1
|
Mlotek MD, Dose B, Hertweck C. Bacterial Isothiocyanate Biosynthesis by Rhodanese-Catalyzed Sulfur Transfer onto Isonitriles. Chembiochem 2024; 25:e202300732. [PMID: 37917130 DOI: 10.1002/cbic.202300732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Natural products bearing isothiocyanate (ITC) groups are an important group of specialized metabolites that play various roles in health, nutrition, and ecology. Whereas ITC biosynthesis via glucosinolates in plants has been studied in detail, there is a gap in understanding the bacterial route to specialized metabolites with such reactive heterocumulene groups, as in the antifungal sinapigladioside from Burkholderia gladioli. Here we propose an alternative ITC pathway by enzymatic sulfur transfer onto isonitriles catalyzed by rhodanese-like enzymes (thiosulfate:cyanide sulfurtransferases). Mining the B. gladioli genome revealed six candidate genes (rhdA-F), which were individually expressed in E. coli. By means of a synthetic probe, the gene products were evaluated for their ability to produce the key ITC intermediate in the sinapigladioside pathway. In vitro biotransformation assays identified RhdE, a prototype single-domain rhodanese, as the most potent ITC synthase. Interestingly, while RhdE also efficiently transforms cyanide into thiocyanate, it shows high specificity for the natural pathway intermediate, indicating that the sinapigladioside pathway has recruited a ubiquitous detoxification enzyme for the formation of a bioactive specialized metabolite. These findings not only elucidate an elusive step in bacterial ITC biosynthesis but also reveal a new function of rhodanese-like enzymes in specialized metabolism.
Collapse
Affiliation(s)
- Mandy D Mlotek
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
2
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
3
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Kim W, Chen TY, Cha L, Zhou G, Xing K, Canty NK, Zhang Y, Chang WC. Elucidation of divergent desaturation pathways in the formation of vinyl isonitrile and isocyanoacrylate. Nat Commun 2022; 13:5343. [PMID: 36097268 PMCID: PMC9467999 DOI: 10.1038/s41467-022-32870-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Two different types of desaturations are employed by iron- and 2-oxoglutarate-dependent (Fe/2OG) enzymes to construct vinyl isonitrile and isocyanoacrylate moieties found in isonitrile-containing natural products. A substrate-bound protein structure reveals a plausible strategy to affect desaturation and hints at substrate promiscuity of these enzymes. Analogs are synthesized and used as mechanistic probes to validate structural observations. Instead of proceeding through hydroxylated intermediate as previously proposed, a plausible carbocation species is utilized to trigger C=C bond installation. These Fe/2OG enzymes can also accommodate analogs with opposite chirality and different functional groups including isonitrile-(D)-tyrosine, N-formyl tyrosine, and phloretic acid, while maintaining the reaction selectivity.
Collapse
Affiliation(s)
- Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Lide Cha
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Grace Zhou
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Kristi Xing
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Yan Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA.
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Scotti C, Barlow JW. Natural Products Containing the Nitrile Functional Group and Their Biological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221099973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The importance of nitriles as a key class of chemicals with applications across the sciences is widely appreciated. The natural world is an underappreciated source of chemically diverse nitriles. With this in mind, this review describes novel nitrile-containing molecules isolated from natural sources from 1998 to 2021, as well as a discussion of the biological activity of these compounds. This study gathers 192 molecules from varied origins across the plant, animal, and microbial worlds. Their biological activity is extremely diverse, with many potential medicinal applications.
Collapse
Affiliation(s)
- Camille Scotti
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, Mulhouse, France
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - James W. Barlow
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
6
|
Back D, Shaffer BT, Loper JE, Philmus B. Untargeted Identification of Alkyne-Containing Natural Products Using Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reactions Coupled to LC-MS/MS. JOURNAL OF NATURAL PRODUCTS 2022; 85:105-114. [PMID: 35044192 PMCID: PMC8853637 DOI: 10.1021/acs.jnatprod.1c00798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alkyne-containing natural products have been identified from plants, insects, algae, fungi, and bacteria. This class of natural products has been characterized as having a variety of biological activities. Polyynes are a subclass of acetylenic natural products that contain conjugated alkynes and are underrepresented in natural product databases due to the fact that they decompose during purification. Here we report a workflow that utilizes alkyne azide cycloaddition (AAC) reactions followed by LC-MS/MS analysis to identify acetylenic natural products. In this report, we demonstrate that alkyne azide cycloaddition reactions with p-bromobenzyl azide result in p-bromobenzyl-substituted triazole products that fragment to a common brominated tropylium ion. We were able to identify a synthetic alkyne spiked into the extract of Anabaena sp. PCC 7120 at a concentration of 10 μg/mL after optimization of MS/MS conditions. We then successfully identified the known natural product fischerellin A in the extract of Fischerella muscicola PCC 9339. Lastly, we identified the recently identified natural products protegenins A and C from Pseudomonas protegens Pf-5 through a combination of genome mining and RuAAC reactions. This is the first report of RuAAC reactions to detect acetylenic natural products. We also compare CuAAC and RuAAC reactions and find that CuAAC reactions produce fewer byproducts compared to RuAAC but is limited to terminal-alkyne-containing compounds. In contrast, RuAAC is capable of identification of both terminal and internal acetylenic natural products, but byproducts need to be eliminated from analysis by creation of an exclusion list. We believe that both CuAAC and RuAAC reactions coupled to LC-MS/MS represent a method for the untargeted identification of acetylenic natural products, but each method has strengths and weaknesses.
Collapse
Affiliation(s)
- Daniel Back
- Department of Pharmaceutical Sciences, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331
| | - Brenda T. Shaffer
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330
| | - Joyce E. Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330
- College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331
| |
Collapse
|
7
|
Wong HPH, Mokkawes T, de Visser SP. Can the isonitrile biosynthesis enzyme ScoE assist with the biosynthesis of isonitrile groups in drug molecules? A computational study. Phys Chem Chem Phys 2022; 24:27250-27262. [DOI: 10.1039/d2cp03409c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Computational studies show that the isonitrile synthesizing enzyme ScoE can catalyse the conversion of γ-Gly substituents in substrates to isonitrile. This enables efficient isonitrile substitution into target molecules such as axisonitrile-1.
Collapse
Affiliation(s)
- Henrik P. H. Wong
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
9
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
10
|
Density Functional Theory Study into the Reaction Mechanism of Isonitrile Biosynthesis by the Nonheme Iron Enzyme ScoE. Top Catal 2021. [DOI: 10.1007/s11244-021-01460-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe nonheme iron enzyme ScoE catalyzes the biosynthesis of an isonitrile substituent in a peptide chain. To understand details of the reaction mechanism we created a large active site cluster model of 212 atoms that contains substrate, the active oxidant and the first- and second-coordination sphere of the protein and solvent. Several possible reaction mechanisms were tested and it is shown that isonitrile can only be formed through two consecutive catalytic cycles that both use one molecule of dioxygen and α-ketoglutarate. In both cycles the active species is an iron(IV)-oxo species that in the first reaction cycle reacts through two consecutive hydrogen atom abstraction steps: first from the N–H group and thereafter from the C–H group to desaturate the NH-CH2 bond. The alternative ordering of hydrogen atom abstraction steps was also tested but found to be higher in energy. Moreover, the electronic configurations along that pathway implicate an initial hydride transfer followed by proton transfer. We highlight an active site Lys residue that is shown to donate charge in the transition states and influences the relative barrier heights and bifurcation pathways. A second catalytic cycle of the reaction of iron(IV)-oxo with desaturated substrate starts with hydrogen atom abstraction followed by decarboxylation to give isonitrile directly. The catalytic cycle is completed with a proton transfer to iron(II)-hydroxo to generate the iron(II)-water resting state. The work is compared with experimental observation and previous computational studies on this system and put in a larger perspective of nonheme iron chemistry.
Collapse
|
11
|
Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV, Kaltenpoth M, Hertweck C. Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts. Chembiochem 2021; 22:1920-1924. [PMID: 33739557 PMCID: PMC8252389 DOI: 10.1002/cbic.202100089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Indexed: 11/15/2022]
Abstract
Sinapigladioside is a rare isothiocyanate-bearing natural product from beetle-associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable-isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including producers of both nitriles and isothiocyanates. Our findings support a model for bacterial isothiocyanate biosynthesis by sulfur transfer into isonitrile precursors.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sophie Shahda
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
12
|
Al-Yousef HM, Amina M. Phytoconstituents and pharmacological activities of cyanobacterium Fischerella ambigua. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Hohlman RM, Sherman DH. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Nat Prod Rep 2021; 38:1567-1588. [PMID: 34032254 DOI: 10.1039/d1np00007a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 1984 up to the end of 2020Hapalindoles, fischerindoles, ambiguines and welwitindolinones are all members of a class of indole alkaloid natural products that have been isolated from the Stigonematales order of cyanobacteria. These compounds possess a polycyclic ring system, unique functional groups and various stereo- and regiochemical isomers. Since their initial isolation in 1984, they have been explored as potential therapeutics due to their wide variety of biological activities. Although numerous groups have pursued total syntheses of these densely functionalized structures, hapalindole biosynthesis has only recently been unveiled. Several groups have uncovered a wide range of novel enzymes that catalyze formation and tailoring of the hapalindole-type metabolites. In this article, we provide an overview of these natural products, their biological activities, highlight general synthetic routes, and provide an extensive review on the surprising biosynthetic processes leading to these structurally diverse metabolites.
Collapse
Affiliation(s)
- Robert M Hohlman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Bunn BM, Xu M, Webb CM, Viswanathan R. Biocatalysts from cyanobacterial hapalindole pathway afford antivirulent isonitriles against MRSA. J Biosci 2021. [DOI: 10.1007/s12038-021-00156-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Hohlman RM, Newmister SA, Sanders JN, Khatri Y, Li S, Keramati NR, Lowell AN, Houk KN, Sherman DH. Structural diversification of hapalindole and fischerindole natural products via cascade biocatalysis. ACS Catal 2021; 11:4670-4681. [PMID: 34354850 DOI: 10.1021/acscatal.0c05656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hapalindoles and related compounds (ambiguines, fischerindoles, welwitindolinones) are a diverse class of indole alkaloid natural products. They are typically isolated from the Stigonemataceae order of cyanobacteria and possess a broad scope of biological activities. Recently the biosynthetic pathway for assembly of these metabolites has been elucidated. In order to generate the core ring system, L-tryptophan is converted into the cis-indole isonitrile subunit before being prenylated with geranyl pyrophosphate at the C-3 position. A class of cyclases (Stig) catalyzes a three-step process including a Cope rearrangement, 6-exo-trig cyclization and electrophilic aromatic substitution to create a polycyclic core. Formation of the initial alkaloid is followed by diverse late-stage tailoring reactions mediated by additional biosynthetic enzymes to give rise to the wide array of structural variations observed in this compound class. Herein, we demonstrate the versatility and utility of the Fam prenyltransferase and Stig cyclases toward core structural diversification of this family of indole alkaloids. Through synthesis of cis-indole isonitrile subunit derivatives, and aided by protein engineering and computational analysis, we have employed cascade biocatalysis to generate a range of derivatives, and gained insights into the basis for substrate flexibility in this system.
Collapse
Affiliation(s)
| | | | - Jacob N. Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | | | | | | | | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David H. Sherman
- Department of Microbiology & Immunology, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| |
Collapse
|
16
|
Chen TY, Chen J, Tang Y, Zhou J, Guo Y, Chang WC. Current Understanding toward Isonitrile Group Biosynthesis and Mechanism. CHINESE J CHEM 2021; 39:463-472. [PMID: 34658601 PMCID: PMC8519408 DOI: 10.1002/cjoc.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Isonitrile group has been identified in many natural products. Due to the broad reactivity of N≡C triple bond, these natural products have valuable pharmaceutical potentials. This review summarizes the current biosynthetic pathways and the corresponding enzymes that are responsible for isonitrile-containing natural product generation. Based on the strategies utilized, two fundamentally distinctive approaches are discussed. In addition, recent progress in elucidating isonitrile group formation mechanisms is also presented.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University Raleigh, NC 27695, U.S.A
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University Raleigh, NC 27695, U.S.A
| |
Collapse
|
17
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Khatri Y, Hohlman RM, Mendoza J, Li S, Lowell AN, Asahara H, Sherman DH. Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synth Biol 2020; 9:1349-1360. [PMID: 32302487 PMCID: PMC7323787 DOI: 10.1021/acssynbio.0c00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome sequencing and bioinformatics tools have facilitated the identification and expression of an increasing number of cryptic biosynthetic gene clusters (BGCs). However, functional analysis of all components of a metabolic pathway to precisely determine biocatalytic properties remains time-consuming and labor intensive. One way to speed this process involves microscale cell-free protein synthesis (CFPS) for direct gene to biochemical function analysis, which has rarely been applied to study multicomponent enzymatic systems in specialized metabolism. We sought to establish an in vitro transcription/translation (TT)-assay to assess assembly of cyanobacterial-derived hapalindole-type natural products (cNPs) because of their diverse bioactivity profiles and complex structural diversity. Using a CFPS system including a plasmid bearing famD2 prenyltransferase from Fischerella ambigua UTEX 1903, we showed production of the central prenylated intermediate (3GC) in the presence of exogenous geranyl-pyrophosphate (GPP) and cis-indole isonitrile. Further addition of a plasmid bearing the famC1 Stig cyclase resulted in synthesis of both FamD2 and FamC1 enzymes, which was confirmed by proteomics analysis, and catalyzed assembly of 12-epi-hapalindole U. Further combinations of Stig cyclases (FamC1-C4) produced hapalindole U and hapalindole H, while FisC identified from Fischerella sp. SAG46.79 generated 12-epi-fischerindole U. The CFPS system was further employed to screen six unnatural halogenated cis-indole isonitrile substrates using FamC1 and FisC, and the reactions were scaled-up using chemoenzymatic synthesis and identified as 5- and 6-fluoro-12-epi-hapalindole U, and 5- and 6-fluoro-12-epi-fischerindole U, respectively. This approach represents an effective, high throughput strategy to determine the functional role of biosynthetic enzymes from diverse natural product BGCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruichi Asahara
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
19
|
Li S, Newmister SA, Lowell AN, Zi J, Chappell CR, Yu F, Hohlman RM, Orjala J, Williams RM, Sherman DH. Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor‐Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shasha Li
- Life Sciences InstituteDepartment of Medicinal ChemistryThe University of Michigan USA
| | | | - Andrew N. Lowell
- Life Science InstituteThe University of Michigan USA
- Department of ChemistryVirginia Tech Blacksburg VA 24061 USA
| | - Jiachen Zi
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Illinois at Chicago Chicago IL 60612 USA
| | - Callie R. Chappell
- Department of Molecular, Cellular & Developmental BiologyThe University of Michigan USA
| | - Fengan Yu
- Life Science InstituteThe University of Michigan USA
| | - Robert M. Hohlman
- Life Sciences InstituteDepartment of Medicinal ChemistryThe University of Michigan USA
| | - Jimmy Orjala
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Illinois at Chicago Chicago IL 60612 USA
| | - Robert M. Williams
- Department of ChemistryColorado State University Fort Collins CO 80523 USA
- University of Colorado Cancer Center Aurora CO 80045 USA
| | - David H. Sherman
- Life Sciences InstituteDepartments of Medicinal Chemistry, Chemistry, Microbiology & ImmunologyThe University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109-2216n USA
| |
Collapse
|
20
|
Li S, Newmister SA, Lowell AN, Zi J, Chappell CR, Yu F, Hohlman RM, Orjala J, Williams RM, Sherman DH. Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor-Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020; 59:8166-8172. [PMID: 32052896 PMCID: PMC7274885 DOI: 10.1002/anie.201913686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 11/07/2022]
Abstract
Stereospecific polycyclic core formation of hapalindoles and fischerindoles is controlled by Stig cyclases through a three-step cascade involving Cope rearrangement, 6-exo-trig cyclization, and a final electrophilic aromatic substitution. Reported here is a comprehensive study of all currently annotated Stig cyclases, revealing that these proteins can assemble into heteromeric complexes, induced by Ca2+ , to cooperatively control the stereochemistry of hapalindole natural products.
Collapse
Affiliation(s)
- Shasha Li
- Life Sciences Institute, Department of Medicinal Chemistry, The University of Michigan, USA
| | | | - Andrew N Lowell
- Life Science Institute, The University of Michigan, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiachen Zi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Callie R Chappell
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, USA
| | - Fengan Yu
- Life Science Institute, The University of Michigan, USA
| | - Robert M Hohlman
- Life Sciences Institute, Department of Medicinal Chemistry, The University of Michigan, USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Aurora, CO, 80045, USA
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, The University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216n, USA
| |
Collapse
|
21
|
Affiliation(s)
- Xinming Zhang
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Laurent Evanno
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Erwan Poupon
- CNRS, BioCIS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
22
|
Rudolf JD, Chang CY. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat Prod Rep 2020; 37:425-463. [PMID: 31650156 PMCID: PMC7101268 DOI: 10.1039/c9np00051h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
23
|
Duewel S, Schmermund L, Faber T, Harms K, Srinivasan V, Meggers E, Hoebenreich S. Directed Evolution of an FeII-Dependent Halogenase for Asymmetric C(sp3)–H Chlorination. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04691] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sabine Duewel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Luca Schmermund
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Tabea Faber
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Vasundara Srinivasan
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Sabrina Hoebenreich
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
24
|
Huang YB, Cai W, Del Rio Flores A, Twigg FF, Zhang W. Facile Discovery and Quantification of Isonitrile Natural Products via Tetrazine-Based Click Reactions. Anal Chem 2019; 92:599-602. [PMID: 31815449 DOI: 10.1021/acs.analchem.9b05147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A facile method for the quick discovery and quantification of isonitrile compounds from microbial cultures was established based on the isonitrile-tetrazine click reaction. This method was successfully applied to the rediscovery of diisonitrile antibotic SF2768 from an unknown strain Streptomyces tsukubensis. Finally, an in situ reduction further enabled bioorthogonal ligation of primary and secondary isonitriles for the first time.
Collapse
Affiliation(s)
- Yao-Bing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing 210037 , China.,Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Frederick F Twigg
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
25
|
Knoot CJ, Khatri Y, Hohlman RM, Sherman DH, Pakrasi HB. Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 2019; 8:1941-1951. [PMID: 31284716 PMCID: PMC6724726 DOI: 10.1021/acssynbio.9b00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria produce numerous valuable bioactive secondary metabolites (natural products) including alkaloids, isoprenoids, nonribosomal peptides, and polyketides. However, the genomic organization of the biosynthetic gene clusters, complex gene expression patterns, and low compound yields synthesized by the native producers currently limits access to the vast majority of these valuable molecules for detailed studies. Molecular cloning and expression of such clusters in heterotrophic hosts is often precarious owing to genetic and biochemical incompatibilities. Production of such biomolecules in photoautotrophic hosts analogous to the native producers is an attractive alternative that has been under-explored. Here, we describe engineering of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce key compounds of the hapalindole family of indole-isonitrile alkaloids. Engineering of the 42-kbp "fam" hapalindole pathway from the cyanobacterium Fischerella ambigua UTEX 1903 into S2973 was accomplished by rationally reconstructing six to seven core biosynthetic genes into synthetic operons. The resulting Synechococcus strains afforded controllable production of indole-isonitrile biosynthetic intermediates and hapalindoles H and 12-epi-hapalindole U at a titer of 0.75-3 mg/L. Exchanging genes encoding fam cyclase enzymes in the synthetic operons was employed to control the stereochemistry of the resulting product. Establishing a robust expression system provides a facile route to scalable levels of similar natural and new forms of bioactive hapalindole derivatives and its structural relatives (e.g., fischerindoles, welwitindolinones). Moreover, this versatile expression system represents a promising tool for exploring other functional characteristics of orphan gene products that mediate the remarkable biosynthesis of this important family of natural products.
Collapse
Affiliation(s)
- Cory J Knoot
- Department of Biology , Washington University , St. Louis , Missouri 63130 , United States
| | - Yogan Khatri
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Robert M Hohlman
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Himadri B Pakrasi
- Department of Biology , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
26
|
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17:E320. [PMID: 31151260 PMCID: PMC6627551 DOI: 10.3390/md17060320] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin's lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Collapse
Affiliation(s)
- Justine Demay
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| | - Anita Reinhardt
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Benjamin Marie
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| |
Collapse
|
27
|
Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E. coli. Microb Cell Fact 2019; 18:32. [PMID: 30732610 PMCID: PMC6366047 DOI: 10.1186/s12934-019-1080-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene. Results Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA–D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling. Conclusions Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways. Electronic supplementary material The online version of this article (10.1186/s12934-019-1080-6) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Chen C, Hu X, Tang X, Yang Y, Ko T, Gao J, Zheng Y, Huang J, Yu Z, Li L, Han S, Cai N, Zhang Y, Liu W, Guo R. The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chun‐Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Xiangying Hu
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Xueke Tang
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- School of Life SciencesUniversity of Science and Technology of China Anhui 230026 China
| | - Yunyun Yang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Tzu‐Ping Ko
- Institute of Biological ChemistryAcademia Sinica Taipei 11529 Taiwan
| | - Jian Gao
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yingying Zheng
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Jian‐Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Zhengsen Yu
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Liping Li
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Shuai Han
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Ningning Cai
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Rey‐Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
29
|
Chen C, Hu X, Tang X, Yang Y, Ko T, Gao J, Zheng Y, Huang J, Yu Z, Li L, Han S, Cai N, Zhang Y, Liu W, Guo R. The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018; 57:15060-15064. [DOI: 10.1002/anie.201808231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Chun‐Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Xiangying Hu
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Xueke Tang
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- School of Life SciencesUniversity of Science and Technology of China Anhui 230026 China
| | - Yunyun Yang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Tzu‐Ping Ko
- Institute of Biological ChemistryAcademia Sinica Taipei 11529 Taiwan
| | - Jian Gao
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yingying Zheng
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Jian‐Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Zhengsen Yu
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Liping Li
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Shuai Han
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Ningning Cai
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Rey‐Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
30
|
Draft Genome Sequence of the Cadmium-Resistant Strain JJU2, Belonging to the Family Hapalosiphonaceae of the Cyanobacteria. Microbiol Resour Announc 2018; 7:MRA00876-18. [PMID: 30533925 PMCID: PMC6256517 DOI: 10.1128/mra.00876-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we report the genome of strain JJU2, a cyanobacterium of the family Hapalosiphonaceae known to be resistant to high cadmium levels, assembled from a nonaxenic, unialgal culture from Marinduque, Philippines. The draft genome is 7.1 Mb long with a GC content of 40.05% and contains 5,625 protein-coding genes. Here, we report the genome of strain JJU2, a cyanobacterium of the family Hapalosiphonaceae known to be resistant to high cadmium levels, assembled from a nonaxenic, unialgal culture from Marinduque, Philippines. The draft genome is 7.1 Mb long with a GC content of 40.05% and contains 5,625 protein-coding genes.
Collapse
|
31
|
Harris NC, Born DA, Cai W, Huang Y, Martin J, Khalaf R, Drennan CL, Zhang W. Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. Angew Chem Int Ed Engl 2018; 57:9707-9710. [PMID: 29906336 DOI: 10.1002/anie.201804307] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/11/2023]
Abstract
The electron-rich isonitrile is an important functionality in bioactive natural products, but its biosynthesis has been restricted to the IsnA family of isonitrile synthases. We herein provide the first structural and biochemical evidence of an alternative mechanism for isonitrile formation. ScoE, a putative non-heme iron(II)-dependent enzyme from Streptomyces coeruleorubidus, was shown to catalyze the conversion of (R)-3-((carboxymethyl)amino)butanoic acid to (R)-3-isocyanobutanoic acid through an oxidative decarboxylation mechanism. This work further provides a revised scheme for the biosynthesis of a unique class of isonitrile lipopeptides, of which several members are critical for the virulence of pathogenic mycobacteria.
Collapse
Affiliation(s)
- Nicholas C Harris
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - David A Born
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yaobing Huang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joelle Martin
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ryan Khalaf
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Catherine L Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
32
|
Harris NC, Born DA, Cai W, Huang Y, Martin J, Khalaf R, Drennan CL, Zhang W. Isonitrile Formation by a Non‐Heme Iron(II)‐Dependent Oxidase/Decarboxylase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicholas C. Harris
- Department of Plant and Microbial Biology University of California Berkeley Berkeley CA 94720 USA
| | - David A. Born
- Department of Biology Massachusetts Institute of Technology Cambridge MA 02139 USA
- Graduate Program in Biophysics Harvard University Cambridge MA 02138 USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering University of California Berkeley Berkeley CA 94720 USA
| | - Yaobing Huang
- Department of Chemical and Biomolecular Engineering University of California Berkeley Berkeley CA 94720 USA
| | - Joelle Martin
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Ryan Khalaf
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Catherine L. Drennan
- Department of Biology Massachusetts Institute of Technology Cambridge MA 02139 USA
- Howard Hughes Medical Institute Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering University of California Berkeley Berkeley CA 94720 USA
- Chan Zuckerberg Biohub San Francisco CA 94158 USA
| |
Collapse
|
33
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
34
|
Acuña UM, Mo S, Zi J, Orjala J, DE Blanco EJC. Hapalindole H Induces Apoptosis as an Inhibitor of NF-ĸB and Affects the Intrinsic Mitochondrial Pathway in PC-3 Androgen-insensitive Prostate Cancer Cells. Anticancer Res 2018; 38:3299-3307. [PMID: 29848677 DOI: 10.21873/anticanres.12595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prostate cancer presents the highest incidence rates among all cancers in men. Hapalindole H (Hap H), isolated from Fischerella muscicola (UTEX strain number LB1829) as part of our natural product anticancer drug discovery program, was found to be significantly active against prostate cancer cells. MATERIALS AND METHODS In this study, Hap H was tested for nuclear factor-kappa B (NF-ĸB) inhibition and selective cytotoxic activity against different cancer cell lines. The apoptotic effect was assessed on PC-3 prostate cancer cells by fluorescence-activated cell sorting analysis. The underlying mechanism that induced apoptosis was studied and the effect of Hap H on mitochondria was evaluated and characterized using western blot and flow cytometric analysis. RESULTS Hap H was identified as a potent NF-ĸB inhibitor (0.76 μM) with selective cytotoxicity against the PC-3 prostate cancer cell line (0.02 μM). The apoptotic effect was studied on PC-3 cells. The results showed that treatment of PC-3 cells with Hap H reduced the formation of NAD(P)H, suggesting that the function of the outer mitochondrial membrane was negatively affected. Thus, the mitochondrial transmembrane potential was assessed in Hap H treated cells. The results showed that the outer mitochondrial membrane was disrupted as an increased amount of JC-1 monomers were detected in treated cells (78.3%) when compared to untreated cells (10.1%), also suggesting that a large number of treated cells went into an apoptotic state. CONCLUSION Hap H was found to have potent NF-ĸB p65-inhibitory activity and induced apoptosis through the intrinsic mitochondrial pathway in hormone-independent PC-3 prostate cancer cells.
Collapse
Affiliation(s)
- Ulyana Muñoz Acuña
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A.,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Shunyan Mo
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Jiachen Zi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Esperanza J Carcache DE Blanco
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A. .,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
35
|
Wang J, Chen CC, Yang Y, Liu W, Ko TP, Shang N, Hu X, Xie Y, Huang JW, Zhang Y, Guo RT. Structural insight into a novel indole prenyltransferase in hapalindole-type alkaloid biosynthesis. Biochem Biophys Res Commun 2018; 495:1782-1788. [DOI: 10.1016/j.bbrc.2017.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 11/26/2022]
|
36
|
Perry C, de los Santos EC, Alkhalaf LM, Challis GL. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Nat Prod Rep 2018; 35:622-632. [DOI: 10.1039/c8np00004b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role played by Rieske non-heme iron-dependent oxygenases in natural product biosyntheses is reviewed, with particular focus on experimentally characterised examples.
Collapse
Affiliation(s)
| | | | | | - Gregory L. Challis
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Warwick Integrative Synthetic Biology Centre
| |
Collapse
|
37
|
Wang L, Zhu M, Zhang Q, Zhang X, Yang P, Liu Z, Deng Y, Zhu Y, Huang X, Han L, Li S, He J. Diisonitrile Natural Product SF2768 Functions As a Chalkophore That Mediates Copper Acquisition in Streptomyces thioluteus. ACS Chem Biol 2017; 12:3067-3075. [PMID: 29131568 DOI: 10.1021/acschembio.7b00897] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A nonribosomal peptide synthetase (NRPS) gene cluster (sfa) was identified in Streptomyces thioluteus to direct the biosynthesis of the diisonitrile antibiotic SF2768. Its biosynthetic pathway was reasonably proposed based on bioinformatics analysis, metabolic profiles of mutants, and the elucidation of the intermediate and shunt product structures. Bioinformatics-based alignment found a putative ATP-binding cassette (ABC) transporter related to iron import within the biosynthetic gene cluster, which implied that the product might be a siderophore. However, characterization of the metal-binding properties by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), metal-ligand titration, thin-layer chromatography (TLC), and chrome azurol S (CAS) assays revealed that the final product SF2768 and its diisonitrile derivatives specifically bind copper, rather than iron, to form stable complexes. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that the intracellular cupric content of S. thioluteus significantly increased upon incubation with the copper-SF2768 complex, direct evidence for the copper acquisition function of SF2768. Further in vivo functional characterization of the transport elements for the copper-SF2768 complexes not only confirmed the chalkophore identity of the compound but also gave initial clues into the copper uptake mechanism of this nonmethanotrophic microorganism.
Collapse
Affiliation(s)
- Lijuan Wang
- National
Key Laboratory of Agricultural Microbiology, College of Life Science
and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyi Zhu
- National
Key Laboratory of Agricultural Microbiology, College of Life Science
and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM
Center for Marine Microbiology, Guangdong Key Laboratory of Marine
Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Xu Zhang
- National
Key Laboratory of Agricultural Microbiology, College of Life Science
and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Panlei Yang
- National
Key Laboratory of Agricultural Microbiology, College of Life Science
and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihui Liu
- State
Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Deng
- National
Key Laboratory of Agricultural Microbiology, College of Life Science
and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM
Center for Marine Microbiology, Guangdong Key Laboratory of Marine
Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Xueshi Huang
- Institute
of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Li Han
- Institute
of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Shengqing Li
- State
Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing He
- National
Key Laboratory of Agricultural Microbiology, College of Life Science
and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Zhu Q, Liu X. Discovery of a Calcium-Dependent Enzymatic Cascade for the Selective Assembly of Hapalindole-Type Alkaloids: On the Biosynthetic Origin of Hapalindole U. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201703932] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qin Zhu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
39
|
Zhu Q, Liu X. Discovery of a Calcium-Dependent Enzymatic Cascade for the Selective Assembly of Hapalindole-Type Alkaloids: On the Biosynthetic Origin of Hapalindole U. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qin Zhu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
40
|
Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci U S A 2017. [PMID: 28634299 DOI: 10.1073/pnas.1705016114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.
Collapse
|
41
|
Zhu Q, Liu X. Characterization of non-heme iron aliphatic halogenase WelO5* fromHapalosiphon welwitschiiIC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones. Beilstein J Org Chem 2017; 13:1168-1173. [PMID: 28684995 PMCID: PMC5480362 DOI: 10.3762/bjoc.13.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 11/23/2022] Open
Abstract
The in vitro biochemical characterization revealed that iron/2-oxoglutarate (Fe/2OG)-dependent aliphatic halogenase WelO5* in Hapalosiphon welwitschii IC-52-3 has an enhanced substrate specificity towards 12-epi-hapalindole C (1) in comparison to WelO5 in H. welwitschii UTEX B1830. This allowed us to define the origin of the varied chlorinated versus dechlorinated alkaloid structural diversity between the two welwitindolinone producers. Furthermore, this study, along with the recent characterization of the AmbO5 protein, collectively confirmed the presence of a signature sequence motif in the C-terminus of this newly discovered halogenase enzyme family that confers substrate promiscuity and specificity. These observations may guide the rational engineering and evolution of these proteins for biocatalyst application.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
42
|
Li S, Lowell AN, Newmister SA, Yu F, Williams RM, Sherman DH. Decoding cyclase-dependent assembly of hapalindole and fischerindole alkaloids. Nat Chem Biol 2017; 13:467-469. [PMID: 28288107 PMCID: PMC5391265 DOI: 10.1038/nchembio.2327] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
The formation of C-C bonds in an enantioselective fashion to create complex polycyclic scaffolds in the hapalindole- and fischerindole- type alkaloids from Stigonematales cyanobacteria represents a compelling and urgent challenge in adapting microbial biosynthesis as a catalytic platform in drug development. Here we determine the biochemical basis for tri- and tetracyclic core formation in these secondary metabolites, involving a new class of cyclases that catalyze a complex cyclization cascade.
Collapse
Affiliation(s)
- Shasha Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew N Lowell
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
- University of Colorado Cancer Center, Aurora, Colorado, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology &Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
44
|
Zhu Q, Liu X. Molecular and genetic basis for early stage structural diversifications in hapalindole-type alkaloid biogenesis. Chem Commun (Camb) 2017; 53:2826-2829. [DOI: 10.1039/c7cc00782e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The genetic, molecular and biochemical basis for early stage structural diversification, post common intermediate 4, in the biosynthesis of hapalindole-type alkaloids is presented.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| | - Xinyu Liu
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
45
|
Tan BF, Te SH, Boo CY, Gin KYH, Thompson JR. Insights from the draft genome of the subsection V (Stigonematales) cyanobacterium Hapalosiphon sp. Strain MRB220 associated with 2-MIB production. Stand Genomic Sci 2016; 11:58. [PMID: 27594977 PMCID: PMC5009524 DOI: 10.1186/s40793-016-0175-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/15/2016] [Indexed: 02/08/2023] Open
Abstract
A non-axenic unialgal culture containing a Subsection V (Stigonematales) cyanobacterium, Hapalosiphon strain MRB 220, was obtained from a benthic freshwater algal mat through multiple transfers following growth in sterile media. Physiological characterization demonstrated the culture was capable of nitrogen-fixation and production of the off flavor compound 2-methylisoborneol (2-MIB). Total DNA isolated from this culture was sequenced using Illumina HiSeq and de novo assembled into contigs. The genome of MRB 220 was separated from co-occurring heterotrophic bacteria using sequence homology and compositional approaches, and its purity was confirmed based on best BLAST hit classification and principle component analysis of the tetranucleotide frequencies of fragmented contigs. The genome of ~7.4 Mbp contains 6,345 protein coding genes with 4,320 of these having functional prediction including predicted pathways for biosynthesis of the secondary metabolite welwitindolinone. Analyses of 16S rRNA gene and whole genome sequence average nucleotide identity indicated close relatedness of MRB 220 to the genera Hapalosiphon and Fischerella within the order Stigonematales. Microscopic examination showed that MRB 220 formed heterocystous branched filaments, thereby supporting identification of strain MRB 220 as a morphospecies of Hapalosiphon. Availability of the draft genome of Hapalosiphon strain MRB 220 enables future work to elucidate the pathway and dynamics for biosynthesis of 2-MIB and other secondary metabolites and understand the ecology and physiology of Stigonematales cyanobacteria in tropical freshwaters.
Collapse
Affiliation(s)
- Boon Fei Tan
- Centre for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Shu Harn Te
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Chek Yin Boo
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Janelle Renee Thompson
- Centre for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
46
|
Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 2016; 33:348-64. [PMID: 26758451 DOI: 10.1039/c5np00097a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
47
|
Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends Microbiol 2016; 23:642-652. [PMID: 26433696 DOI: 10.1016/j.tim.2015.07.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.
Collapse
Affiliation(s)
- Elke Dittmann
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Kaarina Sivonen
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
48
|
Walton K, Berry JP. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity. Mar Drugs 2016; 14:md14040073. [PMID: 27058546 PMCID: PMC4849077 DOI: 10.3390/md14040073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The cyanobacteria are well recognized as producers of a wide array of bioactive metabolites including toxins, and potential drug candidates. However, a limited number of taxa are generally considered with respect to both of these aspects. That said, the order Stigonematales, although largely overlooked in this regard, has become increasingly recognized as a source of bioactive metabolites relevant to both human and environmental health. In particular, the hapalindoles and related indole alkaloids (i.e., ambiguines, fischerindoles, welwitindolinones) from the order, represent a diverse, and phylogenetically characteristic, class of secondary metabolites with biological activity suggestive of potential as both environmental toxins, and promising drug discovery leads. The present review gives an overview of the chemical diversity of biologically active metabolites from the Stigonematales—and particularly the so-called hapalindole-type alkaloids—including their biosynthetic origins, and their pharmacologically and toxicologically relevant bioactivities. Taken together, the current evidence suggests that these alkaloids, and the associated cyanobacterial taxa from the order, warrant future consideration as both potentially harmful (i.e., “toxic”) algae, and as promising leads for drug discovery.
Collapse
Affiliation(s)
- Katherine Walton
- Department of Chemistry and Biochemistry, Marine Science Program, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| | - John P Berry
- Department of Chemistry and Biochemistry, Marine Science Program, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| |
Collapse
|
49
|
The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria. Sci Rep 2016; 6:23436. [PMID: 26996104 PMCID: PMC4800451 DOI: 10.1038/srep23436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/07/2016] [Indexed: 11/08/2022] Open
Abstract
Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial 'botanical orders', from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.
Collapse
|
50
|
Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. ACTA ACUST UNITED AC 2016; 22:317-28. [PMID: 25794436 DOI: 10.1016/j.chembiol.2015.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/19/2023]
Abstract
Tryptophan, the most chemically complex and the least abundant of the 20 common proteinogenic amino acids, is a biosynthetic precursor to a large number of complex microbial natural products. Many of these molecules are promising scaffolds for drug discovery and development. The chemical features of tryptophan, including its ability to undergo enzymatic modifications at almost every atom in its structure and its propensity to undergo spontaneous, non-enzyme catalyzed chemistry, make it a unique biological precursor for the generation of chemical complexity. Here, we review the pathways that enable incorporation of tryptophan into complex metabolites in bacteria, with a focus on recently discovered, unusual metabolic transformations.
Collapse
|