1
|
Vásquez-Castro F, Wicki-Emmenegger D, Fuentes-Schweizer P, Nassar-Míguez L, Rojas-Gätjens D, Rojas-Jimenez K, Chavarría M. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001513. [PMID: 39530301 PMCID: PMC11555687 DOI: 10.1099/mic.0.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.
Collapse
Affiliation(s)
- Felipe Vásquez-Castro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Daniela Wicki-Emmenegger
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- CELEQ, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Layla Nassar-Míguez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
2
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Zhao L, Xiao R, Zhang S, Zhang C, Zhang F. Environmental specificity of karst cave habitats evidenced by diverse symbiotic bacteria in Opiliones. BMC Ecol Evol 2024; 24:58. [PMID: 38720266 PMCID: PMC11080181 DOI: 10.1186/s12862-024-02248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Karst caves serve as natural laboratories, providing organisms with extreme and constant conditions that promote isolation, resulting in a genetic relationship and living environment that is significantly different from those outside the cave. However, research on cave creatures, especially Opiliones, remains scarce, with most studies focused on water, soil, and cave sediments. RESULTS The structure of symbiotic bacteria in different caves were compared, revealing significant differences. Based on the alpha and beta diversity, symbiotic bacteria abundance and diversity in the cave were similar, but the structure of symbiotic bacteria differed inside and outside the cave. Microorganisms in the cave play an important role in material cycling and energy flow, particularly in the nitrogen cycle. Although microbial diversity varies inside and outside the cave, Opiliones in Beijing caves and Hainan Island exhibited a strong similarity, indicating that the two environments share commonalities. CONCLUSIONS The karst cave environment possesses high microbial diversity and there are noticeable differences among different caves. Different habitats lead to significant differences in the symbiotic bacteria in Opiliones inside and outside the cave, and cave microorganisms have made efforts to adapt to extreme environments. The similarity in symbiotic bacteria community structure suggests a potential similarity in host environments, providing an explanation for the appearance of Sinonychia martensi in caves in the north.
Collapse
Affiliation(s)
- Likun Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, P. R. China
| | - Ruoyi Xiao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China
| | - Shanfeng Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China
| | - Chao Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, P. R. China.
| | - Feng Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, P. R. China.
| |
Collapse
|
4
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Gonzalez-Pumariega M, Elez J, Duarte E, de la Rasilla M, Canaveras JC, Saiz-Jimenez C, Sanchez-Moral S. Adaptive response of prokaryotic communities to extreme pollution flooding in a Paleolithic rock art cave (Pindal Cave, northern Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171137. [PMID: 38401719 DOI: 10.1016/j.scitotenv.2024.171137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
A flood event affecting Pindal Cave, a UNESCO World Heritage site, introduced a substantial amount of external sediments and waste into the cave. This event led to the burial of preexisting sediments, altering the biogeochemical characteristics of the cave ecosystem by introducing heightened levels of organic matter, nitrogen compounds, phosphorus, and heavy metals. The sediments included particulate matter and waste from a cattle farm located within the water catchment area of the cavity, along with diverse microorganisms, reshaping the cave microbial community. This study addresses the ongoing influence of a cattle farm on the cave ecosystem and aims to understand the adaptive responses of the underground microbial community to the sudden influx of waste allochthonous material. Here, we show that the flood event had an immediate and profound effect on the cave microbial community, marked by a significant increase in methanogenic archaea, denitrifying bacteria, and other microorganisms commonly associated with mammalian intestinal tracts. Furthermore, our findings reveal that one year after the flood, microorganisms related to the flood decreased, while the increase in inorganic forms of ammonium and nitrate suggests potential nitrification, aligning with increased abundances of corresponding functional genes involved in nitrogen cycling. The results reveal that the impact of pollution was neither recent nor isolated, and it was decisive in stopping livestock activity near the cave. The influence of the cattle farm has persisted since its establishment over the impluvium area, and this influence endures even a year after the flood. Our study emphasizes the dynamic interplay between natural events, anthropogenic activities, and microbial communities, offering insights into the resilience of cave ecosystems. Understanding microbial adaptation in response to environmental disturbances, as demonstrated in this cave ecosystem, has implications for broader ecological studies and underscores the importance of considering temporal dynamics in conservation efforts.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Spanish Geological Survey (IGME-CSIC), 28003 Madrid, Spain.
| | | | | | - Javier Elez
- Department of Geology, University of Salamanca, 37008 Salamanca, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain
| | | | - Juan Carlos Canaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
5
|
Gutierrez‐Patricio S, Osman JR, Gonzalez‐Pimentel JL, Jurado V, Laiz L, Concepción AL, Saiz‐Jimenez C, Miller AZ. Microbiological exploration of the Cueva del Viento lava tube system in Tenerife, Canary Islands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13245. [PMID: 38643985 PMCID: PMC11033209 DOI: 10.1111/1758-2229.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Cueva del Viento, located in the Canary Islands, Spain, is the Earth's sixth-longest lava tube, spanning 18,500 m, and was formed approximately 27,000 years ago. This complex volcanic cave system is characterized by a unique geomorphology, featuring an intricate network of galleries. Despite its geological significance, the geomicrobiology of Cueva del Viento remains largely unexplored. This study employed a combination of culture-dependent techniques and metabarcoding data analysis to gain a comprehensive understanding of the cave's microbial diversity. The 16S rRNA gene metabarcoding approach revealed that the coloured microbial mats (yellow, red and white) coating the cave walls are dominated by the phyla Actinomycetota, Pseudomonadota and Acidobacteriota. Of particular interest is the high relative abundance of the genus Crossiella, which is involved in urease-mediated biomineralization processes, along with the presence of genera associated with nitrogen cycling, such as Nitrospira. Culture-dependent techniques provided insights into the morphological characteristics of the isolated species and their potential metabolic activities, particularly for the strains Streptomyces spp., Paenarthrobacter sp. and Pseudomonas spp. Our findings underscore the potential of Cueva del Viento as an ideal environment for studying microbial diversity and for the isolation and characterization of novel bacterial species of biotechnological interest.
Collapse
Affiliation(s)
| | - Jorge R. Osman
- Instituto de Geología Económica Aplicada (GEA)Universidad de ConcepciónConcepciónChile
| | - José Luis Gonzalez‐Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | | | - Cesareo Saiz‐Jimenez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Ana Zélia Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| |
Collapse
|
6
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Benavente D, Saiz-Jimenez C, Sanchez-Moral S. Prokaryotic communities inhabiting a high-radon subterranean ecosystem (Castañar Cave, Spain): Environmental and substrate-driven controls. Microbiol Res 2023; 277:127511. [PMID: 37852679 DOI: 10.1016/j.micres.2023.127511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Castañar Cave (Caceres, Spain) is a unique show cave known for its high natural radiation levels. This study presents a comprehensive analysis of its prokaryotic diversity, specifically focusing on investigating the influence of environmental conditions and substrate characteristics on the prokaryotic community structure in the cave sediments. Additionally, the research aims to evaluate the potential impact of human activities on the cave ecosystem. The identification of distinct bioclimatic zones within the cave was made possible through a combination of environmental and microbial monitoring (ATP assays). The results reveal sediment texture as a significant factor, notably affecting the structure, diversity, and phylogenetic variability of the microbial community, including both Bacteria and Archaea. The proportion of clay minerals in sediments plays a crucial role in regulating moisture levels and nutrient availability. These substrate properties collectively exert a significant selective pressure on the structure of prokaryotic communities within cave sediments. The molecular approach shows that heterotrophic bacteria, including those with chitinolytic enzymes, primarily inhabit the cave. Furthermore, chemoautotrophic nitrifiers such as the archaea Nitrososphaeria and the genus Nitrospira, as well as methanotrophic bacteria from the phyla Methylomirabilota, Pseudomonadota, and Verrucomicrobiota, are also present. Remarkably, despite being a show cave, the cave microbiota displays minimal impacts from human activities and the surface ecosystem. Prokaryotic populations exhibit stability in the innermost areas, while the tourist trail area experiences slightly higher biomass increases due to visitor traffic. This suggests that conservation efforts have successfully limited the entry of external nutrients into the innermost cave areas. Additionally, the results suggest that integrating biomarkers like ATP into environmental monitoring can significantly enhance the methods used to study the negative impacts of tourism on cave ecosystems.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, 28805 Madrid, Spain.
| | | | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
7
|
Moldovan OT, Carrell AA, Bulzu PA, Levei E, Bucur R, Sitar C, Faur L, Mirea IC, Șenilă M, Cadar O, Podar M. The gut microbiome mediates adaptation to scarce food in Coleoptera. ENVIRONMENTAL MICROBIOME 2023; 18:80. [PMID: 37957741 PMCID: PMC10644639 DOI: 10.1186/s40793-023-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.
Collapse
Affiliation(s)
- Oana Teodora Moldovan
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania.
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania.
- Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Paseo Sierra de Atapuerca 3, Burgos, 09002, Spain.
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 370 05, Czech Republic
| | - Erika Levei
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Ruxandra Bucur
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania
| | - Cristian Sitar
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Zoological Museum, Babeș Bolyai University, Clinicilor 5, Cluj-Napoca, 400006, Romania
| | - Luchiana Faur
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, 13 Septembrie 13, Bucharest, 050711, Romania
| | - Ionuț Cornel Mirea
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, 13 Septembrie 13, Bucharest, 050711, Romania
| | - Marin Șenilă
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
8
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Benavente D, Duarte E, Saiz-Jimenez C, Sanchez-Moral S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165218. [PMID: 37419360 DOI: 10.1016/j.scitotenv.2023.165218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | | | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, Campus Cientifico-Tecnologico, 28802 Alcala de Henares, Spain.
| | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
9
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
10
|
Vagelas I, Reizopoulou A, Exadactylos A, Madesis P, Karapetsi L, Michail G. Stalactites Core Prospect as Environmental "Microbial Ark": The Actinomycetota Diversity Paradigm, First Reported from a Greek Cave. Pol J Microbiol 2023; 72:155-168. [PMID: 37314357 DOI: 10.33073/pjm-2023-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 06/15/2023] Open
Abstract
Speleothems found in caves worldwide are considered the natural libraries of paleontology. Bacteria found in these ecosystems are generally limited to Proteobacteria and Actinomycetota, but rare microbiome and "Dark Matter" is generally under-investigated and often neglected. This research article discusses, for the first time to our knowledge, the diachronic diversity of Actinomycetota entrapped inside a cave stalactite. The planet's environmental microbial community profile of different eras can be stored in these refugia (speleothems). These speleothems could be an environmental "Microbial Ark" storing rare microbiome and "Dark Matter" bacterial communities evermore.
Collapse
Affiliation(s)
- Ioannis Vagelas
- 2Laboratory of Plant Pathology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Angeliki Reizopoulou
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Madesis
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Lefkothea Karapetsi
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
- 4Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), Thessaloniki, Greece
| | - George Michail
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
11
|
Moldovan OT, Carrell AA, Bulzu PA, Levei E, Bucur R, Sitar C, Faur L, Mirea IC, Enilă M, Cadar O, Podar M. The gut microbiome mediates adaptation to scarce food in Coleoptera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540564. [PMID: 37214959 PMCID: PMC10197664 DOI: 10.1101/2023.05.12.540564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibulae adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia . All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.
Collapse
|
12
|
Bogdan DF, Baricz AI, Chiciudean I, Bulzu PA, Cristea A, Năstase-Bucur R, Levei EA, Cadar O, Sitar C, Banciu HL, Moldovan OT. Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania. Front Microbiol 2023; 14:962452. [PMID: 36825091 PMCID: PMC9941645 DOI: 10.3389/fmicb.2023.962452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apă din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania). Materials and Methods To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water. Results and Discussion Pseudomonadota (synonym Proteobacteria) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.
Collapse
Affiliation(s)
- Diana Felicia Bogdan
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Institute for Research, Development and Innovation in Applied Natural Sciences, Cluj-Napoca, Romania,*Correspondence: Diana Felicia Bogdan, ✉
| | - Andreea Ionela Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Iulia Chiciudean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Paul-Adrian Bulzu
- Biology Centre CAS, Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Laboratory of Microbial Ecology and Evolution, Ceske Budejovice, Czechia
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ruxandra Năstase-Bucur
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca, Romania,Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Cristian Sitar
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania,Zoological Museum, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Centre for Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Horia Leonard Banciu, ✉
| | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca, Romania,Romanian Institute of Science and Technology, Cluj-Napoca, Romania,Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Burgos, Spain
| |
Collapse
|
13
|
Xu X, De Mandal S, Wu H, Zhu S, Kong J, Lin S, Jin F. Effect of Diet on the Midgut Microbial Composition and Host Immunity of the Fall Armyworm, Spodoptera frugiperda. BIOLOGY 2022; 11:1602. [PMID: 36358303 PMCID: PMC9687563 DOI: 10.3390/biology11111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024]
Abstract
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Li L, Li S, Ma X, Yan Y. Effects of Urban Green Infrastructure Designs on Soil Bacterial Community Composition and Function. Ecosystems 2022. [DOI: 10.1007/s10021-022-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Screening of Spore-Forming Bacteria with Probiotic Potential in Pristine Algerian Caves. Microbiol Spectr 2022; 10:e0024822. [PMID: 36214685 PMCID: PMC9604054 DOI: 10.1128/spectrum.00248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interest and exploration of biodiversity in subsurface ecosystems have increased significantly during the last 2 decades. The aim of this study was to investigate the in vitro probiotic properties of spore-forming bacteria isolated from deep caves. Two hundred fifty spore-forming microbes were enriched from sediment samples from 10 different pristine caves in Algeria at different depths. Isolates showing nonpathogenic profiles were screened for their potential to produce digestive enzymes (gliadinase and beta-galactosidase) in solid and liquid media, respectively. Different probiotic potentialities were studied, including (i) growth at 37°C, (ii) survival in simulated gastric juice, (iii) survival in simulated intestinal fluid, and (iv) antibiotic sensitivity and cell surface properties. The results showed that out of 250 isolates, 13 isolates demonstrated nonpathogenic character, probiotic potentialities, and ability to hydrolyze gliadin and lactose in solution. These findings suggest that a selection of cave microbes might serve as a source of interesting candidates for probiotics. IMPORTANCE Previous microbial studies of subsurface ecosystems like caves focused mainly on the natural biodiversity in these systems. So far, only a few studies focused on the biotechnological potential of microbes in these systems, focusing in particular on their antibacterial potential, antibiotic production, and, to some extent, enzymatic potential. This study explores whether subsurface ecosystems can serve as an alternative source for microbes relevant to probiotics. The research focused on the ability of cave microbes to degrade two substrates (lactose and gliadin) that cause common digestive disorders. Since these enzymes may prove to be useful in food processing and in reducing the effect of lactose and gliadin digestion within intolerant patients, isolation of microbes such as in this study may expand the possibilities of developing alternative strategies to deal with these intolerances.
Collapse
|
16
|
Allenby A, Cunningham MR, Hillebrand-Voiculescu A, Comte JC, Doherty R, Kumaresan D. Occurrence of methane-oxidizing bacteria and methanogenic archaea in earth’s cave systems—A metagenomic analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.909865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Karst ecosystems represent up to 25% of the land surface and recent studies highlight their potential role as a sink for atmospheric methane. Despite this, there is limited knowledge of the diversity and distribution of methane-oxidizing bacteria (MOB) or methanogens in karst caves and the sub-surface environment in general. Here, we performed a survey of 14 shotgun metagenomes from cave ecosystems covering a broad set of environmental conditions, to compare the relative abundance and phylogenetic diversity of MOB and methanogens, targeting biomarker genes for methane monooxygenase (pmoA and mmoX) and methyl-coenzyme M reductase (mcrA). Taxonomic analysis of metagenomes showed 0.02–1.28% of classified reads were related to known MOB, of which Gammaproteobacterial MOB were the most abundant making up on average 70% of the surveyed caves’ MOB community. Potential for biogenic methane production in caves was also observed, with 0.008–0.39% of reads classified to methanogens and was dominated by sequences related to Methanosarcina. We have also generated a cave ecosystems protein database (CEPD) based on protein level assembly of cave metagenomes that can be used to profile genes of interest.
Collapse
|
17
|
Wang Y, Cheng X, Wang H, Zhou J, Liu X, Tuovinen OH. The Characterization of Microbiome and Interactions on Weathered Rocks in a Subsurface Karst Cave, Central China. Front Microbiol 2022; 13:909494. [PMID: 35847118 PMCID: PMC9277220 DOI: 10.3389/fmicb.2022.909494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Karst caves are a natural oligotrophic subsurface biosphere widely distributed in southern China. Despite the progress in bacterial and fungal diversity, the knowledge about interactions between bacteria, fungi, and minerals is still limited in caves. Hence, for the first time, we investigated the interaction between bacteria and fungi living on weathered rocks in the Heshang Cave via high-throughput sequencing of 16S rRNA and ITS1 genes, and co-occurrence analysis. The mineral compositions of weathered rocks were analyzed by X-ray diffraction. Bacterial communities were dominated by Actinobacteria (33.68%), followed by Alphaproteobacteria (8.78%), and Planctomycetia (8.73%). In contrast, fungal communities were dominated by Sordariomycetes (21.08%) and Dothideomycetes (14.06%). Mineral substrata, particularly phosphorus-bearing minerals, significantly impacted bacterial (hydroxyapatite) and fungal (fluorapatite) communities as indicated by the redundancy analysis. In comparison with fungi, the development of bacterial communities was more controlled by the environmental selection indicated by the overwhelming contribution of deterministic processes. Co-occurrence network analysis showed that all nodes were positively linked, indicating ubiquitous cooperation within bacterial groups and fungal groups, as well as between bacteria and fungi under oligotrophic conditions in the subsurface biosphere. In total, 19 bacterial ASVs and 34 fungal OTUs were identified as keystone taxa, suggesting the fundamental role of fungi in maintaining the microbial ecosystem on weathered rocks. Ascomycota was most dominant in keystone taxa, accounting for 26.42%, followed by Actinobacteria in bacteria (24.53%). Collectively, our results confirmed the highly diverse bacterial and fungal communities on weathered rocks, and their close cooperation to sustain the subsurface ecosystem. Phosphorus-bearing minerals were of significance in shaping epipetreous bacterial and fungal communities. These observations provide new knowledge about microbial interactions between bacteria, fungi, and minerals in the subterranean biosphere.
Collapse
Affiliation(s)
- Yiheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jianping Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H Tuovinen
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Phylotypic Diversity of Bacteria Associated with Speleothems of a Silicate Cave in a Guiana Shield Tepui. Microorganisms 2022; 10:microorganisms10071395. [PMID: 35889113 PMCID: PMC9316562 DOI: 10.3390/microorganisms10071395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022] Open
Abstract
The diversity of microorganisms associated with speleological sources has mainly been studied in limestone caves, while studies in silicate caves are still under development. Here, we profiled the microbial diversity of opal speleothems from a silicate cave in Guiana Highlands. Bulk DNAs were extracted from three speleothems of two types, i.e., one soft whitish mushroom-like speleothem and two hard blackish coral-like speleothems. The extracted DNAs were amplified for sequencing the V3–V4 region of the bacterial 16S rRNA gene by MiSeq. A total of 210,309 valid reads were obtained and clustered into 3184 phylotypes or operational taxonomic units (OTUs). The OTUs from the soft whitish speleothem were mostly affiliated with Acidobacteriota, Pseudomonadota (formerly, Proteobacteria), and Chloroflexota, with the OTUs ascribed to Nitrospirota being found specifically in this speleothem. The OTUs from the hard blackish speleothems were similar to each other and were mostly affiliated with Pseudomonadota, Acidobacteriota, and Actinomycetota (formerly, Actinobacteria). These OTU compositions were generally consistent with those reported for limestone and silicate caves. The OTUs were further used to infer metabolic features by using the PICRUSt bioinformatic tool, and membrane transport and amino acid metabolism were noticeably featured. These and other featured metabolisms may influence the pH microenvironment and, consequently, the formation, weathering, and re-deposition of silicate speleothems.
Collapse
|
19
|
Bontemps Z, Alonso L, Pommier T, Hugoni M, Moënne-Loccoz Y. Microbial ecology of tourist Paleolithic caves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151492. [PMID: 34793801 DOI: 10.1016/j.scitotenv.2021.151492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms colonize caves extensively, and in caves open for tourism they may cause alterations on wall surfaces. This is a major concern in caves displaying Paleolithic art, which is usually fragile and may be irremediably damaged by microbial alterations. Therefore, many caves were closed for preservation purposes, e.g. Lascaux (France), Altamira (Spain), while others were never opened to the public to avoid microbial contamination, e.g. Chauvet Cave (France), etc. The recent development of high-throughput sequencing technologies allowed several descriptions of cave microbial diversity and prompted the writing of this review, which focuses on the cave microbiome for the three domains of life (Bacteria, Archaea, microeukaryotes), the impact of tourism-related anthropization on microorganisms in Paleolithic caves, and the development of microbial alterations on the walls of these caves. This review shows that the microbial phyla prevalent in pristine caves are similar to those evidenced in water, soil, plant and metazoan microbiomes, but specificities at lower taxonomic levels remain to be clarified. Most of the data relates to Bacteria and Fungi, while other microeukaryotes and Archaea are poorly documented. Tourism may cause shifts in the microbiota of Paleolithic caves, but larger-scale investigation are required as these shifts may differ from one cave to the next. Finally, different types of alterations can occur in caves, especially in Paleolithic caves. Many microorganisms potentially involved have been identified, but diversity analyses of these alterations have not always included a comparison with neighboring unaltered zones as controls, making such associations uncertain. It is expected that omics technologies will also allow a better understanding of the functional diversities of the cave microbiome. This will be needed to decipher microbiome dynamics in response to touristic frequentation, to guide cave management, and to identify the most appropriate reclamation approaches to mitigate microbial alterations in tourist Paleolithic caves.
Collapse
Affiliation(s)
- Zélia Bontemps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
| |
Collapse
|
20
|
Buresova‐Faitova A, Kopecky J, Sagova‐Mareckova M, Alonso L, Vautrin F, Moënne‐Loccoz Y, Rodriguez‐Nava V. Comparison of
Actinobacteria
communities from human‐impacted and pristine karst caves. Microbiologyopen 2022; 11:e1276. [PMID: 35478281 PMCID: PMC8988830 DOI: 10.1002/mbo3.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022] Open
Abstract
Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization‐related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas‐1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65‐related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina‐MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species‐level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.
Collapse
Affiliation(s)
- Andrea Buresova‐Faitova
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
- Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2PragueCzech Republic
- Laboratory for Epidemiology and Ecology of MicroorganismsCrop Research InstitutePrahaCzech Republic
| | - Jan Kopecky
- Laboratory for Epidemiology and Ecology of MicroorganismsCrop Research InstitutePrahaCzech Republic
| | - Marketa Sagova‐Mareckova
- Laboratory for Epidemiology and Ecology of MicroorganismsCrop Research InstitutePrahaCzech Republic
| | - Lise Alonso
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Florian Vautrin
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Yvan Moënne‐Loccoz
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Veronica Rodriguez‐Nava
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| |
Collapse
|
21
|
Bendia AG, Callefo F, Araújo MN, Sanchez E, Teixeira VC, Vasconcelos A, Battilani G, Pellizari VH, Rodrigues F, Galante D. Metagenome-Assembled Genomes from Monte Cristo Cave (Diamantina, Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on Mars. ASTROBIOLOGY 2022; 22:293-312. [PMID: 34694925 DOI: 10.1089/ast.2021.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.
Collapse
Affiliation(s)
- Amanda G Bendia
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maicon N Araújo
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Evelyn Sanchez
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandra Vasconcelos
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Gislaine Battilani
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Vivian H Pellizari
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
22
|
Farda B, Djebaili R, Vaccarelli I, Del Gallo M, Pellegrini M. Actinomycetes from Caves: An Overview of Their Diversity, Biotechnological Properties, and Insights for Their Use in Soil Environments. Microorganisms 2022; 10:453. [PMID: 35208907 PMCID: PMC8875103 DOI: 10.3390/microorganisms10020453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
The environmental conditions of caves shape microbiota. Within caves' microbial communities, actinomycetes are among the most abundant bacteria. Cave actinomycetes have gained increasing attention during the last decades due to novel bioactive compounds with antibacterial, antioxidant and anticancer activities. However, their potential role in soil environments is still unknown. This review summarises the literature dealing with actinomycetes from caves, underlining for the first time their potential roles in soil environments. We provide an overview of their diversity and biotechnological properties, underling their potential role in soil environments applications. The contribution of caves' actinomycetes in soil fertility and bioremediation and crops biostimulation and biocontrol are discussed. The survey on the literature show that several actinomycetes genera are present in cave ecosystems, mainly Streptomyces, Micromonospora, and Nocardiopsis. Among caves' actinomycetes, Streptomyces is the most studied genus due to its ubiquity, survival capabilities, and metabolic versatility. Despite actinomycetes' outstanding capabilities and versatility, we still have inadequate information regarding cave actinomycetes distribution, population dynamics, biogeochemical processes, and metabolisms. Research on cave actinomycetes needs to be encouraged, especially concerning environmental soil applications to improve soil fertility and health and to antagonise phytopathogens.
Collapse
Affiliation(s)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (B.F.); (I.V.); (M.D.G.)
| | | | | | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (B.F.); (I.V.); (M.D.G.)
| |
Collapse
|
23
|
Michail G, Karapetsi L, Madesis P, Reizopoulou A, Vagelas I. Metataxonomic Analysis of Bacteria Entrapped in a Stalactite's Core and Their Possible Environmental Origins. Microorganisms 2021; 9:microorganisms9122411. [PMID: 34946013 PMCID: PMC8705861 DOI: 10.3390/microorganisms9122411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Much is known about microbes originally identified in caves, but little is known about the entrapment of microbes (bacteria) in stalactites and their possible environmental origins. This study presents data regarding the significant environmental distribution of prokaryotic bacterial taxa of a Greek stalactite core. We investigated the involvement of those bacteria communities in stalactites using a metataxonomic analysis approach of partial 16S rRNA genes. The metataxonomic analysis of stalactite core material revealed an exceptionally broad ecological spectrum of bacteria classified as members of Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, and other unclassified bacteria. We concluded that (i) the bacterial transport process is possible through water movement from the upper ground cave environment, forming cave speleothems such as stalactites, (ii) bacterial genera such as Polaromonas, Thioprofundum, and phylum Verrucomicrobia trapped inside the stalactite support the paleoecology, paleomicrobiology, and paleoclimate variations, (iii) the entrapment of certain bacteria taxa associated with water, soil, animals, and plants such as Micrococcales, Propionibacteriales, Acidimicrobiales, Pseudonocardiales, and α-, β-, and γ-Proteobacteria.
Collapse
Affiliation(s)
- George Michail
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
- Correspondence:
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (L.K.); (P.M.)
- Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (L.K.); (P.M.)
- Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), 57001 Thessaloniki, Greece
| | | | - Ioannis Vagelas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece;
| |
Collapse
|
24
|
Zada S, Xie J, Yang M, Yang X, Sajjad W, Rafiq M, Hasan F, Hu Z, Wang H. Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Appl Microbiol Biotechnol 2021; 105:8921-8936. [PMID: 34738169 DOI: 10.1007/s00253-021-11658-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Microbial communities in cave ecosystems have specific survival strategies, which is far from being well explicated. Here, we reported the genetic and functional diversity of bacteria and archaea in typical limestone (Kashmir Cave) and silicate-containing (Tiser Cave) caves. X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FTIR) analyses revealed the different geochemical and mineral compositions of the two caves. Amplicon barcode sequencing revealed the dominancy of Actinobacteria and Proteobacteria in Kashmir and Tiser Caves. Bacteroidetes and Firmicutes were the dominant phyla in Tiser Cave, and the abundance is relatively small in Kashmir Cave. Archaea was also abundant prokaryotes in Kashmir Cave, but it only accounted for 0.723% of the total prokaryote sequences in Tiser Cave. Functional analysis based on metagenomic sequencing data revealed that a large number of functional potential genes involved in nutrient metabolism and biosynthesis of bioactive compounds in Tiser and Kashmir Cave samples could significantly influence the biogeochemical cycle and secondary metabolite production in cave habitats. In addition, the two caves were also found to be rich in biosynthetic genes, encoding bioactive compounds, such as monobactam and prodigiosin, indicating that these caves could be potential habitats for the isolation of antibiotics. This study provides a comprehensive insight into the diversity of bacteria and archaea in cave ecosystems and helps to better understand the special survival strategies of microorganisms in cave ecosystems.Key points• Geochemically distinct caves possess unique microbial community structure.• Cavernicoles could be important candidates for antibiotic production.• Cavernicoles are important for biogeochemical cycling.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jianmin Xie
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Min Yang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiaoyu Yang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zhong Hu
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hui Wang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.
| |
Collapse
|
25
|
Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem. Microbiol Spectr 2021; 9:e0115221. [PMID: 34494852 PMCID: PMC8557908 DOI: 10.1128/spectrum.01152-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The geological role of microorganisms has been widely studied in the karst cave ecosystem. However, microbial interactions and ecological functions in such a dark, humid, and oligotrophic habitat have received far less attention, which is crucial to understanding cave biogeochemistry. Herein, microorganisms from weathered rock and sediment along the Heshang Cave depth were analyzed by random matrix theory-based network and Tax4Fun functional prediction. The results showed that although the cave microbial communities have spatial heterogeneity, differential habitats drove the community structure and diversity. Actinobacteria were predominant in weathered rock, whereas Proteobacteria dominated the sediment. The sediment communities presented significantly higher alpha diversities due to the relatively abundant nutrition from the outside by the intermittent stream. Consistently, microbial interactions in sediment were more complex, as visualized by more nodes and links. The abundant taxa presented more positive correlations with other community members in both of the two networks, indicating that they relied on promotion effects to adapt to the extreme environment. The keystones in weathered rock were mainly involved in the biodegradation of organic compounds, whereas the keystone Nitrospira in sediment contributed to carbon/nitrogen fixation. Collectively, these findings suggest that microbial interactions may lead to distinct taxonomic and functional communities in weathered rock and sediment in the subsurface Heshang Cave. IMPORTANCE In general, the constant physicochemical conditions and limited nutrient sources over long periods in the subsurface support a stable ecosystem in karst cave. Previous studies on cave microbial ecology were mostly focused on community composition, diversity, and the relationship with local environmental factors. There are still many unknowns about the microbial interactions and functions in such a dark environment with little human interference. Two representative habitats, including weathered rock and sediment in Heshang Cave, were selected to give an integrated insight into microbial interactions and potential functions. The cooccurrence network, especially the subnetwork, was used to characterize the cave microbial interactions in detail. We demonstrated that abundant taxa primarily relied on promotion effects rather than inhibition effects to survive in Heshang Cave. Keystone species may play important metabolic roles in sustaining ecological functions. Our study provides improved understanding of microbial interaction patterns and community ecological functions in the karst cave ecosystem.
Collapse
|
26
|
Iquebal MA, Passari AK, Jagannadham J, Ahmad F, Leo VV, Singh G, Jaiswal S, Rai A, Kumar D, Singh BP. Microbiome of Pukzing Cave in India shows high antimicrobial activity against plant and animal pathogens. Genomics 2021; 113:4098-4108. [PMID: 34699904 DOI: 10.1016/j.ygeno.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Pukzing cave, the largest cave of Mizoram, India was explored for bacterial diversity. Culture dependent method revealed 235 bacterial isolates using three different treatments. Identity of the microbial species was confirmed by 16S rDNA sequencing. The highest bacterial population was recovered from heat treatment (n = 97;41.2%) followed by normal (n = 79;33.6%) and cold treatment (n = 59;25.1%) indicating dominance of moderate thermophiles. Antimicrobial potential of isolates showed 20.4% isolates having antimicrobial ability against tested pathogens. Amplicon sequencing of PKSI, PKSII and NRP specific genes revealed presence of AMP genes in the microbial population. Six microbial pathogens were selected for screening as they are well known for different disease cause organism in various fields such as agriculture and human health. Cave environment harbors unique microbial flora and hypervariable region V4 is more informative. Higher activity of AMP assay against these microbes indicates that cave microbial communities could be potential source of future genomic resources.
Collapse
Affiliation(s)
- M A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajit Kumar Passari
- Department of Biotechnology, Aizawl, Mizoram University, Mizoram, India; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico 04510, Mexico
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Farzana Ahmad
- Department of Biotechnology, Aizawl, Mizoram University, Mizoram, India
| | | | - Garima Singh
- Department of Botany, Pachhunga University College, Mizoram University, Aizawl 796001, Mizoram, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| | - Bhim Pratap Singh
- Department of Biotechnology, Aizawl, Mizoram University, Mizoram, India; Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Sonipat 131028, Haryana, India.
| |
Collapse
|
27
|
Koner S, Chen JS, Hsu BM, Tan CW, Fan CW, Chen TH, Hussain B, Nagarajan V. Assessment of Carbon Substrate Catabolism Pattern and Functional Metabolic Pathway for Microbiota of Limestone Caves. Microorganisms 2021; 9:microorganisms9081789. [PMID: 34442868 PMCID: PMC8398112 DOI: 10.3390/microorganisms9081789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Carbon utilization of bacterial communities is a key factor of the biomineralization process in limestone-rich curst areas. An efficient carbon catabolism of the microbial community is associated with the availability of carbon sources in such an ecological niche. As cave environments promote oligotrophic (carbon source stress) situations, the present study investigated the variations of different carbon substrate utilization patterns of soil and rock microbial communities between outside and inside cave environments in limestone-rich crust topography by Biolog EcoPlate™ assay and categorized their taxonomical structure and predicted functional metabolic pathways based on 16S rRNA amplicon sequencing. Community level physiological profiling (CLPP) analysis by Biolog EcoPlate™ assay revealed that microbes from outside of the cave were metabolically active and had higher carbon source utilization rate than the microbial community inside the cave. 16S rRNA amplicon sequence analysis demonstrated, among eight predominant bacterial phylum Planctomycetes, Proteobacteria, Cyanobacteria, and Nitrospirae were predominantly associated with outside-cave samples, whereas Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes were associated with inside-cave samples. Functional prediction showed bacterial communities both inside and outside of the cave were functionally involved in the metabolism of carbohydrates, amino acids, lipids, xenobiotic compounds, energy metabolism, and environmental information processing. However, the amino acid and carbohydrate metabolic pathways were predominantly linked to the outside-cave samples, while xenobiotic compounds, lipids, other amino acids, and energy metabolism were associated with inside-cave samples. Overall, a positive correlation was observed between Biolog EcoPlate™ assay carbon utilization and the abundance of functional metabolic pathways in this study.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (S.K.); (B.H.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi City 621, Taiwan
- Correspondence: ; Tel.: +886-5272-0411 (ext. 66218)
| | - Chao-Wen Tan
- Division of Cardiology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan;
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan;
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (S.K.); (B.H.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| |
Collapse
|
28
|
Zheng Y, Yu S, Wang G, Xie F, Xu H, Du S, Zhao H, Sang X, Lu J, Jiang W. Comparative microbial antibiotic resistome between urban and deep forest environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:503-508. [PMID: 33751816 DOI: 10.1111/1758-2229.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A paradoxical result of using antibiotics to eradicate microbial pathogens is the emergence of a vast number of resistant microbes in various environments. The concern that environmental microbes will inevitably become resistant to virtually every clinically usable antibiotics has been exacerbated by the spread of these resistance genes across different environments and the emergence of multidrug resistant phenotypes. Here, we provide metagenomic insights into the microbiomes and resistomes of 16 soil samples collected from hospitals, residential areas, and forest parks in the megacity of Beijing and deep forests in the Yunnan province. Using Illumina HiSeq sequencing, we investigated the microbial diversity within the metagenomic shotgun reads and identified 486 antibiotic-resistant genes (ARGs) classified into 30 types from these samples, among which multidrug resistance genes were the most abundant. Our results present an important reference and direct comparison of microbial antibiotic resistomes of soil samples from a megacity and deep forests and extend our understanding of the spread of ARGs in modern urban and natural environments.
Collapse
Affiliation(s)
- Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Si Yu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guanqun Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fucun Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jizhou Lu
- Department of Liver Surgery, The Third People's Hospital of Gansu Province, Lanzhou, 730020, China
| | - Wenjun Jiang
- Department of Plant Pathology and Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Enhancement of Biogas Production via Co-Digestion of Wastewater Treatment Sewage Sludge and Brewery Spent Grain: Physicochemical Characterization and Microbial Community. SUSTAINABILITY 2021. [DOI: 10.3390/su13158225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study intends to evaluate a synergy towards enhanced biogas production by co-digesting municipal sewage sludge (SS) with brewery spent grain (BSG). To execute this, physicochemical and metagenomics analysis was conducted on the sewage sludge substrate. The automatic methane potential test system II (AMPTS II) biochemical methane potential (BMP) batch setup was operated at 35 ± 5 °C, pH range of 6.5–7.5 for 30 days’ digestion time on AMPTS II and 150 days on semi-continuous setup, where the organic loading rate (OLR) was guided by pH and the volatile fatty acids to total alkalinity (VFA/TA) ratio. Metagenomics analysis revealed that Proteobacteria was the most abundant phyla, consisting of hydrolytic and fermentative bacteria. The archaea community of hydrogenotrophic methanogen genus was enriched by methanogens. The highest BMP was obtained with co-digestion of SS and BSG, and 9.65 g/kg of VS. This not only increased biogas production by 104% but also accelerated the biodegradation of organic matters. However, a significant reduction in the biogas yield, from 10.23 NL/day to 2.02 NL/day, was observed in a semi-continuous process. As such, it can be concluded that different species in different types of sludge can synergistically enhance the production of biogas. However, the operating conditions should be optimized and monitored at all times. The anaerobic co-digestion of SS and BSG might be considered as a cost-effective solution that could contribute to the energy self-efficiency of wastewater treatment works (WWTWs) and sustainable waste management. It is recommended to upscale co-digestion of the feed for the pilot biogas plant. This will also go a long way in curtailing and minimizing the impacts of sludge disposal in the environment.
Collapse
|
30
|
Lin Q, Baldrian P, Li L, Novotny V, Heděnec P, Kukla J, Umari R, Meszárošová L, Frouz J. Dynamics of Soil Bacterial and Fungal Communities During the Secondary Succession Following Swidden Agriculture IN Lowland Forests. Front Microbiol 2021; 12:676251. [PMID: 34163452 PMCID: PMC8215787 DOI: 10.3389/fmicb.2021.676251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Elucidating dynamics of soil microbial communities after disturbance is crucial for understanding ecosystem restoration and sustainability. However, despite the widespread practice of swidden agriculture in tropical forests, knowledge about microbial community succession in this system is limited. Here, amplicon sequencing was used to investigate effects of soil ages (spanning at least 60 years) after disturbance, geographic distance (from 0.1 to 10 km) and edaphic property gradients (soil pH, conductivity, C, N, P, Ca, Mg, and K), on soil bacterial and fungal communities along a chronosequence of sites representing the spontaneous succession following swidden agriculture in lowland forests in Papua New Guinea. During succession, bacterial communities (OTU level) as well as its abundant (OTU with relative abundance > 0.5%) and rare (<0.05%) subcommunities, showed less variation but more stage-dependent patterns than those of fungi. Fungal community dynamics were significantly associated only with geographic distance, whereas bacterial community dynamics were significantly associated with edaphic factors and geographic distance. During succession, more OTUs were consistently abundant (n = 12) or rare (n = 653) for bacteria than fungi (abundant = 6, rare = 5), indicating bacteria were more tolerant than fungi to environmental gradients. Rare taxa showed higher successional dynamics than abundant taxa, and rare bacteria (mainly from Actinobacteria, Proteobacteria, Acidobacteria, and Verrucomicrobia) largely accounted for bacterial community development and niche differentiation during succession.
Collapse
Affiliation(s)
- Qiang Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa Research Infrastructure, České Budějovice, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Praha, Czechia
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Praha, Czechia
| | - Lingjuan Li
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa Research Infrastructure, České Budějovice, Czechia
| | - Vojtech Novotny
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences and University of South Bohemia, České Budějovice, Czechia.,New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Petr Heděnec
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.,Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jaroslav Kukla
- Faculty of Science, Institute for Environmental Studies, Charles University, Praha, Czechia
| | - Ruma Umari
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Lenka Meszárošová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Praha, Czechia
| | - Jan Frouz
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa Research Infrastructure, České Budějovice, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Praha, Czechia
| |
Collapse
|
31
|
Addesso R, Gonzalez-Pimentel JL, D'Angeli IM, De Waele J, Saiz-Jimenez C, Jurado V, Miller AZ, Cubero B, Vigliotta G, Baldantoni D. Microbial Community Characterizing Vermiculations from Karst Caves and Its Role in Their Formation. MICROBIAL ECOLOGY 2021; 81:884-896. [PMID: 33156395 PMCID: PMC8062384 DOI: 10.1007/s00248-020-01623-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 05/07/2023]
Abstract
The microbiota associated with vermiculations from karst caves is largely unknown. Vermiculations are enigmatic deposits forming worm-like patterns on cave walls all over the world. They represent a precious focus for geomicrobiological studies aimed at exploring both the microbial life of these ecosystems and the vermiculation genesis. This study comprises the first approach on the microbial communities thriving in Pertosa-Auletta Cave (southern Italy) vermiculations by next-generation sequencing. The most abundant phylum in vermiculations was Proteobacteria, followed by Acidobacteria > Actinobacteria > Nitrospirae > Firmicutes > Planctomycetes > Chloroflexi > Gemmatimonadetes > Bacteroidetes > Latescibacteria. Numerous less-represented taxonomic groups (< 1%), as well as unclassified ones, were also detected. From an ecological point of view, all the groups co-participate in the biogeochemical cycles in these underground environments, mediating oxidation-reduction reactions, promoting host rock dissolution and secondary mineral precipitation, and enriching the matrix in organic matter. Confocal laser scanning microscopy and field emission scanning electron microscopy brought evidence of a strong interaction between the biotic community and the abiotic matrix, supporting the role of microbial communities in the formation process of vermiculations.
Collapse
Affiliation(s)
- Rosangela Addesso
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Jose L Gonzalez-Pimentel
- HERCULES Laboratory, University of Évora, Largo Marques de Marialva 8, 7000-809, Évora, Portugal
| | - Ilenia M D'Angeli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni, 67, 40126, Bologna, Italy
| | - Jo De Waele
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni, 67, 40126, Bologna, Italy
| | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS-CSIC, Av. Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS-CSIC, Av. Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Largo Marques de Marialva 8, 7000-809, Évora, Portugal
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS-CSIC, Av. Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Daniela Baldantoni
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
32
|
Esquivel-Hernández DA, García-Pérez JS, Xu X, Metha S, Maldonado J, Xia S, Zhao HP, Rittmann BE, Ontiveros-Valencia A. Microbial ecology in selenate-reducing biofilm communities: Rare biosphere and their interactions with abundant phylotypes. Biotechnol Bioeng 2021; 118:2460-2471. [PMID: 33719058 DOI: 10.1002/bit.27754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
Selenate (SeO4 2- ) reduction in hydrogen (H2 )-fed membrane biofilm reactors (H2 -MBfRs) was studied in combinations with other common electron acceptors. We employed H2 -MBfRs with two distinctly different conditions: R1, with ample electron-donor availability and acceptors SeO4 2- and sulfate (SO4 2- ), and R2, with electron-donor limitation and the presence of electron acceptors SeO4 2- , nitrate (NO3 - ), and SO4 2- . Even though H2 was available to reduce all input SeO4 2- and SO4 2- in R1, SeO4 2- reduction was preferred over SO4 2- reduction. In R2, co-reduction of NO3 - and SeO4 2- occurred, and SO4 2- reduction was mostly suppressed. Biofilms in all MBfRs had high microbial diversity that was influenced by the "rare biosphere" (RB), phylotypes with relative abundance less than 1%. While all MBfR biofilms had abundant members, such as Dechloromonas and Methyloversatilis, the bacterial communities were significantly different between R1 and R2. For R1, abundant genera were Methyloversatilis, Melioribacter, and Propionivibrio; for R2, abundant genera were Dechloromonas, Hydrogenophaga, Cystobacter, Methyloversatilis, and Thauera. Although changes in electron-acceptor or -donor loading altered the phylogenetic structure of the microbial communities, the biofilm communities were resilient in terms of SeO4 2- and NO3 - reductions, because interacting members of the RB had the capacity of respiring these electron acceptors.
Collapse
Affiliation(s)
- Diego A Esquivel-Hernández
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jonathan S García-Pérez
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xiaoyin Xu
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Sanya Metha
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Juan Maldonado
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Bruce E Rittmann
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Aura Ontiveros-Valencia
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
33
|
Narsing Rao MP, Dong ZY, Luo ZH, Li MM, Liu BB, Guo SX, Hozzein WN, Xiao M, Li WJ. Physicochemical and Microbial Diversity Analyses of Indian Hot Springs. Front Microbiol 2021; 12:627200. [PMID: 33763045 PMCID: PMC7982846 DOI: 10.3389/fmicb.2021.627200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
In the present study, physicochemical and microbial diversity analyses of seven Indian hot springs were performed. The temperature at the sample sites ranged from 32 to 67°C, and pH remained neutral to slightly alkaline. pH and temperature influenced microbial diversity. Culture-independent microbial diversity analysis suggested bacteria as the dominant group (99.3%) when compared with the archaeal group (0.7%). Alpha diversity analysis showed that microbial richness decreased with the increase of temperature, and beta diversity analysis showed clustering based on location. A total of 131 strains (divided into 12 genera and four phyla) were isolated from the hot spring samples. Incubation temperatures of 37 and 45°C and T5 medium were more suitable for bacterial isolation. Some of the isolated strains shared low 16S rRNA gene sequence similarity, suggesting that they may be novel bacterial candidates. Some strains produced thermostable enzymes. Dominant microbial communities were found to be different depending on the culture-dependent and culture-independent methods. Such differences could be attributed to the fact that most microbes in the studied samples were not cultivable under laboratory conditions. Culture-dependent and culture-independent microbial diversities suggest that these springs not only harbor novel microbial candidates but also produce thermostable enzymes, and hence, appropriate methods should be developed to isolate the uncultivated microbial taxa.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou-Yan Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Shu-Xian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
34
|
Lighting Effects on the Development and Diversity of Photosynthetic Biofilm Communities in Carlsbad Cavern, New Mexico. Appl Environ Microbiol 2021; 87:AEM.02695-20. [PMID: 33452019 DOI: 10.1128/aem.02695-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Photosynthetic cave communities ("lampenflora") proliferate in Carlsbad Cavern and other show caves worldwide due to artificial lighting. These biofilms mar the esthetics and can degrade underlying cave surfaces. The National Park Service recently modernized the lighting in Carlsbad Cavern to a light-emitting diode (LED) system that allows adjustment of the color temperature and intensity. We hypothesized that lowering the color temperature would reduce photopigment development. We therefore assessed lampenflora responses to changes in lighting by monitoring photosynthetic communities over the course of a year. We measured photopigments using reflected-light spectrophotometric observations and analyzed microbial community composition with 16S and 18S rRNA gene amplicon sequencing. Reflected-light spectrophotometry revealed that photosynthetic biofilm development is affected by lighting intensity, color temperature, substrate type, and cleaning of the substrate. Gene sequencing showed that the most abundant phototrophs were Cyanobacteria and members of the algal phyla Chlorophyta and Ochrophyta At the end of the study, visible growth of lampenflora was seen at all sites. At sites that had no established biofilm at the start of the study period, Cyanobacteria became abundant and outpaced an increase in eukaryotic algae. Microbial diversity also increased over time at these sites, suggesting a possible pattern of early colonization and succession. Bacterial community structure showed significant effects of all variables: color temperature, light intensity, substrate type, site, and previous cleaning of the substrate. These findings provide fundamental information that can inform management practices; they suggest that altering lighting conditions alone may be insufficient to prevent lampenflora growth.IMPORTANCE Artificial lighting in caves visited by tourists ("show caves") can stimulate photosynthetic algae and cyanobacteria, called "lampenflora," which are unsightly and damage speleothems and other cave surfaces. The most common mitigation strategy employs bleach, but altering intensities and wavelengths of light might be effective and less harsh. Carlsbad Cavern in New Mexico, a U.S. National Park and UNESCO World Heritage Site, has visible lampenflora despite adjustment of LED lamps to decrease the energetic blue light. This study characterized the lampenflora communities and tested the effects of color temperature, light intensity, rock or sediment texture, and time on lampenflora development. DNA amplicon sequence data show a variety of algae and cyanobacteria and also heterotrophic bacteria. This study reveals microbial dynamics during colonization of artificially lit surfaces and indicates that while lowering the color temperature may have an effect, management of lampenflora will likely require additional chemical or UV treatment.
Collapse
|
35
|
Lukoseviciute L, Lebedeva J, Kuisiene N. Diversity of Polyketide Synthases and Nonribosomal Peptide Synthetases Revealed Through Metagenomic Analysis of a Deep Oligotrophic Cave. MICROBIAL ECOLOGY 2021; 81:110-121. [PMID: 32638044 DOI: 10.1007/s00248-020-01554-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Caves are considered to be extreme and challenging environments. It is believed that the ability of microorganisms to produce secondary metabolites enhances their survivability and adaptiveness in the energy-starved cave environment. Unfortunately, information on the genetic potential for the production of secondary metabolites, such as polyketides and nonribosomal peptides, is limited. In the present study, we aimed to identify and characterize genes responsible for the production of secondary metabolites in the microbial community of one of the deepest caves in the world, Krubera-Voronja Cave (43.4184 N 40.3083 E, Western Caucasus). The analysed sample materials included sediments, drinkable water from underground camps, soil and clay from the cave walls, speleothems and coloured spots from the cave walls. The type II polyketide synthases (PKSs) ketosynthases α and β and the adenylation domains of nonribosomal peptide synthetases (NRPSs) were investigated using a metagenomic approach. Taxonomic diversity analysis showed that most PKS sequences could be attributed to Actinobacteria followed by unclassified bacteria and Acidobacteria, while the NRPS sequences were more taxonomically diverse and could be assigned to Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Chloroflexi, etc. Only three putative metabolites could be predicted: an angucycline group polyketide, a massetolide A-like cyclic lipopeptide and a surfactin-like lipopeptide. The absolute majority of PKS and NRPS sequences showed low similarity with the sequences of the reference biosynthetic pathways, suggesting that these sequences could be involved in the production of novel secondary metabolites.
Collapse
Affiliation(s)
- Laima Lukoseviciute
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jolanta Lebedeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
36
|
Turrini P, Tescari M, Visaggio D, Pirolo M, Lugli GA, Ventura M, Frangipani E, Visca P. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiol Res 2020; 241:126584. [DOI: 10.1016/j.micres.2020.126584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
|
37
|
Kuzmina LY, Chervyatsova OY, Iasakov TR, Safina VR, Galimzyanova NF, Melent’ev AI, Aktuganov GE. Characterization of Novel Chitin-degrading laceyella spp. Strains from New Athos Cave (Abkhazia) Producing Thermostable Chitinases. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720050148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Dong Y, Gao J, Wu Q, Ai Y, Huang Y, Wei W, Sun S, Weng Q. Co-occurrence pattern and function prediction of bacterial community in Karst cave. BMC Microbiol 2020; 20:137. [PMID: 32471344 PMCID: PMC7257168 DOI: 10.1186/s12866-020-01806-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Background Karst caves are considered as extreme environments with nutrition deficiency, darkness, and oxygen deprivation, and they are also the sources of biodiversity and metabolic pathways. Microorganisms are usually involved in the formation and maintenance of the cave system through various metabolic activities, and are indicators of changes environment influenced by human. Zhijin cave is a typical Karst cave and attracts tourists in China. However, the bacterial diversity and composition of the Karst cave are still unclear. The present study aims to reveal the bacterial diversity and composition in the cave and the potential impact of tourism activities, and better understand the roles and co-occurrence pattern of the bacterial community in the extreme cave habitats. Results The bacterial community consisted of the major Proteobacteria, Actinobacteria, and Firmicutes, with Proteobacteria being the predominant phylum in the rock, soil, and stalactite samples. Compositions and specialized bacterial phyla of the bacterial communities were different among different sample types. The highest diversity index was found in the rock samples with a Shannon index of 4.71. Overall, Zhijin cave has relatively lower diversity than that in natural caves. The prediction of function showed that various enzymes, including ribulose-bisphosphate carboxylase, 4-hydroxybutyryl-CoA dehydratase, nitrogenase NifH, and Nitrite reductase, involved in carbon and nitrogen cycles were detected in Zhijin cave. Additionally, the modularity indices of all co-occurrence network were greater than 0.40 and the species interactions were complex across different sample types. Co-occurring positive interactions in the bacteria groups in different phyla were also observed. Conclusion These results uncovered that the oligotrophic Zhijin cave maintains the bacterial communities with the diverse metabolic pathways, interdependent and cooperative co-existence patterns. Moreover, as a hotspot for tourism, the composition and diversity of bacterial community are influenced by tourism activities. These afford new insights for further exploring the adaptation of bacteria to extreme environments and the conservation of cave ecosystem.
Collapse
Affiliation(s)
- Yiyi Dong
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Yilang Ai
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Yu Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Wenzhang Wei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China.,Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Shiyu Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
39
|
Diversity and Metabolic Potential of Earthworm Gut Microbiota in Indo-Myanmar Biodiversity Hotspot. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
40
|
Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning. COATINGS 2020. [DOI: 10.3390/coatings10020122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the massive presence of biofilms causing aesthetic alteration to the façade of the Monza Cathedral, our team in a previous work proved that the biocolonization was not a primary damaging factor if compared to chemical-physical deterioration due to the impact of air pollution. Nonetheless, the conservators tried to remove the sessile dwelling microorganisms to reduce discolouration. In this research, two nearby sculpted leaves made of Candoglia marble were selected to study the effects of a chemical treatment combining the biocides benzalkonium chloride, hydrogen peroxide and Algophase® and mechanical cleaning procedures. One leaf was cleaned with the biocides and mechanically, and the other was left untreated as control. The impact of the treatment was investigated after 1 month from the cleaning by digital microscopy, environmental scanning electron microscopy, confocal microscopy and molecular methods to determine the composition and the functional profiles of the bacterial communities. Despite the acceptable aesthetic results obtained, the overall cleaning treatment was only partially effective in removing the biofilm from the colonized surfaces and, therefore, not adequately suitable for the specific substrate. Furthermore, the cleaning process selected microorganisms potentially more resistant to biocides so that the efficacy of future re-treatment by antimicrobial agents could be negatively affected.
Collapse
|
41
|
Manpoong C, De Mandal S, Bangaruswamy DK, Perumal RC, Benny J, Beena P, Ghosh A, Kumar NS, Tripathi SK. Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
De Mandal S, Mathipi V, Muthukumaran RB, Gurusubramanian G, Lalnunmawii E, Kumar NS. Amplicon sequencing and imputed metagenomic analysis of waste soil and sediment microbiome reveals unique bacterial communities and their functional attributes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:778. [PMID: 31784843 DOI: 10.1007/s10661-019-7879-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The discharge of solid and liquid waste from domestic, municipal, and hospital premises pollutes the soil and river ecosystems. However, the diversity and functions of the microbial communities present in these polluted environments are not well understood and may contain harmful microbial communities with specialized metabolic potential. In this present study, we adapted the Illumina sequencing technology to analyze microbial communities and their metabolic capabilities in polluted environments. A total of 1113884 sequences of v3-v4 hypervariable region of the 16S rRNA were obtained using Illumina sequencing and assigned to the corresponding taxonomical ranks using Greengenes databases. Proteobacteria and Bacteroidetes were dominantly present in all the four studied sites (solid waste dumping site (SWD); Chite river site (CHR), Turial river site (TUR), and Tuikual river site (TUKR)). It was found that the SWD was dominated by Firmicutes, Actinobacteria; CHR by Acidobacteria, Verrucomicrobia, Planctomycetes; TUR by Verrucomicrobia, Acidobacteria; and TUKR by Verrucomicrobia and Firmicutes, respectively. The dominant bacterial genus present in all samples was Acinetobacter, Flavobacterium, Prevotella, Corynebacterium, Comamonas, Bacteroides, Wautersiella, Cloacibacterium, Stenotrophomonas, Sphingobacterium, and Pseudomonas. Twenty-seven putative bacterial pathogens were identified from the contaminated sites belonging to Salmonella enterica, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Functional analysis showed a high representation of genes in the KEGG pathway involved in the metabolism of amino acids and carbohydrates and identified several genes associated with antibiotic resistance and xenobiotic degradation in these environments, which can be a serious problem for human health and environment. The results from this research will provide a new understanding of the possible management practices to minimize the spread of pathogenic microorganisms in the environment.
Collapse
Affiliation(s)
- Surajit De Mandal
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | | | | | - Esther Lalnunmawii
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | |
Collapse
|
43
|
Auti AM, Narwade NP, Deshpande NM, Dhotre DP. Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. J Biosci 2019; 44:114. [PMID: 31719223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial community structure of crude petroleum oil (CP)- and refined petroleum oil (RP)-contaminated soil was investigated. The taxonomical and functional diversity of such soils can be a great source of information about microbial community and genes involved in petroleum hydrocarbon (PHC) degradation. In this study, microbial diversity of soils contaminated by RP from urban biome of Pune, India, and CP from agricultural biome of Gujarat, India, were assessed by 16S rRNA amplicon sequencing on Illumina MiSeq platform. Association between the soil microbial community and the physicochemical parameters were investigated for their potential role. In RP- and CP-contaminated soils, the microbiome analysis showed Proteobacteria as most dominant phylum followed by Actinobacteria. Interestingly, Firmicutes were most prevailing in a CP-contaminated sample while they were least prevailing in RP-contaminated soils. Soil moisture content, total organic carbon and organic nitrogen content influenced the taxa diversity in these soils. Species richness was more in RP as compared to CP soils. Further prediction of metagenome using PICRUSt revealed that the RP and CP soils contain microbial communities with excellent metabolic potential for PHC degradation. Microbial community contributing to genes essential for soil health improvement and plant growth promotion was also gauged. Our analysis showed promising results for future bioaugmentation assisted phytoremediation (BAP) strategies for treating such soils.
Collapse
Affiliation(s)
- Asim M Auti
- Department of Microbiology, MES Abasaheb Garware College, Pune, India
| | | | | | | |
Collapse
|
44
|
Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. J Biosci 2019. [DOI: 10.1007/s12038-019-9936-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Burow K, Grawunder A, Harpke M, Pietschmann S, Ehrhardt R, Wagner L, Voigt K, Merten D, Büchel G, Kothe E. Microbiomes in an acidic rock-water cave system. FEMS Microbiol Lett 2019; 366:fnz167. [PMID: 31365079 DOI: 10.1093/femsle/fnz167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Belowground ecosystems are accessible by mining, where a specific microbial community can be discovered. The biodiversity of a former alum mine rich in carbon, but with a low pH of 2.6-3.7, was evaluated by DNA- and cultivation-dependent methods using samples of the black slate rock material, secondary mineralization phases and seepage water. Pyrite oxidation within the low-grade metamorphic Silurian black slate established high concentrations of Fe and $\rm{SO}_4^{2-}$ forming the extreme conditions visible with acidophilic and Fe-oxidizing microorganisms. In addition, an unexpected predominance of fungi in this C-rich and acidic cave ecosystem, including high numbers of Mucoromycota and Mortierellomycota, was detected. Therefore, fungal cultures were obtained, mainly from the secondary mineral phases that are iron phosphates. Hence, the fungi might well have been involved in phosphate mobilization there. The rock material itself is rich in organic carbon that can be used by oxidase activity. The cultivation setup mimicked the cave conditions (low temperature, low pH, oxic conditions), with one oligotrophic and one medium rich in nutrients that allowed for isolation of different fungal (and eutrophic bacterial) groups. The acidic conditions prevented the occurrence of many basidiomycetes, while the isolated fungi could survive these adverse conditions.
Collapse
Affiliation(s)
- Katja Burow
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, D-07743 Jena, Germany
- Institute for Geosciences, Applied Geology, Friedrich Schiller University Jena, Burgweg 11, D-07749 Jena, Germany
| | - Anja Grawunder
- Institute for Geosciences, Applied Geology, Friedrich Schiller University Jena, Burgweg 11, D-07749 Jena, Germany
| | - Marie Harpke
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, D-07743 Jena, Germany
| | - Sebastian Pietschmann
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, D-07743 Jena, Germany
| | - Ralf Ehrhardt
- Institute for Geosciences, Applied Geology, Friedrich Schiller University Jena, Burgweg 11, D-07749 Jena, Germany
| | - Lysett Wagner
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstraße 11a, D-07745 Jena, Germany
| | - Kerstin Voigt
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstraße 11a, D-07745 Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24/25, D-07743 Jena, Germany
| | - Dirk Merten
- Institute for Geosciences, Applied Geology, Friedrich Schiller University Jena, Burgweg 11, D-07749 Jena, Germany
| | - Georg Büchel
- Institute for Geosciences, Applied Geology, Friedrich Schiller University Jena, Burgweg 11, D-07749 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, D-07743 Jena, Germany
| |
Collapse
|
46
|
Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol 2019; 19:144. [PMID: 31248378 PMCID: PMC6598295 DOI: 10.1186/s12866-019-1521-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Due to the cave oligotrophic environment, this habitat presents a challenge for microorganisms to colonize and thrive. However, it has been well documented that microorganisms play important roles in cave development. Survival of microbes in this unique habitat likely involves a broad range of adaptive capabilities. Recently, cave microbiomes all over the world are of great scientific interest. However, the majority of investigations focused mostly on small subunit ribosomal RNA (16S rRNA) gene, leaving the ecological role of the microbial community largely unknown. Here, we are particularly interested in exploring the taxonomic composition and metabolic potential of microorganisms in soil from Manao-Pee cave, a subterranean limestone cave in the western part of Thailand, by using high-throughput shotgun metagenomic sequencing. Results From taxonomic composition analysis using ribosomal RNA genes (rRNA), the results confirmed that Actinobacteria (51.2%) and Gammaproteobacteria (24.4%) were the dominant bacterial groups in the cave soil community. Metabolic potential analysis, based on six functional modules of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, revealed that functional genes involved in microbial metabolisms are highly represented in this community (40.6%). To better understand how microbes thrive under unfavorable cave condition, we focused on microbial energy metabolism. The results showed that microbial genes involved in oxidative phosphorylation were the most dominant (28.8%) in Manao-Pee cave, and were followed by methane metabolism (20.5%), carbon fixation (16.0%), nitrogen metabolism (14.7%), and sulfur metabolism (6.3%). In addition, microbial genes involved in xenobiotic biodegradation (26 pathways) and in production of secondary metabolites (27 pathways) were also identified. Conclusion In addition to providing information on microbial diversity, we also gained insights into microbial adaptations and survival strategies under cave conditions. Based on rRNA genes, the results revealed that bacteria belonging to the Actinobacteria and Gammaproteobacteria were the most abundant in this community. From metabolic potential analysis, energy and nutrient sources that sustain diverse microbial population in this community might be atmospheric gases (methane, carbon dioxide, nitrogen), inorganic sulfur, and xenobiotic compounds. In addition, the presence of biosynthetic pathways of secondary metabolites suggested that they might play important ecological roles in the cave microbiome. Electronic supplementary material The online version of this article (10.1186/s12866-019-1521-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apirak Wiseschart
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Duriya Chantasingh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
47
|
Chen H, Yang ZK, Yip D, Morris RH, Lebreux SJ, Cregger MA, Klingeman DM, Hui D, Hettich RL, Wilhelm SW, Wang G, Löffler FE, Schadt CW. One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS One 2019; 14:e0211310. [PMID: 31211785 PMCID: PMC6581249 DOI: 10.1371/journal.pone.0211310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha-1 as NH4NO3) for the first time since planting. Soils were collected at two depths, 0–5 and 5–15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12–22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only ~4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha-1. Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time “snapshot” analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time.
Collapse
Affiliation(s)
- Huaihai Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dan Yip
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Reese H. Morris
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gangsheng Wang
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Frank E. Löffler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
48
|
Alonso L, Pommier T, Kaufmann B, Dubost A, Chapulliot D, Doré J, Douady CJ, Moënne-Loccoz Y. Anthropization level of Lascaux Cave microbiome shown by regional-scale comparisons of pristine and anthropized caves. Mol Ecol 2019; 28:3383-3394. [PMID: 31177607 DOI: 10.1111/mec.15144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
Limestone areas across the world develop karstic caves, which are populated by a wide range of macro- and microorganisms. Many of these caves display Paleolithic art or outstanding speleothems, and in the last century they have been subjected to anthropization due to touristic management and intense human frequentation. Despite their cultural importance and associated conservation issues, the impact of anthropization on cave biodiversity is not known. Here, we show that anthropization is associated with specific cave biota modifications. We compared diversity in four pristine caves, four anthropized show caves, and the iconic Lascaux Cave with even stronger anthropization. The predominant microbial higher taxa were the same in all caves, but the most anthropized cave (Lascaux) was unique as it differed from the eight others by a higher proportion of Bacteroidetes bacteria and the absence of Euryarchaeota and Woesearchaeota archaea. Anthropization resulted in lower diversity and altered community structure for bacteria and archaea on cave walls, especially in Lascaux, but with a more limited effect on microeukaryotes and arthropods. Our findings fill a key gap in our understanding of the response of karstic communities to anthropization, by revealing that tourism-related anthropization impacts on the prokaryotic microbiome rather than on eukaryotic residents, and that it shapes cave biota irrespective of cave natural features.
Collapse
Affiliation(s)
- Lise Alonso
- Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, University de Lyon, Villeurbanne, France
| | - Thomas Pommier
- Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, University de Lyon, Villeurbanne, France
| | - Bernard Kaufmann
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, University de Lyon, Villeurbanne, France
| | - Audrey Dubost
- Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, University de Lyon, Villeurbanne, France
| | - David Chapulliot
- Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, University de Lyon, Villeurbanne, France
| | - Jeanne Doré
- Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, University de Lyon, Villeurbanne, France
| | - Christophe J Douady
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, University de Lyon, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, University de Lyon, Villeurbanne, France
| |
Collapse
|
49
|
Natural Farming Improves Soil Quality and Alters Microbial Diversity in a Cabbage Field in Japan. SUSTAINABILITY 2019. [DOI: 10.3390/su11113131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural farming (NF), an environmentally friendly agricultural practice similar to organic farming, was developed in Japan. Unlike conventional farming, little is known about the influence of NF on soil microbial communities, especially the surface soil. We therefore compared the effect of seven years’ conventional practice (CP), conventional practice without chemicals (CF), and NF on soil properties and microbial community structure at two soil depths (0–10, 10–20 cm) in an experimental cabbage field. Both soil depth and agricultural practice significantly influenced edaphic measures and microbial community structure. NF improved bulk density, pH, electrical conductivity, urease activity, and nitrate reductase activity in topsoil; similar trends were observed in deeper soil. Pyrosequencing demonstrated that the use of pesticides in conventional farming (CP) led to lower microbial abundance and diversity in topsoil than CF. Similarly, NF increased microbial abundance compared to CP. However, distinct taxa were present in the topsoil, but not deeper soil, in each treatment. CP-enriched microbial genera may be related to plant pathogens (e.g., Erwinia and Brenneria) and xenobiotic degraders (e.g., Sphingobacterium and Comamonas). The microbial community structure of NF was distinct to CP/CF, with enrichment of Pedomicrobium and Solirubrobacter, which may prefer stable soil conditions. Network analysis of dominant genera confirmed the more stable, complex microbial network structure of the 0–10 cm than 10–20 cm layer. Flavisolibacter/Candidatus Solibacter and Candidatus Nitrososphaera/Leuconostoc are potentially fundamental taxa in the 0–10 cm and 10–20 cm layer networks, respectively. Overall, we show that NF positively affects soil quality and microbial community composition within sustainable farming systems.
Collapse
|
50
|
Gosse JT, Ghosh S, Sproule A, Overy D, Cheeptham N, Boddy CN. Whole Genome Sequencing and Metabolomic Study of Cave Streptomyces Isolates ICC1 and ICC4. Front Microbiol 2019; 10:1020. [PMID: 31134037 PMCID: PMC6524458 DOI: 10.3389/fmicb.2019.01020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
The terrestrial subsurface microbiome has gained considerable amount of interests in the recent years because of its rich potential resource for biomining novel genes coding for metabolites possessing antimicrobial activities. In our previous study, we identified two Streptomyces isolates, designated as ICC1 and ICC4, from the Iron Curtain Cave, Chilliwack, Canada that exhibited antagonistic activities against the multidrug resistant strains of Escherichia coli. In this study, the genomes of these two isolates were sequenced by Illumina MiSeq, assembled and annotated. The genes associated with secondary metabolite production were identified and annotated using the bioinformatics platforms antiSMASH and BAGEL. ICC1 and ICC4 were then cultivated and ICC1 metabolome characterized by UHPLC-ESI-HRMS. The Global Natural Products Social Molecular Networking was used to identify metabolites based on the MS/MS spectral data. ICC1 and ICC4 showed a high level of sequence identity with the terrestrial bacteria Streptomyces lavendulae; however, they possess a greater secondary metabolite potential as estimated by the total number of identified biosynthetic gene clusters (BGCs). In particular, ICC1 and ICC4 had a greater number of polyketide and non-ribosomal peptide BGCs. The most frequently detected BGCs were those predicted to generate terpenes, small and low complexity dipeptides and lipids. Spectral analysis clearly identified a number of diketopiperazine products through matched reference spectra for cyclo (Leu-Pro), cyclo (Pro-Val) and cyclo [(4-hydroxyPro)-Leu]. One of the terpenes gene clusters predicted by antiSMASH possesses a seven-gene pathway consistent with diazepinomicin biosynthesis. This molecule contains a very rare core structure and its BGC, to date, has only been identified from a single bacterial genome. The tetrapeptide siderophore coelichelin BGC was unambiguously identified in the genome, however, the metabolite could not be identified from the culture extracts. Two type III polyketides, 2′, 5′ – dimethoxyflavone and nordentatin, were identified from the UHPLC-HRMS data of the aqueous and n-butanolic fractions of Streptomyces sp. ICC1, respectively. A BGC likely encoding these metabolites was predicted in both genomes. The predicted similarities in molecule production and genome shared by these two strains could be an indicative of a cooperative mode of living in extreme habitats instead of a competitive one. This secondary metabolite potential may contribute to the fitness of ICC1 and ICC4 in the Iron Curtain Cave.
Collapse
Affiliation(s)
- Jessica Thandara Gosse
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - David Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|