1
|
Wang C, Hu X, Tang H, Ge W, Di L, Zou J, Cui Z, Zhou A. Multiple effects of dietary supplementation with Lactobacillus reuteri and Bacillus subtilis on the growth, immunity, and metabolism of largemouth bass (Micropterus salmoides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105241. [PMID: 39121939 DOI: 10.1016/j.dci.2024.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Probiotics play an essential role in the largemouth bass (Micropterus salmoides) aquaculture sector. They aid the fish in sickness prevention, intestinal structure improvement, food absorption, and immune system strengthening. In this experiment, Bacillus subtilis (BS, 107 CFU/g) and Lactobacillus reuteri (LR, 107 CFU/g) were added to the feed and then fed to M. salmoides for 35 days. The effects of two probiotics on the growth, immunity, and metabolism of M. salmoides organisms were studied. The results revealed that the BS group significantly increased the growth rate and specific growth rate of M. salmoides, while both the BS and LR groups significantly increase the length of villi M. salmoides intestines. The BS group significantly increased the levels of AKP, T-AOC, and CAT in the blood of M. salmoides, as well as AKP levels in the intestine. Furthermore, the BS group significantly increased the expression of intestinal genes Nrf2, SOD1, GPX, and CAT, while significantly decreasing the expression of the keap1 gene. M. salmoides gut microbial analysis showed that the abundance of Planctomycetota was significantly different in both control and experimental groups. Analyzed at the genus level, the abundance of Citrobacter, Paracoccus, Luedemannella, Sphingomonas, Streptomyces and Xanthomonas in the both control and experimental groups were significantly different. The BS group's differentially expressed genes were predominantly enriched in oxidative phosphorylation pathways in the intestine, indicating that they had a good influence on intestinal metabolism and inflammation suppression. In contrast, differentially expressed genes in the LR group were primarily enriched in the insulin signaling and linoleic acid metabolism pathways, indicating improved intestine metabolic performance. In conclusion, B. subtilis and L. reuteri improve the growth and health of M. salmoides, indicating tremendous potential for enhancing intestinal metabolism and providing significant application value.
Collapse
Affiliation(s)
- Chong Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Huijuan Tang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Lijun Di
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jixing Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China.
| | - Aiguo Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
2
|
Wang C, Shu Q, Zeng N, Xie S, Zou J, Tang H, Zhou A. Immune response for acute Aeromonas hydrophila infection in two distinct color morphs of northern snakehead, Channa argus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101321. [PMID: 39260082 DOI: 10.1016/j.cbd.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
To compare and analyze the differences in immunological response between the two color morphs of Channa argus, a fish cohort was divided into four groups: black C argus + PBS (B-PBS), black C argus + Aeromonas hydrophila (B-Ah), white C. argus + PBS (W-PBS), and white C. argus + A hydrophila (W-Ah). The B-PBS and W-PBS groups received 100 μL PBS, while the B-Ah and W-Ah groups received 3.6 × 105 CFU/mL A. hydrophila in the same volume. The death rate in each group was noted, changes in plasma biochemical indicators and the expression of liver immune-related genes were examined, and transcriptome techniques were used to compare the differences between the two colors of C. argus following stress. No mortality occurred in the B-PBS and W-PBS groups. Mortality in the W-Ah and B-Ah groups showed an upward and then downward trend after A. hydrophila injection. The highest mortality occurred within 24 h and was higher in the W-Ah group than in the B-Ah group. MDA levels in the B-Ah and W-Ah groups increased and then decreased, while SOD and T-AOC showed the reverse tendency. The W-Ah and W-PBS groups differed significantly in MDA at 3, 12, and 24 h, SOD from 6 to 96 h, and T-AOC between 6 and 48 h. Plasma MDA and T-AOC levels at 12 h and SOD levels at 24 and 48 h differed significantly between the B-PBS and B-Ah groups. In both the W-Ah and B-Ah groups, the expression levels of IL-1β and IL-8 in the liver showed a temporal pattern with an initial increase followed by a decrease, reaching peak levels after 24 h, while IL-10 showed the reverse pattern. Transcriptome analysis of the liver revealed significant differences between the two C. argus colors. Differential genes in black C. argus were mainly enriched in steroid biosynthesis, glycolysis/gluconeogenesis, and glutathione and propanoate metabolism pathways 24 h after infection. In contrast, differential genes in white C. argus were mainly enriched in pathways such as oxidative phosphorylation, pancreatic secretion, and protein digestion and absorption 24 h after infection. After A. hydrophila infection, white C. argus had higher mortality, more severe oxidative stress and inflammatory responses, and lower antioxidant capacity than black C. argus.
Collapse
Affiliation(s)
- Chong Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingsong Shu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Nanyang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
3
|
Rashidpour A, Wu Y, Almajano MP, Fàbregas A, Metón I. Chitosan-Based Sustained Expression of Sterol Regulatory Element-Binding Protein 1a Stimulates Hepatic Glucose Oxidation and Growth in Sparus aurata. Mar Drugs 2023; 21:562. [PMID: 37999386 PMCID: PMC10672111 DOI: 10.3390/md21110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The administration of a single dose of chitosan nanoparticles driving the expression of sterol regulatory element-binding protein 1a (SREBP1a) was recently associated with the enhanced conversion of carbohydrates into lipids. To address the effects of the long-lasting expression of SREBP1a on the growth and liver intermediary metabolism of carnivorous fish, chitosan-tripolyphosphate (TPP) nanoparticles complexed with a plasmid expressing the N terminal active domain of hamster SREBP1a (pSG5-SREBP1a) were injected intraperitoneally every 4 weeks (three doses in total) to gilthead sea bream (Sparus aurata) fed high-protein-low-carbohydrate and low-protein-high-carbohydrate diets. Following 70 days of treatment, chitosan-TPP-pSG5-SREBP1a nanoparticles led to the sustained upregulation of SREBP1a in the liver of S. aurata. Independently of the diet, SREBP1a overexpression significantly increased their weight gain, specific growth rate, and protein efficiency ratio but decreased their feed conversion ratio. In agreement with an improved conversion of dietary carbohydrates into lipids, SREBP1a expression increased serum triglycerides and cholesterol as well as hepatic glucose oxidation via glycolysis and the pentose phosphate pathway, while not affecting gluconeogenesis and transamination. Our findings support that the periodical administration of chitosan-TPP-DNA nanoparticles to overexpress SREBP1a in the liver enhanced the growth performance of S. aurata through a mechanism that enabled protein sparing by enhancing dietary carbohydrate metabolisation.
Collapse
Affiliation(s)
- Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Anna Fàbregas
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Yuan J, Zhao J, Sun Y, Wang Y, Li Y, Ni A, Zong Y, Ma H, Wang P, Shi L, Chen J. The mRNA-lncRNA landscape of multiple tissues uncovers key regulators and molecular pathways that underlie heterosis for feed intake and efficiency in laying chickens. Genet Sel Evol 2023; 55:69. [PMID: 37803296 PMCID: PMC10559425 DOI: 10.1186/s12711-023-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/24/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Heterosis is routinely exploited to improve animal performance. However, heterosis and its underlying molecular mechanism for feed intake and efficiency have been rarely explored in chickens. Feed efficiency continues to be an important breeding goal trait since feed accounts for 60 to 70% of the total production costs in poultry. Here, we profiled the mRNA-lncRNA landscape of 96 samples of the hypothalamus, liver and duodenum mucosa from White Leghorn (WL), Beijing-You chicken (YY), and their reciprocal crosses (WY and YW) to elucidate the regulatory mechanisms of heterosis. RESULTS We observed negative heterosis for both feed intake and residual feed intake (RFI) in YW during the laying period from 43 to 46 weeks of age. Analysis of the global expression pattern showed that non-additivity was a major component of the inheritance of gene expression in the three tissues for YW but not for WY. The YW-specific non-additively expressed genes (YWG) and lncRNA (YWL) dominated the total number of non-additively expressed genes and lncRNA in the hypothalamus and duodenum mucosa. Enrichment analysis of YWG showed that mitochondria components and oxidation phosphorylation (OXPHOS) pathways were shared among the three tissues. The OXPHOS pathway was enriched by target genes for YWL with non-additive inheritance of expression in the liver and duodenum mucosa. Weighted gene co-expression network analysis revealed divergent co-expression modules associated with feed intake and RFI in the three tissues from WL, YW, and YY. Among the negatively related modules, the OXPHOS pathway was enriched by hub genes in the three tissues, which supports the critical role of oxidative phosphorylation. Furthermore, protein quantification of ATP5I was highly consistent with ATP5I expression in the liver, which suggests that, in crossbred YW, non-additive gene expression is down-regulated and decreases ATP production through oxidative phosphorylation, resulting in negative heterosis for feed intake and efficiency. CONCLUSIONS Our results demonstrate that non-additively expressed genes and lncRNA involved in oxidative phosphorylation in the hypothalamus, liver, and duodenum mucosa are key regulators of the negative heterosis for feed intake and RFI in layer chickens. These findings should facilitate the rational choice of suitable parents for producing crossbred chickens.
Collapse
Affiliation(s)
- Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Panlin Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
5
|
Popescu RG, Marinescu GC, Rădulescu AL, Marin DE, Țăranu I, Dinischiotu A. Natural Antioxidant By-Product Mixture Counteracts the Effects of Aflatoxin B1 and Ochratoxin A Exposure of Piglets after Weaning: A Proteomic Survey on Liver Microsomal Fraction. Toxins (Basel) 2023; 15:toxins15040299. [PMID: 37104237 PMCID: PMC10143337 DOI: 10.3390/toxins15040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
| | - George Cătălin Marinescu
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
- Blue Screen SRL, Timisului No. 58, 012416 Bucharest, Romania
| | - Andreea Luminița Rădulescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| |
Collapse
|
6
|
An Integrated Bioinformatics Approach to Identify Network-Derived Hub Genes in Starving Zebrafish. Animals (Basel) 2022; 12:ani12192724. [PMID: 36230465 PMCID: PMC9559487 DOI: 10.3390/ani12192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The present study was aimed at identifying causative hub genes within modules formed by co-expression and protein-protein interaction (PPI) networks, followed by Bayesian network (BN) construction in the liver transcriptome of starved zebrafish. To this end, the GSE11107 and GSE112272 datasets from the GEO databases were downloaded and meta-analyzed using the MetaDE package, an add-on R package. Differentially expressed genes (DEGs) were identified based upon expression intensity N(µ = 0.2, σ2 = 0.4). Reconstruction of BNs was performed by the bnlearn R package on genes within modules using STRINGdb and CEMiTool. ndufs5 (shared among PPI, BN and COEX), rps26, rpl10, sdhc (shared between PPI and BN), ndufa6, ndufa10, ndufb8 (shared between PPI and COEX), skp1, atp5h, ndufb10, rpl5b, zgc:193613, zgc:123327, zgc:123178, wu:fc58f10, zgc:111986, wu:fc37b12, taldo1, wu:fb62f08, zgc:64133 and acp5a (shared between COEX and BN) were identified as causative hub genes affecting gene expression in the liver of starving zebrafish. Future work will shed light on using integrative analyses of miRNA and DNA microarrays simultaneously, and performing in silico and experimental validation of these hub-causative (CST) genes affecting starvation in zebrafish.
Collapse
|
7
|
Wang N, Wang H, Ji A, Li N, Chang G, Liu J, Agwunobi DO, Wang H. Proteomic changes in various organs of Haemaphysalis longicornis under long-term starvation. PLoS Negl Trop Dis 2022; 16:e0010692. [PMID: 35994434 PMCID: PMC9394840 DOI: 10.1371/journal.pntd.0010692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Haemaphysalis longicornis (Neumann), a tick of public health and veterinary importance, spend the major part of their life cycle off-host, especially the adult host-seeking period. Thus, they have to contend with prolonged starvation. Here, we investigated the underlying molecular mechanism of tick starvation endurance in the salivary glands, midguts, ovaries, and Malpighian tubules of starved H. longicornis ticks using the data-independent acquisition quantitative proteomic approach to study the proteome changes. Essential synthases such as glutamate synthase, citrate synthase, and ATP synthase were up-regulated probably due to increased proteolysis and amino acid catabolism during starvation. The up-regulation of succinate dehydrogenase, ATP synthase, cytochrome c oxidase, and ADP/ATP translocase closely fits with an increased oxidative phosphorylation function during starvation. The differential expression of superoxide dismutase, glutathione reductase, glutathione S-transferase, thioredoxin, and peroxiredoxin indicated fasting-induced oxidative stress. The up-regulation of heat shock proteins could imply the activation of a protective mechanism that checks excessive protein breakdown during starvation stress. The results of this study could provide useful information about the vulnerabilities of ticks that could aid in tick control efforts. Ticks are a common blood-sucking parasite, which spread many pathogens that cause serious diseases such as Lyme disease to people. Ixodid ticks can take up to three blood meals in their life. During the long process of waiting for their host in the wild, they have evolved a strong ability to tolerate hunger, which should not take more than a year. To study these tenacious molecular regulatory mechanisms, we conducted the DIA quantitative proteomics technology to perform large-scale protein quantitative research on various tissues of Haemaphysalis longicornis starved for a long time. Through the analysis of thousands of proteins produced by the performed research, the results showed that many proteins in the ticks starved for a long time had expressed quantitative changes such as the increased expression of some synthase enzymes. The large amount of data provided by this study can help to better understand the molecular mechanism of ticks’ long-term hunger tolerance. Although this study focuses on finding possible mechanisms for tick starvation resistance at the protein level, the current findings may well have a bearing on research about special activities such as ultra long-distance space travel in the dormant state of the human body in the future.
Collapse
Affiliation(s)
- Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Han Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Aimeng Ji
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Ning Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- * E-mail: (JL); (DOA); (HW)
| | - Desmond O. Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- * E-mail: (JL); (DOA); (HW)
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- * E-mail: (JL); (DOA); (HW)
| |
Collapse
|
8
|
Niitepõld K, Parry HA, Harris NR, Appel AG, de Roode JC, Kavazis AN, Hood WR. Flying on empty: Reduced mitochondrial function and flight capacity in food-deprived monarch butterflies. J Exp Biol 2022; 225:275693. [PMID: 35694960 DOI: 10.1242/jeb.244431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial function is fundamental to organismal performance, health, and fitness - especially during energetically challenging events, such as migration. With this investigation, we evaluated mitochondrial sensitivity to ecologically relevant stressors. We focused on an iconic migrant, the North American monarch butterfly (Danaus plexippus), and examined the effects of two stressors: seven days of food deprivation, and infection by the protozoan parasite Ophryocystis elektroscirrha (known to reduce survival and flight performance). We measured whole-animal resting (RMR) and peak flight metabolic rate, and mitochondrial respiration of isolated mitochondria from the flight muscles. Food deprivation reduced mass-independent RMR and peak flight metabolic rate, whereas infection did not. Fed monarchs used mainly lipids in flight (respiratory quotient 0.73), but the respiratory quotient dropped in food-deprived individuals, possibly indicating switching to alternative energy sources, such as ketone bodies. Food deprivation decreased mitochondrial maximum oxygen consumption but not basal respiration, resulting in lower respiratory control ratio (RCR). Furthermore, food deprivation decreased mitochondrial complex III activity, but increased complex IV activity. Infection did not result in any changes in these mitochondrial variables. Mitochondrial maximum respiration rate correlated positively with mass-independent RMR and flight metabolic rate, suggesting a link between mitochondria and whole-animal performance. In conclusion, low food availability negatively affects mitochondrial function and flight performance, with potential implications on migration, fitness, and population dynamics. Although previous studies have reported poor flight performance in infected monarchs, we found no differences in physiological performance, suggesting that reduced flight capacity may be due to structural differences or low energy stores.
Collapse
Affiliation(s)
- Kristjan Niitepõld
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.,The Finnish Science Centre Heureka, 01300 Vantaa, Finland
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Natalie R Harris
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | | | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Wang Y, Wei J, Hong K, Zhou N, Liu X, Hong X, Li W, Zhao J, Chen C, Wu L, Yu L, Zhu X. Transcriptome Analysis Reveals the Molecular Response to Salinity Challenge in Larvae of the Giant Freshwater Prawn Macrobrachium rosenbergii. Front Physiol 2022; 13:885035. [PMID: 35574435 PMCID: PMC9099292 DOI: 10.3389/fphys.2022.885035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Salinity is a crucial factor influencing the growth, development, immunity, and reproduction of aquatic organisms; however, little is known about the molecular mechanism of the response to salinity challenge in larvae of the giant freshwater prawn Macrobrachium rosenbergii. Herein, larvae cultured in three treatment groups with salinities of 10, 13, and 16‰ (S10, S13, and S16) were collected, and then transcriptome analysis was conducted by RNA-seq. A total of 6,473, 3,830 and 3,584 differentially expressed genes (DEGs) were identified in the S10 vs. S13 comparison, S10 vs. S16 comparison and S13 vs. S16 comparison, respectively. These genes are involved in osmoregulation, energy metabolism, molting, and the immune response. qPCR analysis was used to detect the expression patterns of 16 DEGs to verify the accuracy of the transcriptome data. Protein–protein interaction (PPI) analysis for DEGs and microsatellite marker screening were also conducted to reveal the molecular mechanism of salinity regulation. Together, our results will provide insight into the molecular genetic basis of adaptation to salinity challenge for larvae of M. rosenbergii.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Wei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kunhao Hong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Nan Zhou
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Liang Wu
- Sisal and Sisal Products Quality Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Zhanjiang, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Lingyun Yu, ; Xinping Zhu,
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Lingyun Yu, ; Xinping Zhu,
| |
Collapse
|
10
|
Xue R, Tang Q, Zhang Y, Xie M, Li C, Wang S, Yang H. Integrative Analyses of Genes Associated With Otologic Disorders in Turner Syndrome. Front Genet 2022; 13:799783. [PMID: 35273637 PMCID: PMC8902304 DOI: 10.3389/fgene.2022.799783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Loss or partial loss of one X chromosome induces Turner syndrome (TS) in females, causing major medical concerns, including otologic disorders. However, the underlying genetic pathophysiology of otologic disorders in TS is mostly unclear. Methods: Ear-related genes of TS (TSEs) were identified by analyzing differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO)-derived expression profiles and ear-genes in the Comparative Toxicogenomic Database (CTD). Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) analyses; Gene Set Enrichment Analysis (GSEA); and Gene Set Variation Analysis (GSVA) were adopted to study biological functions. Moreover, hub genes within the TSEs were identified by assessing protein-protein interaction (PPI), gene-microRNA, and gene-transcription factor (TF) networks. Drug-Gene Interaction Database (DGIdb) analysis was performed to predict molecular drugs for TS. Furthermore, three machine-learning analysis outcomes were comprehensively compared to explore optimal biomarkers of otologic disorders in TS. Finally, immune cell infiltration was analyzed. Results: The TSEs included 30 significantly upregulated genes and 14 significantly downregulated genes. Enrichment analyses suggested that TSEs play crucial roles in inflammatory responses, phospholipid and glycerolipid metabolism, transcriptional processes, and epigenetic processes, such as histone acetylation, and their importance for inner ear development. Subsequently, we described three hub genes in the PPI network and confirmed their involvement in Wnt/β-catenin signaling pathway and immune cell regulation and roles in maintaining normal auditory function. We also constructed gene-microRNA and gene-TF networks. A novel biomarker (SLC25A6) of the pathogenesis of otologic disorders in TS was identified by comprehensive comparisons of three machine-learning analyses with the best predictive performance. Potential therapeutic agents in TS were predicted using the DGIdb. Immune cell infiltration analysis showed that TSEs are related to immune-infiltrating cells. Conclusion: Overall, our findings have deepened the understanding of the pathophysiology of otologic disorders in TS and made contributions to present a promising biomarker and treatment targets for in-depth research.
Collapse
Affiliation(s)
- Ruoyan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Campos-Sánchez JC, Mayor-Lafuente J, Guardiola FA, Esteban MÁ. In silico and gene expression analysis of the acute inflammatory response of gilthead seabream (Sparus aurata) after subcutaneous administration of carrageenin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1623-1643. [PMID: 34448108 PMCID: PMC8478728 DOI: 10.1007/s10695-021-00999-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
Inflammation is one of the main causes of loss of homeostasis at both the systemic and molecular levels. The aim of this study was to investigate in silico the conservation of inflammation-related proteins in the gilthead seabream (Sparus aurata L.). Open reading frames of the selected genes were used as input in the STRING database for protein-protein interaction network analysis, comparing them with other teleost protein sequences. Proteins of the large yellow croaker (Larimichthys crocea L.) presented the highest percentages of identity with the gilthead seabream protein sequence. The gene expression profile of these proteins was then studied in gilthead seabream specimens subcutaneously injected with carrageenin (1%) or phosphate-buffered saline (control) by analyzing skin samples from the injected zone 12 and 24 h after injection. Gene expression analysis indicated that the mechanisms necessary to terminate the inflammatory response to carrageenin and recover skin homeostasis were activated between 12 and 24 h after injection (at the tested dose). The gene analysis performed in this study could contribute to the identification of the main mechanisms of acute inflammatory response and validate the use of carrageenin as an inflammation model to elucidate these mechanisms in fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
12
|
Du H, Xiong S, Lv H, Zhao S, Manyande A. Comprehensive analysis of transcriptomics and metabolomics to understand the flesh quality regulation of crucian carp (Carassius auratus) treated with short term micro-flowing water system. Food Res Int 2021; 147:110519. [PMID: 34399497 DOI: 10.1016/j.foodres.2021.110519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The short term micro-flowing purification system (STMFPS) has been shown to improve the flesh quality of freshwater fish. However, few studies have focused on the involved underlying mechanisms. This study explored the effect of STMFPS on the flesh quality of market-size freshwater fish based on the combination of metabolomics and transcriptomics methods. The UPLC-QTOF/MS based metabolomics method was utilized to screen metabolites and predict the possible major metabolic pathways during different STMFPS treatment periods (0 d, 1 d, 5 d and 9 d). Furthermore, the transcriptomic data demonstrated that the differentially expressed genes detected in crucian carp muscle were 2915, 7852 and 7183 after 1 d, 5 d and 9 d STMFPS treatment. Results showed that the TCA cycle, ornithine cycle, purine metabolism and amino acid catabolism play important roles in improving the flesh quality of crucian carp. This study may help to understand the mechanism of improving the flesh quality of aquatic products using STMFPS.
Collapse
Affiliation(s)
- Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| | - Hao Lv
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Siming Zhao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| |
Collapse
|
13
|
Chen P, Yang J, Xiao B, Zhang Y, Liu S, Zhu L. Mechanisms for the impacts of graphene oxide on the developmental toxicity and endocrine disruption induced by bisphenol A on zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124867. [PMID: 33370691 DOI: 10.1016/j.jhazmat.2020.124867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/15/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The huge production and application of bisphenol A (BPA) and graphene oxide (GO) inevitably lead to their co-presence in aquatic ecosystems, which might cause joint toxic effects to aquatic organisms. Herein, zebrafish larvae at 3 d post fertilization (dpf) were exposed to BPA, GO, and their mixtures until 7 dpf. GO was ingested and localized in the gut. 5000 μg/L BPA alone induced distinct ultrastructure damage, which was alleviated by GO, indicating that GO reduced the developmental toxicity of BPA. The levels of endocrine-related genes and steroid hormones were all modulated to the greatest extent by 500 μg/L BPA, suggesting that BPA exhibited a remarkable endocrine disruption effect. However, the responses of some of these genes were recovered by GO, indicating that GO also alleviated the BPA-induced endocrine disruption. The mRNA levels of five genes in the extracellular matrix-receptor interaction pathway, two in the oxidative phosphorylation pathway, 18 in the metabolic pathways, and five in the peroxisome proliferator-activated receptor signaling pathway were distinctly altered by 5000 μg/L BPA, but most of them were recovered in the presence of GO. GO might relieve the BPA-induced developmental toxicity and endocrine disruption by recovering the genes related to the corresponding pathways.
Collapse
Affiliation(s)
- Pengyu Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Jing Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Bowen Xiao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yanfeng Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Jia J, Qin J, Yuan X, Liao Z, Huang J, Wang B, Sun C, Li W. Microarray and metabolome analysis of hepatic response to fasting and subsequent refeeding in zebrafish (Danio rerio). BMC Genomics 2019; 20:919. [PMID: 31791229 PMCID: PMC6889435 DOI: 10.1186/s12864-019-6309-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Compensatory growth refers to the phenomenon in which organisms grow faster after the improvement of an adverse environment and is thought to be an adaptive evolution to cope with the alleviation of the hostile environment. Many fish have the capacity for compensatory growth, but the underlying cellular mechanisms remain unclear. In the present study, microarray and nontargeted metabolomics were performed to characterize the transcriptome and metabolome of zebrafish liver during compensatory growth. Results Zebrafish could regain the weight they lost during 3 weeks of fasting and reach a final weight similar to that of fish fed ad libitum when refed for 15 days. When refeeding for 3 days, the liver displayed hyperplasia accompanied with decreased triglyceride contents and increased glycogen contents. The microarray results showed that when food was resupplied for 3 days, the liver TCA cycle (Tricarboxylic acid cycle) and oxidative phosphorylation processes were upregulated, while DNA replication and repair, as well as proteasome assembly were also activated. Integration of transcriptome and metabolome data highlighted transcriptionally driven alterations in metabolism during compensatory growth, such as altered glycolysis and lipid metabolism activities. The metabolome data also implied the participation of amino acid metabolism during compensatory growth in zebrafish liver. Conclusion Our study provides a global resource for metabolic adaptations and their transcriptional regulation during refeeding in zebrafish liver. This study represents a first step towards understanding of the impact of metabolism on compensatory growth and will potentially aid in understanding the molecular mechanism associated with compensatory growth.
Collapse
Affiliation(s)
- Jirong Jia
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Jinfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Bin Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China.,Present address: Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Kyriakis D, Kanterakis A, Manousaki T, Tsakogiannis A, Tsagris M, Tsamardinos I, Papaharisis L, Chatziplis D, Potamias G, Tsigenopoulos CS. Scanning of Genetic Variants and Genetic Mapping of Phenotypic Traits in Gilthead Sea Bream Through ddRAD Sequencing. Front Genet 2019; 10:675. [PMID: 31447879 PMCID: PMC6691846 DOI: 10.3389/fgene.2019.00675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Gilthead sea bream (Sparus aurata) is a teleost of considerable economic importance in Southern European aquaculture. The aquaculture industry shows a growing interest in the application of genetic methods that can locate phenotype-genotype associations with high economic impact. Through selective breeding, the aquaculture industry can exploit this information to maximize the financial yield. Here, we present a Genome Wide Association Study (GWAS) of 112 samples belonging to seven different sea bream families collected from a Greek commercial aquaculture company. Through double digest Random Amplified DNA (ddRAD) Sequencing, we generated a per-sample genetic profile consisting of 2,258 high-quality Single Nucleotide Polymorphisms (SNPs). These profiles were tested for association with four phenotypes of major financial importance: Fat, Weight, Tag Weight, and the Length to Width ratio. We applied two methods of association analysis. The first is the typical single-SNP to phenotype test, and the second is a feature selection (FS) method through two novel algorithms that are employed for the first time in aquaculture genomics and produce groups with multiple SNPs associated to a phenotype. In total, we identified 9 single SNPs and 6 groups of SNPs associated with weight-related phenotypes (Weight and Tag Weight), 2 groups associated with Fat, and 16 groups associated with the Length to Width ratio. Six identified loci (Chr4:23265532, Chr6:12617755, Chr:8:11613979, Chr13:1098152, Chr15:3260819, and Chr22:14483563) were present in genes associated with growth in other teleosts or even mammals, such as semaphorin-3A and neurotrophin-3. These loci are strong candidates for future studies that will help us unveil the genetic mechanisms underlying growth and improve the sea bream aquaculture productivity by providing genomic anchors for selection programs.
Collapse
Affiliation(s)
- Dimitrios Kyriakis
- School of Medicine, University of Crete, Heraklion, Greece
- Foundation for Research and Technology–Hellas (FORTH), Heraklion, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Center for Marine Research (HCMR) Crete, Greece
| | | | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Center for Marine Research (HCMR) Crete, Greece
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Center for Marine Research (HCMR) Crete, Greece
| | - Michalis Tsagris
- Deparment of Economics, University of Crete, Gallos Campus, Rethymnon, Greece
| | - Ioannis Tsamardinos
- Department of Computer Science, University of Crete, Voutes Campus, Heraklion, Greece
| | | | - Dimitris Chatziplis
- Department of Agriculture Technology, Alexander Technological Education Institute of Thessaloniki, Thessaloniki, Greece
| | - George Potamias
- Foundation for Research and Technology–Hellas (FORTH), Heraklion, Greece
| | - Costas S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Center for Marine Research (HCMR) Crete, Greece
| |
Collapse
|
16
|
Silva-Marrero JI, Villasante J, Rashidpour A, Palma M, Fàbregas A, Almajano MP, Viegas I, Jones JG, Miñarro M, Ticó JR, Baanante IV, Metón I. The Administration of Chitosan-Tripolyphosphate-DNA Nanoparticles to Express Exogenous SREBP1a Enhances Conversion of Dietary Carbohydrates into Lipids in the Liver of Sparus aurata. Biomolecules 2019; 9:biom9080297. [PMID: 31344838 PMCID: PMC6724022 DOI: 10.3390/biom9080297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
In addition to being essential for the transcription of genes involved in cellular lipogenesis, increasing evidence associates sterol regulatory element binding proteins (SREBPs) with the transcriptional control of carbohydrate metabolism. The aim of this study was to assess the effect of overexpression SREBP1a, a potent activator of all SREBP-responsive genes, on the intermediary metabolism of Sparus aurata, a glucose-intolerant carnivorous fish. Administration of chitosan-tripolyphosphate nanoparticles complexed with a plasmid driving expression of the N-terminal transactivation domain of SREBP1a significantly increased SREBP1a mRNA and protein in the liver of S. aurata. Overexpression of SREBP1a enhanced the hepatic expression of key genes in glycolysis-gluconeogenesis (glucokinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase), fatty acid synthesis (acetyl-CoA carboxylase 1 and acetyl-CoA carboxylase 2), elongation (elongation of very long chain fatty acids protein 5) and desaturation (fatty acid desaturase 2) as well as reduced nicotinamide adenine dinucleotide phosphate production (glucose-6-phosphate 1-dehydrogenase) and cholesterol synthesis (3-hydroxy-3-methylglutaryl-coenzyme A reductase), leading to increased blood triglycerides and cholesterol levels. Beyond reporting the first study addressing in vivo effects of exogenous SREBP1a in a glucose-intolerant model, our findings support that SREBP1a overexpression caused multigenic effects that favoured hepatic glycolysis and lipogenesis and thus enabled protein sparing by improving dietary carbohydrate conversion into fatty acids and cholesterol.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Juliana Villasante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Mariana Palma
- Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456 Coimbra, Portugal
| | - Anna Fàbregas
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ivan Viegas
- Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - John G Jones
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Montserrat Miñarro
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Josep R Ticó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Gaspar C, Silva-Marrero JI, Salgado MC, Baanante IV, Metón I. Role of upstream stimulatory factor 2 in glutamate dehydrogenase gene transcription. J Mol Endocrinol 2018; 60:247-259. [PMID: 29438976 DOI: 10.1530/jme-17-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
Abstract
Glutamate dehydrogenase (Gdh) plays a central role in ammonia detoxification by catalysing reversible oxidative deamination of l-glutamate into α-ketoglutarate using NAD+ or NADP+ as cofactor. To gain insight into transcriptional regulation of glud, the gene that codes for Gdh, we isolated and characterised the 5' flanking region of glud from gilthead sea bream (Sparus aurata). In addition, tissue distribution, the effect of starvation as well as short- and long-term refeeding on Gdh mRNA levels in the liver of S. aurata were also addressed. 5'-Deletion analysis of glud promoter in transiently transfected HepG2 cells, electrophoretic mobility shift assays, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis allowed us to identify upstream stimulatory factor 2 (Usf2) as a novel factor involved in the transcriptional regulation of glud Analysis of tissue distribution of Gdh and Usf2 mRNA levels by reverse transcriptase-coupled quantitative real-time PCR (RT-qPCR) showed that Gdh is mainly expressed in the liver of S. aurata, while Usf2 displayed ubiquitous distribution. RT-qPCR and ChIP assays revealed that long-term starvation down-regulated the hepatic expression of Gdh and Usf2 to similar levels and reduced Usf2 binding to glud promoter, while refeeding resulted in a slow but gradual restoration of both Gdh and Usf2 mRNA abundance. Herein, we demonstrate that Usf2 transactivates S. aurata glud by binding to an E-box located in the proximal region of glud promoter. In addition, our findings provide evidence for a new regulatory mechanism involving Usf2 as a key factor in the nutritional regulation of glud transcription in the fish liver.
Collapse
Affiliation(s)
- Carlos Gaspar
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María C Salgado
- Servei de Bioquímica Clínica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|