1
|
Yoldi-Achalandabaso A, Fricke W, Miranda-Apodaca J, Vicente R, Muñoz-Rueda A, Pérez-López U. Climate change does not impact the water flow of barley at the vegetative stage, ameliorates at anthesis and worsens after subsequent drought episodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109060. [PMID: 39182427 DOI: 10.1016/j.plaphy.2024.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Climate change will bring the interaction of stresses such as increased temperature and drought under high [CO2] conditions. This is likely to impact on crop growth and productivity. This study aimed to (i) determine the response of barley water relations to vegetative and anthesis drought periods under triple interaction conditions, (ii) test the possibility to prime barley plants for drought, and (iii) analyse the involvement of aquaporins in (i) and (ii). The water status of barley was not affected by drought at the vegetative stage, regardless of the environmental conditions. At the anthesis stage, when the water shortage period was more severe, barley plants growing under combined elevated CO2 and temperature conditions were able to maintain a better water status compared with plants grown under current conditions. Elevated CO2 and temperature conditions reduced the stomatal conductance and slowed down the plant water flow through a root-leaf hydraulic conductivity coordination. Leaf HvPIP2;1 and HvTIP1;1 aquaporins seemed to play a key role regulating barley's water flow, while leaf and root HvPIP2;5 provided basic level of water flow. At anthesis drought and under future combined conditions, plants showed a reduced cell dehydration and decrease in leaf relative water content compared with plants grown under current conditions. Exposure to a previous drought did not prime the water status of barley plants to a subsequent drought, but instead worsened the response under future conditions. This was due to an imbalance between the roots versus shoot development.
Collapse
Affiliation(s)
- Ander Yoldi-Achalandabaso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain; Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Alberto Muñoz-Rueda
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
| |
Collapse
|
2
|
Song X, Wang H, Wang Y, Zeng Q, Zheng X. Metabolomics combined with physiology and transcriptomics reveal how Nicotiana tabacum leaves respond to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108464. [PMID: 38442629 DOI: 10.1016/j.plaphy.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Low temperature-induced cold stress is a major threat to plant growth, development and distribution. Unraveling the responses of temperature-sensitive crops to cold stress and the mechanisms of cold acclimation are critical for food demand. In this study, combined physiological, transcriptomic, and metabolomic analyses were conducted on Nicotiana tabacum suffering short-term 4 °C cold stress. Our results showed that cold stress destroyed cellular membrane stability, decreased the chlorophyll (Chl) and carotenoid contents, and closed stomata, resulting in lipid peroxidation and photosynthesis restriction. Chl fluorescence measurements revealed that primary photochemistry, photoelectrochemical quenching and photosynthetic electron transport in Nicotiana tabacum leaves were seriously suppressed upon exposer to cold stress. Enzymatic and nonenzymatic antioxidants, including superoxide dismutase, catalase, peroxidase, reduced glutathione, proline, and soluble sugar, were all profoundly increased to trigger the cold acclimation defense against oxidative damage. A total of 178 metabolites and 16,204 genes were differentially expressed in cold-stressed Nicotiana tabacum leaves. MEturquoise and MEblue modules identified by WGCNA were highly correlated with physiological indices, and the corresponding hub genes were significantly enriched in pathways related to photosynthesis - antenna proteins and flavonoid biosynthesis. Untargeted metabolomic analysis identified specific metabolites, including sucrose, phenylalanine, glutamine, glutamate, and proline, that enhance plant cold acclimation. Combined transcriptomics and metabolomic analysis highlight the vital roles of carbohydrate and amino acid metabolism in enhancing the cold tolerance of Nicotiana tabacum. Our comprehensive investigation provides novel insights for efforts to alleviate low temperature-induced oxidative damage to Nicotiana tabacum plants and proposes a breeding target for cold stress-tolerant cultivars.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hui Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Yujie Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Qiangcheng Zeng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| | - Xuebo Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, 266101, China.
| |
Collapse
|
3
|
Li X, Zhang Y, Wang J, Zeng G, Tong X, Ullah S, Liu J, Zhou R, Lian J, Guo X, Tang Z. Revealing the metabolomics and biometrics underlying phytotoxicity mechanisms for polystyrene nanoplastics and dibutyl phthalate in dandelion (Taraxacum officinale). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167071. [PMID: 37714347 DOI: 10.1016/j.scitotenv.2023.167071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Micro/nanoplastics (M/NPs) and phthalates (PAEs) are emerging pollutants. Polystyrene (PS) MPs and dibutyl phthalate (DBP) are typical MPs and PAEs in the environment. However, how dandelion plants respond to the combined contamination of MPs and PAEs remains unclear. In this study, we evaluated the individual and combined effects of PS NPs (10 mg L-1) and DBP (50 mg L-1) on dandelion (Taraxacum officinale) seedlings. The results showed that compared to control and individual-treated plants, coexposure to PS NPs and DBP significantly affected plant growth, induced oxidative stress, and altered enzymatic and nonenzymatic antioxidant levels of dandelion. Similarly, photosynthetic attributes and chlorophyll fluorescence kinetic parameters were significantly affected by coexposure. Scanning electron microscopy (SEM) results showed that PS particles had accumulated in the root cortex of the dandelion. Metabolic analysis of dandelion showed that single and combined exposures caused the plant's metabolic pathways to be profoundly reprogrammed. As a consequence, the synthesis and energy metabolism of carbohydrates, amino acids, and organic acids were affected because galactose metabolism, the citric acid cycle, and alanine, aspartic acid and glutamic acid metabolism pathways were significantly altered. These results provide a new perspective on the phytotoxicity and environmental risk assessment of MPs and PAEs in individual or coexposures.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jianxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guangnian Zeng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, China
| | - Ranran Zhou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Li Q, Xu Y, Liu YQ, Qin L. Lipid and Amino Acid Pathway Metabolites Contribute to Cold Tolerance in Quercus wutaishanica. Metabolites 2023; 13:1094. [PMID: 37887419 PMCID: PMC10608989 DOI: 10.3390/metabo13101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Cold is an important environmental stress affecting the growth, productivity, and geographic distribution of tree species. Oaks are important for environmental conservation and wood supplies. Oak metabolites respond to low temperatures (LTs). In this study, the physiological and metabolic responses of two oak species to cold stress were investigated and compared. The field observations and physiological responses showed that Quercus wutaishanica was more cold-tolerant than Q. acutissima. After frost, the one-year-old twigs of Q. wutaishanica had higher survival rates, accumulated more soluble sugar and protein, and exhibited higher superoxide dismutase (SOD) activity than those of Q. acutissima. Untargeted metabolomics identified 102 and 78 differentially accumulated metabolites in Q. acutissima and Q. wutaishanica, respectively, when the leaves were subjected to LTs (4 °C for 24 h). The carbohydrate and flavonoid metabolites contributed to the cold tolerance of both oak species. Succinate, an intermediate in the citric acid cycle, was significantly inhibited by LTs, a potential energy conservation strategy. Unlike Q. acutissima, Q. wutaishanica underwent metabolic reprogramming that significantly increased the contents of phosphatidylcholine, gallic acid, oxidized glutathione, shikimate, and phenylpyruvate under LTs. Our data provide a reference for characterizing the mechanisms involved in the response of oak species to cold temperatures and enhancing the cold tolerance of forest trees.
Collapse
Affiliation(s)
| | | | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Q.L.); (Y.X.)
| | - Li Qin
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Q.L.); (Y.X.)
| |
Collapse
|
5
|
Visschers IGS, Macel M, Peters JL, Sergeeva L, Bruin J, van Dam NM. Exploring Thrips Preference and Resistance in Flowers, Leaves, and Whole Plants of Ten Capsicum Accessions. PLANTS (BASEL, SWITZERLAND) 2023; 12:825. [PMID: 36840173 PMCID: PMC9960883 DOI: 10.3390/plants12040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Capsicum species grown for pepper production suffer severely from thrips damage, urging the identification of natural resistance. Resistance levels are commonly assessed on leaves. However, Capsicum plants are flower-bearing during most of the production season, and thrips also feed on pollen and flower tissues. In order to obtain a comprehensive estimate of elements contributing to thrips resistance, flower tissues should be considered as well. Therefore, we assessed resistance to Frankliniella occidentalis in flowers, leaves, and whole plants of ten Capsicum accessions. Using choice assays, we found that thrips prefer flowers of certain accessions over others. The preference of adult thrips for flowers was positively correlated to trehalose and fructose concentration in anthers as well as to pollen quantity. Resistance measured on leaf discs and thrips population development on whole plants was significantly and positively correlated. Leaf-based resistance thus translates to reduced thrips population development. Results of the flower assays were not significantly correlated with resistance in leaves or on whole plants. This suggests that both leaves and flowers represent a different part of the resistance spectrum and should both be considered for understanding whole plant resistance and the identification of resistant Capsicum varieties.
Collapse
Affiliation(s)
| | - Mirka Macel
- Weerbare Planten, Aeres University of Applied Science, Arboretum West 98, 1325 WB Almere, The Netherlands
| | - Janny L. Peters
- Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan Bruin
- Syngenta, Westeinde 62, 1601 BK Enkhuizen, The Netherlands
| | - Nicole M. van Dam
- Leibniz-Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| |
Collapse
|
6
|
Qaderi MM, Martel AB, Strugnell CA. Environmental Factors Regulate Plant Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030447. [PMID: 36771531 PMCID: PMC9920071 DOI: 10.3390/plants12030447] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 05/31/2023]
Abstract
Abiotic environmental stresses can alter plant metabolism, leading to inhibition or promotion of secondary metabolites. Although the crucial roles of these compounds in plant acclimation and defense are well known, their response to climate change is poorly understood. As the effects of climate change have been increasing, their regulatory aspects on plant secondary metabolism becomes increasingly important. Effects of individual climate change components, including high temperature, elevated carbon dioxide, drought stress, enhanced ultraviolet-B radiation, and their interactions on secondary metabolites, such as phenolics, terpenes, and alkaloids, continue to be studied as evidence mounting. It is important to understand those aspects of secondary metabolites that shape the success of certain plants in the future. This review aims to present and synthesize recent advances in the effects of climate change on secondary metabolism, delving from the molecular aspects to the organismal effects of an increased or decreased concentration of these compounds. A thorough analysis of the current knowledge about the effects of climate change components on plant secondary metabolites should provide us with the required information regarding plant performance under climate change conditions. Further studies should provide more insight into the understanding of multiple environmental factors effects on plant secondary metabolites.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Ashley B. Martel
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Courtney A. Strugnell
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
| |
Collapse
|
7
|
Fan C, Hou M, Si P, Sun H, Zhang K, Bai Z, Wang G, Li C, Liu L, Zhang Y. Response of root and root hair phenotypes of cotton seedlings under high temperature revealed with RhizoPot. FRONTIERS IN PLANT SCIENCE 2022; 13:1007145. [PMID: 36426149 PMCID: PMC9679381 DOI: 10.3389/fpls.2022.1007145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Driven by the increase in its frequency and duration, high temperature weather is increasingly seriously affecting crop development. High temperature inhibits the leaf development, flowering, and pollination of cotton, but its effects on the roots and root hair phenotypes and lifespans remain unclear. Thus, this study selected the two cotton varieties Nongda 601 (ND) and Guoxin 9 (GX) as materials and adopted the RhizoPot, an in situ root observation system, to investigate the effects of high temperature (38°C day and 32°C night) on the growth dynamics of the aboveground parts and root phenotypes of cotton at the seedling stage. The results showed that high temperature reduced the net photosynthetic rate and chlorophyll content, decreased the dry matter accumulation and transfer to the root, and lowered the root-shoot ratio (R/S ratio). The root phenotypes changed significantly under high temperature. After 7 d of high temperature stress, the root lengths of ND and GX decreased by 78.14 mm and 59.64 mm, respectively. Their specific root lengths increased by 79.60% and 66.11%, respectively. Their specific root surface areas increased by 418.70 cm2·g-1 and 433.42 cm2·g-1, respectively. Their proportions of very fine roots increased to 99.26% and 97.16%, respectively. After the removal of high temperature (RHT), their root lengths tended to increase, and their proportions of very fine roots continued to increase. The root hairs of ND and GX were also significantly affected by high temperature. In particular, the root hair densities of ND and GX decreased by 52.53% and 56.25%, respectively. Their average root hair lengths decreased by 96.62% and 74.29%, respectively. Their root hair lifespans decreased by 7 d and 10 d, respectively. After the RHT, their average root hair lengths failed to recover. A principal component analysis indicated that the root architectures were significantly affected by root hair density, average root hair length, specific root length, and specific root surface area under high temperatures. In summary, cotton adapts to high temperature environments by increasing the specific root length, specific root surface area, and the proportions of very fine roots, and reducing the lifespan of root hairs.
Collapse
Affiliation(s)
- Cong Fan
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Mingyu Hou
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Peng Si
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Hongchun Sun
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Ke Zhang
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Zhiying Bai
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Guiyan Wang
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Cundong Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Liantao Liu
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yongjiang Zhang
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Macabuhay A, Arsova B, Watt M, Nagel KA, Lenz H, Putz A, Adels S, Müller-Linow M, Kelm J, Johnson AAT, Walker R, Schaaf G, Roessner U. Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. PLANTS (BASEL, SWITZERLAND) 2022; 11:2927. [PMID: 36365381 PMCID: PMC9655538 DOI: 10.3390/plants11212927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
Collapse
Affiliation(s)
- Allene Macabuhay
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Borjana Arsova
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kerstin A. Nagel
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Henning Lenz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Alexander Putz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Sascha Adels
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Mark Müller-Linow
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Jana Kelm
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | | | - Robert Walker
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
9
|
Gavelienė V, Jurkonienė S, Jankovska-Bortkevič E, Švegždienė D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020192. [PMID: 35050080 PMCID: PMC8777784 DOI: 10.3390/plants11020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 05/31/2023]
Abstract
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species were studied-the invasive Lupinus polyphyllus Lindl. and the non-invasive L. luteus L. The plants were grown in climate chambers under 25 °C and simulated warming at 30 °C conditions. The angle of root curvature towards the vector of gravity was measured at the 48th hour of growth, and during a 4-h period after 90° reorientation. Root biometrical, histological measurements were carried out on 7-day-old and 30-day-old plants. The elevation of 5 °C affected root formation of the two lupine species differently. The initial roots of L. polyphyllus were characterized by worse spatial orientation, reduced growth and reduced mitotic index of root apical meristem at 30 °C compared with 25 °C. The length of primary roots of 30-day-old lupines and the number of lateral roots decreased by 14% and 16%, respectively. More intense root development and formation were observed in non-invasive L. luteus at 30 °C. Our results provide important information on the effect of elevated temperature on the formation of root architecture in two lupine species and suggest that global warming may impact the invasiveness of these species.
Collapse
|
10
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
11
|
Neto VG, de Castro RD, Lima BLS, Vieira CJB, Rosário NL, Fernandez LG, Goudsmit E, Ligterink W, Hilhorst HWM, Ribeiro PR. Modulation of NF-YB genes in Ricinus communis L. in response to different temperatures and developmental stages and functional characterization of RcNF-YB8 as an important regulator of flowering time in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:20-30. [PMID: 34087742 DOI: 10.1016/j.plaphy.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
We have characterized the NF-YB gene family in R. communis using bioinformatics, ecotopic expression, and transcriptomics. A total of 14 RcNF-YB genes were identified in R. communis genome using the conserved NF-YB region. This number is similar to what is found in A. thaliana (13 genes) and O. sativa (11 genes), whereas it is considerably lower to what is found in P. trichocarpa (21 genes) and S. lycopersycum (29 genes). Several regulatory cis-elements were identified in the promoter region, including low temperature, defense and stress, MIC, MYB, and abscisic acid. RcNF-YB is strongly modulated by temperature and it is dependent on the stage of germination. In general, RcNF-YB genes showed higher expression levels in dry seeds and early imbibition (EI) samples as compared to later stages of seedling development. Ectopic expression of RcNF-YB8 reduced flowering time in Arabidopsis reducing the time required for the formation of the first visible bud, the time required to open the first flower, and the time required for the formation of the first visible silique. At the end of the life cycle, ectopic expression of RcNF-YB8 affected plant height (PH), silique length (SL), the total number of silique per plant, 1000-seed weight, and seed size. Our data demonstrated the role of RcNF-YB8 in flowering time, plant height and seed production, and it shows that it may constitute a key target gene for breeding superior R. communis genotypes.
Collapse
Affiliation(s)
- Valdir G Neto
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil; Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Renato D de Castro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil.
| | - Bianca L S Lima
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil
| | - Camilo J B Vieira
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil
| | - Neucastle L Rosário
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil
| | - Luzimar G Fernandez
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil
| | - Eva Goudsmit
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University (WU), Droevendaalsesteeg 1, NL-6708 PB, Wageningen, the Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University (WU), Droevendaalsesteeg 1, NL-6708 PB, Wageningen, the Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University (WU), Droevendaalsesteeg 1, NL-6708 PB, Wageningen, the Netherlands
| | - Paulo R Ribeiro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil; Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil.
| |
Collapse
|
12
|
Wang Y, Liu J, Yang F, Zhou W, Mao S, Lin J, Yan X. Untargeted LC-MS-based metabolomics revealed specific metabolic changes in cotyledons and roots of Ricinus communis during early seedling establishment under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:108-118. [PMID: 33826995 DOI: 10.1016/j.plaphy.2021.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Early seedling development is one of the most crucial period of the plant's life cycle, which is highly susceptible to adverse environmental conditions, especially those impose by salt stress. Castor plant (Ricinus communis) is a famous non-edible oilseed and salt-resistant crop worldwide. However, the specific metabolic responses in the cotyledons and roots of this species during seedling establishment under salt stress are still not clearly understood. In the present study, 16 d castor seedlings were treated with 150 mM NaCl for 6 d, and the metabolite profiling of cotyledons and roots was conducted using liquid chromatography (LC) combined with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The Principal Component Analysis (PCA) results showed that the metabolites were great differed in cotyledons and roots under salt stress. There were 38 differential metabolites, mainly including fatty acid, nucleic acid and organic acids in the cotyledons, but only 19 differential metabolites, mainly including fatty acid and organic acids in the roots under such condition. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that flavone and flavonol biosynthesis, pantothenate and CoA biosynthesis, citrate cycle and carotenoid biosynthesis were the common metabolic pathways in response to salt stress in the two organs. Salt stress caused metabolite process alteration mainly on carbon and nitrogen metabolisms, and the carbon allocation from root to cotyledon was increased. Additionally, changes of amino acids and nucleic acids profiles were only found in the cotyledons, and the roots could enhance the activity of antioxidant enzyme systems to scavenge ROS under salinity. In conclusion, the present research provides an improved understanding on specific physiological changes in the cotyledons in castor early seedlings, and explores their interaction under salt stress.
Collapse
Affiliation(s)
- Yingnan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Junyu Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Fan Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Wanli Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Mao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Jixiang Lin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
14
|
Lei P, Liu Z, Hu Y, Kim H, Liu S, Liu J, Xu L, Li J, Zhao Y, Yu Z, Qu Y, Huang F, Meng F. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. J Biotechnol 2021; 327:106-116. [PMID: 33421510 DOI: 10.1016/j.jbiotec.2020.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
Soil salinity is one of the major environmental factors, influencing agricultural productivity of crops. As a non-edible and ideal oilseed crop, castor (Ricinus communis L.) has great industrial value in biofuel, but molecular mechanisms of salt stress regulation are still unknown. In this study, the differentially expressed genes (DEGs) for differential salt tolerance in two castor cultivar (wild castor : Y, cultivated castor 'Tongbi 5': Z) were identified. 12 libraries were sampled for Illumina high-throughput sequencing to consider 132,426 nonredundant unigenes and 31,221 gene loci. Multiple phytohormones and transcription factors (TFs) were correlated with salt-tolerance and differently enriched in these two genotypes. The type 2C protein phosphatases (PP2C) homologs were all upregulated under salt stress. Importantly, IAA (1), DELLA (1) and Jasmonate zim domain (JAZ) (1) were also identified and found to be differentially expressed. Based on the co-expressed module by regulatory networks and heatmap analysis, ERF/AP2, WRKY and bHLH families were prominently participate in high salt stress response of wild and cultivated castor. Finally, these results highlight that the hub DEGs and families were more accumulated in cultivated castor than those in wild castor, providing novel insights into the salinity adaptive mechanisms and genetic improvement in castor.
Collapse
Affiliation(s)
- Pei Lei
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Zhi Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yanbo Hu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - HyokChol Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Shuo Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jiaqi Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Liping Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yong Zhao
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043, China; Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, 028043, China.
| | - Zhenliang Yu
- Heilongjiang Hydraulic Research Institute, Harbin, 150080, China.
| | - Yanting Qu
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences (HAS), Harbin, 150040, China.
| | - Fenglang Huang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043, China; Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, 028043, China.
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
15
|
YEBOAH A, YING S, LU J, XIE Y, AMOANIMAA-DEDE H, BOATENG KGA, CHEN M, YIN X. Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.19620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | - Yu XIE
- Guangdong Ocean University, China
| | | | | | | | | |
Collapse
|
16
|
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M. Root Growth Adaptation to Climate Change in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:544. [PMID: 32457782 PMCID: PMC7227386 DOI: 10.3389/fpls.2020.00544] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Climate change is threatening crop productivity worldwide and new solutions to adapt crops to these environmental changes are urgently needed. Elevated temperatures driven by climate change affect developmental and physiological plant processes that, ultimately, impact on crop yield and quality. Plant roots are responsible for water and nutrients uptake, but changes in soil temperatures alters this process limiting crop growth. With the predicted variable climatic forecast, the development of an efficient root system better adapted to changing soil and environmental conditions is crucial for enhancing crop productivity. Root traits associated with improved adaptation to rising temperatures are increasingly being analyzed to obtain more suitable crop varieties. In this review, we will summarize the current knowledge about the effect of increasing temperatures on root growth and their impact on crop yield. First, we will describe the main alterations in root architecture that different crops undergo in response to warmer soils. Then, we will outline the main coordinated physiological and metabolic changes taking place in roots and aerial parts that modulate the global response of the plant to increased temperatures. We will discuss on some of the main regulatory mechanisms controlling root adaptation to warmer soils, including the activation of heat and oxidative pathways to prevent damage of root cells and disruption of root growth; the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will also consider that in the field, increasing temperatures are usually associated with other abiotic and biotic stresses such as drought, salinity, nutrient deficiencies, and pathogen infections. We will present recent advances on how the root system is able to integrate and respond to complex and different stimuli in order to adapt to an increasingly changing environment. Finally, we will discuss the new prospects and challenges in this field as well as the more promising pathways for future research.
Collapse
Affiliation(s)
| | | | | | - M. Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
17
|
Du B, Kruse J, Winkler JB, Alfarray S, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Climate and development modulate the metabolome and antioxidative system of date palm leaves. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5959-5969. [PMID: 31375818 PMCID: PMC6812712 DOI: 10.1093/jxb/erz361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Date palms are remarkably tolerant to environmental stresses, but the mechanisms involved remain poorly characterized. Leaf metabolome profiling was therefore performed on mature (ML) and young (YL) leaves of 2-year-old date palm seedlings that had been grown in climate chambers that simulate summer and winter conditions in eastern Saudi Arabia. Cultivation under high temperature (summer climate) resulted in higher YL H2O2 leaf levels despite increases in dehydroascorbate reductase (DHAR) activities. The levels of raffinose and galactinol, tricarboxylic acid cycle intermediates, and total amino acids were higher under these conditions, particularly in YL. The accumulation of unsaturated fatty acids, 9,12-octadecadienoic acid and 9,12,15-octadecatrienoic acid, was lower in ML. In contrast, the amounts of saturated tetradecanoic acid and heptadecanoic acid were increased in YL under summer climate conditions. The accumulation of phenolic compounds was favored under summer conditions, while flavonoids accumulated under lower temperature (winter climate) conditions. YL displayed stronger hydration, lower H2O2 levels, and more negative δ 13C values, indicating effective reactive oxygen species scavenging. These findings, which demonstrate the substantial metabolic adjustments that facilitate tolerance to the high temperatures in YL and ML, suggest that YL may be more responsive to climate change.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | | | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
- King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Seedling Characteristics of Three Oily Species before and after Root Pruning and Transplant. PLANTS 2019; 8:plants8080258. [PMID: 31366150 PMCID: PMC6724410 DOI: 10.3390/plants8080258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/27/2022]
Abstract
Moringa oleifera Lam. (Moringa), Jatropha curcas L. (Jatropha), and Ricinus communis L. (Ricinus) are oily species known by their capability to grow in tropical and subtropical lands. However, there are no studies comparing their growth and recovery capabilities after root pruning and transplant. The purpose of this research was to compare and analyze propagation, growth, and recovery performance of these species after root pruning and transplant. We sowed 100 seeds per species and monitored their survival and growth during a 63-day period; after this, we uprooted the plants and pruned their roots 4.0 cm from their base and transplanted them. We monitored their recovery over 83 days, and then uprooted plants and measured above- and belowground data, digitized their roots in three dimensions, and calculated biomass fractions. With this information, we established allometric equations to estimate biomass fractions and root distribution models. Results indicated that Ricinus had the highest propagation capabilities. Jatropha and Ricinus had similar recovery after root pruning and transplant. Moringa had the lowest propagation and recovery from transplant. Concerning belowground data, root pruning increased root density more than three times in Moringa, four times in Ricinus, and six times in Jatropha. Nevertheless, the three species maintained natural root trays. Ricinus had the longest and thinnest roots and the highest number of branches, followed by Jatropha, and finally Moringa, with the smallest quantity and the shortest and thickest roots. We concluded that the three species recovered well from root pruning and transplant, with improved root structure upon applying these practices.
Collapse
|
19
|
Wang Y, Peng X, Salvato F, Wang Y, Yan X, Zhou Z, Lin J. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:12-25. [PMID: 30593996 DOI: 10.1016/j.ecoenv.2018.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Soil salinity is a major abiotic stress affecting crop growth and productivity. Ricinus communis has good salt tolerance and is also an important oilseed crop throughout the world. Early seedling stage (such as cotyledon expansion stage) is the most vulnerable period for plant under stresses. However, little information exist concerning the physiological and molecular mechanisms of Ricinus communis seedlings and the role play by cotyledons and true leaf under salt stress. In the present study, biomass, photosynthesis, chlorophyll fluorescence, inorganic ions and organic solutes contents were measured, and two dimensional gel electrophoresis-based proteomic technology was employed to identify the differentially abundant proteins in the salt-treated Ricinus communis cotyledons and true leaves. The results showed that salt stress reduced growth and photosynthesis in the seedlings. With increasing salinity, the Na+ content increased and K+ content decreased in both cotyledons and leaves, but the true leaves had lower Na+ and higher K+ contents. Soluble sugars and proline are the primary organic solutes to cope with osmotic stress. In addition, proteomic analysis revealed 30 and 42 differentially accumulated protein spots in castor cotyledon and true leaf under salt stress, respectively. Most of the identified proteins were involved in carbohydrate and energy metabolism, photosynthesis, genetic information process, reactive oxygen species metabolism, amino acid metabolism and cell structure. The physiological and proteomic results highlighted that cotyledons accumulated a large number of Na+ and provided more energy to help true leaves cope with salt stress. The true leaves saved carbon structures to synthesize osmotic substances, and the enhancement of chlorophyll synthesis and electron transfer in true leaves could also maintain photosynthesis under salt stress. These findings provide new insights into different physiological mechanisms in cotyledon and true leaf of Ricinus communis response to salt stress during early seedling stage.
Collapse
Affiliation(s)
- Yingnan Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyuan Peng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China
| | - Fernanda Salvato
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7716, USA
| | - Yongcui Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China
| | - Zhiqiang Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jixiang Lin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China; Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7716, USA.
| |
Collapse
|
20
|
Lamine M, Rahali FZ, Hammami M, Mliki A. Correlative metabolite profiling approach to understand antioxidant and antimicrobial activities from citrus essential oils. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myriam Lamine
- Laboratory of Plant Molecular Physiology Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| | - Fatma Zohra Rahali
- Laboratory of Medicinal and Aromatic Plants Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| | - Majdi Hammami
- Laboratory of Medicinal and Aromatic Plants Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| |
Collapse
|
21
|
Wang Y, Jie W, Peng X, Hua X, Yan X, Zhou Z, Lin J. Physiological Adaptive Strategies of Oil Seed Crop Ricinus communis Early Seedlings (Cotyledon vs. True Leaf) Under Salt and Alkali Stresses: From the Growth, Photosynthesis and Chlorophyll Fluorescence. FRONTIERS IN PLANT SCIENCE 2019; 9:1939. [PMID: 30687346 PMCID: PMC6333677 DOI: 10.3389/fpls.2018.01939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/12/2018] [Indexed: 05/31/2023]
Abstract
Ricinus communis is an important energy crop and is considered as one of the most potential plants for salt-alkali soil improvement in Northeast China. Early seedling stage (such as the cotyledon expansion stage) is always a vulnerable stage but plays a vital role in plant establishment, especially under stress conditions. However, little information exists concerning the function of cotyledon and the relationship between cotyledon and true leaf in the adaptation to salt stress and alkali stress of this species. Here, Ricinus communis seedlings were treated with varying (40, 80 and 120 mM) salinity (NaCl) and alkalinity (NaHCO3), growth, photosynthesis, and chlorophyll fluorescence of cotyledons and true leaves were measured. The results showed that the biomass, photosynthetic parameters, and the qp value of both cotyledons and true leaves decreased with increasing salt-alkali stress, and the decrease in biomass, g s and Tr, of true leaves were much greater than that of cotyledons. Salt-alkali stress only reduced photosynthetic pigments and ΦPSII in cotyledons, but did not affect those in true leaves. Additionally, the Fv/Fm and NPQ between cotyledons and true leaves showed different trends in salinity and alkalinity. The results suggested that alkali stress could cause much more damage to the castor bean seedlings, and different physiological responses and adaptive strategies are found in cotyledons and true leaves under salt-alkali stress. This study will help us develop a better understanding of the adaptation mechanisms of cotyledon and true leaf during early seedling stage of castor bean plant, and also provide new insights into the function of cotyledon in Ricinus communis under salt-alkali stress conditions.
Collapse
Affiliation(s)
- Yingnan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Weiguang Jie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Department of Food and Environment Engineering, Heilongjiang East University, Harbin, China
| | - Xiaoyuan Peng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Xiaoyu Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Xiufeng Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhiqiang Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Jixiang Lin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
22
|
van Wijk R, Zhang Q, Zarza X, Lamers M, Marquez FR, Guardia A, Scuffi D, García-Mata C, Ligterink W, Haring MA, Laxalt AM, Munnik T. Role for Arabidopsis PLC7 in Stomatal Movement, Seed Mucilage Attachment, and Leaf Serration. FRONTIERS IN PLANT SCIENCE 2018; 9:1721. [PMID: 30542361 PMCID: PMC6278229 DOI: 10.3389/fpls.2018.01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 05/24/2023]
Abstract
Phospholipase C (PLC) has been suggested to play important roles in plant stress and development. To increase our understanding of PLC signaling in plants, we have started to analyze knock-out (KO), knock-down (KD) and overexpression mutants of Arabidopsis thaliana, which contains nine PLCs. Earlier, we characterized PLC2, PLC3 and PLC5. Here, the role of PLC7 is functionally addressed. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers, and is also present in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, i.e., plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier characterized phloem-expressed PLC mutants, i.e., plc3 and plc5, no defects in primary- or lateral root development were found for plc7 mutants. Like plc3 mutants, they were less sensitive to ABA during stomatal closure. Double-knockout plc3 plc7 lines were lethal, but plc5 plc7 (plc5/7) double mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. Overexpression of PLC7 enhanced drought tolerance too, similar to what was earlier found for PLC3-and PLC5 overexpression. In vivo 32Pi-labeling of seedlings and treatment with sorbitol to mimic drought stress, revealed stronger PIP2 responses in both drought-tolerant plc5/7 and PLC7-OE mutants. Together, these results show novel functions for PLC in plant stress and development. Potential molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Ringo van Wijk
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Qianqian Zhang
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Xavier Zarza
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Mart Lamers
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | | | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Michel A. Haring
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | - Ana M. Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Santos CMD, Endres L, Ferreira VM, Silva JV, Rolim EV, Wanderley HCL. Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid areas. AN ACAD BRAS CIENC 2017; 89:3015-3029. [PMID: 29236872 DOI: 10.1590/0001-3765201720160729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
Castor bean is one of the crops with potential to provide raw material for production of oils for biodiesel. This species possess adaptive mechanisms for maintaining the water status when subjected to drought stress. A better understanding these mechanisms under field conditions can unravel the survival strategies used by this species. This study aimed to compare the physiological adaptations of Ricinus communis (L.) in two regions with different climates, the semi-arid and semi-humid subject to water stress. The plants showed greater vapor pressure deficit during the driest hours of the day, which contributed to higher values of the leaf temperature and leaf transpiration, however, the VPD(leaf-air) had the greatest effect on plants in the semi-arid region. In both regions, between 12:00 p.m. and 2:00 p.m., the plants presented reduction in the rates of photosynthesis and intracellular CO2 concentration in response to stomatal closure. During the dry season in the semi-arid region, photoinhibition occurred in the leaves of castor bean between 12:00 p.m. and 2:00 p.m. These results suggest that castor bean plants possess compensatory mechanisms for drought tolerance, such as: higher stomatal control and maintenance of photosynthetic capacity, allowing the plant to survive well in soil with low water availability.
Collapse
Affiliation(s)
- Claudiana M Dos Santos
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - Laurício Endres
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - Vilma M Ferreira
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - José V Silva
- Laboratório de Fisiologia Vegetal, Universidade Federal de Alagoas, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| | - Eduardo V Rolim
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - Humberto C L Wanderley
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| |
Collapse
|
24
|
Silva AT, Ligterink W, Hilhorst HWM. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2017; 95:481-496. [PMID: 29046998 PMCID: PMC5688192 DOI: 10.1007/s11103-017-0665-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/04/2017] [Indexed: 05/02/2023]
Abstract
Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.
Collapse
Affiliation(s)
- Anderson Tadeu Silva
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
25
|
Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM. Sugar Transporters in Plants: New Insights and Discoveries. PLANT & CELL PHYSIOLOGY 2017; 58:1442-1460. [PMID: 28922744 DOI: 10.1093/pcp/pcx090] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Carbohydrate partitioning is the process of carbon assimilation and distribution from source tissues, such as leaves, to sink tissues, such as stems, roots and seeds. Sucrose, the primary carbohydrate transported long distance in many plant species, is loaded into the phloem and unloaded into distal sink tissues. However, many factors, both genetic and environmental, influence sucrose metabolism and transport. Therefore, understanding the function and regulation of sugar transporters and sucrose metabolic enzymes is key to improving agriculture. In this review, we highlight recent findings that (i) address the path of phloem loading of sucrose in rice and maize leaves; (ii) discuss the phloem unloading pathways in stems and roots and the sugar transporters putatively involved; (iii) describe how heat and drought stress impact carbohydrate partitioning and phloem transport; (iv) shed light on how plant pathogens hijack sugar transporters to obtain carbohydrates for pathogen survival, and how the plant employs sugar transporters to defend against pathogens; and (v) discuss novel roles for sugar transporters in plant biology. These exciting discoveries and insights provide valuable knowledge that will ultimately help mitigate the impending societal challenges due to global climate change and a growing population by improving crop yield and enhancing renewable energy production.
Collapse
Affiliation(s)
- Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Kristen A Leach
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Thu M Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| | - Rachel A Mertz
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| |
Collapse
|
26
|
|
27
|
Guyonnet JP, Vautrin F, Meiffren G, Labois C, Cantarel AAM, Michalet S, Comte G, Haichar FEZ. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiol Ecol 2017; 93:3003321. [PMID: 28334144 DOI: 10.1093/femsec/fix022] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/17/2017] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to determine (i) whether plant nutritional strategy affects the composition of primary metabolites exuded into the rhizosphere and (ii) the impact of exuded metabolites on denitrification activity in soil. We answered this question by analysing primary metabolite content extracted from the root-adhering soil (RAS) and the roots of three grasses representing different nutrient management strategies: conservative (Festuca paniculata), intermediate (Bromus erectus) and exploitative (Dactylis glomerata). We also investigated the impact of primary metabolites on soil microbial denitrification enzyme activity without carbon addition, comparing for each plant RAS and bulk soils. Our data show that plant nutritional strategy impacts on primary metabolite composition of root extracts or RAS. Further we show, for the first time, that RAS-extracted primary metabolites are probably better indicators to explain plant nutrient strategy than root-extracted ones. In addition, our results show that some primary metabolites present in the RAS were well correlated with soil microbial denitrification activity with positive relationships found between denitrification and the presence of some organic acids and negative ones with the presence of xylose. We demonstrated that the analysis of primary metabolites extracted from the RAS is probably more pertinent to evaluate the impact of plant on soil microbial community functioning.
Collapse
|
28
|
Pereira EP, Braga-de-Souza S, Santos CC, Santos LO, Cerqueira MD, Ribeiro PR, Fernandez LG, Silva VD, Costa SL. Amburana cearensis seed extracts protect PC-12 cells against toxicity induced by glutamate. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Sun CX, Gao XX, Li MQ, Fu JQ, Zhang YL. Plastic responses in the metabolome and functional traits of maize plants to temperature variations. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:249-61. [PMID: 26280133 DOI: 10.1111/plb.12378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/10/2015] [Indexed: 05/21/2023]
Abstract
Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non-polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment.
Collapse
Affiliation(s)
- C X Sun
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - X X Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - M Q Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - J Q Fu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Y L Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
30
|
Ribeiro PR, Willems LAJ, Mutimawurugo MC, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM. Metabolite profiling of Ricinus communis germination at different temperatures provides new insights into thermo-mediated requirements for successful seedling establishment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:180-191. [PMID: 26398802 DOI: 10.1016/j.plantsci.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Ricinus communis seeds germinate to a high percentage and faster at 35 °C than at lower temperatures, but with compromised seedling establishment. However, seedlings are able to cope with high temperatures at later stages of seedling establishment if germination occurred at lower temperatures. Our objective was to assess the biochemical and molecular requirements of R. communis germination for successful seedling establishment at varying temperatures. For that, we performed metabolite profiling (GC-TOF-MS) and measured transcript levels of key genes involved in several energy-generating pathways, such as storage oil mobilization, β-oxidation and gluconeogenesis of seeds germinated at three different temperatures. We identified a thermo-sensitive window during seed germination in which high temperatures compromise seedling development, most likely by down-regulating some energy-generating pathways. Overexpression of malate synthase (MLS) and glycerol kinase (GK) genes resulted in higher starch levels in Nicotiana benthamiana leaves, which highlights the importance of these genes in energy-generating pathways for seedling establishment. Additionally, we showed that GABA, which is a stress-responsive metabolite, accumulated in response to the water content of the seeds during the initial phase of imbibition. Herewith, we provide new insights into the molecular requirements for vigorous seedling growth of R. communis under different environmental conditions.
Collapse
Affiliation(s)
- Paulo R Ribeiro
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil.
| | - Leo A J Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marie-Chantal Mutimawurugo
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Luzimar G Fernandez
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil
| | - Renato D de Castro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
31
|
Ribeiro PR, Ligterink W, Hilhorst HWM. Expression profiles of genes related to carbohydrate metabolism provide new insights into carbohydrate accumulation in seeds and seedlings of Ricinus communis in response to temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:103-112. [PMID: 26254183 DOI: 10.1016/j.plaphy.2015.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Ricinus communis possesses a specific metabolic signature to adjust growth and developmental processes in response to temperature: carbohydrates are accumulated at low temperatures, whereas amino acids are accumulated at elevated temperatures. Our objective was to assess tissue-specific changes in transcript levels of genes related with carbohydrate biosynthesis and catabolism in response to temperature. For that, we measured transcript levels of genes encoding enzymes involved in starch biosynthesis, starch catabolism, and gluconeogenesis in R. communis leaves, roots, and seeds grown at 20 °C and 35 °C. Transcript levels of genes involved in starch catabolism were higher in leaves grown at 20 °C than at 35 °C, but up-regulation of genes involved in starch biosynthesis seems to compensate for this and, therefore, are the likely explanation for higher levels of starch in leaves grown at 20 °C. Higher levels of soluble carbohydrates in leaves grown at 20 °C may be caused by a coordinated increase in transcript level of genes associated with starch catabolism and gluconeogenesis pathways. In roots, transcript levels of genes associated with starch catabolism and gluconeogenesis seem to be enhanced at elevated temperatures. Higher levels of starch in seeds germinated at low temperatures is associated with higher transcript levels of genes involved in starch biosynthesis. Similarly, higher transcript levels of RcPEPCK and RcFBPase are most likely causal for fructose and glucose accumulation in seeds germinated at 20 °C. This study provides important insights in the understanding of the plasticity of R. communis in response to temperature that may apply to other species as well.
Collapse
Affiliation(s)
- Paulo R Ribeiro
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
32
|
Harb J, Alseekh S, Tohge T, Fernie AR. Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. PHYTOCHEMISTRY 2015. [PMID: 26196939 DOI: 10.1016/j.phytochem.2015.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cultivation of grapes in West Bank - Palestine is very old and a large number of grape varieties exist as a result of continuous domestication over thousands of years. This rich biodiversity has highly influenced the consumer behavior of local people, who consume both grape berries and leaves. However, studies that address the contents of health-promoting metabolites in leaves are scarce. Accordingly the aim of this study is to assess metabolite levels in leaves of two grape varieties that were collected from semiarid and temperate regions. Metabolic profiling was conducted using GC-MS and LC-MS. The obtained results show that abiotic stresses in the semiarid region led to clear changes in primary metabolites, in particular in amino acids, which exist at very high levels. By contrast, qualitative and genotype-dependent differences in secondary metabolites were observed, whereas abiotic stresses appear to have negligible effect on the content of these metabolites. The qualitative difference in the flavonol profiles between the two genotypes is most probably related to differential expression of specific genes, in particular flavonol 3-O-rhamnosyltransferase, flavonol-3-O-glycoside pentosyltransferases and flavonol-3-O-d-glucosidel-rhamnosyltransferase by 'Beituni' grape leaves, which led to much higher levels of flavonols with rutinoside, pentoside, and rhamnoside moieties with this genotype.
Collapse
Affiliation(s)
- Jamil Harb
- Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine; Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Saleh Alseekh
- Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Mölekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
33
|
Ribeiro PR, Zanotti RF, Deflers C, Fernandez LG, Castro RDD, Ligterink W, Hilhorst HWM. Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis. JOURNAL OF PLANT PHYSIOLOGY 2015; 185:31-9. [PMID: 26276402 DOI: 10.1016/j.jplph.2015.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 05/28/2023]
Abstract
Ricinus communis is becoming an important crop for oil production, and studying the physiological and biochemical aspects of seedling development may aid in the improvement of crop quality and yield. The objective of this study was to assess the effect of temperature on biomass allocation in two R. communis genotypes. Biomass allocation was assessed by measuring dry weight of roots, stems, and cotyledons of seedlings grown at three different temperatures. Root length of each seedling was measured. Biomass allocation was strongly affected by temperature. Seedlings grown at 25°C and 35°C showed greater biomass than seedlings grown at 20°C. Cotyledon and stem dry weight increased for both genotypes with increasing temperature, whereas root biomass allocation showed a genotype-dependent behavior. Genotype MPA11 showed a continuous increase in root dry weight with increasing temperature, while genotype IAC80 was not able to sustain further root growth at higher temperatures. Based on metabolite and gene expression profiles, genotype MPA11 increases its level of osmoprotectant molecules and transcripts of genes encoding for antioxidant enzymes and heat shock proteins to a higher extent than genotype IAC80. This might be causal for the ability to maintain homeostasis and support root growth at elevated temperatures in genotype MPA11.
Collapse
Affiliation(s)
- Paulo R Ribeiro
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil.
| | - Rafael F Zanotti
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Laboratório de Análise de Sementes, Centro de Ciências Agrárias, Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, Alto Universitário s/n, Guararema, 29500-000 Alegre, Brazil
| | - Carole Deflers
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Luzimar G Fernandez
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil
| | - Renato D de Castro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
34
|
Bittencourt MLF, Ribeiro PR, Franco RLP, Hilhorst HWM, de Castro RD, Fernandez LG. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Res Int 2015; 76:449-457. [PMID: 28455025 DOI: 10.1016/j.foodres.2015.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/27/2015] [Accepted: 07/04/2015] [Indexed: 11/29/2022]
Abstract
The production of propolis by honeybees results from a selective collection of exudates from various plant species and present many potentialities in the pharmaceutical industry. The objective of this study was to investigate the chemical profile of Brazilian propolis, as well as their in vitro antioxidant and antibacterial activities. Gas chromatography-mass spectrometry was applied for chemical profiling of propolis extracts. Total phenolic compounds were quantified by Folin-Ciocalteu and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Antibacterial activity was assessed against Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus. Correlation and multivariate statistical analysis were used to identify potential bioactive compounds in the extracts. Twenty-nine metabolites were identified along with 34 other metabolites that were classified into the following classes: triterpenoids (12), acetyltriterpenoids (3), sesquiterpenes (6), steroids (4), and hydrocarbons (9). The antioxidant capacity (IC50) ranged from 21.50 to 78.77μg/mL, whereas the content of total phenolic compounds ranged from 31.88 to 204.30mg GAE/g of dry weight. Total phenolic compounds and methyl retinoate showed a positive correlation with the antioxidant capacity, whereas tetradecanal, γ-palmitolactone and ethyl hydrocinnamate showed a negative correlation. Different sets of metabolites are shown to correlate with the antibacterial activity of the extracts, which is largely dependent on the type of microorganism. This innovative approach allowed us to identify likely bioactive compounds in the extracts, although the mechanism(s) underlying antibacterial activity encompass a complex trait, which might involve synergistic effects.
Collapse
Affiliation(s)
- Mara L F Bittencourt
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia (LBBB/ICS/UFBA), Av. Reitor Miguel Calmon s/n, 40160-100 Salvador, Bahia, Brazil
| | - Paulo R Ribeiro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia (LBBB/ICS/UFBA), Av. Reitor Miguel Calmon s/n, 40160-100 Salvador, Bahia, Brazil; Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Rosana L P Franco
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia (LBBB/ICS/UFBA), Av. Reitor Miguel Calmon s/n, 40160-100 Salvador, Bahia, Brazil
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Renato D de Castro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia (LBBB/ICS/UFBA), Av. Reitor Miguel Calmon s/n, 40160-100 Salvador, Bahia, Brazil
| | - Luzimar G Fernandez
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia (LBBB/ICS/UFBA), Av. Reitor Miguel Calmon s/n, 40160-100 Salvador, Bahia, Brazil.
| |
Collapse
|