these six receptor subtype genes, which we designated VTR1A, VTR1B, OTR, VTR2A, VTR2B and VTR2C, arose from a syntenic ancestral gene pair, one VTR1/OTR ancestor and one VTR2 ancestor, through the early vertebrate whole-genome duplications (WGD) called 1R and 2R. This was supported by both phylogenetic and chromosomal conserved synteny data. More recently, other studies have focused on confounding factors, such as the OTR/VTR orthologs in cyclostomes, to question this scenario for the origin of the OTR/VTR gene family; proposing instead less parsimonious interpretations involving only one WGD followed by complex series of chromosomal or segmental duplications. Here, we have updated the phylogeny of the OTR/VTR gene family, including a larger number of vertebrate species, and revisited seven representative neighboring gene families from our previous conserved synteny analyses, adding chromosomal information from newer high-coverage genome assemblies from species that occupy key phylogenetic positions: the polypteriform fish reedfish (Erpetoichthys calabaricus), the cartilaginous fish thorny skate (Amblyraja radiata) and a more recent high-quality assembly of the Western clawed frog (Xenopus tropicalis) genome. Our analyses once again add strong support for four-fold symmetry, i.e., chromosome quadruplication in the same time window as the WGD events early in vertebrate evolution, prior to the jawed vertebrate radiation. Thus, the evolution of the OTR/VTR gene family can be most parsimoniously explained by two WGD events giving rise to the six ancestral genes, followed by differential gene losses of VTR2 genes in different lineages. We also argue for more coherence and clarity in the nomenclature of OT/VT receptors, based on the most parsimonious scenario.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Christina A. Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan Larhammar,
| |
Collapse
|
23
|
Li L, Cardoso JCR, Félix RC, Mateus AP, Canário AVM, Power DM. Fish lysozyme gene family evolution and divergent function in early development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103772. [PMID: 32730854 DOI: 10.1016/j.dci.2020.103772] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Lysozymes are an ancient group of antimicrobial enzymes of the innate immune system. Here we provide a comparative analysis of the evolution and function of lysozymes during early development in fish, the most speciose vertebrate group. In fishes, lineage and species-specific evolution of both C-type (chicken or conventional) and G-type (goose type) genes occurred. Phylogenetic analysis revealed that the teleost lysozyme G-type members group with the tetrapod homologues but the teleost C-type form three different clusters with the tetrapods. Most of the teleost C-type cluster with tetrapod Lyz but there are some that group with the mammalian Lyzl1/2 and LALBA. This suggests that early in gnathostome evolution these genes already existed and that lyzl1/2 and lalba genes are present in fish and tetrapods. Gene synteny analysis to confirm sequence orthologies failed to identify conserved genome regions between teleosts and other vertebrates lysozyme gene regions suggesting that in the ancestral bony fish genome lyz, lyzl1/2, lalba and lyg precursor genes were transposed to different chromosome regions. The homologue of the mammalian lactalbumin (LALBA) gene was identified for the first time in teleosts and was expressed in skin and during egg and larval development. Lysozyme activity was detected in teleost eggs and varied between species and in the gilthead sea bream lyg and lalba transcript abundance differed in eggs and larvae from different brood stock suggesting differences exist in maternal innate immune protection.
Collapse
Affiliation(s)
- Lisen Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Patrícia Mateus
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
24
|
Camilieri-Asch V, Caddy HT, Hubbard A, Rigby P, Doyle B, Shaw JA, Mehnert A, Partridge JC, Yopak KE, Collin SP. Multimodal Imaging and Analysis of the Neuroanatomical Organization of the Primary Olfactory Inputs in the Brownbanded Bamboo Shark, Chiloscyllium punctatum. Front Neuroanat 2020; 14:560534. [PMID: 33324175 PMCID: PMC7726474 DOI: 10.3389/fnana.2020.560534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022] Open
Abstract
There is currently a limited understanding of the morphological and functional organization of the olfactory system in cartilaginous fishes, particularly when compared to bony fishes and terrestrial vertebrates. In this fish group, there is a clear paucity of information on the characterization, density, and distribution of olfactory receptor neurons (ORNs) within the sensory olfactory epithelium lining the paired olfactory rosettes, and their functional implications with respect to the hydrodynamics of incurrent water flow into the nares. This imaging study examines the brownbanded bamboo shark Chiloscyllium punctatum (Elasmobranchii) and combines immunohistochemical labeling using antisera raised against five G-protein α-subunits (Gαs/olf, Gαq/11/14, Gαi–1/2/3, Gαi–3, Gαo) with light and electron microscopy, to characterize the morphological ORN types present. Three main ORNs (“long”, “microvillous” and “crypt-like”) are confirmed and up to three additional microvilli-bearing types are also described; “Kappe-like” (potential or homologous “Kappe” as in teleosts), “pear-shaped” and “teardrop-shaped” cells. These morphotypes will need to be confirmed molecularly in the future. Using X-ray diffusible iodine-based contrast-enhanced computed tomography (diceCT), high-resolution scans of the olfactory rosettes, olfactory bulbs (OBs), peduncles, and telencephalon reveal a lateral segregation of primary olfactory inputs within the OBs, with distinct medial and lateral clusters of glomeruli, suggesting a potential somatotopic organization. However, most ORN morphotypes are found to be ubiquitously distributed within the medial and lateral regions of the olfactory rosette, with at least three microvilli-bearing ORNs labeled with anti-Gαo found in significantly higher densities in lateral lamellae [in lateral lamellae] and on the anterior portion of lamellae (facing the olfactory cavity). These microvilli-bearing ORN morphotypes (microvillous, “Kappe-like,” “pear-shaped,” and “teardrop-shaped”) are the most abundant across the olfactory rosette of this species, while ciliated ORNs are less common and crypt cells are rare. Spatial simulations of the fluid dynamics of the incurrent water flow into the nares and within the olfactory cavities indicate that the high densities of microvilli-bearing ORNs located within the lateral region of the rosette are important for sampling incoming odorants during swimming and may determine subsequent tracking behavior.
Collapse
Affiliation(s)
- Victoria Camilieri-Asch
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,The Neuroecology Group, UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Harrison T Caddy
- Vascular Engineering Laboratory, Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia.,School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Paul Rigby
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia.,School of Engineering, The University of Western Australia, Perth, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy A Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Andrew Mehnert
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia.,National Imaging Facility, Brisbane, QLD, Australia
| | - Julian C Partridge
- The Neuroecology Group, UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Shaun P Collin
- The Neuroecology Group, UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia.,School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Jensen MR, Sigsgaard EE, Liu S, Manica A, Bach SS, Hansen MM, Møller PR, Thomsen PF. Genome-scale target capture of mitochondrial and nuclear environmental DNA from water samples. Mol Ecol Resour 2020; 21:690-702. [PMID: 33179423 PMCID: PMC7983877 DOI: 10.1111/1755-0998.13293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Environmental DNA (eDNA) provides a promising supplement to traditional sampling methods for population genetic inferences, but current studies have almost entirely focused on short mitochondrial markers. Here, we develop one mitochondrial and one nuclear set of target capture probes for the whale shark (Rhincodon typus) and test them on seawater samples collected in Qatar to investigate the potential of target capture for eDNA‐based population studies. The mitochondrial target capture successfully retrieved ~235× (90× − 352× per base position) coverage of the whale shark mitogenome. Using a minor allele frequency of 5%, we find 29 variable sites throughout the mitogenome, indicative of at least five contributing individuals. We also retrieved numerous mitochondrial reads from an abundant nontarget species, mackerel tuna (Euthynnus affinis), showing a clear relationship between sequence similarity to the capture probes and the number of captured reads. The nuclear target capture probes retrieved only a few reads and polymorphic variants from the whale shark, but we successfully obtained millions of reads and thousands of polymorphic variants with different allele frequencies from E. affinis. We demonstrate that target capture of complete mitochondrial genomes and thousands of nuclear loci is possible from aquatic eDNA samples. Our results highlight that careful probe design, taking into account the range of divergence between target and nontarget sequences as well as presence of nontarget species at the sampling site, is crucial to consider. eDNA sampling coupled with target capture approaches provide an efficient means with which to retrieve population genomic data from aggregating and spawning aquatic species.
Collapse
Affiliation(s)
| | | | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | | |
Collapse
|
26
|
Zhang Y, Gao H, Li H, Guo J, Ouyang B, Wang M, Xu Q, Wang J, Lv M, Guo X, Liu Q, Wei L, Ren H, Xi Y, Guo Y, Ren B, Pan S, Liu C, Ding X, Xiang H, Yu Y, Song Y, Meng L, Liu S, Wang J, Jiang Y, Shi J, Liu S, Sabir JS, Sabir MJ, Khan M, Hajrah NH, Ming-Yuen Lee S, Xu X, Yang H, Wang J, Fan G, Yang N, Liu X. The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish. iScience 2020; 23:101754. [PMID: 33251490 PMCID: PMC7677710 DOI: 10.1016/j.isci.2020.101754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/17/2020] [Accepted: 10/28/2020] [Indexed: 01/27/2023] Open
Abstract
Chondrichthyan (cartilaginous fish) occupies a key phylogenetic position and is important for investigating evolutionary processes of vertebrates. However, limited whole genomes impede our in-depth knowledge of important issues such as chromosome evolution and immunity. Here, we report the chromosome-level genome of white-spotted bamboo shark. Combing it with other shark genomes, we reconstructed 16 ancestral chromosomes of bamboo shark and illustrate a dynamic chromosome rearrangement process. We found that genes on 13 fast-evolving chromosomes can be enriched in immune-related pathways. And two chromosomes contain important genes that can be used to develop single-chain antibodies, which were shown to have high affinity to human disease markers by using enzyme-linked immunosorbent assay. We also found three bone formation-related genes were lost due to chromosome rearrangements. Our study highlights the importance of chromosome rearrangements, providing resources for understanding of cartilaginous fish diversification and potential application of single-chain antibodies.
Collapse
Affiliation(s)
- Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Haoyang Gao
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hanbo Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiao Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Bingjie Ouyang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiwu Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiahao Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Meiqi Lv
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Likun Wei
- City University of Hongkong, Kowloon, Hongkong SAR
| | - Han Ren
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yang Xi
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yang Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Bingzhao Ren
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Chuxin Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xiaoyan Ding
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yingjia Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lingfeng Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yuan Jiang
- BGI-Shenzhen, Shenzhen 518083, China
- Complete Genomics, Inc., San Jose, CA 95134, USA
| | - Jiahai Shi
- City University of Hongkong, Kowloon, Hongkong SAR
| | - Shiping Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jamal S.M. Sabir
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Mumdooh J. Sabir
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Muhummadh Khan
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Nahid H. Hajrah
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen 518083, China
- Complete Genomics, Inc., San Jose, CA 95134, USA
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
27
|
Yamaguchi K, Koyanagi M, Kuraku S. Visual and nonvisual opsin genes of sharks and other nonosteichthyan vertebrates: Genomic exploration of underwater photoreception. J Evol Biol 2020; 34:968-976. [DOI: 10.1111/jeb.13730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuaki Yamaguchi
- Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research (BDR) Kobe Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences Graduate School of Science Osaka City University Osaka Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research (BDR) Kobe Japan
| |
Collapse
|
28
|
Uno Y, Nozu R, Kiyatake I, Higashiguchi N, Sodeyama S, Murakumo K, Sato K, Kuraku S. Cell culture-based karyotyping of orectolobiform sharks for chromosome-scale genome analysis. Commun Biol 2020; 3:652. [PMID: 33159152 PMCID: PMC7648076 DOI: 10.1038/s42003-020-01373-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Karyotyping, traditionally performed using cytogenetic techniques, is indispensable for validating genome assemblies whose sequence lengths can be scaled up to chromosome sizes using modern methods. Karyotype reports of chondrichthyans are scarce because of the difficulty in cell culture. Here, we focused on carpet shark species and the culture conditions for fibroblasts and lymphocytes. The utility of the cultured cells enabled the high-fidelity characterization of their karyotypes, namely 2n = 102 for the whale shark (Rhincodon typus) and zebra shark (Stegostoma fasciatum), and 2n = 106 for the brownbanded bamboo shark (Chiloscyllium punctatum) and whitespotted bamboo shark (C. plagiosum). We identified heteromorphic XX/XY sex chromosomes for the two latter species and demonstrated the first-ever fluorescence in situ hybridization of shark chromosomes prepared from cultured cells. Our protocols are applicable to diverse chondrichthyan species and will deepen the understanding of early vertebrate evolution at the molecular level.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan.,Okinawa Churaumi Aquarium, Okinawa, Japan
| | | | | | | | | | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan.,Okinawa Churaumi Aquarium, Okinawa, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
29
|
Comparative eye and liver differentially expressed genes reveal monochromatic vision and cancer resistance in the shortfin mako shark (Isurus oxyrinchus). Genomics 2020; 112:4817-4826. [PMID: 32890699 DOI: 10.1016/j.ygeno.2020.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/05/2020] [Accepted: 08/30/2020] [Indexed: 11/22/2022]
Abstract
The shortfin mako, Isurus oxyrinchus is an oceanic pelagic shark found worldwide in tropical and subtropical waters. However, the understanding of its biology at molecular level is still incipient. We sequenced the messenger RNA isolated from eye and liver tissues. De novo transcriptome yielded a total of 705,940 transcripts. A total of 3774 genes were differentially expressed (DEGs), with 1612 in the eye and 2162 in the liver. Most DEGs in the eye were related to structural and signaling functions, including nonocular and ocular opsin genes, whereas nine out of ten most overexpressed genes in the liver were related to tumor suppression, wound healing, and human diseases. Furthermore, DEGs findings provide insights on the monochromatic shark vision and a repertory of cancer-related genes, which may be insightful to elucidate shark resistance to cancer. Therefore, our results provide valuable sequence resources for future functional and population studies.
Collapse
|
30
|
Hoglin BE, Miner M, Dores RM. Pharmacological properties of whale shark (Rhincodon typus) melanocortin-2 receptor and melancortin-5 receptor: Interaction with MRAP1 and MRAP2. Gen Comp Endocrinol 2020; 293:113463. [PMID: 32213301 DOI: 10.1016/j.ygcen.2020.113463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 11/28/2022]
Abstract
In the current study, the whale shark (ws; Rhincodon typus) melanocortin-2 receptor (MC2R) co-expressed with wsMRAP1 in Chinese Hamster Ovary (CHO) Cells could be stimulated in a dose dependent manner by ACTH(1-24) with an EC50 of 2.6 × 10-10 M ± 9.7 × 10-11. When the receptor was expressed alone, stimulation was only observed at [10-6 M]. A comparable increase in sensitivity to stimulation by srDes-Ac-αMSH was also observed when the receptor was co-expressed with wsMRAP1. In addition, co-expression with wsMRAP1 significantly increased the trafficking of wsMC2R to the plasma membrane of CHO cells. Surprisingly, co-expression with wsMRAP2 also increased sensitivity to stimulation by ACTH(1-24) and srDes-Ac-αMSH, and increased trafficking of the receptor to the plasma membrane. These observations are in sharp contrast to the response of MC2R orthologs of bony vertebrates which have an obligate requirement for co-expression with MRAP1 for both trafficking to the plasma membrane and activation, and while co-expression with MRAP2 increases trafficking, it has minimal effects on activation. In addition, when comparing the activation features of wsMC2R with those of the elephant shark MC2R and red stingray MC2R orthologs, both similarities and differences are observed. The spectrum of features for cartilaginous fish MC2R orthologs will be discussed. A second objective of this study was to determine whether wsMC5R has features in common with wsMC2R in terms of ligand selectivity and interaction with wsMRAP paralogs. While wsMC5R can be activated by either srACTH(1-24) or srDes-Ac-αMSH, and co-expression with wsMRAP1 enhances this activation, wsMRAP1 had no effect on the trafficking of wsMC5R. Co-expression with wsMRAP2 had no positive or negative effect on either ligand sensitivity or trafficking of wsMC5R.
Collapse
Affiliation(s)
- Brianne E Hoglin
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Marin Miner
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
31
|
Debiais-Thibaud M, Simion P, Ventéo S, Muñoz D, Marcellini S, Mazan S, Haitina T. Skeletal Mineralization in Association with Type X Collagen Expression Is an Ancestral Feature for Jawed Vertebrates. Mol Biol Evol 2020; 36:2265-2276. [PMID: 31270539 PMCID: PMC6759074 DOI: 10.1093/molbev/msz145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In order to characterize the molecular bases of mineralizing cell evolution, we targeted type X collagen, a nonfibrillar network forming collagen encoded by the Col10a1 gene. It is involved in the process of endochondral ossification in ray-finned fishes and tetrapods (Osteichthyes), but until now unknown in cartilaginous fishes (Chondrichthyes). We show that holocephalans and elasmobranchs have respectively five and six tandemly duplicated Col10a1 gene copies that display conserved genomic synteny with osteichthyan Col10a1 genes. All Col10a1 genes in the catshark Scyliorhinus canicula are expressed in ameloblasts and/or odontoblasts of teeth and scales, during the stages of extracellular matrix protein secretion and mineralization. Only one duplicate is expressed in the endoskeletal (vertebral) mineralizing tissues. We also show that the expression of type X collagen is present in teeth of two osteichthyans, the zebrafish Danio rerio and the western clawed frog Xenopus tropicalis, indicating an ancestral jawed vertebrate involvement of type X collagen in odontode formation. Our findings push the origin of Col10a1 gene prior to the divergence of osteichthyans and chondrichthyans, and demonstrate its ancestral association with mineralization of both the odontode skeleton and the endoskeleton.
Collapse
Affiliation(s)
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Stéphanie Ventéo
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, Saint Eloi Hospital, Montpellier, France
| | - David Muñoz
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
The retinal pigments of the whale shark ( Rhincodon typus) and their role in visual foraging ecology. Vis Neurosci 2019; 36:E011. [PMID: 31718726 DOI: 10.1017/s0952523819000105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The spectral tuning properties of the whale shark (Rhincodon typus) rod (rhodopsin or Rh1) and long-wavelength-sensitive (LWS) cone visual pigments were examined to determine whether these retinal pigments have adapted to the broadband light spectrum available for surface foraging or to the narrowband blue-shifted light spectrum available at depth. Recently published whale shark genomes have identified orthologous genes for both the whale shark Rh1 and LWS cone opsins suggesting a duplex retina. Here, the whale shark Rh1 and LWS cone opsin sequences were examined to identify amino acid residues critical for spectral tuning. Surprisingly, the predicted absorbance maximum (λmax) for both the whale shark Rh1 and LWS visual pigments is near 500 nm. Although Rh1 λmax values near 500 nm are typical of terrestrial vertebrates, as well as surface foraging fish, it is uncommon for a vertebrate LWS cone pigment to be so greatly blue-shifted. We propose that the spectral tuning properties of both the whale shark Rh1 and LWS cone pigments are most likely adaptations to the broadband light spectrum available at the surface. Whale shark melanopsin (Opn4) deactivation kinetics was examined to better understand the underlying molecular mechanisms of the pupillary light reflex. Results show that the deactivation rate of whale shark Opn4 is similar to the Opn4 deactivation rate from vertebrates possessing duplex retinae and is significantly faster than the Opn4 deactivation rate from an aquatic rod monochromat lacking functional cone photoreceptors. The rapid deactivation rate of whale shark Opn4 is consistent with a functional cone class and would provide the animal with an exponential increase in the number of photons required for photoreceptor signaling when transitioning from photopic to scotopic light conditions, as is the case when diving.
Collapse
|
33
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
34
|
Tostivint H, Gaillard AL, Mazan S, Pézeron G. Revisiting the evolution of the somatostatin family: Already five genes in the gnathostome ancestor. Gen Comp Endocrinol 2019; 279:139-147. [PMID: 30836103 DOI: 10.1016/j.ygcen.2019.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/10/2019] [Accepted: 02/28/2019] [Indexed: 11/21/2022]
Abstract
The somatostatin (SST) family members are a group of neuropeptides that are best known for their role in the regulation of growth, development and metabolism. The occurrence of six paralogous SST genes named SST1, SST2, SST3, SST4, SST5 and SST6 has been reported in vertebrates. It has been proposed that SST1, SST2 and SST5 arose in 2R from a common ancestral gene. SST3 and SST6 would have been subsequently generated by tandem duplications of the SST1 and SST2 genes respectively, at the base of the actinopterygian lineage. SST4 is thought to have appeared more recently from SST1, in teleost-specific 3R. In order to gain more insights into the SST gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we first searched the recently available genome and transcriptome databases from the catshark Scyliorhinus canicula. In a previous study, three S. canicula SST genes, called at that time SSTa, SSTb and SSTc, were identified and proposed to correspond to SST1, SST5 and SST2 respectively. In the present work, two additional SST genes, called SSTd and SSTe, were found in S. canicula plus two other chondrichtyan species, elephant shark (Callorhinchus milii) and whale shark (Rhincodon typus). Phylogeny and synteny analyses were then carried out in order to reveal the evolutionary relationships of SSTd and SSTe with other vertbrates SSTs. We showed that SSTd and SSTe correspond to SST2 and SST3 respectively, while SSTc corresponds to SST6 and not to SST2 as initially proposed. Our investigations in other vertebrate species also led us to find that the so-called SST2 gene in chicken, lungfish, sturgeons and teleosts actually corresponds to SST6. Conversely, the so-called SST6 gene in actinopterygians corresponds to SST2. Taken together, our results suggest that: i) SST3 and SST6 were already present in the gnathostome ancestor, much earlier than previously thought; ii) SST6 was also present in the tetrapod ancestor and still occurs in living birds; with this respect, it is likely that SST6 was independently lost several times during evolution: in amphibians, squamates and mammals; iii) SST2, SST3 and SST5 were probably lost in euteleosts, sarcopterygians and tetrapods, respectively.
Collapse
Affiliation(s)
- Hervé Tostivint
- Physiologie moléculaire et adaptation UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France.
| | - Anne-Laure Gaillard
- Physiologie moléculaire et adaptation UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Mazan
- Biologie intégrative des organismes marins, UMR 7232 CNRS, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Guillaume Pézeron
- Physiologie moléculaire et adaptation UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
35
|
Deiss TC, Breaux B, Ott JA, Daniel RA, Chen PL, Castro CD, Ohta Y, Flajnik MF, Criscitiello MF. Ancient Use of Ig Variable Domains Contributes Significantly to the TCRδ Repertoire. THE JOURNAL OF IMMUNOLOGY 2019; 203:1265-1275. [PMID: 31341077 DOI: 10.4049/jimmunol.1900369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023]
Abstract
The loci encoding B and T cell Ag receptors are generally distinct in commonly studied mammals, with each receptor's gene segments limited to intralocus, cis chromosomal rearrangements. The nurse shark (Ginglymostoma cirratum) represents the oldest vertebrate class, the cartilaginous fish, with adaptive immunity provided via Ig and TCR lineages, and is one species among a growing number of taxa employing Ig-TCRδ rearrangements that blend these distinct lineages. Analysis of the nurse shark Ig-TCRδ repertoire found that these rearrangements possess CDR3 characteristics highly similar to canonical TCRδ rearrangements. Furthermore, the Ig-TCRδ rearrangements are expressed with TCRγ, canonically found in the TCRδ heterodimer. We also quantified BCR and TCR transcripts in the thymus for BCR (IgHV-IgHC), chimeric (IgHV-TCRδC), and canonical (TCRδV-TCRδC) transcripts, finding equivalent expression levels in both thymus and spleen. We also characterized the nurse shark TCRαδ locus with a targeted bacterial artifical chromosome sequencing approach and found that the TCRδ locus houses a complex of V segments from multiple lineages. An IgH-like V segment, nestled within the nurse shark TCRδ translocus, grouped with IgHV-like rearrangements we found expressed with TCRδ (but not IgH) rearrangements in our phylogenetic analysis. This distinct lineage of TCRδ-associated IgH-like V segments was termed "TAILVs." Our data illustrate a dynamic TCRδ repertoire employing TCRδVs, NARTCRVs, bona fide trans-rearrangements from shark IgH clusters, and a novel lineage in the TCRδ-associated Ig-like V segments.
Collapse
Affiliation(s)
- Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Rebecca A Daniel
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Caitlin D Castro
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD 21201; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD 21201; and
| | - Martin F Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD 21201; and
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; .,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843
| |
Collapse
|
36
|
Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ, Joseph A, Abi-Rached L, Benazzo A, Rasteiro R, Mathieson I, Topf M, Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. eLife 2019; 8:41517. [PMID: 31159924 PMCID: PMC6548504 DOI: 10.7554/elife.41517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/01/2019] [Indexed: 01/29/2023] Open
Abstract
CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Stephane M Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Alice Burke
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Marine D Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul J Norman
- Division of Bioinformatics and Personalized Medicine, University of Colorado, Aurora, United States.,Department of Microbiology and Immunology, University of Colorado, Aurora, United States
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Laurent Abi-Rached
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, CNRS, Marseille, France
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rita Rasteiro
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| |
Collapse
|
37
|
Evolutionary Plasticity in Detoxification Gene Modules: The Preservation and Loss of the Pregnane X Receptor in Chondrichthyes Lineages. Int J Mol Sci 2019; 20:ijms20092331. [PMID: 31083458 PMCID: PMC6539745 DOI: 10.3390/ijms20092331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
To appraise how evolutionary processes, such as gene duplication and loss, influence an organism's xenobiotic sensitivity is a critical question in toxicology. Of particular importance are gene families involved in the mediation of detoxification responses, such as members of the nuclear receptor subfamily 1 group I (NR1I), the pregnane X receptor (PXR), and the constitutive androstane receptor (CAR). While documented in multiple vertebrate genomes, PXR and CAR display an intriguing gene distribution. PXR is absent in birds and reptiles, while CAR shows a tetrapod-specific occurrence. More elusive is the presence of PXR and CAR gene orthologs in early branching and ecologically-important Chondrichthyes (chimaeras, sharks and rays). Therefore, we investigated various genome projects and use them to provide the first identification and functional characterization of a Chondrichthyan PXR from the chimaera elephant shark (Callorhinchus milii, Holocephali). Additionally, we substantiate the targeted PXR gene loss in Elasmobranchii (sharks and rays). Compared to other vertebrate groups, the chimaera PXR ortholog displays a diverse expression pattern (skin and gills) and a unique activation profile by classical xenobiotic ligands. Our findings provide insights into the molecular landscape of detoxification mechanisms and suggest lineage-specific adaptations in response to xenobiotics in gnathostome evolution.
Collapse
|
38
|
Xiong J, Lv Y, Huang Y, Liu Q. The First Transcriptome Assembly of Yenyuan Stream Salamander ( Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution. Int J Mol Sci 2019; 20:E1529. [PMID: 30934682 PMCID: PMC6480382 DOI: 10.3390/ijms20071529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
The Yenyuan stream salamander (Batrachuperus yenyuanensis) has been previously evaluated with regards to phylogeny, population genetics, and hematology, but genomic information is sparse due to the giant genome size of salamanders which contain highly repetitive sequences, thus resulting in the lack of a complete reference genome. This study evaluates the encoding genetic sequences and provides the first transcriptome assembly of Yenyuan stream salamander based on mixed samples from the liver, spermary, muscle and spleen tissues. Using this transcriptome assembly and available encoding sequences from other vertebrates, the gene families, phylogenetic status, and species divergence time were compared or estimated. A total of 13,750 encoding sequences were successfully obtained from the transcriptome assembly of Yenyuan stream salamander, estimated to contain 40.1% of the unigenes represented in tetrapod databases. A total of 88.79% of these genes could be annotated to a biological function by current databases. Through gene family clustering, we found multiple possible isoforms of the Scribble gene-whose function is related to regeneration-based on sequence similarity. Meanwhile, we constructed a robust phylogenetic tree based on 56 single-copy orthologues, which indicates that based on phylogenetic position, the Yenyuan stream salamander presents the closest relationship with the Chinese giant salamander (Andrias davidianus) of the investigated vertebrates. Based on the fossil-calibrated phylogeny, we estimated that the lineage divergence between the ancestral Yenyuan stream salamander and the Chinese giant salamander may have occurred during the Cretaceous period (~78.4 million years ago). In conclusion, this study not only provides a candidate gene that is valuable for exploring the remarkable capacity of regeneration in the future, but also gives an interesting insight into the understanding of Yenyuan stream salamander by this first transcriptome assembly.
Collapse
Affiliation(s)
- Jianli Xiong
- Laboratory of Adaptation and Evolution of Aquatic Animals, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yunyun Lv
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Yong Huang
- Laboratory of Adaptation and Evolution of Aquatic Animals, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Qiangqiang Liu
- Laboratory of Adaptation and Evolution of Aquatic Animals, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
39
|
Johri S, Solanki J, Cantu VA, Fellows SR, Edwards RA, Moreno I, Vyas A, Dinsdale EA. 'Genome skimming' with the MinION hand-held sequencer identifies CITES-listed shark species in India's exports market. Sci Rep 2019; 9:4476. [PMID: 30872700 PMCID: PMC6418218 DOI: 10.1038/s41598-019-40940-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Chondrichthyes - sharks, rays, skates, and chimeras, are among the most threatened and data deficient vertebrate species. Global demand for shark and ray derived products, drives unregulated and exploitative fishing practices, which are in turn facilitated by the lack of ecological data required for effective conservation of these species. Here, we describe a Next Generation Sequencing method (using the MinION, a hand-held portable sequencing device from Oxford Nanopore Technologies), and analyses pipeline for molecular ecological studies in Chondrichthyes. Using this method, the complete mitochondrial genome and nuclear intergenic and protein-coding sequences were obtained by direct sequencing of genomic DNA obtained from shark fin tissue. Recovered loci include mitochondrial barcode sequences- Cytochrome oxidase I, NADH2, 16S rRNA and 12S rRNA- and nuclear genetic loci such as 5.8S rRNA, Internal Transcribed Spacer 2, and 28S rRNA regions, which are commonly used for taxonomic identification. Other loci recovered were the nuclear protein-coding genes for antithrombin or SerpinC, Immunoglobulin lambda light chain, Preprogehrelin, selenium binding protein 1(SBP1), Interleukin-1 beta (IL-1β) and Recombination-Activating Gene 1 (RAG1). The median coverage across all genetic loci was 20x and sequence accuracy was ≥99.8% compared to reference sequences. Analyses of the nuclear ITS2 region and the mitochondrial protein-encoding loci allowed accurate taxonomic identification of the shark specimen as Carcharhinus falciformis, a CITES Appendix II species. MinION sequencing provided 1,152,211 bp of new shark genome, increasing the number of sequenced shark genomes to five. Phylogenetic analyses using both mitochondrial and nuclear loci provided evidence that Prionace glauca is nested within Carcharhinus, suggesting the need for taxonomic reassignment of P. glauca. We increased genomic information about a shark species for ecological and population genetic studies, enabled accurate identification of the shark tissue for biodiversity indexing and resolved phylogenetic relationships among multiple taxa. The method was independent of amplification bias, and adaptable for field assessments of other Chondrichthyes and wildlife species in the future.
Collapse
Affiliation(s)
- Shaili Johri
- Department of Biology, 5500 Campanile Dr., San Diego State University, San Diego, CA, 92128, USA
| | - Jitesh Solanki
- College of Fisheries Science, Rajendra Bhuvan Road, Junagadh Agricultural University, Veraval, Gujarat, 362266, India
| | - Vito Adrian Cantu
- Computational Sciences Research Center, 5500 Campanile Drive, San Diego State University, San Diego, CA, 92128, USA
| | - Sam R Fellows
- Department of Biology, 5500 Campanile Dr., San Diego State University, San Diego, CA, 92128, USA
| | - Robert A Edwards
- Computational Sciences Research Center, 5500 Campanile Drive, San Diego State University, San Diego, CA, 92128, USA
| | - Isabel Moreno
- Department of Biology, 5500 Campanile Dr., San Diego State University, San Diego, CA, 92128, USA
| | - Asit Vyas
- College of Fisheries Science, Rajendra Bhuvan Road, Junagadh Agricultural University, Veraval, Gujarat, 362266, India
| | - Elizabeth A Dinsdale
- Department of Biology, 5500 Campanile Dr., San Diego State University, San Diego, CA, 92128, USA.
| |
Collapse
|
40
|
Ezh1 arises from Ezh2 gene duplication but its function is not required for zebrafish development. Sci Rep 2019; 9:4319. [PMID: 30867490 PMCID: PMC6416316 DOI: 10.1038/s41598-019-40738-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2-deficient larvae.
Collapse
|
41
|
Asymmetric paralog evolution between the "cryptic" gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Sci Rep 2019; 9:3136. [PMID: 30816280 PMCID: PMC6395752 DOI: 10.1038/s41598-019-40055-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/05/2022] Open
Abstract
The vertebrate gene repertoire is characterized by “cryptic” genes whose identification has been hampered by their absence from the genomes of well-studied species. One example is the Bmp16 gene, a paralog of the developmental key genes Bmp2 and -4. We focus on the Bmp2/4/16 group of genes to study the evolutionary dynamics following gen(om)e duplications with special emphasis on the poorly studied Bmp16 gene. We reveal the presence of Bmp16 in chondrichthyans in addition to previously reported teleost fishes and reptiles. Using comprehensive, vertebrate-wide gene sampling, our phylogenetic analysis complemented with synteny analyses suggests that Bmp2, -4 and -16 are remnants of a gene quartet that originated during the two rounds of whole-genome duplication (2R-WGD) early in vertebrate evolution. We confirm that Bmp16 genes were lost independently in at least three lineages (mammals, archelosaurs and amphibians) and report that they have elevated rates of sequence evolution. This finding agrees with their more “flexible” deployment during development; while Bmp16 has limited embryonic expression domains in the cloudy catshark, it is broadly expressed in the green anole lizard. Our study illustrates the dynamics of gene family evolution by integrating insights from sequence diversification, gene repertoire changes, and shuffling of expression domains.
Collapse
|
42
|
White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. Proc Natl Acad Sci U S A 2019; 116:4446-4455. [PMID: 30782839 DOI: 10.1073/pnas.1819778116] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The white shark (Carcharodon carcharias; Chondrichthyes, Elasmobranchii) is one of the most publicly recognized marine animals. Here we report the genome sequence of the white shark and comparative evolutionary genomic analyses to the chondrichthyans, whale shark (Elasmobranchii) and elephant shark (Holocephali), as well as various vertebrates. The 4.63-Gbp white shark genome contains 24,520 predicted genes, and has a repeat content of 58.5%. We provide evidence for a history of positive selection and gene-content enrichments regarding important genome stability-related genes and functional categories, particularly so for the two elasmobranchs. We hypothesize that the molecular adaptive emphasis on genome stability in white and whale sharks may reflect the combined selective pressure of large genome sizes, high repeat content, high long-interspersed element retrotransposon representation, large body size, and long lifespans, represented across these two species. Molecular adaptation for wound healing was also evident, with positive selection in key genes involved in the wound-healing process, as well as Gene Ontology enrichments in fundamental wound-healing pathways. Sharks, particularly apex predators such as the white shark, are believed to have an acute sense of smell. However, we found very few olfactory receptor genes, very few trace amine-associated receptors, and extremely low numbers of G protein-coupled receptors. We did however, identify 13 copies of vomeronasal type 2 (V2R) genes in white shark and 10 in whale shark; this, combined with the over 30 V2Rs reported previously for elephant shark, suggests this gene family may underlie the keen odorant reception of chondrichthyans.
Collapse
|
43
|
Delroisse J, Duchatelet L, Flammang P, Mallefet J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 2018; 13:e0209767. [PMID: 30596723 PMCID: PMC6312339 DOI: 10.1371/journal.pone.0209767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark. About 64 and 49 million Illumina reads were generated from skin and eye tissues respectively. The assembly allowed us to predict 119,749 total unigenes including 94,569 for the skin transcriptome and 94,365 for the eye transcriptome while 74,753 were commonly found in both transcriptomes. A taxonomy filtering was applied to extract a reference transcriptome containing 104,390 unigenes among which 38,836 showed significant similarities to known sequences in NCBI non-redundant protein sequences database. Around 58% of the annotated unigenes match with predicted genes from the Elephant shark (Callorhinchus milii) genome. The transcriptome completeness has been evaluated by successfully capturing around 98% of orthologous genes of the « Core eukaryotic gene dataset » within the E. spinax reference transcriptome. We identified potential "light-interacting toolkit" genes including multiple genes related to ocular and extraocular light perception processes such as opsins, phototransduction actors or crystallins. Comparative gene expression analysis reveals eye-specific expression of opsins, ciliary phototransduction actors, crystallins and vertebrate retinoid pathway actors. In particular, mRNAs from a single rhodopsin gene and its potentially associated peropsin were detected in the eye transcriptome, only, confirming a monochromatic vision of the lanternshark. Encephalopsin mRNAs were mainly detected in the ventral skin transcriptome. In parallel, immunolocalization of the encephalopsin within the ventral skin of the shark suggests a functional relation with the photophores, i.e. epidermal light-producing organs. We hypothesize that extraocular photoreception might be involved in the bioluminescence control possibly acting on the shutter opening and/or the photocyte activity itself. The newly generated reference transcriptome provides a valuable resource for further understanding of the shark biology.
Collapse
Affiliation(s)
- Jérôme Delroisse
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Laurent Duchatelet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| | - Patrick Flammang
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Jérôme Mallefet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| |
Collapse
|
44
|
Potential Human Health Applications from Marine Biomedical Research with Elasmobranch Fishes. FISHES 2018. [DOI: 10.3390/fishes3040047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the subclass of fishes collectively known as elasmobranchs (Class Chondrichthyes, Subclass Elasmobranchii) include sharks, skates, rays, guitarfish, and sawfish. Having diverged from the main line of vertebrate evolution some 400 million years ago, these fishes have continued to be successful in our ever-changing oceans. Much of their success must be attributed to their uncanny ability to remain healthy. Based on decades of basic research, some of their secrets may be very close to benefitting man. In this short review, some of the molecular and cellular biological areas that show promise for potential human applications are presented. With a brief background and current status of relevant research, these topics include development of new antibiotics and novel treatments for cancer, macular degeneration, viral pathogens, and Parkinson’s disease; potentially useful genomic information from shark transcriptomes; shark antibody-derived drug delivery systems; and immune cell-derived compounds as potential cancer therapeutic agents.
Collapse
|
45
|
Redmond AK, Macqueen DJ, Dooley H. Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets. BMC Evol Biol 2018; 18:169. [PMID: 30442091 PMCID: PMC6238376 DOI: 10.1186/s12862-018-1290-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this resource led to proposals that key components of the cartilaginous fish adaptive immune system, most notably their array of T cell subsets, was primitive compared to mammals. This proposal is at odds with the robust, antigen-specific antibody responses reported in elasmobranchs following immunization. To explore this discrepancy, we generated a multi-tissue transcriptome for small-spotted catshark (Scyliorhinus canicula), a tractable elasmobranch model for functional studies. We searched this, and other newly available sequence datasets, for CD4+ T cell subset-defining genes, aiming to confirm the presence or absence of each subset in cartilaginous fishes. RESULTS We generated a new transcriptome based on a normalised, multi-tissue RNA pool, aiming to maximise representation of tissue-specific and lowly expressed genes. We utilized multiple transcriptomic datasets and assembly variants in phylogenetic reconstructions to unambiguously identify several T cell subset-specific molecules in cartilaginous fishes for the first time, including interleukins, interleukin receptors, and key transcription factors. Our results reveal the inability of standard phylogenetic reconstruction approaches to capture the site-specific evolutionary processes of fast-evolving immune genes but show that site-heterogeneous mixture models can adequately do so. CONCLUSIONS Our analyses reveal that cartilaginous fishes are capable of producing a range of CD4+ T cell subsets comparable to that of mammals. Further, that the key molecules required for the differentiation and functioning of these subsets existed in the jawed vertebrate ancestor. Additionally, we highlight the importance of considering phylogenetic diversity and, where possible, utilizing multiple datasets for individual species, to accurately infer gene presence or absence at higher taxonomic levels.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Present address: Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, 701 E Pratt St, Baltimore, MD21202, USA.
| |
Collapse
|
46
|
Onimaru K, Tatsumi K, Shibagaki K, Kuraku S. A de novo transcriptome assembly of the zebra bullhead shark, Heterodontus zebra. Sci Data 2018; 5:180197. [PMID: 30295671 PMCID: PMC6174923 DOI: 10.1038/sdata.2018.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/14/2018] [Indexed: 11/25/2022] Open
Abstract
Although cartilaginous fishes have played crucial roles in various fields, including evolutionary biology, marine ecology, bioresources, and aquarium exhibitions, molecular information for these species is poorly available. The present study reports a transcriptome assembly from an embryo of the zebra bullhead shark (Heterodontus zebra), produced by paired-end RNA sequencing. Transcriptome data is generated with a de novo transcriptome assembler, Trinity. Amino acid sequences are predicted from the assemblies, using TransDecoder. Because cartilaginous fishes serve as the outgroup of bony vertebrates, the data would contribute to comparative analyses of a various biological fields. In addition, this study would be useful for conservation biology, such as transcriptome-based population genetics.
Collapse
Affiliation(s)
- Koh Onimaru
- Phyloinformatics unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Kaori Tatsumi
- Phyloinformatics unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Kazuhiro Shibagaki
- Ibaraki Prefectural Oarai Aquarium, 8252-3, Isohama-machi, Oarai-machi, Higashiibaraki-gun, Ibaraki, Japan
| | - Shigehiro Kuraku
- Phyloinformatics unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
47
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|
48
|
Cong Q, Li W, Borek D, Otwinowski Z, Grishin NV. The Bear Giant-Skipper genome suggests genetic adaptations to living inside yucca roots. Mol Genet Genomics 2018; 294:211-226. [PMID: 30293092 DOI: 10.1007/s00438-018-1494-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Giant-Skippers (Megathymini) are unusual thick-bodied, moth-like butterflies whose caterpillars feed inside Yucca roots and Agave leaves. Giant-Skippers are attributed to the subfamily Hesperiinae and they are endemic to southern and mostly desert regions of the North American continent. To shed light on the genotypic determinants of their unusual phenotypic traits, we sequenced and annotated a draft genome of the largest Giant-Skipper species, the Bear (Megathymus ursus violae). The Bear skipper genome is the least heterozygous among sequenced Lepidoptera genomes, possibly due to much smaller population size and extensive inbreeding. Their lower heterozygosity helped us to obtain a high-quality genome with an N50 of 4.2 Mbp. The ~ 430 Mb genome encodes about 14000 proteins. Phylogenetic analysis supports placement of Giant-Skippers with Grass-Skippers (Hesperiinae). We find that proteins involved in odorant and taste sensing as well as in oxidative reactions have diverged significantly in Megathymus as compared to Lerema, another Grass-Skipper. In addition, the Giant-Skipper has lost several odorant and gustatory receptors and possesses many fewer (1/3-1/2 of other skippers) anti-oxidative enzymes. Such differences may be related to the unusual life style of Giant-Skippers: they do not feed as adults, and their caterpillars feed inside Yuccas and Agaves, which provide a source of antioxidants such as polyphenols.
Collapse
Affiliation(s)
- Qian Cong
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Wenlin Li
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Dominika Borek
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9050, USA. .,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA.
| |
Collapse
|
49
|
Filowitz GL, Rajakumar R, O’Shaughnessy KL, Cohn MJ. Cartilaginous Fishes Provide Insights into the Origin, Diversification, and Sexually Dimorphic Expression of Vertebrate Estrogen Receptor Genes. Mol Biol Evol 2018; 35:2695-2701. [DOI: 10.1093/molbev/msy165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Grant L Filowitz
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
| | - Rajendhran Rajakumar
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
| | - Katherine L O’Shaughnessy
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
- Department of Biology, University of Florida, Gainesville, FL
| |
Collapse
|
50
|
Gaillard AL, Tay BH, Pérez Sirkin DI, Lafont AG, De Flori C, Vissio PG, Mazan S, Dufour S, Venkatesh B, Tostivint H. Characterization of Gonadotropin-Releasing Hormone (GnRH) Genes From Cartilaginous Fish: Evolutionary Perspectives. Front Neurosci 2018; 12:607. [PMID: 30237760 PMCID: PMC6135963 DOI: 10.3389/fnins.2018.00607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/10/2018] [Indexed: 11/13/2022] Open
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role in the control of reproductive functions. Vertebrates possess multiple GnRH forms that are classified into three main groups, namely GnRH1, GnRH2, and GnRH3. In order to gain more insights into the GnRH gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we searched the genomes and/or transcriptomes of three representative species of this group, the small-spotted catshark, Scyliorhinus canicula, the whale shark, Rhincodon typus and the elephant shark Callorhinchus milii. In each species, we report the identification of three GnRH genes. In catshark and whale shark, phylogenetic and synteny analysis showed that these three genes correspond to GnRH1, GnRH2, and GnRH3. In both species, GnRH1 was found to encode a novel form of GnRH whose primary structure was determined as follows: QHWSFDLRPG. In elephant shark, the three genes correspond to GnRH1a and GnRH1b, two copies of the GnRH1 gene, plus GnRH2. 3D structure prediction of the chondrichthyan GnRH-associated peptides (GAPs) revealed that catshark GAP1, GAP2, and elephant shark GAP2 peptides exhibit a helix-loop-helix (HLH) structure. This structure observed for many osteichthyan GAP1 and GAP2, may convey GAP biological activity. This HLH structure could not be observed for elephant shark GAP1a and GAP1b. As for all other GAP3 described so far, no typical 3D HLH structure was observed for catshark nor whale shark GAP3. RT-PCR analysis revealed that GnRH1, GnRH2, and GnRH3 genes are differentially expressed in the catshark brain. GnRH1 mRNA appeared predominant in the diencephalon while GnRH2 and GnRH3 mRNAs seemed to be most abundant in the mesencephalon and telencephalon, respectively. Taken together, our results show that the GnRH gene repertoire of the vertebrate ancestor was entirely conserved in the chondrichthyan lineage but that the GnRH3 gene was probably lost in holocephali. They also suggest that the three GnRH neuronal systems previously described in the brain of bony vertebrates are also present in cartilaginous fish.
Collapse
Affiliation(s)
- Anne-Laure Gaillard
- Evolution des Régulations Endocriniennes UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A∗STAR, Biopolis, Singapore, Singapore
| | - Daniela I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, Facultad de Ciencias Exactas y Naturales, DBBE/IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anne-Gaëlle Lafont
- Biologie des Organismes et Ecosystèmes Aquatiques, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Céline De Flori
- Evolution des Régulations Endocriniennes UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Paula G Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, Facultad de Ciencias Exactas y Naturales, DBBE/IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvie Mazan
- Biologie Intégrative des Organismes Marins, UMR 7232 CNRS, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Sylvie Dufour
- Biologie des Organismes et Ecosystèmes Aquatiques, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A∗STAR, Biopolis, Singapore, Singapore
| | - Hervé Tostivint
- Evolution des Régulations Endocriniennes UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|