1
|
Kikuchi Y, Uddin M, Veltman JA, Wells S, Morris C, Woodbury-Smith M. Evolutionary constrained genes associated with autism spectrum disorder across 2,054 nonhuman primate genomes. Mol Autism 2025; 16:5. [PMID: 39849619 PMCID: PMC11755938 DOI: 10.1186/s13229-024-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Significant progress has been made in elucidating the genetic underpinnings of Autism Spectrum Disorder (ASD). However, there are still significant gaps in our understanding of the link between genomics, neurobiology and clinical phenotype in scientific discovery. New models are therefore needed to address these gaps. Rhesus macaques (Macaca mulatta) have been extensively used for preclinical neurobiological research because of remarkable similarities to humans across biology and behaviour that cannot be captured by other experimental animals. METHODS We used the macaque Genotype and Phenotype (mGAP) resource consisting of 2,054 macaque genomes to examine patterns of evolutionary constraint in known human neurodevelopmental genes. Residual variation intolerance scores (RVIS) were calculated for all annotated autosomal genes (N = 18,168) and Gene Set Enrichment Analysis (GSEA) was used to examine patterns of constraint across ASD genes and related neurodevelopmental genes. RESULTS We demonstrated that patterns of constraint across autosomal genes are correlated in humans and macaques, and that ASD-associated genes exhibit significant constraint in macaques (p = 9.4 × 10- 27). Among macaques, many key ASD-implicated genes were observed to harbour predicted damaging mutations. A small number of key ASD-implicated genes that are highly intolerant to mutation in humans, however, showed no evidence of similar intolerance in macaques (CACNA1D, MBD5, AUTS2 and NRXN1). Constraint was also observed across genes associated with intellectual disability (p = 1.1 × 10- 46), epilepsy (p = 2.1 × 10- 33) and schizophrenia (p = 4.2 × 10- 45), and for an overlapping neurodevelopmental gene set (p = 4.0 × 10- 10). LIMITATIONS The lack of behavioural phenotypes among the macaques whose genotypes were studied means that we are unable to further investigate whether genetic variants have similar phenotypic consequences among nonhuman primates. CONCLUSION The presence of pathological mutations in ASD genes among macaques, along with evidence of similar genetic constraints to those in humans, provides a strong rationale for further investigation of genotype-phenotype relationships in macaques. This highlights the importance of developing primate models of ASD to elucidate the neurobiological underpinnings and advance approaches for precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Yukiko Kikuchi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Mohammed Uddin
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- GenomeArc Inc, Mississauga, ON, Canada
| | - Joris A Veltman
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Wells
- MRC Centre for Macaques, Salisbury, UK
- Mary Lyon Centre at MRC Harwell, Oxfordshire, UK
| | - Christopher Morris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marc Woodbury-Smith
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Estimating realized relatedness in free-ranging macaques by inferring identity-by-descent segments. Proc Natl Acad Sci U S A 2025; 122:e2401106122. [PMID: 39808663 PMCID: PMC11760927 DOI: 10.1073/pnas.2401106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates. Here, we leverage different methods for estimating IBD segments from low-depth whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4 to 6× depth data from a rhesus macaque (Macaca mulatta) population with long-term pedigree data, we show that we can infer the number and length of IBD segments across the genome with high accuracy even at 0.5× sequencing depth. In line with expectations based on simulation, the resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. By comparing the IBD-based estimates with pedigree and short tandem repeat-based methods, we show that IBD estimates are more reliable and provide more detailed information on kinship. The inferred IBD segments also identify cryptic genetic relatives not represented in the pedigree and reveal elevated recombination rates in females relative to males, which enables the majority of close maternal and paternal kin to be distinguished with genotype data alone. Our findings represent a breakthrough in the ability to study the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Vladimir M. Jovanovic
- Department of Biology, Chemistry and Pharmacy, Human Biology and Primate Evolution, Freie Universität Berlin, Berlin14195, Germany
- Department of Mathematics and Computer Science, Bioinformatics Solution Center, Freie Universität Berlin, Berlin14195, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig04107, Germany
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ85281
| | - Donald F. Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, OR97006
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, OR97006
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hendrikje Westphal
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig04107, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig04107, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Institute for Theoretical Chemistry, University of Vienna, Vienna1090, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá111311, Colombia
- Santa Fe Institute, Santa Fe, NM87501
| | - Stefanie Bley
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Julie E. Horvath
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, NC27601
- Department of Biological Sciences, North Carolina State University, Raleigh, NC27607
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27517
| | - Lauren J. N. Brent
- Centre for Research in Animal Behavior, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA19104
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago00741, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Evolutionary Anthropology, Duke University, Durham, NC27710
- Department of Biology, Duke University, Durham, NC27710
- Duke University Population Research Institute, Durham, NC27710
| | - Katja Nowick
- Department of Biology, Chemistry and Pharmacy, Human Biology and Primate Evolution, Freie Universität Berlin, Berlin14195, Germany
- Department of Mathematics and Computer Science, Bioinformatics Solution Center, Freie Universität Berlin, Berlin14195, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Anja Widdig
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- German Centre for Integrative Biodiversity Research, Leipzig04103, Germany
| |
Collapse
|
3
|
Coren LV, Trivett MT, Welker JL, Thomas JA, Gorelick RJ, Kose E, Immonen TT, Czarra K, Fennessey CM, Trubey CM, Lifson JD, Swanstrom AE. Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression. PLoS One 2025; 20:e0314751. [PMID: 39787126 PMCID: PMC11717225 DOI: 10.1371/journal.pone.0314751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/17/2024] [Indexed: 01/12/2025] Open
Abstract
T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions. Preclinical animal models are valuable tools to optimize engineering designs and methods, and to evaluate the potential for off-target tissue injury. To further develop rhesus macaque models for TCR based cellular immunotherapy, we tested methods for improving cell surface expression of rhesus macaque TCR in rhesus macaque primary cells by generating five alternative TCRαβ constant region constructs in the context of a SIV Gag-specific TCR: 1. human codon optimized rhesus macaque (RH); 2. RH TCR with an additional disulfide linkage; 3. rhesus macaque constant sequences with minimal murine amino acid substitutions; 4. murinized constant sequences; and 5. murinized constant sequences with a portion of the exposed FG loop in the β constant sequence replaced with rhesus macaque sequence to reduce potential immunogencity. Murinization or mutation of a minimal set of amino acids to the corresponding murine sequence of the constant region resulted in the greatest increase in rhesus macaque TCR surface expression relative to wild type. All novel TCR constructs retained the ability to induce production of cytokines in response to cognate peptide antigen specific stimulation. This work can inform the design of TCRs selected for use in rhesus macaque models of TCR-based cellular immunotherapy.
Collapse
MESH Headings
- Animals
- Macaca mulatta
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mice
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Lori V. Coren
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jorden L. Welker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Thomas
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Czarra
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
4
|
Mohd Noor NH, Siti Asmaa MJ. Karl Landsteiner (1868-1943): A Versatile Blood Scientist. Cureus 2024; 16:e68903. [PMID: 39381489 PMCID: PMC11458791 DOI: 10.7759/cureus.68903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Karl Landsteiner (1868-1943) was an Austrian-American biologist, physician, and immunologist whose groundbreaking discoveries revolutionized the fields of transfusion medicine, immunology, and virology. His most famous work was the identification of the ABO blood group system in 1901, which explained the causes of transfusion reactions and laid the foundation for safe blood transfusions. This discovery earned him the Nobel Prize in Physiology or Medicine in 1930. Landsteiner continued his research, identifying the MN and P blood group system in 1927 and the Rh blood group system in 1940, which addressed the complexities of the Hemolytic Disease of the Fetus and Newborn (HDFN). His work on the poliovirus in 1908, in collaboration with Erwin Popper, established the infectious nature of the disease and laid the groundwork for future vaccine development. Landsteiner's versatility as a scientist is evident in the breadth of his work, spanning hematology, immunology, and virology. His ability to navigate diverse fields and see connections between them allowed him to make pioneering discoveries that have had a lasting impact on medical practice, particularly in blood transfusion, organ transplantation, and immunotherapy. Landsteiner's legacy as the "Father of Transfusion Medicine" is reinforced by the standardization of blood typing procedures, which have saved millions of lives worldwide.
Collapse
Affiliation(s)
- Noor Haslina Mohd Noor
- Department of Hematology, Universiti Sains Malaysia, School of Medical Sciences, Kota Bharu, MYS
| | - Mat Jusoh Siti Asmaa
- Department of Hematology, Universiti Sains Malaysia, School of Medical Sciences, Kota Bharu, MYS
| |
Collapse
|
5
|
Wang J, Wang M, Moshiri A, Harris RA, Raveendran M, Nguyen T, Kim S, Young L, Wang K, Wiseman R, O'Connor DH, Johnson Z, Martinez M, Montague MJ, Sayers K, Lyke M, Vallender E, Stout T, Li Y, Thomasy SM, Rogers J, Chen R. Genetic diversity of 1,845 rhesus macaques improves genetic variation interpretation and identifies disease models. Nat Commun 2024; 15:5658. [PMID: 38969634 PMCID: PMC11226599 DOI: 10.1038/s41467-024-49922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Understanding and treating human diseases require valid animal models. Leveraging the genetic diversity in rhesus macaque populations across eight primate centers in the United States, we conduct targeted-sequencing on 1845 individuals for 374 genes linked to inherited human retinal and neurodevelopmental diseases. We identify over 47,000 single nucleotide variants, a substantial proportion of which are shared with human populations. By combining rhesus and human allele frequencies with established variant prediction methods, we develop a machine learning-based score that outperforms established methods in predicting missense variant pathogenicity. Remarkably, we find a marked number of loss-of-function variants and putative deleterious variants, which may lead to the development of rhesus disease models. Through phenotyping of macaques carrying a pathogenic OPA1:p.A8S variant, we identify a genetic model of autosomal dominant optic atrophy. Finally, we present a public website housing variant and genotype data from over two thousand rhesus macaques.
Collapse
Affiliation(s)
- Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, UC Davis, Sacramento, California, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Nguyen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Laura Young
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Roger Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zach Johnson
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Melween Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Humacao, Puerto Rico
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ken Sayers
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Martha Lyke
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Eric Vallender
- Tulane National Primate Research Center, Tulane university, Covington, Louisiana, USA
| | - Tim Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sara M Thomasy
- Department of Ophthalmology & Vision Science, School of Medicine, UC Davis, Sacramento, California, USA
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
- California National Primate Research Center, University of California-Davis, Davis, California, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
6
|
Ding W, Li X, Zhang J, Ji M, Zhang M, Zhong X, Cao Y, Liu X, Li C, Xiao C, Wang J, Li T, Yu Q, Mo F, Zhang B, Qi J, Yang JC, Qi J, Tian L, Xu X, Peng Q, Zhou WZ, Liu Z, Fu A, Zhang X, Zhang JJ, Sun Y, Hu B, An NA, Zhang L, Li CY. Adaptive functions of structural variants in human brain development. SCIENCE ADVANCES 2024; 10:eadl4600. [PMID: 38579006 DOI: 10.1126/sciadv.adl4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.
Collapse
Affiliation(s)
- Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiangshang Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaoming Zhong
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie-Chun Yang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Juntian Qi
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Lu Tian
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory, Wuhan, China
| | - Xiuqin Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
7
|
Deycmar S, Johnson BJ, Ray K, Schaaf GW, Ryan DP, Cullin C, Dozier BL, Ferguson B, Bimber BN, Olson JD, Caudell DL, Whitlow CT, Solingapuram Sai KK, Romero EC, Villinger FJ, Burgos AG, Ainsworth HC, Miller LD, Hawkins GA, Chou JW, Gomes B, Hettich M, Ceppi M, Charo J, Cline JM. Epigenetic MLH1 silencing concurs with mismatch repair deficiency in sporadic, naturally occurring colorectal cancer in rhesus macaques. J Transl Med 2024; 22:292. [PMID: 38504345 PMCID: PMC10953092 DOI: 10.1186/s12967-024-04869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Roche Postdoctoral Fellowship (RPF) Program, Basel, Switzerland
| | - Brendan J Johnson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Karina Ray
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - George W Schaaf
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Declan Patrick Ryan
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cassandra Cullin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Brandy L Dozier
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Betsy Ferguson
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - John D Olson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - David L Caudell
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Emily C Romero
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, USA
| | - Francois J Villinger
- New Iberia Research Center, University of Louisiana-Lafayette, New Iberia, LA, USA
| | - Armando G Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - Hannah C Ainsworth
- Department of Biostatistics and Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Hawkins
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeff W Chou
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bruno Gomes
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael Hettich
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Maurizio Ceppi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics, Translational Medicine, Gosselies, Belgium
| | - Jehad Charo
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Taking identity-by-descent analysis into the wild: Estimating realized relatedness in free-ranging macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574911. [PMID: 38260273 PMCID: PMC10802400 DOI: 10.1101/2024.01.09.574911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vladimir M Jovanovic
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Noah Snyder-Mackler
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hendrikje Westphal
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Stefanie Bley
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina, Durham, USA
- Research and Collections Section, North Carolina Museum of Natural Sciences, North Carolina, Raleigh, USA
- Department of Biological Sciences, North Carolina State University, North Carolina, Raleigh, USA
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, the Wharton School of Business, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke University Population Research Institute, Durham, North Carolina, USA
| | - Katja Nowick
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Widdig
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
9
|
Stendahl AM, Sanghvi R, Peterson S, Ray K, Lima AC, Rahbari R, Conrad DF. A naturally occurring variant of MBD4 causes maternal germline hypermutation in primates. Genome Res 2023; 33:2053-2059. [PMID: 37984997 PMCID: PMC10760519 DOI: 10.1101/gr.277977.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As part of an ongoing genome sequencing project at the Oregon National Primate Research Center, we identified a rhesus macaque with a rare homozygous frameshift mutation in the gene methyl-CpG binding domain 4, DNA glycosylase (MBD4). MBD4 is responsible for the repair of C > T deamination mutations at CpG dinucleotides and has been linked to somatic hypermutation and cancer predisposition in humans. We show here that MBD4-associated hypermutation also affects the germline: The six offspring of the MBD4-null dam have a fourfold to sixfold increase in de novo mutation burden. This excess burden was predominantly C > T mutations at CpG dinucleotides consistent with MBD4 loss of function in the dam. There was also a significant excess of C > T at CpA sites, indicating an important, unappreciated role for MBD4 to repair deamination in CpA contexts. The MBD4-null dam developed sustained eosinophilia later in life, but we saw no other signs of neoplastic processes associated with MBD4 loss of function in humans nor any obvious disease in the hypermutated offspring. This work provides the first evidence for a genetic factor causing hypermutation in the maternal germline of a mammal and adds to the very small list of naturally occurring variants known to modulate germline mutation rates in mammals.
Collapse
Affiliation(s)
- Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Rashesh Sanghvi
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Samuel Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Karina Ray
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA;
| |
Collapse
|
10
|
Wu R, Qi J, Li W, Wang L, Shen Y, Liu J, Teng Y, Roos C, Li M. Landscape genomics analysis provides insights into future climate change-driven risk in rhesus macaque. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165746. [PMID: 37495138 DOI: 10.1016/j.scitotenv.2023.165746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Climate change significantly affects the suitability of wildlife habitats. Thus, understanding how animals adapt ecologically and genetically to climate change is important for targeted species protection. Rhesus macaques (Macaca mulatta) are widely distributed and multi-climatically adapted primates. This study explored how rhesus macaques adapt to climate change by integrating ecological and genetic methods and applying species distribution models (SDMs) and a gradient forest (GF) model. The findings suggested that temperature seasonality primarily affects habitat suitability and indicated that climate change will have a dramatic impact on macaque populations in the future. We also applied genotype-environment association (GEA) analyses and selection signature analyses to identify genes associated with climate change and provide possible explanations for the adaptation of rhesus macaques to climatic environments. The population genomics analyses suggested that the Taihang population has the highest genomic vulnerability with inbreeding and low heterozygosity. Combined with the higher ecological vulnerability, additional conservation strategies are required for this population under higher risk of climate change. Our work measured the impact of climate change and enabled the identification of populations that exhibit high vulnerability to severe climate change. Such information is useful for selecting populations of rhesus macaques as subject of long-term monitoring or evolutionary rescue under future climate change.
Collapse
Affiliation(s)
- Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
11
|
Peterson SM, Watowich MM, Renner LM, Martin S, Offenberg E, Lea A, Montague MJ, Higham JP, Snyder-Mackler N, Neuringer M, Ferguson B. Genetic variants in melanogenesis proteins TYRP1 and TYR are associated with the golden rhesus macaque phenotype. G3 (BETHESDA, MD.) 2023; 13:jkad168. [PMID: 37522525 PMCID: PMC10542561 DOI: 10.1093/g3journal/jkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.
Collapse
Affiliation(s)
- Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren M Renner
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Samantha Martin
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Emma Offenberg
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School for Human Evolution & Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
12
|
Shorey-Kendrick LE, Roberts VHJ, D'Mello RJ, Sullivan EL, Murphy SK, Mccarty OJT, Schust DJ, Hedges JC, Mitchell AJ, Terrobias JJD, Easley CA, Spindel ER, Lo JO. Prenatal delta-9-tetrahydrocannabinol exposure is associated with changes in rhesus macaque DNA methylation enriched for autism genes. Clin Epigenetics 2023; 15:104. [PMID: 37415206 PMCID: PMC10324248 DOI: 10.1186/s13148-023-01519-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND With the growing availability of cannabis and the popularization of additional routes of cannabis use beyond smoking, including edibles, the prevalence of cannabis use in pregnancy is rapidly increasing. However, the potential effects of prenatal cannabis use on fetal developmental programming remain unknown. RESULTS We designed this study to determine whether the use of edible cannabis during pregnancy is deleterious to the fetal and placental epigenome. Pregnant rhesus macaques consumed a daily edible containing either delta-9-tetrahydrocannabinol (THC) (2.5 mg/7 kg/day) or placebo. DNA methylation was measured in 5 tissues collected at cesarean delivery (placenta, lung, cerebellum, prefrontal cortex, and right ventricle of the heart) using the Illumina MethylationEPIC platform and filtering for probes previously validated in rhesus macaque. In utero exposure to THC was associated with differential methylation at 581 CpGs, with 573 (98%) identified in placenta. Loci differentially methylated with THC were enriched for candidate autism spectrum disorder (ASD) genes from the Simons Foundation Autism Research Initiative (SFARI) database in all tissues. The placenta demonstrated greatest SFARI gene enrichment, including genes differentially methylated in placentas from a prospective ASD study. CONCLUSIONS Overall, our findings reveal that prenatal THC exposure alters placental and fetal DNA methylation at genes involved in neurobehavioral development that may influence longer-term offspring outcomes. The data from this study add to the limited existing literature to help guide patient counseling and public health polices focused on prenatal cannabis use in the future.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Rahul J D'Mello
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Owen J T Mccarty
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Danny J Schust
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Jason C Hedges
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Urology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jose Juanito D Terrobias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, 30602, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
13
|
Vallender EJ, Hotchkiss CE, Lewis AD, Rogers J, Stern JA, Peterson SM, Ferguson B, Sayers K. Nonhuman primate genetic models for the study of rare diseases. Orphanet J Rare Dis 2023; 18:20. [PMID: 36721163 PMCID: PMC9887761 DOI: 10.1186/s13023-023-02619-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Pre-clinical research and development relies heavily upon translationally valid models of disease. A major difficulty in understanding the biology of, and developing treatments for, rare disease is the lack of animal models. It is important that these models not only recapitulate the presentation of the disease in humans, but also that they share functionally equivalent underlying genetic causes. Nonhuman primates share physiological, anatomical, and behavioral similarities with humans resulting from close evolutionary relationships and high genetic homology. As the post-genomic era develops and next generation sequencing allows for the resequencing and screening of large populations of research animals, naturally occurring genetic variation in nonhuman primates with clinically relevant phenotypes is regularly emerging. Here we review nonhuman primate models of multiple rare genetic diseases with a focus on the similarities and differences in manifestation and etiologies across species. We discuss how these models are being developed and how they can offer new tools and opportunities for researchers interested in exploring novel therapeutics for these and other genetic diseases. Modeling human genetic diseases in translationally relevant nonhuman primates presents new prospects for development of therapeutics and a better understanding of rare diseases. The post-genomic era offers the opportunity for the discovery and further development of more models like those discussed here.
Collapse
Affiliation(s)
- Eric J. Vallender
- University of Mississippi Medical Center, Jackson, MS USA
- Tulane National Primate Research Center, Covington, LA USA
| | - Charlotte E. Hotchkiss
- University of Washington, Seattle, WA USA
- Washington National Primate Research Center, Seattle, WA USA
| | - Anne D. Lewis
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Jeffrey Rogers
- Baylor College of Medicine, Houston, TX USA
- Wisconsin National Primate Research Center, Madison, WI USA
| | - Joshua A. Stern
- University of California-Davis, Davis, CA USA
- California National Primate Research Center, Davis, CA USA
| | - Samuel M. Peterson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Betsy Ferguson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Ken Sayers
- Texas Biomedical Research Institute, San Antonio, TX USA
- Southwest National Primate Research Center, San Antonio, TX USA
| |
Collapse
|
14
|
Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat Rev Genet 2023; 24:314-331. [PMID: 36599936 DOI: 10.1038/s41576-022-00554-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Primate genomics holds the key to understanding fundamental aspects of human evolution and disease. However, genetic diversity and functional genomics data sets are currently available for only a few of the more than 500 extant primate species. Concerted efforts are under way to characterize primate genomes, genetic polymorphism and divergence, and functional landscapes across the primate phylogeny. The resulting data sets will enable the connection of genotypes to phenotypes and provide new insight into aspects of the genetics of primate traits, including human diseases. In this Review, we describe the existing genome assemblies as well as genetic variation and functional genomic data sets. We highlight some of the challenges with sample acquisition. Finally, we explore how technological advances in single-cell functional genomics and induced pluripotent stem cell-derived organoids will facilitate our understanding of the molecular foundations of primate biology.
Collapse
|
15
|
Doyle-Meyers L, Dong C, Xu EQ, Vallender EJ, Blair RV, Didier P, He F, Wang X. Cyclopia in a newborn rhesus macaque born to a dam infected with SIV and receiving antiretroviral therapy during pregnancy. CURRENT TRENDS IN IMMUNOLOGY 2023; 24:91-103. [PMID: 39640529 PMCID: PMC11620240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cyclopia, a rare genetic anomaly and birth defect, was recently observed in our nonhuman primate study. A newborn rhesus macaque, delivered via cesarean section, exhibited facial abnormalities, including a single eye in the middle of the forehead. This macaque was born to a dam who had been inoculated with SIV in the first trimester and received antiretroviral therapy (ART) in the early third trimester of pregnancy. Prenatal ultrasound detected fetal defects, including the fusion of the thalami and absence of third ventricle during the third trimester of fetal development. Remarkably, the newborn macaque was diagnosed with severe alobar holoprosencephaly, characterized by a single eye located on the facial midline and proboscises positioned above and below the eye. This condition was accompanied by the absence of a nose, mouth, mandible, maxilla, nasal and oral cavities, tongue, as well as the esophagus. Subsequent genetic screening identified a significant down-regulation of craniofacial development-associated genes, although genetic mutations in the sonic hedgehog gene (SHH) were not present. As the fetal defects were identified prior to the initiation of antiretroviral therapy, it is possible that other environmental factors may have contributed to the development of cyclopia in this rhesus case. However, the etiology of this congenital HPE case remains essentially unknown.
Collapse
Affiliation(s)
- Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Chunming Dong
- Department of Cell and Molecular Biology, School of Science
and Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118,
USA
| | - Eddie Qidi Xu
- Department of Cell and Molecular Biology, School of Science
and Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118,
USA
- Tulane University School of Public Health and Tropical
Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA
| | - Eric J. Vallender
- Division of Veterinary Medicine, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Psychiatry and Human Behavior, Division of
Neurobiology and Behavior Research, University of Mississippi Medical Center,
Jackson, MS, 39216, USA
| | - Robert V. Blair
- Pathology & Laboratory Medicine, Tulane University
School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Division of Comparative Pathology, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Peter Didier
- Pathology & Laboratory Medicine, Tulane University
School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Division of Comparative Pathology, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, School of Science
and Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118,
USA
| | - Xiaolei Wang
- Pathology & Laboratory Medicine, Tulane University
School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Division of Comparative Pathology, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
16
|
Deycmar S, Gomes B, Charo J, Ceppi M, Cline JM. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer 2023; 11:e005514. [PMID: 36593067 PMCID: PMC9808758 DOI: 10.1136/jitc-2022-005514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans. Thus, these tumor-bearing monkeys (TBMs) have the potential to bridge the experimental gap between early preclinical cancer models and patients with human cancer.This review presents our current knowledge of NHP immunology, the incidence and features of naturally-occurring cancers in NHP, and recent TBM trials investigating CIT to provide a scientific rationale for this unique model for human cancer.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bruno Gomes
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Jehad Charo
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maurizio Ceppi
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics Inc, Watertown, Massachusetts, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
17
|
Genome-Wide DNA Methylation Profile Indicates Potential Epigenetic Regulation of Aging in the Rhesus Macaque Thymus. Int J Mol Sci 2022; 23:ijms232314984. [PMID: 36499310 PMCID: PMC9738698 DOI: 10.3390/ijms232314984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
We analyzed whole-genome bisulfite sequencing (WGBS) and RNA sequencing data of two young (1 year old) and two adult (9 years old) rhesus macaques (Macaca mulatta) to characterize the genomic DNA methylation profile of the thymus and explore the molecular mechanism of age-related changes in the thymus. Combining the two-omics data, we identified correlations between DNA methylation and gene expression and found that DNA methylation played an essential role in the functional changes of the aging thymus, especially in immunity and coagulation. The hypomethylation levels of C3 and C5AR2 and the hypermethylation level of C7 may lead to the high expressions of these genes in adult rhesus macaque thymuses, thus activating the classical complement pathway and the alternative pathway and enhancing their innate immune function. Adult thymuses had an enhanced coagulation pathway, which may have resulted from the hypomethylation and upregulated expressions of seven coagulation-promoting factor genes (F13A1, CLEC4D, CLEC4E, FCN3, PDGFRA, FGF2 and FGF7) and the hypomethylation and low expression of CPB2 to inhibit the degradation of blood clots. Furthermore, the functional decline in differentiation, activation and maturation of T cells in adult thymuses was also closely related to the changes in methylation levels and gene expression levels of T cell development genes (CD3G, GAD2, ADAMDEC1 and LCK) and the thymogenic hormone gene TMPO. A comparison of the age-related methylated genes among four mammal species revealed that most of the epigenetic clocks were species-specific. Furthermore, based on the genomic landscape of allele-specific DNA methylation, we identified several age-related clustered sequence-dependent allele-specific DNA methylated (cS-ASM) genes. Overall, these DNA methylation patterns may also help to assist with understanding the mechanisms of the aging thymus with the epigenome.
Collapse
|
18
|
Theofanopoulou C, Andirkó A, Boeckx C, Jarvis ED. Oxytocin and vasotocin receptor variation and the evolution of human prosociality. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100139. [PMID: 35757177 PMCID: PMC9227999 DOI: 10.1016/j.cpnec.2022.100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022] Open
Abstract
Modern human lifestyle strongly depends on complex social traits like empathy, tolerance and cooperation. These diverse facets of social cognition have been associated with variation in the oxytocin receptor (OTR) and its sister genes, the vasotocin/vasopressin receptors (VTR1A/AVPR1A and AVPR1B/VTR1B). Here, we compared the available genomic sequences of these receptors between modern humans, archaic humans, and 12 non-human primate species, and identified sites that show heterozygous variation in modern humans and archaic humans distinct from variation in other primates, and for which we could find association studies with clinical implications. On these sites, we performed a range of analyses (variant clustering, pathogenicity prediction, regulation, linkage disequilibrium frequency), and reviewed the literature on selection data in different modern-human populations. We found five sites with modern human specific variation, where the modern human allele is the major allele in the global population (OTR: rs1042778, rs237885, rs6770632; VTR1A: rs10877969; VTR1B: rs33985287). Among them, variation in the OTR-rs6770632 site was predicted to be the most functional. Two alleles (OTR: rs59190448 and rs237888) present only in modern humans and archaic humans were putatively under positive selection in modern humans, with rs237888 predicted to be a highly functional site. Three sites showed convergent evolution between modern humans and bonobos (OTR: rs2228485 and rs237897; VTR1A: rs1042615), with OTR-rs2228485 ranking highly in terms of functionality and reported to be under balancing selection in modern humans (Schaschl, 2015) [1]. Our findings have implications for understanding hominid prosociality, as well as the similarities between modern human and bonobo social behavior.
Collapse
Affiliation(s)
| | - Alejandro Andirkó
- Section of General Linguistics, Universitat de Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, USA
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, USA
- ICREA, Spain
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
19
|
Genomic resources for rhesus macaques (Macaca mulatta). Mamm Genome 2022; 33:91-99. [PMID: 34999909 PMCID: PMC8742695 DOI: 10.1007/s00335-021-09922-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Rhesus macaques (Macaca mulatta) are among the most extensively studied of nonhuman primates. This species has been the subject of many investigations concerning basic primate biology and behavior, including studies of social organization, developmental psychology, physiology, endocrinology, and neurodevelopment. Rhesus macaques are also critically important as a nonhuman primate model of human health and disease, including use in studies of infectious diseases, metabolic diseases, aging, and drug or alcohol abuse. Current research addressing fundamental biological and/or applied biomedical questions benefits from various genetic and genomic analyses. As a result, the genome of rhesus macaques has been the subject of more study than most nonhuman primates. This paper briefly discusses a number of information resources that can provide interested researchers with access to genetic and genomic data describing the content of the rhesus macaque genome, available information regarding genetic variation within the species, results from studies of gene expression, and other aspects of genomic analysis. Specific online databases are discussed, including the US National Center for Biotechnology Information, the University of California Santa Cruz genome browser, Ensembl genome browser, the Macaque Genotype and Phenotype database (mGAP), Rhesusbase, and others.
Collapse
|
20
|
Bliss‐Moreau E, Amara RR, Buffalo EA, Colman RJ, Embers ME, Morrison JH, Quillen EE, Sacha JB, Roberts CT. Improving rigor and reproducibility in nonhuman primate research. Am J Primatol 2021; 83:e23331. [PMID: 34541703 PMCID: PMC8629848 DOI: 10.1002/ajp.23331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022]
Abstract
Nonhuman primates (NHPs) are a critical component of translational/preclinical biomedical research due to the strong similarities between NHP and human physiology and disease pathology. In some cases, NHPs represent the most appropriate, or even the only, animal model for complex metabolic, neurological, and infectious diseases. The increased demand for and limited availability of these valuable research subjects requires that rigor and reproducibility be a prime consideration to ensure the maximal utility of this scarce resource. Here, we discuss a number of approaches that collectively can contribute to enhanced rigor and reproducibility in NHP research.
Collapse
Affiliation(s)
- Eliza Bliss‐Moreau
- California National Primate Research CenterDavisCaliforniaUSA
- Department of PsychologyUniversity of California DavisDavisCaliforniaUSA
| | - Rama R. Amara
- Division of Microbiology and ImmunologyYerkes National Primate Research CenterAtlantaGeorgiaUSA
| | - Elizabeth A. Buffalo
- Washington National Primate Research CenterSeattleWashingtonUSA
- Department of Physiology and BiophysicsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Ricki J. Colman
- Wisconsin National Primate Research CenterMadisonWisconsinUSA
- Department of Cell and Regenerative BiologyUniversity of WisconsinMadisonWisconsinUSA
| | - Monica E. Embers
- Division of ImmunologyTulane National Primate Research CenterCovingtonLouisianaUSA
| | - John H. Morrison
- California National Primate Research CenterDavisCaliforniaUSA
- Department of NeurologyUniversity of California DavisDavisCaliforniaUSA
| | - Ellen E. Quillen
- Department of Internal MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jonah B. Sacha
- Divisions of Pathobiology and Immunology (JS) and Cardiometabolic Health (CR)Oregon National Primate Research CenterBeavertonOregonUSA
- Vaccine and Gene Therapy InstituteOregon Health & Science UniversityBeavertonOregonUSA
| | - Charles T. Roberts
- Divisions of Pathobiology and Immunology (JS) and Cardiometabolic Health (CR)Oregon National Primate Research CenterBeavertonOregonUSA
| | | |
Collapse
|
21
|
Sherman LS, Su W, Johnson AL, Peterson SM, Cullin C, Lavinder T, Ferguson B, Lewis AD. A novel non-human primate model of Pelizaeus-Merzbacher disease. Neurobiol Dis 2021; 158:105465. [PMID: 34364975 DOI: 10.1016/j.nbd.2021.105465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Although there are multiple animal models of PMD, few of them fully mimic the human disease. Here, we report three spontaneous cases of male neonatal rhesus macaques with the clinical symptoms of hypomyelinating disease, including intention tremors, progressively worsening motor dysfunction, and nystagmus. These animals demonstrated a paucity of CNS myelination accompanied by reactive astrogliosis, and a lack of PLP1 expression throughout white matter. Genetic analysis revealed that these animals were related to one another and that their parents carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These animals therefore represent the first reported non-human primate model of PMD, providing a novel and valuable opportunity for preclinical studies that aim to promote myelination in pediatric hypomyelinating diseases.
Collapse
Affiliation(s)
- Larry S Sherman
- Divisions of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States of America.
| | - Weiping Su
- Divisions of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Amanda L Johnson
- Divisions of Comparative Medicine Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Samuel M Peterson
- Divisions of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Cassandra Cullin
- Divisions of Comparative Medicine Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Tiffany Lavinder
- Divisions of Comparative Medicine Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Betsy Ferguson
- Divisions of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Anne D Lewis
- Divisions of Comparative Medicine Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America.
| |
Collapse
|
22
|
Kobren SN, Baldridge D, Velinder M, Krier JB, LeBlanc K, Esteves C, Pusey BN, Züchner S, Blue E, Lee H, Huang A, Bastarache L, Bican A, Cogan J, Marwaha S, Alkelai A, Murdock DR, Liu P, Wegner DJ, Paul AJ, Sunyaev SR, Kohane IS. Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet Med 2021; 23:1075-1085. [PMID: 33580225 PMCID: PMC8187147 DOI: 10.1038/s41436-020-01084-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.
Collapse
Affiliation(s)
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matt Velinder
- Center for Genomic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Joel B Krier
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Barbara N Pusey
- National Human Genome Research Institute (NHGRI) at the National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Health System, Miami, FL, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Alden Huang
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Bican
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joy Cogan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shruti Marwaha
- Stanford Center for Undiagnosed Diseases, Stanford, CA, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York City, NY, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander J Paul
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Du L, Guo T, Liu Q, Li J, Zhang X, Xing J, Yue B, Li J, Fan Z. MACSNVdb: a high-quality SNV database for interspecies genetic divergence investigation among macaques. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5827658. [PMID: 32367112 PMCID: PMC7198316 DOI: 10.1093/database/baaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/06/2020] [Accepted: 03/22/2020] [Indexed: 11/14/2022]
Abstract
Macaques are the most widely used non-human primates in biomedical research. The genetic divergence between these animal models is responsible for their phenotypic differences in response to certain diseases. However, the macaque single nucleotide polymorphism resources mainly focused on rhesus macaque (Macaca mulatta), which hinders the broad research and biomedical application of other macaques. In order to overcome these limitations, we constructed a database named MACSNVdb that focuses on the interspecies genetic diversity among macaque genomes. MACSNVdb is a web-enabled database comprising ~74.51 million high-quality non-redundant single nucleotide variants (SNVs) identified among 20 macaque individuals from six species groups (muttla, fascicularis, sinica, arctoides, silenus, sylvanus). In addition to individual SNVs, MACSNVdb also allows users to browse and retrieve groups of user-defined SNVs. In particular, users can retrieve non-synonymous SNVs that may have deleterious effects on protein structure or function within macaque orthologs of human disease and drug-target genes. Besides position, alleles and flanking sequences, MACSNVdb integrated additional genomic information including SNV annotations and gene functional annotations. MACSNVdb will facilitate biomedical researchers to discover molecular mechanisms of diverse responses to diseases as well as primatologist to perform population genetic studies. We will continue updating MACSNVdb with newly available sequencing data and annotation to keep the resource up to date. Database URL: http://big.cdu.edu.cn/macsnvdb/
Collapse
Affiliation(s)
- Lianming Du
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Rd, Chengdu 610106, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 20 Section 3, South Renmin Rd, Chengdu 610041, China
| | - Qin Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China.,College of Life Sciences and Food Engineering, Yibin University, 8 Wuliangye Rd, Yibin 644000, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Jinchuan Xing
- Department of Genetics, Rutgers, the State University of New Jersey, 145 Bevier Rd, Piscataway, NJ 08854, USA
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| |
Collapse
|
24
|
Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:174-194. [PMID: 32221967 DOI: 10.1002/ajpa.24051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Eye on Primates, Los Angeles, California, USA
| |
Collapse
|
25
|
Abbott DH, Rogers J, Dumesic DA, Levine JE. Naturally Occurring and Experimentally Induced Rhesus Macaque Models for Polycystic Ovary Syndrome: Translational Gateways to Clinical Application. Med Sci (Basel) 2019; 7:medsci7120107. [PMID: 31783681 PMCID: PMC6950671 DOI: 10.3390/medsci7120107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Indian rhesus macaque nonhuman primate models for polycystic ovary syndrome (PCOS) implicate both female hyperandrogenism and developmental molecular origins as core components of PCOS etiopathogenesis. Establishing and exploiting macaque models for translational impact into the clinic, however, has required multi-year, integrated basic-clinical science collaborations. Paradigm shifting insight has accrued from such concerted investment, leading to novel mechanistic understanding of PCOS, including hyperandrogenic fetal and peripubertal origins, epigenetic programming, altered neural function, defective oocytes and embryos, adipogenic constraint enhancing progression to insulin resistance, pancreatic decompensation and type 2 diabetes, together with placental compromise, all contributing to transgenerational transmission of traits likely to manifest in adult PCOS phenotypes. Our recent demonstration of PCOS-related traits in naturally hyperandrogenic (High T) female macaques additionally creates opportunities to employ whole genome sequencing to enable exploration of gene variants within human PCOS candidate genes contributing to PCOS-related traits in macaque models. This review will therefore consider Indian macaque model contributions to various aspects of PCOS-related pathophysiology, as well as the benefits of using macaque models with compellingly close homologies to the human genome, phenotype, development and aging.
Collapse
Affiliation(s)
- David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
- Correspondence: ; Tel.: +1-608-698-1953
| | - Jeffrey Rogers
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Jon E. Levine
- Department of Neuroscience, Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA;
| |
Collapse
|
26
|
Admixture in Mammals and How to Understand Its Functional Implications. Bioessays 2019; 41:e1900123. [DOI: 10.1002/bies.201900123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 12/13/2022]
|
27
|
Peterson SM, McGill TJ, Puthussery T, Stoddard J, Renner L, Lewis AD, Colgin LMA, Gayet J, Wang X, Prongay K, Cullin C, Dozier BL, Ferguson B, Neuringer M. Bardet-Biedl Syndrome in rhesus macaques: A nonhuman primate model of retinitis pigmentosa. Exp Eye Res 2019; 189:107825. [PMID: 31589838 DOI: 10.1016/j.exer.2019.107825] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022]
Abstract
The development of therapies for retinal disorders is hampered by a lack of appropriate animal models. Higher nonhuman primates are the only animals with retinal structure similar to humans, including the presence of a macula and fovea. However, few nonhuman primate models of genetic retinal disease are known. We identified a lineage of rhesus macaques with a frameshift mutation in exon 3 of the BBS7 gene c.160delG (p.Ala54fs) that is predicted to produce a non-functional protein. In humans, mutations in this and other BBS genes cause Bardet-Biedl syndrome, a ciliopathy and a syndromic form of retinitis pigmentosa generally occurring in conjunction with kidney dysfunction, polydactyly, obesity, and/or hypogonadism. Three full- or half-sibling monkeys homozygous for the BBS7 c.160delG variant, at ages 3.5, 4 and 6 years old, displayed a combination of severe photoreceptor degeneration and progressive kidney disease. In vivo retinal imaging revealed features of severe macular degeneration, including absence of photoreceptor layers, degeneration of the retinal pigment epithelium, and retinal vasculature atrophy. Electroretinography in the 3.5-year-old case demonstrated loss of scotopic and photopic a-waves and markedly reduced and delayed b-waves. Histological assessments in the 4- and 6-year-old cases confirmed profound loss of photoreceptors and inner retinal neurons across the posterior retina, with dramatic thinning and disorganization of all cell layers, abundant microglia, absent or displaced RPE cells, and significant gliosis in the subretinal space. Retinal structure, including presence of photoreceptors, was preserved only in the far periphery. Ultrasound imaging of the kidneys revealed deranged architecture, and renal histopathology identified distorted contours with depressed, fibrotic foci and firmly adhered renal capsules; renal failure occurred in the 6-year-old case. Magnetic resonance imaging obtained in one case revealed abnormally low total brain volume and unilateral ventricular enlargement. The one male had abnormally small testes at 4 years of age, but polydactyly and obesity were not observed. Thus, monkeys homozygous for the BBS7 c.160delG variant closely mirrored several key features of the human BBS syndrome. This finding represents the first identification of a naturally-occurring nonhuman primate model of BBS, and more broadly the first such model of retinitis pigmentosa and a ciliopathy with an associated genetic mutation. This important new preclinical model will provide the basis for better understanding of disease progression and for the testing of new therapeutic options, including gene and cell-based therapies, not only for BBS but also for multiple forms of photoreceptor degeneration.
Collapse
Affiliation(s)
- Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Trevor J McGill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA; Casey Eye Institute, Oregon Health & Sciences University, Portland, OR, 97239, USA.
| | - Teresa Puthussery
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Jonathan Stoddard
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Anne D Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Lois M A Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Jacqueline Gayet
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA; Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, 97239, USA.
| | - Kamm Prongay
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Cassandra Cullin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Brandy L Dozier
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA.
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA; Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, 97239, USA.
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR, 97006, USA; Casey Eye Institute, Oregon Health & Sciences University, Portland, OR, 97239, USA.
| |
Collapse
|