1
|
Tong C, Xiao D, Li Q, Gou J, Wang S, Zeng Z, Xiong W. First insights into the prevalence, genetic characteristics, and pathogenicity of Bacillus cereus from generations worldwide. mSphere 2024:e0070224. [PMID: 39440972 DOI: 10.1128/msphere.00702-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Bacillus cereus, a global threat, is one of the major causes of toxin-induced foodborne diseases. However, a comprehensive assessment of the prevalence and characteristics of B. cereus worldwide is still lacking. Here, we applied whole-genome sequence analysis to 191 B. cereus collected in Africa, America, Asia, Europe, and Oceania from the 1900s to 2022, finding that CC142 dominated the global B. cereus clonal complex. The results provided direct evidence that B. cereus could spread through the food chain and intercontinentally. B. cereus from different generations worldwide showed coherence in the antibiotic-resistant gene and virulence and biofilm gene profiles, although with high genomic heterogeneity. The BCI-BCII-vanZF-fosB profiles and virulence and biofilm genes were detected at high rates, and we emphasized that B. cereus would pose a serious challenge to global public health and clinical treatment.IMPORTANCEThis study first emphasized the prevalence, genetic characteristics, and pathogenicity of Bacillus cereus worldwide from the 1900s to 2022 using whole-genome sequence analysis. The CC142 dominated the global Bacillus cereus clonal complex. Moreover, we revealed a close evolutionary relationship between the isolates from different sources. B. cereus isolates from different generations worldwide showed coherence in potential pathogenicity, although with high genomic heterogeneity. The BCI-BCII-vanZF-fosB profiles and virulence and biofilm genes were detected at high rates, and we emphasized that B. cereus would pose a serious challenge to global public health and clinical treatment.
Collapse
Affiliation(s)
- Cuihong Tong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Danyu Xiao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Jing Gou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Shuang Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Kowalska J, Maćkiw E, Korsak D, Postupolski J. Characterization of the Bacillus cereus Group Isolated from Ready-to-Eat Foods in Poland by Whole-Genome Sequencing. Foods 2024; 13:3266. [PMID: 39456328 PMCID: PMC11506886 DOI: 10.3390/foods13203266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bacillus cereus sensu lato can contaminate food and cause food poisoning by producing toxins such as cereulide, toxin BL, and cytotoxin K. In this study, we retrospectively analyzed B. cereus sensu lato from retail food products and food poisoning cases using PCR methods to determine their virulence profiles. A new toxin profile, encoding all four toxins (hbl, nhe, cytK, ces), was found in 0.4% of isolates. The toxin profiles, classified into A-J, revealed that 91.8% harbored nhe genes, while hbl, cytK, and ces were detected in 43.8%, 46.9%, and 4.2% of isolates, respectively. Whole-genome sequencing (WGS) identified four distinct species within the B. cereus group, with 21 isolates closely related to B. cereus sensu stricte, 25 to B. mosaicus, 2 to B. toyonensis, and 1 to B. mycoides. Three novel sequence types (STs 3297, 3298, 3299) were discovered. Antibiotic resistance genes were common, with 100% of isolates carrying beta-lactam resistance genes. Fosfomycin (80%), vancomycin (8%), streptothricin (6%), tetracycline (4%), and macrolide resistance (2%) genes were also detected. These results highlight the genetic diversity and antibiotic resistance potential of B. cereus sensu lato strains in Polish food products.
Collapse
Affiliation(s)
- Joanna Kowalska
- National Institute of Public Health NIH-National Research Institute, Department of Food Safety, Laboratory of Food Microbiology, 00-791 Warsaw, Poland; (E.M.); (D.K.); (J.P.)
| | | | | | | |
Collapse
|
3
|
Lindbäck T, Llarena AK, Aanrud SG, Monshaugen M, Mekonnen YB, Holmemo CW, Aspholm M. Genetic Profile and Toxigenic Potential of Bacillus cereus Isolates from a Norwegian Ice Cream Production Plant. Foods 2024; 13:3029. [PMID: 39410065 PMCID: PMC11475924 DOI: 10.3390/foods13193029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Members of the B. cereus group are spore-forming organisms commonly associated with spoilage of milk and dairy products. We have determined the genetic identity and growth characteristics of 57 B. cereus isolates collected from a Norwegian ice cream production plant. Our findings revealed persistence of B. cereus spp. strains for up to 19 months, suggesting the plant's susceptibility to long-term colonization. One of the mesophilic isolates, NVH-YM303, carried a complete cereulide synthetase operon. To assess the potential food poisoning risk associated with the presence of cereulide-producing strains in the production line, we examined the production of cereulide in ice cream and milk at different temperatures by NVH-YM303 and by the emetic psychrotrophic B. weihenstephanensis strain BtB2-4. Our findings revealed that NVH-YM303 produced higher levels of cereulide in ice cream as compared to milk. Furthermore, it was observed that NVH-YM303 produced more cereulide in ice cream at 25 °C compared to 15 °C. Conversely, BtB2-4 produced more cereulide in ice cream at 15 °C than at 25 °C. The results obtained in this study contribute to knowledge important for risk assessment of the potential hazards posed by the presence of B. cereus within ice cream production facilities.
Collapse
Affiliation(s)
- Toril Lindbäck
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | - Ann-Katrin Llarena
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | - Stine Göransson Aanrud
- Toxicology Unit, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Marte Monshaugen
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | - Yohannes B. Mekonnen
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| | | | - Marina Aspholm
- Unit of Food Safety, Department of Paraclinical Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway (M.A.)
| |
Collapse
|
4
|
Juang DS, Wightman WE, Lozano GL, Juang TD, Barkal LJ, Yu J, Garavito MF, Hurley A, Venturelli OS, Handelsman J, Beebe DJ. Microbial community interactions on a chip. Proc Natl Acad Sci U S A 2024; 121:e2403510121. [PMID: 39288179 PMCID: PMC11441501 DOI: 10.1073/pnas.2403510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.
Collapse
Affiliation(s)
- Duane S. Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Wren E. Wightman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Gabriel L. Lozano
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Terry D. Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Layla J. Barkal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Manuel F. Garavito
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Amanda Hurley
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Jo Handelsman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
5
|
Du Y, Qian C, Li X, Zheng X, Huang S, Yin Z, Chen T, Pan L. Unveiling intraspecific diversity and evolutionary dynamics of the foodborne pathogen Bacillus paranthracis through high-quality pan-genome analysis. Curr Res Food Sci 2024; 9:100867. [PMID: 39376581 PMCID: PMC11456886 DOI: 10.1016/j.crfs.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Understanding the evolutionary dynamics of foodborne pathogens throughout host-associated habitats is of utmost importance. Bacterial pan-genomes, as dynamic entities, are strongly influenced by ecological lifestyles. As a phenotypically diverse species in the Bacillus cereus group, Bacillus paranthracis is recognized as an emerging foodborne pathogen and a probiotic simultaneously. This poorly understood species is a suitable study model for adaptive pan-genome evolution. In this study, we determined the biogeographic distribution, abundance, genetic diversity, and genotypic profiles of key genetic elements of B. paranthracis. Metagenomic read recruitment analyses demonstrated that B. paranthracis members are globally distributed and abundant in host-associated habitats. A high-quality pan-genome of B. paranthracis was subsequently constructed to analyze the evolutionary dynamics involved in ecological adaptation comprehensively. The open pan-genome indicated a flexible gene repertoire with extensive genetic diversity. Significant divergences in the phylogenetic relationships, functional enrichment, and degree of selective pressure between the different components demonstrated different evolutionary dynamics between the core and accessory genomes driven by ecological forces. Purifying selection and gene loss are the main signatures of evolutionary dynamics in B. paranthracis pan-genome. The plasticity of the accessory genome is characterized by horizontal gene transfer (HGT), massive gene losses, and weak purifying or positive selection, which might contribute to niche-specific adaptation. In contrast, although the core genome dominantly undergoes purifying selection, its association with HGT and positively selected mutations indicates its potential role in ecological diversification. Furthermore, host fitness-related dynamics are characterized by the loss of secondary metabolite biosynthesis gene clusters (BGCs) and CAZyme-encoding genes and the acquisition of antimicrobial resistance (AMR) and virulence genes via HGT. This study offers a case study of pan-genome evolution to investigate the ecological adaptations reflected by biogeographical characteristics, thereby advancing the understanding of intraspecific diversity and evolutionary dynamics of foodborne pathogens.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Chengqian Qian
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xianxin Li
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xinqian Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Shoucong Huang
- Foshan Haitian (Gaoming) Flavouring Food Co., Ltd, Foshan, 52a8000, Guangdong, PR China
| | - Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, Guangdong, PR China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
6
|
Farina D, Bianco A, Manzulli V, Castellana S, Parisi A, Caruso M, Fraccalvieri R, Serrecchia L, Rondinone V, Pace L, Fasanella A, Vetritto V, Difato LM, Cipolletta D, Iatarola M, Galante D. Antimicrobial and Phylogenomic Characterization of Bacillus cereus Group Strains Isolated from Different Food Sources in Italy. Antibiotics (Basel) 2024; 13:898. [PMID: 39335071 PMCID: PMC11444136 DOI: 10.3390/antibiotics13090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background:Bacillus cereus is a widespread environmental Gram-positive bacterium which is especially common in soil and dust. It produces two types of toxins that cause vomiting and diarrhea. At present, foodborne outbreaks due to Bacillus cereus group bacteria (especially Bacillus cereus sensu stricto) are rising, representing a serious problem in the agri-food supply chain. Methods: In this work, we analyzed 118 strains belonging to the Bacillus cereus group, isolated from several food sources, for which in vitro and in silico antibiotic resistance assessments were performed. Results: Many strains showed intermediate susceptibility to clindamycin, erythromycin, and tetracycline, suggesting an evolving acquisition of resistance against these antibiotics. Moreover, one strain showed intermediate resistance to meropenem, an antibiotic currently used to treat infections caused by Bacillus cereus. In addition to the phenotypic antimicrobial resistance profile, all strains were screened for the presence/absence of antimicrobial genes via whole-genome sequencing. There was inconsistency between the in vitro and in silico analyses, such as in the case of vancomycin, for which different isolates harbored resistance genes but, phenotypically, the same strains were sensitive. Conclusions: This would suggest that antibiotic resistance is a complex phenomenon due to a variety of genetic, epigenetic, and biochemical mechanisms.
Collapse
Affiliation(s)
- Donatella Farina
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Stefano Castellana
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Lorenzo Pace
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Valerio Vetritto
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Maria Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Dora Cipolletta
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Michela Iatarola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| |
Collapse
|
7
|
Franchitti E, Pedullà M, Madsen AM, Traversi D. Effect of anaerobic digestion on pathogens and antimicrobial resistance in the sewage sludge. ENVIRONMENT INTERNATIONAL 2024; 191:108998. [PMID: 39244956 DOI: 10.1016/j.envint.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial resistance (AMR) is recognized as a global threat. AMR bacteria accumulate in sewage sludge however, knowledge on the persistence of human pathogens and AMR in the sludge line of the wastewater treatment is limited. Sludge can be used, with or without additional treatment, as fertilizer in agricultural fields. The aim of this study is to obtain knowledge about presence of human pathogens and AMR in the sewage sludge, before and after the anaerobic digestion (AD) applying innovative combinations of methods. Fifty sludge samples were collected. Cultivation methods combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Antibiotic Susceptibility Test (AST) were used obtaining knowledge about the microbial community, pathogens, and antibiotic resistant bacteria while the droplet digital Polymerase Chain Reaction (ddPCR) was performed to detect most common AMR genes. In total, 231 different bacterial species were identified in the samples. The most abundant species were spore-forming facultative anaerobic bacteria belonging to Bacillus and Clostridium genera. The AD causes a shift in the microbial composition of the sludge (p = 0.04). Seven pathogenic bacterial species constituting 188 colonies were isolated and tested for susceptibility to Clindamycin, Meropenem, Norfloxacin, Penicillin G, and Tigecycline. Of the Clostridium perfringens and Bacillus cereus isolates 67 and 50 %, respectively, were resistant to Clindamycin. Two B. cereus and two C. perfringens isolates were also resistant to other antibiotics showing multidrug resistance. ARGs (blaOXA, blaTEM, ermB, qnrB, tet(A)-(W), sulI-II) were present at 7-8 Log gene copies/kg of sludge. AD is the main driver of a reduction of some ARGs (1 Log) but resistant bacteria were still present. The results showed the usefulness of the integration of the proposed analytical methods and suggest a decrease in the risk of presence of cultivable pathogens including resistant isolates after AD but a persistent risk of ARGs' horizontal transmission.
Collapse
Affiliation(s)
- Elena Franchitti
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 92, 10126 Torino, Italy
| | - Matilde Pedullà
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 92, 10126 Torino, Italy
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 92, 10126 Torino, Italy.
| |
Collapse
|
8
|
Lin Y, Liu L, Lu S, Fan L, Hu H, Wang X, Zhu J, Qiang X, He J, Zhou H, Shao S, Zheng G. Genomic Insights into the Pathogenicity and Drug-Resistance of a Bacillus cereus Isolated from Human Teeth. Infect Drug Resist 2024; 17:3623-3635. [PMID: 39184013 PMCID: PMC11342944 DOI: 10.2147/idr.s477637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Background Bacillus cereus is a common bacterium found in the environment. Some strains can cause food poisoning, and very few can cause clinically severe infections, leading to death. Here, we characterized the genome sequence of B. cereus LIN78 isolated from teeth with deep caries and compared it with those of 25 other related species. Methods Third-generation sequencing technology, bacteriological analyses, biochemistry, and mass spectrometry were applied to characterize the drug-resistance genes and virulence factors of B. cereus LIN78. Results The complete genome sequence of B. cereus Lin78 consists of 5647 genes distributed on a circular chromosome, a 393 kbp plasmid, and 928 pseudogenes (37.4% of whole-genome DNA). The LIN78 genome contains 14 sets of 16s, 23s, and 5s ribosomal RNA operons; 106 tRNA genes, one tmRNA, 12 genomic islands, six prophases, 64 repeats; 37 antibiotic-resistant genes; and 1119 putative virulence genes, including enterotoxins and cytolysins. The B. cereus LIN78 genome carries multiple copies of non-ribosomal polypeptide synthetase (NRPS) and post-translationally modified peptides (RiPPs). Phylogenetic analysis of the 26 B. cereus strains showed that B. cereus LIN78 is evolutionarily closely related to B. thuringiensis ATCC 10792 and B. cereus ATCC 14579. Conclusion The newly isolated B. cereus carries many virulence genes, including enterotoxins and hemolysins, similar to B. anthracis, and multiple antibiotic resistance genes. These findings suggest that the strain has a potential risk of causing disease. Our studies are vital for further exploration of the evolution of B. cereus, its pathogenic mechanisms, and the control and treatment of bacterial infections.
Collapse
Affiliation(s)
- Yibin Lin
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, 31300, People’s Republic of China
| | - Lehua Liu
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Siyang Lu
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Linqi Fan
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Huaqi Hu
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Xuanyin Wang
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Jichao Zhu
- Clinical Laboratory, Huzhou Central Hospital, Huzhou, 313000, People’s Republic of China
| | - Xinhua Qiang
- Clinical Laboratory, First People’s Hospital Affiliated to Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Jie He
- Infectious Diseases Department, First People’s Hospital Affiliated to Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Hongchang Zhou
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, 31300, People’s Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Shengwen Shao
- School of Medicine, Huzhou University, Huzhou, 313000, People’s Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, People’s Republic of China
| | - Gaoming Zheng
- Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, People’s Republic of China
| |
Collapse
|
9
|
Elsafi SH, Al Zahrani EM, Al Zaid RF, Alshagifi SA, Farghal TA, Alshamuse KB, Albalawi AS, Alkhalaf F, Sumaily AA, Almusabi S, George SK. Antibiotic-resistant bacteria contaminating leafy vegetables in Saudi Arabia's eastern region. BMC Microbiol 2024; 24:303. [PMID: 39135186 PMCID: PMC11321146 DOI: 10.1186/s12866-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Food-associated antibiotic-resistant bacteria can cause infections that may critically impact human health. The objectives of this study were to determine the microbial contamination level of green leafy vegetables and their antibiotic resistance pattern. METHODS Sixty-three samples of leafy vegetables were collected from Dammam Central Fruit and Vegetables Market from January to June 2023. The vegetables included lettuce (Lactuca sativa), parsley (Petroselinum crispum), and watercress (Nasturtium officinale). Samples were tested by standard microbiological techniques for identification and antibiotic susceptibility testing. RESULT Eight types of bacteria belonging to six different genera were detected. Enterobacteriaceae family was represented by four genera: Klebsiella, Proteus, Morganella, and Enterobacter. The other two genera were Pseudomonas and Aeromonas. Enterobacter cloacae was the most abundant organism, followed by Pseudomonas putida and Aeromonas sobria. On the other hand, Morganella morganii, Aeromonas hydrophila, and Proteus mirabilis were the least abundant. The three vegetable types had different levels of bacterial contamination. All isolated organisms were sensitive to penicillin, cephalosporin, aminoglycoside, and fluoroquinolone. However, Klebsiella oxytoca, M. morganii, and K. pneumonia showed resistance to ampicillin. A. hydrophila, Morganella morganii, and E. cloacae showed resistance to amoxicillin. M. morganii and E. cloacae were found to be resistant to cefalotin. Moreover, A. hydrophila, M. morganii, and E. cloacae were resistant to cefoxitin. Again, A. hydrophila was found to be resistant to imipenem. Only M. morganii was resistant to Ciprofloxacin. Two isolates, P. mirabilis and M. morganii were resistant to tigecycline. Another two, M. morganii and P. mirabilis were resistant to Nitrofurantoin. Only M. morganii was found to be resistant to trimethoprim. CONCLUSION This study aligns with the broad consensus in the literature about the significance of bacterial contamination in vegetables and the public health implications. The unique focus on antibiotic resistance patterns adds an essential dimension to the existing body of knowledge.
Collapse
Affiliation(s)
- Salah H Elsafi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia.
| | - Eidan M Al Zahrani
- Physical Therapy Department, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Raneem F Al Zaid
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Shahad A Alshagifi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Taif A Farghal
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Khlood B Alshamuse
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Aseel S Albalawi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Faisal Alkhalaf
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Amr A Sumaily
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Saleh Almusabi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Siju K George
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| |
Collapse
|
10
|
Zhang W, Ma C, Hu L, Wang L, Xu F. Late-onset sepsis in newborns caused by Bacillus Cereus: a case report and literature review. Ann Clin Microbiol Antimicrob 2024; 23:66. [PMID: 39061043 PMCID: PMC11282708 DOI: 10.1186/s12941-024-00712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/02/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is a bacterium capable of causing late-onset neonatal sepsis. By analyzing 11 cases, this study investigates the diagnosis, treatment, and prognosis of Bacillus cereus infections, aiming to provide insights into clinical diagnosis and therapy. The study scrutinized 11 instances of late-onset neonatal sepsis, including two fatalities attributable to Bacillus cereus, one accompanied by cerebral hemorrhage. An examination and analysis of these cases' symptoms, signs, laboratory tests, and treatment processes, along with a review of related literature from 2010 to 2020, revealed a high mortality rate of 41.38% in non-gastrointestinal infections caused by Bacillus cereus. Our findings underscore the critical importance of rapid diagnosis and effective antimicrobial therapy in reducing mortality rates. Once the source of infection is identified, implementing effective infection control measures is essential.
Collapse
Affiliation(s)
- Wang Zhang
- The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450052, China
| | - Caihua Ma
- The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450052, China
| | - Linghui Hu
- The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450052, China
| | - Ling Wang
- The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450052, China
| | - Falin Xu
- The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
11
|
Vanhee C, Jacobs B, Canfyn M, Malysheva SV, Willocx M, Masquelier J, Van Hoorde K. Quality Control and Safety Assessment of Online-Purchased Food Supplements Containing Red Yeast Rice (RYR). Foods 2024; 13:1919. [PMID: 38928859 PMCID: PMC11202976 DOI: 10.3390/foods13121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Dietary supplements containing red yeast rice (RYR), a fermentation product of the fungus Monascus purpureus grown on white rice, remain popular in Europe as proclaimed cholesterol-lowering aids. The cholesterol-lowering effects are due to the occurrence of monacolin K, which is often present as a mixture of monacolin K lactone (MK) and as monacolin K hydroxy acid (MKA). MK is structurally similar to the cholesterol-lowering medicine lovastatin. Recently, due to safety concerns linked to the use of statins, the European Commission prohibited RYR supplements with a maximum serving exceeding 3 mg of total monacolins per day. Moreover, the amount of the mycotoxin citrinin, potentially produced by M. purpureus, was also reduced to 100 µg/kg. Evidently, manufacturers that offer their products on the European market, including the online market, must also be compliant with these limits in order to guarantee the safety of their products. Therefore, thirty-five different RYR supplements, purchased from an EU-bound e-commerce platform or from registered online pharmacies, were screened for their compliance to the European legislation for citrinin content and the amount of total monacolin K. This was conducted by means of a newly developed LC-MS/MS methodology that was validated according to ISO 17025. Moreover, these supplements were also screened for possible adulteration and any contamination by micro-organisms and/or mycotoxins. It was found that at least four of the thirty-five RYR supplements (≈11%) might have reason for concern for the safety of the consumer either due to high total monacolin K concentrations exceeding the European predefined limits for total monacolins or severe bacterial contamination. Moreover, three samples (≈9%) were likely adulterated, and the labeling of six of the seventeen samples (≈35%) originating from an EU-based e-commerce platform was not compliant, as either the mandatory warning was missing or incomplete or the total amount of monacolins was not mentioned.
Collapse
Affiliation(s)
- Celine Vanhee
- Service Medicines and Health Products, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Bram Jacobs
- Service of Foodborne Pathogen, Scientific Directorate of Infectious Diseases in Humans, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Michael Canfyn
- Service Medicines and Health Products, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Svetlana V. Malysheva
- Toxins Unit, Service of Organic Contaminants and Additives, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, Leuvensesteenweg 17, B-3080 Tervuren, Belgium
| | - Marie Willocx
- Service Medicines and Health Products, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Julien Masquelier
- Toxins Unit, Service of Organic Contaminants and Additives, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, Leuvensesteenweg 17, B-3080 Tervuren, Belgium
| | - Koenraad Van Hoorde
- Service of Foodborne Pathogen, Scientific Directorate of Infectious Diseases in Humans, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| |
Collapse
|
12
|
Wnorowska S, Grzegorczyk A, Kurzepa J, Maggi F, Strzemski M. Fractionation of Carlina acaulis L. Root Methanolic Extract as a Promising Path towards New Formulations against Bacillus cereus and Methicillin-Resistant Staphylococcus aureus. Molecules 2024; 29:1939. [PMID: 38731430 PMCID: PMC11085459 DOI: 10.3390/molecules29091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The root of Carlina acaulis L. has been widely used in traditional medicine for its antimicrobial properties. In this study, the fractionation of methanol extract from the root was conducted. Four fractions (A, B, C, and D) were obtained and tested against a range of bacteria and fungi. The results showed promising antibacterial activity, especially against Bacillus cereus, where the minimal inhibitory concentration (MIC) was determined to be equal to 0.08 mg/mL and 0.16 mg/mL for heptane (fraction B) and ethyl acetate (fraction C), respectively. In the case of the methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 strain, the same fractions yielded higher MIC values (2.5 and 5.0 mg/mL, respectively). This was accompanied by a lack of apparent cytotoxicity to normal human BJ foreskin fibroblasts, enterocytes derived from CaCo2 cells, and zebrafish embryos. Further analyses revealed the presence of bioactive chlorogenic acids in the fractionated extract, especially in the ethyl acetate fraction (C). These findings support the traditional use of the root from C. acaulis and pave the way for the development of new formulations for treating bacterial infections. This was further evaluated in a proof-of-concept experiment where fraction C was used in the ointment formulation, which maintained high antimicrobial activity against MRSA and displayed low toxicity towards cultured fibroblasts.
Collapse
Affiliation(s)
- Sylwia Wnorowska
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Grzegorczyk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 62032 Camerino, Italy;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Baev V, Iliev I, Stefanov Y, Tsankova M, Marhova M, Apostolova E, Gozmanova M, Yahubyan G, Kostadinova S. Exploring the Genomic Landscape of Bacillus paranthracis PUMB_17 as a Proficient Phosphatidylcholine-Specific Phospholipase C Producer. Curr Issues Mol Biol 2024; 46:2497-2513. [PMID: 38534774 DOI: 10.3390/cimb46030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Phospholipases find versatile applications across industries, including detergent production, food modification, pharmaceuticals (especially in drug delivery systems), and cell signaling research. In this study, we present a strain of Bacillus paranthracis for the first time, demonstrating significant potential in the production of phosphatidylcholine-specific phospholipase C (PC-PLC). The investigation thoroughly examines the B. paranthracis PUMB_17 strain, focusing on the activity of PC-PLC and its purification process. Notably, the PUMB_17 strain displays extracellular PC-PLC production with high specific activity during the late exponential growth phase. To unravel the genetic makeup of PUMB_17, we employed nanopore-based whole-genome sequencing and subsequently conducted a detailed genome annotation. The genome comprises a solitary circular chromosome spanning 5,250,970 bp, featuring a guanine-cytosine ratio of 35.49. Additionally, two plasmids of sizes 64,250 bp and 5845 bp were identified. The annotation analysis reveals the presence of 5328 genes, encompassing 5186 protein-coding sequences, and 142 RNA genes, including 39 rRNAs, 103 tRNAs, and 5 ncRNAs. The aim of this study was to make a comprehensive genomic exploration that promises to enhance our understanding of the previously understudied and recently documented capabilities of Bacillus paranthracis and to shed light on a potential use of the strain in the industrial production of PC-PLC.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Ivan Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | | | - Marinela Tsankova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariana Marhova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Sonya Kostadinova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Haque MA, Hu H, Liu J, Islam MA, Hossen F, Rahman MA, Ahmed F, He C. Emergence of multidrug-resistant Bacillus spp. derived from animal feed, food and human diarrhea in South-Eastern Bangladesh. BMC Microbiol 2024; 24:61. [PMID: 38373893 PMCID: PMC10875756 DOI: 10.1186/s12866-024-03199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Antimicrobial resistance poses a huge risk to human health worldwide, while Bangladesh is confronting the most severe challenge between the food supply and the huge consumption of antibiotics annually. More importantly, probiotics containing Bacillus spp. are claimed to be an alternative to antimicrobial stewardship programs. However, their antibiotic resistance remains elusive. Thus, we employed the antimicrobial susceptibility test and PCR to assess the prevalence of resistance, including multidrug resistance (MDR) and resito-genotyping of isolated Bacillus spp. RESULTS The phenotypic profile showed that Bacillus spp. were 100% sensitive to gentamicin (2 µg/mL), whereas lowered sensitivity to levofloxacin (67.8%, 0.5-1 µg/mL), ciprofloxacin (62.3%, 0.5-1 µg/mL), clindamycin (52.2%, 0.25-0.5 µg/mL), amoxicillin-clavulanic acid (37.6%, 0.06 µg/mL), azithromycin (33.4%, 1-2 µg/mL), tetracycline (25.6%, 2-4 µg/mL), nitrofurantoin (21.1%, 16-32 µg/mL), co-trimoxazole (19.2%, 2 µg/mL), and erythromycin (18.8%, 0.25-0.5 µg/mL). The strains were completely resistant to penicillin, amoxicillin-clavulanic acid, cefixime, ceftriaxone, vancomycin, and co-trimoxazole, and a species-specific trend was seen in both phenotypic and genotypic resistance patterns. Genotypic resistance indicated prevalence of the bla1 (71.5%), tetA (33%), erm1 (27%), blaTEM (13.1%), blaCTX-M-1/blaCTX-M-2 /sul1 (10.1%), blaSHV (9.6%), and qnrS (4.1%) genes. The β-lactamase resistance gene bla1 was found in all penicillin-resistant (MIC ≥ 32 µg/mL) Bacillus spp. One hundred ninety-one isolates (89.6%) were MDR, with 100% from diarrhea, 90.3% from food, and 88.7% from animal feed. CONCLUSION Based on the MIC value and profile analysis of antibiotic resistance genes, this is the first study that Bacillus spp. antimicrobial susceptibilities have been identified in Bangladesh, and our study will shed light on the adverse effects of feed-borne Bacillus spp. emerging from animal feed to the food chain. A comprehensive investigation is urgently needed by policymakers on tolerance limits and harmful effects in the animal industry.
Collapse
Affiliation(s)
- Md Atiqul Haque
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Huilong Hu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China
| | - Jiaqi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China
| | - Md Aminul Islam
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Arifur Rahman
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Firoz Ahmed
- Department of Microbiology, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Cheng He
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100019, China.
| |
Collapse
|
15
|
Algammal AM, Eid HM, Alghamdi S, Ghabban H, Alatawy R, Almanzalawi EA, Alqahtani TM, Elfouly SG, Mohammed GM, Hetta HF, El-Tarabili RM. Meat and meat products as potential sources of emerging MDR Bacillus cereus: groEL gene sequencing, toxigenic and antimicrobial resistance. BMC Microbiol 2024; 24:50. [PMID: 38326741 PMCID: PMC10848520 DOI: 10.1186/s12866-024-03204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Bacillus cereus is implicated in severe foodborne infection in humans. This study intended to assess the occurrence, groEL gene sequencing, biofilm production, and resistance profiles of emerged multidrug resistant (MDR) B. cereus in meat and meat product samples. Moreover, this work highlights the virulence and toxigenic genes (hblABCD complex, nheABC complex, cytK, ces, and pc-plc) and antimicrobial resistance genes (bla1, tetA, bla2, tetB, and ermA). METHODS Consequently, 200 samples (sausage, minced meat, luncheon, beef meat, and liver; n = 40 for each) were indiscriminately collected from commercial supermarkets in Port Said Province, Egypt, from March to May 2021. Subsequently, food samples were bacteriologically examined. The obtained isolates were tested for groEL gene sequence analysis, antibiotic susceptibility, biofilm production, and PCR screening of toxigenic and resistance genes. RESULTS The overall prevalence of B. cereus among the inspected food samples was 21%, where the highest predominance was detected in minced meat (42.5%), followed by beef meat (30%). The phylogenetic analysis of the groEL gene exposed that the examined B. cereus strain disclosed a notable genetic identity with other strains from the USA and China. Moreover, the obtained B. cereus strains revealed β-hemolytic activity, and 88.1% of the recovered strains tested positive for biofilm production. PCR evidenced that the obtained B. cereus strains usually inherited the nhe complex genes (nheA and nheC: 100%, and nheB: 83.3%), followed by cytK (76.2%), hbl complex (hblC and hblD: 59.5%, hblB: 16.6%, and hblA: 11.9%), ces (54.7%), and pc-plc (30.9%) virulence genes. Likewise, 42.9% of the examined B. cereus strains were MDR to six antimicrobial classes and encoded bla1, bla2, ermA, and tetA genes. CONCLUSION In summary, this study highlights the presence of MDR B. cereus in meat and meat products, posing a significant public health risk. The contamination by B. cereus is common in minced meat and beef meat. The molecular assay is a reliable fundamental tool for screening emerging MDR B. cereus strains in meat and meat products.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hamza M Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Roba Alatawy
- Medical Microbiology Department, School of Medicine, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Enas A Almanzalawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tahani M Alqahtani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabreen G Elfouly
- Department of Bacteriology, Animal Health Research Institute, Port-Said branch, Port Said, 42511, Egypt
| | - Gihan M Mohammed
- Department of Bacteriology, Animal Health Research Institute, Port-Said branch, Port Said, 42511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
16
|
Cha X, Lin Y, Brennan C, Cao J, Shang Y. Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Microorganisms 2023; 11:2948. [PMID: 38138092 PMCID: PMC10745370 DOI: 10.3390/microorganisms11122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified from six types of foods from seven different cities in a province, and the antibiotic-resistant phenotype was detected by using the Bauer-Kirby method. Results showed that the 73 isolates were completely sensitive to gentamicin and 100% resistant to chloramphenicol, in addition to which all strains showed varying degrees of resistance to 13 other common antibiotics, and a large number of strains resistant to multiple antibiotics were found. A bioinformatic analysis of the expression of resistance genes in Bacillus cereus showed three classes of antibiotic-resistant genes, which were three of the six classes of antibiotics identified according to the resistance phenotype. The presence of other classes of antibiotic-resistant genes was identified from genome-wide information. Antibiotic-resistant phenotypes were analyzed for correlations with genotype, and remarkable differences were found among the phenotypes. The spread of antibiotic-resistant strains is a serious public health problem that requires the long-term monitoring of antimicrobial resistance in Bacillus cereus, and the present study provides important information for monitoring antibiotic resistance in bacteria from different types of food.
Collapse
Affiliation(s)
- Xiaoyan Cha
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (X.C.); (Y.L.); (C.B.)
| | - Yingting Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (X.C.); (Y.L.); (C.B.)
| | - Charles Brennan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (X.C.); (Y.L.); (C.B.)
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (X.C.); (Y.L.); (C.B.)
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (X.C.); (Y.L.); (C.B.)
| |
Collapse
|
17
|
Shin JH, Lee HK, Lee SC, Han YK. Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp. THE PLANT PATHOLOGY JOURNAL 2023; 39:600-613. [PMID: 38081320 PMCID: PMC10721391 DOI: 10.5423/ppj.oa.08.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ha-Kyoung Lee
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seong-Chan Lee
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - You-Kyoung Han
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
18
|
Shimada T, Ishikawa K, Kawai F, Yoneoka D, Mori N. Risk factors associated with infection-related mortality of Bacillus cereus bacteremia in hematologic disorders. Int J Hematol 2023; 118:726-730. [PMID: 37848665 DOI: 10.1007/s12185-023-03671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The mortality risk factors in B. cereus bacteremia in hematologic disorders are still unknown. In this study, patients with B. cereus bacteremia in hematologic disorders were selected in St. lukes international hospital and from electronic databases. A total of 176 patients [median age, 41 years (3-88 years); 99 (56%) males] were included. Of these patients, 141 (80%) had acute leukemia, and 93 (53%) died. Univariate analysis showed that neutropenia, CNS, gastrointestinal, and respiratory infections/symptoms were significantly associated with infection-related death. Meanwhile, glycopeptide use and management with source control were protective factors. Multivariate logistic regression analysis showed that infection-related death was significantly associated with CNS [odds ratio (OR): 3.49, 95% confidence interval (CI) 1.25-9.80], gastrointestinal (OR: 5.22, 95% CI 1.82-8.99), and respiratory infections/symptoms (OR: 8.98, 95% CI 1.62-49.9), as well as glycopeptide use (OR: 0.10, 95% CI 0.03-0.31) and source control (OR: 0.11, 95% CI 0.03-0.37). In conclusion, early glycopeptide administration and source control should be performed upon detection of infections suspicious for B. cereus.
Collapse
Affiliation(s)
- Tomohito Shimada
- Department of Infectious Diseases, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Kazuhiro Ishikawa
- Department of Infectious Diseases, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, Japan.
| | - Fujimi Kawai
- Library, Department of Academic Resources, St. Luke's International University, Tokyo, Japan
| | - Daisuke Yoneoka
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nobuyoshi Mori
- Department of Infectious Diseases, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, Japan
| |
Collapse
|
19
|
Çürek S, Geniş B, Özden Tuncer B, Tuncer Y. Prevalence, Toxin Genes, and Antibiotic Resistance Profiles of Bacillus cereus Isolates from Spices in Antalya and Isparta Provinces in Türkiye. Indian J Microbiol 2023; 63:549-561. [PMID: 38031610 PMCID: PMC10682334 DOI: 10.1007/s12088-023-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Bacillus cereus is a pathogenic bacterium commonly found in nature and can produce toxins that cause food poisoning. This study aimed to detect the prevalence of B. cereus group bacteria in 50 unpackaged and 20 packaged spice samples frequently used as flavoring in Turkish cuisine, as well as investigate the presence of toxin genes and antibiotic resistance in the isolates. A total of 48 B. cereus group bacteria were isolated from 27 of 70 (38.57%) spice samples. The prevalence of B. cereus group bacteria in packaged (25%, 5/20) and unpackaged (44%, 22/50) spice samples did not differ significantly (P ˃ 0.05). All B. cereus group isolates were identified as B. cereus sensu stricto (B. cereus) using molecular methods. The hemolytic activity tests revealed that the most strains (44/48, 91.67%) are β-hemolytic. The distributions of toxin genes in isolates were investigated by PCR. It was determined that all isolates were identified to have 2-8 toxin genes, except B. cereus SBC3. The three most common toxin genes were found to be nheA (47/48, 97.92%), nheB (46/48, 95.83%), and entFM (46/48, 95.83%). All B. cereus isolates were susceptible to linezolid and vancomycin, while 35.42% (17/48) showed resistance to erythromycin. Multi-drug resistance (MDR) was detected in 8.3% (4/48) of B. cereus isolates, while 33.33% of the isolates showed multiple antibiotic resistance (MAR) index values higher than 0.2. The findings indicate that B. cereus may pose a health risk in packaged and unpackaged spices if present in high quantities. Therefore, the presence of B. cereus strains in both packaged and unpackaged spices should be monitored regarding consumer health and product safety.
Collapse
Affiliation(s)
- Sena Çürek
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, Isparta, Türkiye
| | - Burak Geniş
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, Isparta, Türkiye
| | - Banu Özden Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, Isparta, Türkiye
| | - Yasin Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
20
|
Koilybayeva M, Shynykul Z, Ustenova G, Waleron K, Jońca J, Mustafina K, Amirkhanova A, Koloskova Y, Bayaliyeva R, Akhayeva T, Alimzhanova M, Turgumbayeva A, Kurmangaliyeva G, Kantureyeva A, Batyrbayeva D, Alibayeva Z. Gas Chromatography-Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules 2023; 28:7556. [PMID: 38005278 PMCID: PMC10673538 DOI: 10.3390/molecules28227556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Moldir Koilybayeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Gulbaram Ustenova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. Hallera 107, 80-416 Gdańsk, Poland; (K.W.); (J.J.)
| | - Joanna Jońca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. Hallera 107, 80-416 Gdańsk, Poland; (K.W.); (J.J.)
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdańsk, University of Gdansk, 80-307 Gdańsk, Poland
| | - Kamilya Mustafina
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Akerke Amirkhanova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Yekaterina Koloskova
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Raushan Bayaliyeva
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Tamila Akhayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Mereke Alimzhanova
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan;
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Gulden Kurmangaliyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Aigerim Kantureyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Dinara Batyrbayeva
- Scientific Clinical Diagnostic Laboratory, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (D.B.); (Z.A.)
| | - Zhazira Alibayeva
- Scientific Clinical Diagnostic Laboratory, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (D.B.); (Z.A.)
| |
Collapse
|
21
|
Oliveira M, Carvalho M, Teixeira P. Characterization of the Toxigenic Potential of Bacillus cereus sensu lato Isolated from Raw Berries and Their Products. Foods 2023; 12:4021. [PMID: 37959140 PMCID: PMC10648475 DOI: 10.3390/foods12214021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Bacillus cereus is estimated to be responsible for 1.4-12% of all food poisoning outbreaks worldwide. The objective of this study was to investigate the toxigenic potential of 181 isolates of B. cereus previously recovered from different types of berries and berry products (strawberries, raspberries, blackberries, and blueberries) by assessing the presence of enterotoxin genes (hblA, hblC, hblD, nheA, nheB, nheC, and cytK) and an emetic toxin cereulide synthetase gene (ces). The cytotoxic activity on Caco-2 cells was also evaluated for the two isolates containing the gene cytK. Twenty-three toxigenic profiles were found. The nheABC (91.7%) and hblACD (89.0%) complexes were the most prevalent among the isolates, while the cytK and ces genes were detected in low percentages, 1.1% and 3.3%, respectively. In addition, the nheABC/hblACD complex and ces genes were detected in isolates recovered throughout the production process of blackberries and strawberries. The cytotoxic activity on Caco-2 cells was also observed to be greater than 60% for isolates containing the cytK gene.
Collapse
Affiliation(s)
- Márcia Oliveira
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain;
| | - Marta Carvalho
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Paula Teixeira
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
22
|
Angulo M, Guerra K, Arevalo P, Trujillo E, Monreal-Escalante E, Angulo C. Probiotic Potential of Bacillus sp. 62A Isolated from a Marine Extreme Environment. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10182-3. [PMID: 37889453 DOI: 10.1007/s12602-023-10182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Antimicrobial resistance is an important health concern globally, and probiotics are considered an alternative to minimize it. The present study examined the in vitro probiotic characteristics and in vivo immunomodulatory potential of Bacillus sp. 62A - an extremophile bacterium. Bacillus sp. 62A was evaluated in vitro for its cytotoxicity, hemolytic activity, antibiotic susceptibility, and resistance to gastrointestinal conditions (bile salts, low pH, and intestinal adherence). Additionally, the immunomodulatory effect of Bacillus sp. 62A was studied in mice. The animals were supplemented daily with phosphate-buffered saline (control) and Bacillus sp. 62A at 1 × 108 colony forming units (CFU). Samples were taken on days 5 and 10. Isolated splenocytes were challenged with Escherichia coli for immunological analyses and immune-related gene expression. Serum and feces were collected for IgA and IgG determination. Bacillus sp. 62A did not show cytotoxicity, hemolytic activity, or resistance to antibiotics. Furthermore, the bacterium has autoaggregation and intestinal adhesion capacities and grows in the presence of bile salts and low pH. Bacillus supplementation in mice improved respiratory burst activity, nitric oxide production, and IL-1β and IL-6 gene expressions, mainly at 10 days. After E. coli challenge, Bacillus supplementation in mice induced an anti-inflammatory response through a decrease in immunological parameters and an increase in IL-10 gene expression. Moreover, serum IgA and IgG and fecal IgG augmented in supplemented mice. In conclusion, Bacillus sp. 62A has biosafe and immunomodulatory probiotic potential.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
| | - Kevyn Guerra
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
- Tecnológico Nacional de México / Instituto Tecnológico de La Paz, Boulevard Forjadores 4720, 8 de Octubre Segunda sección, C.P. 23080, La Paz, Mexico
| | - Paola Arevalo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
- Investigadora Por México-CONACYT, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico.
| |
Collapse
|
23
|
Romanò A, Ivanovic I, Segessemann T, Vazquez Rojo L, Widmer J, Egger L, Dreier M, Sesso L, Vaccani M, Schuler M, Frei D, Frey J, Ahrens CH, Steiner A, Graber HU. Elucidation of the Bovine Intramammary Bacteriome and Resistome from healthy cows of Swiss dairy farms in the Canton Tessin. Front Microbiol 2023; 14:1183018. [PMID: 37583512 PMCID: PMC10425240 DOI: 10.3389/fmicb.2023.1183018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
Healthy, untreated cows of nine dairy herds from the Swiss Canton Tessin were analyzed three times within one year to identify the most abundant species of the intramammary bacteriome. Aseptically collected milk samples were cultured and bacteria identified using MALDI-TOF. Of 256 cows analyzed, 96% were bacteriologically positive and 80% of the 1,024 quarters were positive for at least one bacterial species. 84.5% of the quarters were healthy with somatic cell counts (SCC) < 200,000 cells/mL, whereas 15.5% of the quarters showed a subclinical mastitis (SCC ≥ 200,000 cells/mL). We could assign 1,288 isolates to 104 different bacterial species including 23 predominant species. Non-aureus staphylococci and mammaliicocci (NASM) were most prevalent (14 different species; 73.5% quarters). Staphylococcus xylosus and Mammaliicoccus sciuri accounted for 74.7% of all NASM isolates. To describe the intramammary resistome, 350 isolates of the predominant species were selected and subjected to short-read whole genome sequencing (WGS) and phenotypic antibiotic resistance profiling. While complete genomes of eight type strains were available, the remaining 15 were de novo assembled with long reads as a resource for the community. The 23 complete genomes served for reference-based assembly of the Illumina WGS data. Both chromosomes and mobile genetic elements were examined for antibiotic resistance genes (ARGs) using in-house and online software tools. ARGs were then correlated with phenotypic antibiotic resistance data from minimum inhibitory concentration (MIC). Phenotypic and genomic antimicrobial resistance was isolate-specific. Resistance to clindamycin and oxacillin was most frequently observed (65 and 30%) in Staphylococcus xylosus but could not be linked to chromosomal or plasmid-borne ARGs. However, in several cases, the observed antimicrobial resistance could be explained by the presence of mobile genetic elements like tetK carried on small plasmids. This represents a possible mechanism of transfer between non-pathogenic bacteria and pathogens of the mammary gland within and between herds. The-to our knowledge-most extensive bacteriome reported and the first attempt to link it with the resistome promise to profoundly affect veterinary bacteriology in the future and are highly relevant in a One Health context, in particular for mastitis, the treatment of which still heavily relies on antibiotics.
Collapse
Affiliation(s)
- Alicia Romanò
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ivana Ivanovic
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
| | - Tina Segessemann
- SIB, Swiss Institute of Bioinformatics, Zürich, Switzerland
- Method Development and Analytics, Group Molecular Ecology, Agroscope, Zürich, Switzerland
| | - Laura Vazquez Rojo
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
| | - Jérôme Widmer
- Method Development and Analytics, Group Biochemistry of Milk, Agroscope, Bern, Switzerland
| | - Lotti Egger
- Method Development and Analytics, Group Biochemistry of Milk, Agroscope, Bern, Switzerland
| | - Matthias Dreier
- Food Microbial Systems, Group Cultures, Biodiversity, and Terroir, Agroscope, Bern, Switzerland
| | - Lorenzo Sesso
- Clinic of Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Vaccani
- Clinic of Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Schuler
- SIB, Swiss Institute of Bioinformatics, Zürich, Switzerland
- Method Development and Analytics, Group Molecular Ecology, Agroscope, Zürich, Switzerland
| | - Daniel Frei
- Method Development and Analytics, Group Molecular Diagnostics, Genomics, and Bioinformatics, Agroscope, Wädenswil, Switzerland
| | - Juerg Frey
- Method Development and Analytics, Group Molecular Diagnostics, Genomics, and Bioinformatics, Agroscope, Wädenswil, Switzerland
| | - Christian H. Ahrens
- SIB, Swiss Institute of Bioinformatics, Zürich, Switzerland
- Method Development and Analytics, Group Molecular Ecology, Agroscope, Zürich, Switzerland
| | - Adrian Steiner
- Clinic of Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hans Ulrich Graber
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
| |
Collapse
|
24
|
Bogaerts B, Fraiture MA, Huwaert A, Van Nieuwenhuysen T, Jacobs B, Van Hoorde K, De Keersmaecker SCJ, Roosens NHC, Vanneste K. Retrospective surveillance of viable Bacillus cereus group contaminations in commercial food and feed vitamin B 2 products sold on the Belgian market using whole-genome sequencing. Front Microbiol 2023; 14:1173594. [PMID: 37415815 PMCID: PMC10321352 DOI: 10.3389/fmicb.2023.1173594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Bacillus cereus is a spore-forming bacterium that occurs as a contaminant in food and feed, occasionally resulting in food poisoning through the production of various toxins. In this study, we retrospectively characterized viable B. cereus sensu lato (s.l.) isolates originating from commercial vitamin B2 feed and food additives collected between 2016 and 2022 by the Belgian Federal Agency for the Safety of the Food Chain from products sold on the Belgian market. In total, 75 collected product samples were cultured on a general medium and, in case of bacterial growth, two isolates per product sample were collected and characterized using whole-genome sequencing (WGS) and subsequently characterized in terms of sequence type (ST), virulence gene profile, antimicrobial resistance (AMR) gene profile, plasmid content, and phylogenomic relationships. Viable B. cereus was identified in 18 of the 75 (24%) tested products, resulting in 36 WGS datasets, which were classified into eleven different STs, with ST165 (n = 10) and ST32 (n = 8) being the most common. All isolates carried multiple genes encoding virulence factors, including cytotoxin K-2 (52.78%) and cereulide (22.22%). Most isolates were predicted to be resistant to beta-lactam antibiotics (100%) and fosfomycin (88.89%), and a subset was predicted to be resistant to streptothricin (30.56%). Phylogenomic analysis revealed that some isolates obtained from different products were closely related or even identical indicating a likely common origin, whereas for some products the two isolates obtained did not show any close relationship to each other or other isolates found in other products. This study reveals that potentially pathogenic and drug-resistant B. cereus s.l. can be present in food and feed vitamin B2 additives that are commercially available, and that more research is warranted to assess whether their presence in these types of products poses a threat to consumers.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | - Bram Jacobs
- Foodborne Pathogens, Sciensano, Brussels, Belgium
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
25
|
González-Reguero D, Robas-Mora M, Fernández-Pastrana VM, Probanza-Lobo A, Jiménez-Gómez PA. Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. BIOLOGY 2023; 12:801. [PMID: 37372086 PMCID: PMC10295369 DOI: 10.3390/biology12060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The emergence of antibiotic resistance (AR) poses a threat to the "One Health" approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | | | | | | |
Collapse
|
26
|
Chen H, Sun X, He H, Ren H, Duan H, Zhang C, Chang Q, Zhang R, Ge J. Lysinibacillus capsici 38,328 isolated from agricultural soils as a promising probiotic candidate for intestinal health. Arch Microbiol 2023; 205:251. [PMID: 37249701 DOI: 10.1007/s00203-023-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
There is an increasing interest in the use of spore-forming Bacillus spp. as probiotic ingredients on the market. However, probiotics Bacillus species are insufficient, and more safe Bacillus species were required. In the study, traditional fermented foods and soil samples were collected from more than ten provinces in China, and 506 Bacillus were selected from 109 samples. Using the optimized procedure, we screened nine strains, which successfully passed the acid, alkali, bile salt, and trypsin resistance test. Drug sensitivity test results showed that three Bacillus out of the nine isolates exhibited antibiotic sensitivity to more than 29 antibiotics. The three strains sensitive to antibiotics were identified by 16S ribosomal RNA, recA, and gyrB gene analysis, two isolates (38,327 and 38,328) belong to the species Lysinibacillus capsici and one isolate (37,326) belong to Bacillus halotolerans. Moreover, the three strains were confirmed safe through animal experiments. Finally, L. capsici 38,327 and 38,328 showed protections in the Salmonella typhimurium infection mouse model, which slowed down weight loss, reduced bacterial load, and improved antioxidant capacity. Altogether, our data demonstrated that selected L. capsici strains can be used as novel probiotics for intestinal health.
Collapse
Affiliation(s)
- Huinan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huilin He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongkun Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
27
|
Koilybayeva M, Shynykul Z, Ustenova G, Abzaliyeva S, Alimzhanova M, Amirkhanova A, Turgumbayeva A, Mustafina K, Yeleken G, Raganina K, Kapsalyamova E. Molecular Characterization of Some Bacillus Species from Vegetables and Evaluation of Their Antimicrobial and Antibiotic Potency. Molecules 2023; 28:3210. [PMID: 37049972 PMCID: PMC10095821 DOI: 10.3390/molecules28073210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Numerous natural habitats, such as soil, air, fermented foods, and human stomachs, are home to different Bacillus strains. Some Bacillus strains have a distinctive predominance and are widely recognized among other microbial communities, as a result of their varied habitation and physiologically active metabolites. The present study collected vegetable products (potato, carrot, and tomato) from local markets in Almaty, Kazakhstan. The bacterial isolates were identified using biochemical and phylogenetic analyses after culturing. Our phylogenetic analysis revealed three Gram-positive bacterial isolates BSS11, BSS17, and BSS19 showing 99% nucleotide sequence similarities with Bacillus subtilis O-3, Bacillus subtilis Md1-42, and Bacillus subtilis Khozestan2. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Candida albicans, Candida krusei, Pseudomonas aeruginosa, Shigella sonnei, Klebsiella pneumoniae, Salmonella enteritidis, Klebsiella aerogenes, Enterococcus hirae, Escherichia coli, Serratia marcescens, and Proteus vulgaris. This study found that the species that were identified have the ability to produce antibiotic chemicals. Additionally, the GC-MS analysis of three bacterial extracts revealed the presence of many antibiotic substances including phenol, benzoic acid, 1,2-benzenedicarboxylic acid and bis(2-methylpropyl), methoxyphenyl-oxime, and benzaldehyde. This work sheds light on the potential of Bacillus to be employed as an antimicrobial agent to target different multidrug-resistant bacterial strains. The results indicate that market vegetables may be a useful source of strains displaying a range of advantageous characteristics that can be used in the creation of biological antibiotics.
Collapse
Affiliation(s)
- Moldir Koilybayeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan
| | - Gulbaram Ustenova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Symbat Abzaliyeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan
| | - Mereke Alimzhanova
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050012, Kazakhstan
| | - Akerke Amirkhanova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan
| | - Kamilya Mustafina
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Gulnur Yeleken
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Karlygash Raganina
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Elmira Kapsalyamova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| |
Collapse
|
28
|
Xiao D, Tong C, Yang T, Huo Z, Li Y, Zeng Z, Xiong W. First insights into antimicrobial resistance, toxigenic profiles, and genetic diversity in Bacillus cereus isolated from Chinese sausages. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
29
|
Manetsberger J, Caballero Gómez N, Benomar N, Christie G, Abriouel H. Characterization of the Culturable Sporobiota of Spanish Olive Groves and Its Tolerance toward Environmental Challenges. Microbiol Spectr 2023; 11:e0401322. [PMID: 36719235 PMCID: PMC10100736 DOI: 10.1128/spectrum.04013-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
Olive agriculture presents an integral economic and social pillar of the Mediterranean region with 95% of the world's olive tree population concentrated in this area. A diverse ecosystem consisting of fungi, archaea, viruses, protozoa, and microbial communities-the soil microbiome-plays a central role in maintaining healthy soils while keeping up productivity. Spore-forming organisms (i.e., the sporobiota) have been identified as one of the predominant communities of the soil microbiome and are known for the wide variety of antimicrobial properties and extraordinary resistance. Hence, the aim of this work was to determine the culturable sporobiota of Spanish olive orchards and characterize its phenotypic properties toward common environmental challenges. A collection of 417 heat-resistant bacteria were isolated from five Spanish olive orchards. This collective was termed the "olive sporobiota." Rep-PCR clustering of representative isolates revealed that they all belonged to the group of Bacillus spp., or closely related species, showing a great variety of species and strains. Representative isolates showed susceptibility to common antibiotics, as well as good resistance to heavy metal exposure, with an order of metal tolerance determined as iron > copper > nickel > manganese > zinc > cadmium. Finally, we showed that the application of mineral fertilizer can in several cases enhance bacterial growth and thus potentially increase the relative proportion of the sporobiota in the olive grove ecosystem. In summary, the identification of the culturable olive sporobiota increases our understanding of the microbial diversity in Spanish olive groves, while tolerance and resistance profiles provide important insights into the phenotypic characteristics of the microbial community. IMPORTANCE Microbial communities are a key component of healthy soils. Spore-forming microorganisms represent a large fraction of this community-termed the "sporobiota"-and play a central role in creating a conducive environment for plant growth and food production. In addition, given their unique features, such as extraordinary stability and antimicrobial properties, members of the sporobiota present interesting candidates for biotechnological applications, such as sustainable plant protection products or in a clinical setting. For this, however, more information is needed on the spore-forming community of agricultural installations, ultimately promoting a transition toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Julia Manetsberger
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
30
|
Antimicrobial Effects of Tetraspanin CD9 Peptide against Microbiota Causing Armpit Malodour. Antibiotics (Basel) 2023; 12:antibiotics12020271. [PMID: 36830182 PMCID: PMC9952088 DOI: 10.3390/antibiotics12020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Synthetic peptides, including tetraspanin CD9 peptides, are increasingly coming into focus as new treatment strategies against various organisms, including bacteria, that cause underarm odour. The use of deodorants and antiperspirants is associated with side effects. Therefore, it is critical to find an alternative therapeutic approach to combat underarm odour. The aim of this study is to investigate the antibacterial effect of tetraspanin CD9 peptides against the skin microbiota that cause malodour in the underarms. The antimicrobial activity of CD9 peptides against Micrococcus luteus (M. luteus), Bacillus subtilis (B. subtilis), Staphylococcus epidermidis (S. epidermidis), and Corynebacterium xerosis (C. xerosis) was investigated by the disc diffusion method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by broth microdilution assays using CD9 peptide concentrations ranging from 1 mg/mL to 0.0078 mg/mL. In addition, the anti-biofilm activity of the CD9 peptides was determined. The CD9 peptides showed different antibacterial activity with an inhibition zone of 7.67, 9.67, 7.00, and 6.00 mm for S. epidermidis, M. luteus, C. xerosis, and B. subtilis, respectively. All bacteria had the same MBC value of 1 mg/mL. A high MIC of CD9 peptides was observed for S. epidermidis and M. luteus at 0.5 mg/mL. The MIC values of B. subtilis and C. xerosis were 0.125 mg/mL and 0.25 mg/mL, respectively. CD9 peptides significantly inhibited biofilm development of S. epidermidis, B. subtilis, and C. xerosis isolates. The CD9 tetraspanin peptide has excellent antibacterial activity against bacteria that cause underarm odour. Therefore, the CD9 tetraspanin peptide is a promising alternative to deodorants and antiperspirants to combat commensal bacteria of the skin that cause underarm odour.
Collapse
|
31
|
Schäfer L, Volk F, Kleespies RG, Jehle JA, Wennmann JT. Elucidating the genomic history of commercially used Bacillus thuringiensis subsp. tenebrionis strain NB176. Front Cell Infect Microbiol 2023; 13:1129177. [PMID: 37021121 PMCID: PMC10067926 DOI: 10.3389/fcimb.2023.1129177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Bacillus thuringiensis subsp. tenebrionis (Btt) produces a coleopteran-specific crystal protoxin protein (Cry3Aa δ-endotoxin). After its discovery in 1982, the strain NB125 (DSM 5526) was eventually registered in 1990 to control the Colorado potato beetle (Leptinotarsa decemlineata). Gamma-irradiation of NB125 resulted in strain NB176-1 (DSM 5480) that exhibited higher cry3Aa production and became the active ingredient of the plant protection product Novodor® FC. Here, we report a comparative genome analysis of the parental strain NB125, its derivative NB176-1 and the current commercial production strain NB176. The entire genome sequences of the parental and derivative strains were deciphered by a hybrid de novo approach using short (Illumina) and long (Nanopore) read sequencing techniques. Genome assembly revealed a chromosome of 5.4 to 5.6 Mbp and six plasmids with a size range from 14.9 to 250.5 kbp for each strain. The major differences among the original NB125 and the derivative strains NB176-1 and NB176 were an additional copy of the cry3Aa gene, which translocated to another plasmid as well as a chromosomal deletion (~ 178 kbp) in NB176. The assembled genome sequences were further analyzed in silico for the presence of virulence and antimicrobial resistance (AMR) genes.
Collapse
Affiliation(s)
- Lea Schäfer
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | | | - Regina G. Kleespies
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Johannes A. Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
- *Correspondence: Jörg T. Wennmann,
| |
Collapse
|
32
|
Torki Baghbadorani S, Rahimi E, Shakerian A. Investigation of Virulence and Antibiotic-Resistance of Bacillus cereus Isolated from Various Spices. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8390778. [PMID: 37200773 PMCID: PMC10188258 DOI: 10.1155/2023/8390778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Spices and herbs are potential vectors for virulent and pathogenic micro-organisms, which cause illness in consumers, contribute to spoilage, and reduce the durability of foodstuffs. The present study aims to provide relevant data about virulence and antibiotic resistance of Bacillus cereus isolated from various spices. A total of 200 samples of 8 types of spices (black pepper, chilli, white pepper, cumin, cinnamon, turmeric, curry powder, and sumac) were collected from various markets, retail shops, and sucuk production premises located in the Isfahan province of Iran. Presumptive B. cereus strains were obtained using Bacara Agar plates after enrichment in saline peptone water and final colonies were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Enterotoxin (HBL) and nonhaemolytic enterotoxin (NHE) production were assessed using the Duopath® Cereus Enterotoxins Test kit. The Kirby-Bauer disc diffusion method was applied as antibiotics susceptibility test. PCR was used to detect Emetic toxin gene (CES and CER) and enterotoxigenic toxin gene (cytK, nheA, hblC, and entFM). Results show a significant prevalence of B. cereus (42%) in spices. However, the spices meet food safety recommendations (<104 cfu/g). Antibiotics susceptibility test show alarming rate of resistance to beta-lactam antibiotics specially ampicillin (83.33%) and penicillin (82.14%). Concerning the toxin producing capacity more than half of the isolates (51.19%) produce NHE toxin and 27.38% produce HBL toxin. The most abundant gene were nheA, nheB, and nheC and a combination of 4 genes (entFM, nheA, hblC, and cytK) was detected in many isolates. In conclusion, the presence of multidrug resistant B. cereus strains carrying diarrhoeal toxin-encoding genes in spices intended for human consumption represents a serious health hazard. These results indicate the need for regular surveillance of the occurrence of B. cereus strains in spices and food products in Iran.
Collapse
Affiliation(s)
- Sahar Torki Baghbadorani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amir Shakerian
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
33
|
Spore-based innovative paper-strip biosensor for the rapid detection of ß-lactam group in milk. Sci Rep 2022; 12:21965. [PMID: 36536009 PMCID: PMC9763390 DOI: 10.1038/s41598-022-26466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The study's goal was to develop a spore-based paper strip biosensor for detecting ß-lactam antibiotics in milk using the enzyme induction principle. A new spore-based paper strip biosensor has been developed after important operating parameters such as spore volume, substrate volume, exposure time and temperature, and incubation time and temperature were optimised. The limit of detection for various ß-lactam antibiotics, including amoxicillin, penicillin, ampicillin, carbenicillin, cloxacillin, nafcillin, oxacillin, cephalothin, cefalexin, cefoxitin, cefazolin, and cefuroxime, was determined in milk with detection sensitivity of 1 ppb, 2 ppb, 2 ppb, 10 ppb, 10 ppb, 10 ppb, 20 ppb, 10 ppb 1000 ppb, 10 ppb 300 ppb and 100 ppb, respectively. It was also tested with other contaminants such non-ß-lactam antibiotics, pesticides, aflatoxin, heavy metals, and other chemical contaminants, and no interference was found, indicating that the created biosensor had a low rate of false positive and negative results. In comparison to the AOAC-approved CHARM-ROSA ß-lactam strip test, which identified 7 raw milk and zero pasteurised milk samples positive for ß-lactam antibiotics, the sensor was further analysed and verified using 200 raw milk and 105 pasteurised milk samples. This indicates a perfect match between our biosensor and the AOAC-approved CHARM-ROSA ß-lactam strip test. The developed spore-based paper strip biosensors are expected to be useful in the rapid and cost-effective detection of ß-lactam antibiotic residues in milk samples at the dairy farm, reception dock, and production units, respectively.
Collapse
|
34
|
Wijesinghe VN, Choo WS. Antimicrobial betalains. J Appl Microbiol 2022; 133:3347-3367. [PMID: 36036373 PMCID: PMC9826318 DOI: 10.1111/jam.15798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Betalains are nitrogen-containing plant pigments that can be red-violet (betacyanins) or yellow-orange (betaxanthins), currently employed as natural colourants in the food and cosmetic sectors. Betalains exhibit antimicrobial activity against a broad spectrum of microbes including multidrug-resistant bacteria, as well as single-species and dual-species biofilm-producing bacteria, which is highly significant given the current antimicrobial resistance issue reported by The World Health Organization. Research demonstrating antiviral activity against dengue virus, in silico studies including SARS-CoV-2, and anti-fungal effects of betalains highlight the diversity of their antimicrobial properties. Though limited in vivo studies have been conducted, antimalarial and anti-infective activities of betacyanin have been observed in living infection models. Cellular mechanisms of antimicrobial activity of betalains are yet unknown; however existing research has laid the framework for a potentially novel antimicrobial agent. This review covers an overview of betalains as antimicrobial agents and discussions to fully exploit their potential as therapeutic agents to treat infectious diseases.
Collapse
Affiliation(s)
| | - Wee Sim Choo
- School of ScienceMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
35
|
Taher EM, Veltman T, Petrovski KR. Presence of
Bacillus
species in pasteurised milk and their phenotypic and genotypic antimicrobial resistance profile. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Eman M Taher
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine Cairo University Cairo 12211 Egypt
| | - Tania Veltman
- School of Animal and Veterinary Sciences, Australian Centre for Antimicrobial Resistance Ecology The University of Adelaide Roseworthy South Australia 5371 Australia
| | - Kiro R Petrovski
- School of Animal and Veterinary Sciences, Australian Centre for Antimicrobial Resistance Ecology The University of Adelaide Roseworthy South Australia 5371 Australia
- School of Animal and Veterinary Science, Davies Livestock Research Centre The University of Adelaide Roseworthy South Australia 5371 Australia
| |
Collapse
|
36
|
Bakri MM. Molecular characterization and prevalence of Bacillus species isolated from Saudi hospitals. J Taibah Univ Med Sci 2022; 18:444-454. [PMID: 36818182 PMCID: PMC9932558 DOI: 10.1016/j.jtumed.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study highlighted the dissemination of Bacillus species (including drug-resistant species) in public hospital environments and calls for the design of optimal strategies to curb their spread. This a critical consideration for all health care systems such as caring for the increasing number of immune-compromised patient. Methods A total of 528 swab samples were collected from the environments of different Saudi hospitals. Swab samples were collected by swabbing approximately 5 cm2 of different surfaces at each site using pre-moisturized cotton swabs with 1 mL of neutralizing buffer. The swabs were transported in cool boxes with ice packs within 2 h of collection. Isolation and identification were performed according to conventional bacteriological, semi-automated and molecular characterization methods. Antibiogram typing was carried against different groups of antimicrobial agents. Results The most prevalent of the isolated Bacillus species were Bacillus cereus (46.6%) followed by Bacillus subtilis (38.1%); the least prevalent was Bacillus pumilus (1.1%). Most Bacillus isolates (25.6%) were isolated from the Department of Internal Medicine followed by the Emergency Department (18.8%), while the operating rooms had the lowest prevalence (4.5%). Antimicrobial susceptibility testing revealed high levels of resistance in Bacillus isolates to β-lactams and tetracycline. Overall, 21.6% of isolates showed multi-drug resistance to three or more antibiotics (21.6%). Antibiogram typing of the 176 isolates revealed 45 antibiotypes; the most common was antibiotype 31, which included 32 isolates (18.2%); this particular antibiotype was resistant to both penicillin and cefoxitin. Conclusions Analyses identified the high dissemination of Bacillus species in several hospital environments with high resistance to β-lactams and tetracycline antibiotics. Molecular analysis also revealed the existence of genetic diversity among the Bacillus isolates investigated. Thus, monitoring the hospital environment is an important tool in the prevention of hospital-associated infection by Bacillus species.
Collapse
|
37
|
Duong-Nguyen TA, Pham MH, Lam NH, Pham CQ, Le TD, Tran BM, Van Tra T. Amoxicillin degradation ability of Bacillus cereus C1 isolated from catfish pond sludge in Vietnam. Heliyon 2022; 8:e11688. [PMID: 36444268 PMCID: PMC9699968 DOI: 10.1016/j.heliyon.2022.e11688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/20/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022] Open
Abstract
The biological removal of antibiotic residue in the environment has earned great interest. This study presented the biodegradation of amoxicillin (AMX) using B. cereus C1 isolated from the catfish pond sludge in Vietnam. This AMX-degrading bacterial strain grew well in the range of temperatures between 25ΟC and 40ΟC under aerobic condition. In a culture medium containing nitrogen source of NH4Cl (1 g.L-1) alone, the bacterium showed a AMX degradation ability of 54%. The AMX degradation ability of this bacterial strain was the highest level of 94% in the culture medium with 1.5 g.L-1 of NH4Cl and 3 g.L-1 of glucose. B. cereus C1 exhibited a great antibiotic degradation capability on high AMX concentration of 250 μg.mL-1 of AMX with AMX removal efficiency of 84% in 16 h of cultivation.
Collapse
Affiliation(s)
- Tam-Anh Duong-Nguyen
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCMC), 227 Nguyen Van Cu, Dist. 5, Ho Chi Minh City, Viet Nam
| | - Minh Hoang Pham
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCMC), 227 Nguyen Van Cu, Dist. 5, Ho Chi Minh City, Viet Nam
| | - Nghi Hue Lam
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCMC), 227 Nguyen Van Cu, Dist. 5, Ho Chi Minh City, Viet Nam
| | - Cuong Quoc Pham
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCMC), 227 Nguyen Van Cu, Dist. 5, Ho Chi Minh City, Viet Nam
| | - Trung Duc Le
- Institute for Environment and Resources – IER, Vietnam National University Ho Chi Minh City (VNU-HCMC), 142 To Hien Thanh, Dist. 10, Ho Chi Minh City, Viet Nam
| | - Bao Minh Tran
- Institute for Environment and Resources – IER, Vietnam National University Ho Chi Minh City (VNU-HCMC), 142 To Hien Thanh, Dist. 10, Ho Chi Minh City, Viet Nam
| | - Tung Van Tra
- Institute for Environment and Resources – IER, Vietnam National University Ho Chi Minh City (VNU-HCMC), 142 To Hien Thanh, Dist. 10, Ho Chi Minh City, Viet Nam
| |
Collapse
|
38
|
Hwang D, Oh TY, Baek SY, Kang MS, Hong SI, Kim HJ. Enterotoxin genes, biofilm formation, and antimicrobial and disinfectant resistance of Bacillus cereus isolates from primary producing stages. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Evidence of virulence and antibiotic resistance genes from the microbiome mapping in minimally processed vegetables producing facilities. Food Res Int 2022; 162:112202. [DOI: 10.1016/j.foodres.2022.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
40
|
Jung J, Jin H, Seo S, Jeong M, Kim B, Ryu K, Oh K. Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12159. [PMID: 36231461 PMCID: PMC9564537 DOI: 10.3390/ijerph191912159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
This study aims to investigate the enterotoxin profiles and antibiotic susceptibility of Bacillus cereus isolated from garlic chives and environmental samples. A total of 103 B. cereus isolates were used to identify enterotoxin genes, including hblA, hblC, hblD, nheA, nheB, and nheC. The hemolysin BL enterotoxin complex (hblACD) was detected in 38 isolates (36.9%), and the non-hemolytic enterotoxin complex (nheABC) was detected in 8 (7.8%) isolates. Forty-five isolates (43.7%) had hblACD and nheABC genes. B. cereus was resistant to β-lactam antibiotics and susceptible to non-β-lactam antibiotics. However, some B. cereus strains showed intermediate resistance to β-lactam and non-β-lactam antibiotics. B. cereus isolated from garlic chives showed intermediate resistance to cefotaxime (7.7%), rifampin (15.4%), clindamycin (30.8%), erythromycin (7.7%), and tetracycline (7.7%). B. cereus isolates from the agricultural environment were moderately resistant to cefotaxime (18.9%), rifampin (15.6%), clindamycin (12.2%), erythromycin (4.4%), and tetracycline (5.6%). Moreover, B. cereus isolates from garlic chives and cultivation environments could change their antibiotic resistance profile from susceptible to intermediate-resistant to rifampin, clindamycin, erythromycin, and tetracycline and exhibit multidrug resistance. These results indicate that continuous monitoring of B. cereus contamination in the produce and agricultural environment might be needed to ensure the safety of consuming fresh vegetables.
Collapse
Affiliation(s)
- Jieun Jung
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeolloabuk-do, Korea
| | - Hyeonsuk Jin
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Seungmi Seo
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Myeongin Jeong
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Boeun Kim
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Kyoungyul Ryu
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Kwangkyo Oh
- Microbial Safety Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea
| |
Collapse
|
41
|
Kowalska J, Maćkiw E, Korsak D, Postupolski J. Characteristic and Antimicrobial Resistance of <i>Bacillus cereus</i> Group Isolated from Food in Poland. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Rajalingam N, Jung J, Seo SM, Jin HS, Kim BE, Jeong MI, Kim D, Ryu JG, Ryu KY, Oh KK. Prevalence, distribution, enterotoxin profiles, antimicrobial resistance, and genetic diversity of Bacillus cereus group isolates from lettuce farms in Korea. Front Microbiol 2022; 13:906040. [PMID: 36081801 PMCID: PMC9445581 DOI: 10.3389/fmicb.2022.906040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Lettuce wraps are popular in Korean cuisine for their high nutritional value and versatility as healthy additions to multiple dishes. Microbial contamination of lettuce is a major concern, as lettuce is consumed fresh without cooking. Among foodborne pathogens, the spore-forming, facultative anaerobic bacterium, Bacillus cereus is one of the frequently detected pathogen in lettuce in Korea. In this study, we investigated the prevalence and distribution of Bacillus cereus strains in lettuce production farms and further evaluated the enterotoxin gene profiles, antibiotic susceptibility, multidrug resistance pattern, and genetic differences among the B. cereus group isolates. Of the 140 samples isolated from 10 lettuce production farms, 30 samples (21.42%) were positive for B. cereus in which 19 (31.6%) and 10 (23.25%) were from soil and lettuce, respectively. The enterotoxin patterns A (hblCDA, nheABC, entFM, and cytK genes) and B (hblCDA, nheABC, and entFM genes) accounted for 50% and 20% of all the isolates, whereas the emetic gene cesB was not detected in any of the B. cereus group isolates. Antibiotic susceptibility testing of the B. cereus group isolates revealed that all the strains were predominantly resistant to β-lactam antibiotics except imipenem and generally susceptible to most of the non β-lactam antibiotics, including gentamycin, streptomycin, chloramphenicol, and tetracycline. ERIC-PCR and MLST analysis revealed high genetic diversity among the 30 B. cereus group isolates, which belonged to 26 different sequence types (STs) and seven new STs. Moreover, isolates with identical STs exhibited similar patterns of antibiotic resistance and enterotoxin profiles. Results of this study indicate a high prevalence of B. cereus group isolates in lettuce production farms in the Republic of Korea.
Collapse
Affiliation(s)
- Nagendran Rajalingam
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jieun Jung
- Functional Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Seung-Mi Seo
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Hyun-Sook Jin
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Bo-Eun Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Myeong-In Jeong
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Dawoon Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jae-Gee Ryu
- Planning and Coordination Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kyoung-Yul Ryu
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- *Correspondence: Kwang Kyo Oh,
| |
Collapse
|
43
|
Algammal AM, Alfifi KJ, Mabrok M, Alatawy M, Abdel-moneam DA, Alghamdi S, Azab MM, Ibrahim RA, Hetta HF, El-Tarabili RM. Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes. Infect Drug Resist 2022; 15:2167-2185. [PMID: 35498633 PMCID: PMC9052338 DOI: 10.2147/idr.s365254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023] Open
Abstract
Background Bacillus cereus is a common food poisoning pathogen in humans. This study aimed to investigate the prevalence, molecular typing, antibiogram profile, pathogenicity, dissemination of virulence and antibiotic resistance genes associated with natural B. cereus infection among Mugil seheli. Methods Consequently, 120 M. seheli (40 healthy and 80 diseased) were obtained from private fish farms in Port-said Governorate, Egypt. Afterward, samples were processed for clinical, post-mortem, and bacteriological examinations. The recovered isolates were tested for antimicrobial susceptibility, phenotypic assessment of virulence factors, pathogeneicity, and PCR-based detection of virulence and antibiotic resistance genes. Results B. cereus was isolated from 30 (25%) examined fish; the highest prevalence was noticed in the liver (50%). The phylogenetic and sequence analyses of the gyrB gene revealed that the tested B. cereus isolate displayed a high genetic similarity with other B. cereus strains from different origins. All the recovered B. cereus isolates (n =60, 100%) exhibited β-hemolytic and lecithinase activities, while 90% (54/60) of the tested isolates were biofilm producers. Using PCR, the tested B. cereus isolates harbor nhe, hbl, cytK, pc-plc, and ces virulence genes with prevalence rates of 91.6%, 86.6%, 83.4%, 50%, and 33.4%, respectively. Moreover, 40% (24/60) of the tested B. cereus isolates were multidrug-resistant (MDR) to six antimicrobial classes and carried the bla1, bla2, tetA, and ermA genes. The experimentally infected fish with B. cereus showed variable mortality in direct proportion to the inoculated doses. Conclusion As far as we know, this is the first report that emphasized the existence of MDR B. cereus in M. seheli that reflects a threat to the public health and the aquaculture sector. Newly emerging MDR B. cereus in M. seheli commonly carried virulence genes nhe, hbl, cytK, and pc-plc, as well as resistance genes bla1, bla2, tetA, and ermA.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Khyreyah J Alfifi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Marfat Alatawy
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Dalia A Abdel-moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, 12613, Egypt
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Marwa M Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Reham A Ibrahim
- Marine Environmental Division- National Institute of Oceanography and Fisheries (NIOF), Suez, 43511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
44
|
Jovanovic J, Tretiak S, Begyn K, Rajkovic A. Detection of Enterotoxigenic Psychrotrophic Presumptive Bacillus cereus and Cereulide Producers in Food Products and Ingredients. Toxins (Basel) 2022; 14:toxins14040289. [PMID: 35448897 PMCID: PMC9030337 DOI: 10.3390/toxins14040289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decade, foodborne outbreaks and individual cases caused by bacterial toxins showed an increasing trend. The major contributors are enterotoxins and cereulide produced by Bacillus cereus, which can cause a diarrheal and emetic form of the disease, respectively. These diseases usually induce relatively mild symptoms; however, fatal cases have been reported. With the aim to detected potential toxin producers that are able to grow at refrigerator temperatures and subsequently produce cereulide, we screened the prevalence of enterotoxin and cereulide toxin gene carriers and the psychrotrophic capacity of presumptive B. cereus obtained from 250 food products (cereal products, including rice and seeds/pulses, dairy-based products, dried vegetables, mixed food, herbs, and spices). Of tested food products, 226/250 (90.4%) contained presumptive B. cereus, which communities were further tested for the presence of nheA, hblA, cytK-1, and ces genes. Food products were mainly contaminated with the nheA B. cereus carriers (77.9%), followed by hblA (64.8%), ces (23.2%), and cytK-1 (4.4%). Toxigenic B. cereus communities were further subjected to refrigerated (4 and 7 °C) and mild abuse temperatures (10 °C). Overall, 77% (94/121), 86% (104/121), and 100% (121/121) were able to grow at 4, 7, and 10 °C, respectively. Enterotoxin and cereulide potential producers were detected in 81% of psychrotrophic presumptive B. cereus. Toxin encoding genes nheA, hblA, and ces gene were found in 77.2, 55, and 11.7% of tested samples, respectively. None of the psychrotrophic presumptive B. cereus were carriers of the cytotoxin K-1 encoding gene (cytK-1). Nearly half of emetic psychrotrophic B. cereus were able to produce cereulide in optimal conditions. At 4 °C none of the examined psychrotrophs produced cereulide. The results of this research highlight the high prevalence of B. cereus and the omnipresence of toxin gene harboring presumptive B. cereus that can grow at refrigerator temperatures, with a focus on cereulide producers.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
| | - Svitlana Tretiak
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, D5 Ingang 78, 9820 Merelbeke, Belgium;
- Impextraco nv, Wiekevorstsesteenweg 38, 2220 Heist-op-den-Berg, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
| | - Andreja Rajkovic
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
- Correspondence:
| |
Collapse
|
45
|
Etikala A, Thamburaj S, Johnson AM, Sarma C, Mummaleti G, Kalakandan SK. Incidence, toxin gene profile, antibiotic resistance and antibacterial activity of Allium parvum and Allium cepa extracts on Bacillus cereus isolated from fermented millet-based food. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Jessberger N, Diedrich R, Janowski R, Niessing D, Märtlbauer E. Presence and function of Hbl B', the fourth protein component encoded by the hbl operon in Bacillus cereus. Virulence 2022; 13:483-501. [PMID: 35291913 PMCID: PMC8932913 DOI: 10.1080/21505594.2022.2046951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genes hblC, hblD and hblA encode the components Hbl L2, L1 and B of the pore forming enterotoxin haemolysin BL of Bacillus cereus. Two variants of the operon existand the more common one additionally contains hblB downstream of hblCDA. Up to now, it was completely unclear whether the corresponding protein, Hbl B', is widely expressed among B. cereus strains and if it has a distinct function. In the present study, it was shown that the hblB gene is indeed expressed and the Hbl B' protein is secreted by nearly all analysed B. cereus strains. For the latter, a detection system was developed based on monoclonal antibody 11A5. Further, a distinct reduction of cytotoxic and haemolytic activity was observed when recombinant (r)Hbl B' was applied simultaneously with L2, L1 and B. This effect was due to direct interaction of rHbl B' with L1. D-6B. cereusAltogether, we present the first simple tool for the detection of Hbl B' in B. cereus culture supernatants. Moreover, an important regulatory function of Hbl B' in the mechanism of Hbl was determined, which is best described as an additional control of complex formation, balancing the amounts of Hbl B-L1 complexes and the corresponding free subunits.
Collapse
Affiliation(s)
- Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Richard Diedrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| |
Collapse
|
47
|
Dorotíková K, Kameník J, Bogdanovičová K, Křepelová S, Strejček J, Haruštiaková D. Microbial contamination and occurrence of Bacillus cereus sensu lato, Staphylococcus aureus, and Escherichia coli on food handlers’ hands in mass catering: Comparison of the glove juice and swab methods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Comparative analysis of Bacillus cereus group isolates' resistance using disk diffusion and broth microdilution and the correlation between antimicrobial resistance phenotypes and genotypes. Appl Environ Microbiol 2022; 88:e0230221. [PMID: 35225691 PMCID: PMC8939351 DOI: 10.1128/aem.02302-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus group isolates (n = 85) were screened for phenotypic resistance to 18 antibiotics using broth microdilution and CLSI M45 Bacillus spp. breakpoints. The susceptibility to 9 out of 18 antibiotics was tested also using disk diffusion method and M100 Staphylococcus spp. breakpoints. Overall, a high prevalence of susceptibility to clinically relevant antibiotics was identified using broth microdilution. For most tested antibiotics, a poor correlation was found between zones of inhibition and minimum inhibitory concentrations. Using the broth microdilution results as a reference for comparison, we identified high error rates and low categorical agreement between results produced using disk diffusion and broth microdilution for the seven tested antibiotics with defined breakpoints. This suggests that disk diffusion should be avoided for AST of B. cereus group isolates. Further, we detected antimicrobial resistance genes with ARIBA and ABRIcate to calculate the sensitivity and specificity for predicting phenotypic resistance determined using broth microdilution based on the presence of detected antimicrobial resistance genes (ARGs). ARGs with poor sensitivity and high specificity included rph (rifampicin, 0%, 93%), mph (erythromycin, 0%, 99%), bla1 (penicillin, 29%, 100), and blaZ (penicillin, 56%, 100%). Compared to penicillin, bla1 and blaZ had lower specificity for the prediction of ampicillin resistance. Overall, none of the ARGs had both high sensitivity and specificity, suggesting the need for further study of the mechanisms underlying phenotypic antimicrobial resistance in the B. cereus group. IMPORTANCE Bacillus cereus group includes human pathogens that can cause severe infections requiring antibiotic treatment. Screening of environmental and food isolates for antimicrobial resistance can provide insight into what antibiotics may be more effective therapeutic options based on the lower prevalence of resistance. Currently, the comparison of antimicrobial susceptibility testing results using the disk diffusion method is complicated by the fact that many previous studies have used Staphylococcus spp. breakpoints to interpret their results. In this study, we compared the results of disk diffusion interpreted using the Staphylococcus spp. breakpoints against the results of broth microdilution interpreted using Bacillus spp. breakpoints. We demonstrated that the disk diffusion method does not produce reliable results for B. cereus group isolates and should therefore be avoided. This study also provides new insight into poor associations between the presence of antimicrobial resistance genes and resistance phenotypes for the B. cereus group.
Collapse
|
49
|
Okyere SK, Wen J, Cui Y, Xie L, Gao P, Zhang M, Wang J, Wang S, Ran Y, Ren Z, Hu Y. Bacillus toyonensis SAU-19 and SAU-20 Isolated From Ageratina adenophora Alleviates the Intestinal Structure and Integrity Damage Associated With Gut Dysbiosis in Mice Fed High Fat Diet. Front Microbiol 2022; 13:820236. [PMID: 35250935 PMCID: PMC8891614 DOI: 10.3389/fmicb.2022.820236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
This study was performed to identify potential probiotic endophytes from Ageratina adenophora and evaluate their ameliorating effects on gut injury and integrity damage associated with microbiota dysbiosis in mice fed high fat diet. Using morphological and biochemical tests, and 16S rRNA gene sequencing technique, two bacteria endophytes were identified as strains of Bacillus toyonensis and were named Bacillus toyonensis SAU-19 (GenBank No. MW287198) and Bacillus toyonensis SAU-20 (GenBank No. MW287199). Sixty (60) mice were divided into five groups, group 1 was the negative control fed normal diet (NS), group 2 was fed High fat diet (HF), Group 3 was fed High fat diet + 106 Lactobacillus rhamnosus (LGG), group 4 was fed High fat + 106 Bacillus toyonensis SAU-19 and group 5 fed High fat diet + 106 Bacillus toyonensis SAU-20. After 35 days, histological and immunohistochemistry examination were performed in the ileum tissues. Furthermore, DAO and antioxidants activities were measured in serum, mRNA expressions of tight junction proteins (occludin and ZO-1) and inflammation related cytokines (IL-1β, TFN-α, IL-2, IL-4, and IL-10) in the ileum tissues as well as sIgA levels and total bacteria (Escherichia coli, Salmonella, Staphylococcus, and Lactobacillus) in the small intestine and cecum content. The results showed an increase in the DAO activity, oxidative stress parameter (MDA), pro-inflammation cytokines (IL-1β, TFN-α, IL-2), reduce immunity (sIgA), and destroyed intestinal structure and integrity (reduce tight junction proteins) in the high fat diet group and this was associated with destruction of the gut microbiota composition (increasing pathogenic bacteria; E. coli, Salmonella, Staphylococcus and reducing beneficial bacteria, Lactobacillus spp.) in mice (P < 0.05). However, the administration of Bacillus toyonensis SAU-19 and SAU-20 reverted these effects. Our findings indicated that, Bacillus toyonensis SAU-19 and SAU-20 isolated from A. adenophora could prevent the excess weight gain from high fat diet feeding, improved antioxidant status and alleviated the intestine integrity damage as well as reduce the population of enteric bacteria such as E. coli, Salmonella, and S. aureus and increasing the population of beneficial bacteria such as Lactobacillus in the gut of mice fed high fat diet, therefore, can serve as a potential probiotics in humans and animals.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Gao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen, China
| |
Collapse
|
50
|
Antimicrobial Susceptibility Profile and Whole-Genome Analysis of a Strong Biofilm-Forming Bacillus Sp. B87 Strain Isolated from Food. Microorganisms 2022; 10:microorganisms10020252. [PMID: 35208707 PMCID: PMC8876208 DOI: 10.3390/microorganisms10020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Members of the Bacillus cereus group are considered to be foodborne pathogens commonly associated with diarrheal and emetic gastrointestinal syndromes. Biofilm formation is a major virulence determinant of various pathogenic bacteria, including the B. cereus strains, since it can protect the bacteria against antimicrobial agents and the host immune response. Moreover, a biofilm allows the exchange of genetic material, such as antimicrobial resistance genes, among the different bacterial strains inside the matrix. The aim of the current study was to genotypically and phenotypically characterize Bacillus sp. B87, a strain that was isolated from food and which exhibited strong biofilm-forming capacity. Based on the analysis of the phylogenetic relationship, the isolate was phylogenetically mapped close to Bacillus pacificus. Antimicrobial susceptibility testing revealed that the isolate was resistant to tetracycline and β-lactam antimicrobial agents, which corresponded with the genotypic characterization using the whole-genome analysis. The genome of Bacillus sp. B87 carried the three-component non-hemolytic enterotoxin (NHE), which is a type of enterotoxin that causes diarrheal symptoms. In addition, the genome also contained several genes that participate in biofilm formation, including the pelDEADAFG operon. These findings expand our understanding of antimicrobial resistance and virulence in Bacillus species based on the link between genotypic and phenotypic characterization.
Collapse
|