1
|
Li F, Li H, Li S, He Z. A review of Lycium ruthenicum Murray: Geographic distribution tracing, bioactive components, and functional properties. Heliyon 2024; 10:e39566. [PMID: 39524793 PMCID: PMC11550641 DOI: 10.1016/j.heliyon.2024.e39566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Lycium ruthenicum (LRM), endemic to Northwest China, is known as hei goji or black goji and is renowned for its rich bioactive compounds. This review analyzes LRM's geographic distribution and traceability and highlights challenges and future developments in geographical traceability. The work also focuses on LRM's bioactive constituents, especially on anthocyanins and polysaccharides, demonstrating a clear clue for understanding their updated extraction methods, identification, and diverse bioactive activities, including antioxidation, anti-inflammation, and immunomodulation, which is beneficial to developing novel functional foods and new medical materials. Moreover, the paper elucidates advances in the potential application of LRM in food preservation, packaging, and other domains. Notably, we figure out gaps in LRM research, such as traceability technology and the proven efficacy of biological activities. This study provides a foundation for future perspectives on developing nutraceuticals and functional foods, disease treatment supplements, and green food packaging materials by bridging these gaps.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Foods, Chongqing, China
| | - Shaobo Li
- Institute of Food Science and Technology CAAS, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Foods, Chongqing, China
| |
Collapse
|
2
|
Liu Y, Shi W, Zhang D. Development and evaluation of suitable reference genes for qRT-PCR normalization of hybrids derived from Lycium barbarum and Lycium ruthenicum. Mol Biol Rep 2024; 51:922. [PMID: 39162931 DOI: 10.1007/s11033-024-09848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND A correct and stably expressing reference gene is prerequisite for successful quantitative real-time PCR (qRT-PCR). Investigating gene expression profiling during flower development could enhance our understanding of the molecular mechanisms of flower formation and fertility in Lycium. METHODS AND RESULTS In this study, 11 candidate reference genes in Lycium flower development were selected from transcriptome sequence data and evaluated with five traditional housekeeping genes from previous studies based on qRT-PCR amplification. Comparing the expression stability result of 16 candidate genes using GeNorm, NormFinder, BestKeeper, and Delta Ct algorithms, Lba04g01649 and Lba12g02820 were validated as the optimal reference genes for the flower development of Lycium. CONCLUSIONS The reference genes identified in this study would improve the accuracy of qRT-PCR quantification of target gene expression in Lycium flower development and facilitate future functional genomics studies on flower development. This research could lay the foundation for the study of the reproduction and development of the Lycium flower.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Wenjun Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Germplasm Resources on the Qinghai-Tibet Plateau, Xining, 810016, China
- Key Laboratory of Tree Genetics and Breeding of Qinghai Plateau, National Forestry and Grassland Administration, Xining, 810016, China
| | - Defang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Germplasm Resources on the Qinghai-Tibet Plateau, Xining, 810016, China.
- Key Laboratory of Tree Genetics and Breeding of Qinghai Plateau, National Forestry and Grassland Administration, Xining, 810016, China.
| |
Collapse
|
3
|
Zheng G, Wang Z, Wei J, Zhao J, Zhang C, Mi J, Zong Y, Liu G, Wang Y, Xu X, Zeng S. Fruit development and ripening orchestrating the biosynthesis and regulation of Lycium barbarum polysaccharides in goji berry. Int J Biol Macromol 2024; 254:127970. [PMID: 37944729 DOI: 10.1016/j.ijbiomac.2023.127970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lycium barbarum polysaccharides (LBPs) are the primary bioactive components in fruits of L. barbarum, commonly known as goji berry. Despite significant progress in understanding the chemical structures and health benefits of LBPs, the biosynthesis and regulation of LBPs in goji berry remains largely unknown. In this study, physiological indicators, including LBPs, were monitored in goji berry during fruit development and ripening (FDR), suggesting that pectin might be the major component of LBPs with increased content reaching 235.8 mg/g DW. Proteomic and transcriptomic analysis show that 6410 differentially expressed genes (DEGs) and 2052 differentially expressed proteins (DEPs) were identified with overrepresentation of flavonoids and polysaccharides-related gene ontology (GO) terms and KEGG pathways. Weighted gene co-expression network analysis (WGCNA) showed that LBPs coexpress with genes involved in pectin biosynthesis (LbGALS3, LbGATL5, LbQUA1, LbGAUT1/4/7, LbRGGAT1, LbRRT1/7, and LbRHM2), modification (LbSBT1.7), and regulation (LbAP2, LbGL2 LbTLP2, LbERF4, and LbTTG2), as well as with novel transcription factors (LbSPL9 and LbRIN homologs) and glycosyltransferases. Transgenic hairy roots overexpressing LbRIN validated that LbRIN modulate the expression of WGCNA-predicted regulators, including LbERF4, LbTTG2, and LbSPL9. These findings suggest that the biosynthesis and regulation of LBPs is conserved partially to those in Arabidopsis pectin. Taken together, this study provides valuable insights into the biosynthesis and regulation of LBPs, which can facilitate future studies on synthetic biology applications and genetic improvement of LBPs.
Collapse
Affiliation(s)
- Guoqi Zheng
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Zhiqiang Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China
| | - Jinrong Wei
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China.
| | - Juanhong Zhao
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Chen Zhang
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Juanjuan Mi
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, China.
| | - Genhong Liu
- College of Agricultural Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Ying Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China.
| | - Xing Xu
- College of Agricultural Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Shaohua Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
4
|
Zhao J, Xu Y, Li H, Zhu X, Yin Y, Zhang X, Qin X, Zhou J, Duan L, Liang X, Huang T, Zhang B, Wan R, Shi Z, Cao Y, An W. ERF5.1 modulates carotenoid accumulation by interacting with CCD4.1 in Lycium. HORTICULTURE RESEARCH 2023; 10:uhad230. [PMID: 38143484 PMCID: PMC10745278 DOI: 10.1093/hr/uhad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (CCD4) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in Lycium have not been discovered. Here, we annotated LbCCDs from the Lycium reference genome and found that LbCCD4.1 expression was significantly correlated with the carotenoid metabolites during Lycium five fruit developmental stages. Over-expression of LbCCD4.1 in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, LbERF5.1, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing ERF5.1 transgenic NQ's leaves. Over-expression or virus-induced gene silencing of LbERF5.1 in NQ's leaves induced a consistent up- or down-expression, respectively, of LbCCD4.1. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that ERF5.1 interacted with the promoter of CCD4.1 to increase its expression, and LbERF5.1 could bind to any one of the three predicted binding sites in the promoter of LbCCD4.1. A transcriptome analysis of LbERF5.1 and LbCCD4.1 over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between ERF5.1 and CCD4.1, which may be used to enhance carotenoid in Lycium.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yuhui Xu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Haoxia Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xinlei Zhu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiyan Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | | | - Jun Zhou
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhigang Shi
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| |
Collapse
|
5
|
Wei J, Chahel AA, Ni Y, Wei X, Zhao Y, Wang Y, Zeng S. Lycium RIN negatively modulate the biosynthesis of kukoamine A in hairy roots through decreasing thermospermine synthase expression. Int J Biol Macromol 2023; 252:126246. [PMID: 37567520 DOI: 10.1016/j.ijbiomac.2023.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.
Collapse
Affiliation(s)
- Jinrong Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Aysha Arif Chahel
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuan Ni
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300000, PR China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuling Zhao
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Zhang F, Wu Y, Shi X, Wang X, Yin Y. Comparative Analysis of the GATA Transcription Factors in Five Solanaceae Species and Their Responses to Salt Stress in Wolfberry ( Lycium barbarum L.). Genes (Basel) 2023; 14:1943. [PMID: 37895292 PMCID: PMC10606309 DOI: 10.3390/genes14101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.
Collapse
Affiliation(s)
- Fengfeng Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Yan Wu
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Xin Shi
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Xiaojing Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
7
|
Wei F, Wan R, Shi Z, Ma W, Wang H, Chen Y, Bo J, Li Y, An W, Qin K, Cao Y. Transcriptomics and Metabolomics Reveal the Critical Genes of Carotenoid Biosynthesis and Color Formation of Goji ( Lycium barbarum L.) Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:2791. [PMID: 37570945 PMCID: PMC10421014 DOI: 10.3390/plants12152791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Carotenoids in goji (Lycium barbarum L.) have excellent health benefits, but the underlying mechanism of carotenoid synthesis and color formation in goji fruit ripening is still unclear. The present study uses transcriptomics and metabolomics to investigate carotenoid biosynthesis and color formation differences in N1 (red fruit) and N1Y (yellow fruit) at three stages of ripening. Twenty-seven carotenoids were identified in N1 and N1Y fruits during the M1, M2, and M3 periods, with the M2 and M3 periods being critical for the difference in carotenoid and color between N1 and N1Y fruit. Weighted gene co-expression network analysis (WGCNA), gene trend analysis, and correlation analysis suggest that PSY1 and ZDS16 may be important players in the synthesis of carotenoids during goji fruit ripening. Meanwhile, 63 transcription factors (TFs) were identified related to goji fruit carotenoid biosynthesis. Among them, four TFs (CMB1-1, WRKY22-1, WRKY22-3, and RAP2-13-like) may have potential regulatory relationships with PSY1 and ZDS16. This work sheds light on the molecular network of carotenoid synthesis and explains the differences in carotenoid accumulation in different colored goji fruits.
Collapse
Affiliation(s)
- Feng Wei
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
- Ningxia State Farm A&F Technology Central, Yinchuan 750002, China; (W.M.); (H.W.); (Y.C.); (J.B.)
| | - Ru Wan
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
| | - Zhigang Shi
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
| | - Wenli Ma
- Ningxia State Farm A&F Technology Central, Yinchuan 750002, China; (W.M.); (H.W.); (Y.C.); (J.B.)
| | - Hao Wang
- Ningxia State Farm A&F Technology Central, Yinchuan 750002, China; (W.M.); (H.W.); (Y.C.); (J.B.)
| | - Yongwei Chen
- Ningxia State Farm A&F Technology Central, Yinchuan 750002, China; (W.M.); (H.W.); (Y.C.); (J.B.)
| | - Jianhua Bo
- Ningxia State Farm A&F Technology Central, Yinchuan 750002, China; (W.M.); (H.W.); (Y.C.); (J.B.)
| | - Yunxiang Li
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
| | - Wei An
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
| | - Ken Qin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
| | - Youlong Cao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (R.W.); (Y.L.); (W.A.); (K.Q.); (Y.C.)
| |
Collapse
|
8
|
Zeng S, Lin S, Wang Z, Zong Y, Wang Y. The health-promoting anthocyanin petanin in Lycium ruthenicum fruit: a promising natural colorant. Crit Rev Food Sci Nutr 2023; 64:10484-10497. [PMID: 37351558 DOI: 10.1080/10408398.2023.2225192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Acylated anthocyanins derived from dietary sources have gained significant attention due to their health-promoting properties and potential as natural colorants with high stability. However, exploration of the functional food products using acylated anthocyanins enriched in fruits and vegetables remains largely delayed in food industries. The black goji (Lycium ruthencium) fruit (LRF) is a functional food that is extensively used due to its exceptionally high levels of acylated anthocyanins, including petanin. This review provides a comprehensive summary of the functional properties and anthocyanin components of LRF. The stability, bioaccessibility, bioavailability, and bioactivities of petanin, the major anthocyanin component, are compared with those of LRF anthocyanin extracts and other food sources. Furthermore, the biosynthetic pathway and regulatory network of petanin in LRF are proposed and constructed, respectively. The key genes that could be potentially used for metabolic engineering to produce petanin are predicted. Finally, the potential application of petanin derivatives in the food industry is also discussed. This review presents comprehensive and systematic information about the dual-function of petanin as a bioactive component and a promising natural colorant for future food industrial applications.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Poggioni L, Romi M, Guarnieri M, Cai G, Cantini C. Nutraceutical profile of goji (Lycium barbarum L.) berries in relation to environmental conditions and harvesting period. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Yin Y, Shi H, Mi J, Qin X, Zhao J, Zhang D, Guo C, He X, An W, Cao Y, Zhu J, Zhan X. Genome-Wide Identification and Analysis of the BBX Gene Family and Its Role in Carotenoid Biosynthesis in Wolfberry (Lycium barbarum L.). Int J Mol Sci 2022; 23:ijms23158440. [PMID: 35955573 PMCID: PMC9369241 DOI: 10.3390/ijms23158440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
The B-box proteins (BBXs) are a family of zinc-finger transcription factors with one/two B-Box domain(s) and play important roles in plant growth and development as well as stress responses. Wolfberry (Lycium barbarum L.) is an important traditional medicinal and food supplement in China, and its genome has recently been released. However, comprehensive studies of BBX genes in Lycium species are lacking. In this study, 28 LbaBBX genes were identified and classified into five clades by a phylogeny analysis with BBX proteins from Arabidopsis thaliana and the LbaBBXs have similar protein motifs and gene structures. Promoter cis-regulatory element prediction revealed that LbaBBXs might be highly responsive to light, phytohormone, and stress conditions. A synteny analysis indicated that 23, 20, 8, and 5 LbaBBX genes were orthologous to Solanum lycopersicum, Solanum melongena, Capsicum annuum, and Arabidopsis thaliana, respectively. The gene pairs encoding LbaBBX proteins evolved under strong purifying selection. In addition, the carotenoid content and expression patterns of selected LbaBBX genes were analyzed. LbaBBX2 and LbaBBX4 might play key roles in the regulation of zeaxanthin and antheraxanthin biosynthesis. Overall, this study improves our understanding of LbaBBX gene family characteristics and identifies genes involved in the regulation of carotenoid biosynthesis in wolfberry.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Hongyan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
| | - Jia Mi
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Dekai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
| | - Cong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
| | - Xinru He
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 751002, China; (J.M.); (X.Q.); (J.Z.); (X.H.); (W.A.); (Y.C.)
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (J.Z.); (X.Z.)
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.Y.); (H.S.); (D.Z.); (C.G.)
- Correspondence: (J.Z.); (X.Z.)
| |
Collapse
|
11
|
Yisilam G, Wang CX, Xia MQ, Comes HP, Li P, Li J, Tian XM. Phylogeography and Population Genetics Analyses Reveal Evolutionary History of the Desert Resource Plant Lycium ruthenicum (Solanaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:915526. [PMID: 35845630 PMCID: PMC9280156 DOI: 10.3389/fpls.2022.915526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Climactic oscillations during the Quaternary played a significant role in the formation of genetic diversity and historical demography of numerous plant species in northwestern China. In this study, we used 11 simple sequence repeats derived from expressed sequence tag (EST-SSR), two chloroplast DNA (cpDNA) fragments, and ecological niche modeling (ENM) to investigate the population structure and the phylogeographic history of Lycium ruthenicum, a plant species adapted to the climate in northwestern China. We identified 20 chloroplast haplotypes of which two were dominant and widely distributed in almost all populations. The species has high haplotype diversity and low nucleotide diversity based on the cpDNA data. The EST-SSR results showed a high percentage of total genetic variation within populations. Both the cpDNA and EST-SSR results indicated no significant differentiation among populations. By combining the evidence from ENM and demographic analysis, we confirmed that both the last interglacial (LIG) and late-glacial maximum (LGM) climatic fluctuations, aridification might have substantially narrowed the distribution range of this desert species, the southern parts of the Junggar Basin, the Tarim Basin, and the eastern Pamir Plateau were the potential glacial refugia for L. ruthenicum during the late middle Pleistocene to late Pleistocene Period. During the early Holocene, the warm, and humid climate promoted its demographic expansion in northwestern China. This work may provide new insights into the mechanism of formation of plant diversity in this arid region.
Collapse
Affiliation(s)
- Gulbar Yisilam
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen-Xi Wang
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mao-Qin Xia
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hans Peter Comes
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xin-Min Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
12
|
Gong H, Rehman F, Li Z, Liu J, Yang T, Liu J, Li H, Hu Z, Ma Q, Wu Z, A B, Yang M, Gao H, Zhi H, Qu H, Di D, Wang Y. Discrimination of Geographical Origins of Wolfberry ( Lycium barbarum L.) Fruits Using Stable Isotopes, Earth Elements, Free Amino Acids, and Saccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2984-2997. [PMID: 35179024 DOI: 10.1021/acs.jafc.1c06207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To develop sophisticated approaches for distinguishing goji origins, 325 wolfberry fruit samples of a certain cultivar, plant age, drying method, and collection season were gathered from 26 producing areas across Northwest China in 2017 and 2018. We employed 49 indices, including stable isotopes, earth elements, soluble amino acids, and saccharides, to identify the regions of origin of these goji fruits. Analysis of variance (ANOVA) and heritability analysis were used to assess the effects of the environment (producing areas), cultivar, plant age, drying process, and collection season. Samples from the same place can be classified and partially discriminated using principal component analysis (PCA). We were able to distinguish fruits produced in Zhongning County from those produced in the other five producing provinces using orthogonal projection to latent structure-discriminant analysis (OPLS-DA). Calcium (Ca), manganese (Mn), ornithine (Orn), cystine (Cys-Cys), glutamate (Glu), phenylalanine (Phe), phosphoserine (Ps), serine (Ser), lysine (Lys), taurine (Tau), proline (Pro), and tyrosine (Tyr) indices were chosen using S-plots and heritability analysis, and their repeatability was established with samples collected in 2018. The indices selected in this study can distinguish goji berries produced in Zhongning County from fruits originating from five other Provinces with high repeatability, which was validated with various cultivars, drying methods, harvest seasons, and plant ages and with heritability analysis.
Collapse
Affiliation(s)
- Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Zhong Li
- Bairuiyuan Company, Yinchuan 750000, P. R. China
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Tianshun Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Juan Liu
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Haoran Li
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Zhongqing Hu
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Qihu Ma
- Beijing TongRenTang Health-Pharmaceutical (Ningxia) Co., Ltd., Yinchuan 750000, Ningxia, P. R. China
| | - Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Biao A
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Meizhen Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Hongxia Qu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- Center of Resource Chemical and New Material, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266100, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- Gannan Normal University, Ganzhou, Jinagxi 341000, P. R. China
| |
Collapse
|
13
|
Genome-Wide Comparative Analysis of the R2R3-MYB Gene Family in Five Solanaceae Species and Identification of Members Regulating Carotenoid Biosynthesis in Wolfberry. Int J Mol Sci 2022; 23:ijms23042259. [PMID: 35216373 PMCID: PMC8875911 DOI: 10.3390/ijms23042259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The R2R3-MYB is a large gene family involved in various plant functions, including carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry (Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome provides an opportunity for investigating the organization and evolutionary characteristics of R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene family. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expression (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.
Collapse
|
14
|
Shen Q, Zhu T, Wu C, Xu Y, Li C. Ultrasonic-assisted extraction of zeaxanthin from Lycium barbarum L. with composite solvent containing ionic liquid: Experimental and theoretical research. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Sharma R, Raghuvanshi R, Kumar R, Thakur MS, Kumar S, Patel MK, Chaurasia OP, Saxena S. Current findings and future prospective of high-value trans Himalayan medicinal plant Lycium ruthenicum Murr: a systematic review. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-021-00328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
The genus Lycium is commercially known for its nutrient dense goji-berries, among these berries, black goji-berries obtained from Lycium ruthenicum Murr are highly valued and widely used as traditional medicine in trans-himalayan cold desert Ladakh and as functional food in several countries.
Methods
The current collection of data and literature was done by exploring different scientific portals like SciFinder, Google scholar, PubMed, Dictonary of Natural Products, Institute for Scientific Information, Web of Science and Scopus by searching keywords like black goji berry, crystal pearl, and trans-Himalayan plant.
Results
Fruits of L. ruthenicum Murr, are overwhelmingly enriched in anthocyanins, proanthocyanidins, polysaccharides, spermine and spermidine alkaloids. The presence of these bioactive phyto-chemicals has been linked with reported anti-diabetic, anti-inflammatory, anti-fatigue, anti-atherosclerosis and neuro-protective properties of black goji berries. A unique color of these berries makes them exceptional as compared to other berries.
Conclusions
In this article, we have reviewed the variety of high value phytochemicals of Lycium ruthenicum Murr, with a special focus on health promoting anthocyanins which will provide an insight to the readers for exploring novel applications of L. ruthenicum Murr in field of medicine and food industries.
Collapse
|
16
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
17
|
Varghese R, S UK, C GPD, Ramamoorthy S. Unraveling the versatility of CCD4: Metabolic engineering, transcriptomic and computational approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110991. [PMID: 34315605 DOI: 10.1016/j.plantsci.2021.110991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are economically valuable isoprenoids synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Carotenoid cleavage dioxygenases are a vast group of enzymes that specifically cleave thecarotenoids to produce apocarotenoids. Recently, CCDs are a subject of talk because of their contributions to different aspects of plant growth and due to their significance in the production of economically valuable apocarotenoids. Among them, CCD4 stands unique because of its versatility in performing metabolic roles. This review focuses on the multiple functionalities of CCD4 like pigmentation, volatile apocarotenoid production, stress responses, etc. Interestingly, through our literature survey we arrived at a conclusion that CCD4 could perform functions of other carotenoid cleaving enzymes.The metabolic engineering, transcriptomic, and computational approaches adopted to reveal the contributions of CCD4 were also considered here for the study.Phylogenetic analysis was performed to delve into the evolutionary relationships of CCD4 in different plant groups. A tree of 81CCD genes from 64 plant species was constructed, signifying the presence of well-conserved families. Gene structures were illustrated and the difference in the number and position of exons could be considered as a factor behind functional versatility and substrate tolerance of CCD4 in different plants.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Udhaya Kumar S
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
18
|
Chen Z, Li J, Hou N, Zhang Y, Qiao Y. TCM-Blast for traditional Chinese medicine genome alignment with integrated resources. BMC PLANT BIOLOGY 2021; 21:339. [PMID: 34273956 PMCID: PMC8285853 DOI: 10.1186/s12870-021-03096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The traditional Chinese medicine (TCM) genome project aims to reveal the genetic information and regulatory network of herbal medicines, and to clarify their molecular mechanisms in the prevention and treatment of human diseases. Moreover, the TCM genome could provide the basis for the discovery of the functional genes of active ingredients in TCM, and for the breeding and improvement of TCM. The traditional Chinese Medicine Basic Local Alignment Search Tool (TCM-Blast) is a web interface for TCM protein and DNA sequence similarity searches. It contains approximately 40G of genome data on TCMs, including protein and DNA sequence for 36 TCMs with high medical value.The development of a publicly accessible TCM genome alignment database hosted on the TCM-Blast website ( http://viroblast.pungentdb.org.cn/TCM-Blast/viroblast.php ) has expanded to query multiple sequence databases to obtain TCM genome data, and provide user-friendly output for easy analysis and browsing of BLAST results. The genome sequencing of TCMs helps to elucidate the biosynthetic pathways of important secondary metabolites and provides an essential resource for gene discovery studies and molecular breeding. The TCMs genome provides a valuable resource for the investigation of novel bioactive compounds and drugs from these TCMs under the guidance of TCM clinical practice. Our database could be expanded to other TCMs after the determination of their genome data.
Collapse
Affiliation(s)
- Zhao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Jing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Ning Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Yanling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Yanjiang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| |
Collapse
|
19
|
Abstract
Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.
Collapse
|
20
|
Integrative Analysis of Transcriptome and Metabolome Reveals Salt Stress Orchestrating the Accumulation of Specialized Metabolites in Lycium barbarum L. Fruit. Int J Mol Sci 2021; 22:ijms22094414. [PMID: 33922536 PMCID: PMC8122869 DOI: 10.3390/ijms22094414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Salt stress seriously affects yield and quality of crops. The fruit of Lycium barbarum (LBF) is extensively used as functional food due to its rich nutrient components. It remains unclear how salt stress influences the quality of LBF. In this study, we identified 71 differentially accumulated metabolites (DAMs) and 1396 differentially expressed genes (DEGs) among ripe LBF with and without 300 mM of NaCl treatment. Pearson correlation analysis indicated that the metabolomic changes caused by salt stress were strongly related to oxidoreductases; hydrolases; and modifying enzymes, in particular, acyltransferases, methyltransferases and glycosyltransferases. Further analysis revealed that salt stress facilitated flavonoid glycosylation and carotenoid esterification by boosting the expression of structural genes in the biosynthetic pathways. These results suggested that salt stress prompts the modification of flavonoids and carotenoids to alleviate ROS damage, which in turn improves the quality of LBF. Our results lay a solid foundation for uncovering the underlying molecular mechanism of salt stress orchestrating LBF quality, and the candidate genes identified will be a valuable gene resource for genetic improvement of L. barbarum.
Collapse
|
21
|
Zhang J, Jia G, Wanbin Z, Minghao J, Wei Y, Hao J, Liu X, Gan Z, Sun A. Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhurba M, Vergun O, Klymenko S, Szot I. Biochemical characterization of fruits of Lycium spp. in Ukraine. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fruits of Lycium possess therapeutic properties due to which they are used in traditional and folk medicine and can be used as a kind of functional food. The objective of this study was to evaluate the biochemical characterization of Lycium L. (L. barbarum L., L. chinense Mill. and L. truncatum Y. C. Wang) fruits for 16 cultivars and varieties from the collections in the M. M. Gryshko National Botanical Garden of NAS of Ukraine (Kyiv). This study was aimed at determining the concentration of nutrients in the Lycium fruits. Individual genotypes of three Lycium species: L. barbarum, L.chinense, and L. truncatum, differed in such features as the content of dry matter, sugars, vitamin C, β-carotene, acidity, and tannins in the fruit. Fruits of Lycium spp. are a valuable source of nutrients such as vitamin C (4.38–121.0 mg 100g–1 FW), β-carotene content (1.45–5.52%), and tannin (0.12–1.34%). The sugar content (13.83–20.87%) and acidity of the fruit (0.23–4.62%) meet the consumers' requirements for fresh fruit. The cultivar Amber Sweet (L. chinense) had fruits of which the similarities between biochemical characteristics of different studies genotypes were the lowest. The cv. Amber Sweet was characterized by fruit with high sugar content, very high vitamin C content, average acid content, low tannins and β-carotene content, and the lowest dry matter content. Furthermore, a distinctive feature of the other tested genotypes was the yellow colour of the fruit. The data obtained can be used for further selective work.
Collapse
|
23
|
Jiang Y, Fang Z, Leonard W, Zhang P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104340] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Xiong L, Deng N, Zheng B, Li T, Liu RH. Goji berry ( Lycium spp.) extracts exhibit antiproliferative activity via modulating cell cycle arrest, cell apoptosis, and the p53 signaling pathway. Food Funct 2021; 12:6513-6525. [PMID: 34086026 DOI: 10.1039/d1fo01105g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The phytochemical profiles, antioxidant activity and antiproliferative mechanism of two goji berry varieties were investigated in the present study. In contrast to Lycium barbarum L. (LB), Lycium ruthenicum Murr. (LRM) showed stronger antioxidant activity evaluated by ORAC, PSC and CAA assays, which might be attributed to its higher total phenolics and total flavonoids. However, LB contains greater contents of VE and carotenoids compared to LRM, which may endow LB with other unique functions instead of antioxidant activity. Additionally, high dose LRM showed a stronger capability in terms of cell cycle arrest and cell apoptosis induction of MDA cells with increments of 17.85% cells blocked at the G1 phase and 50.49% cells achieving early apoptosis compared with the control group. Although supplementation with LB increased the number of cells in the G1 phase by 10%, its effect on inducing cell apoptosis was not ideal. Furthermore, both LRM and LB activated the proliferation-related p53 signaling pathway including p53, p21, CDK4, Cyclin E, Bax and Caspase3, but LB failed to downregulate bcl-2 and CDK2 levels, indicating the weaker antiproliferative effect of LB. The present findings indicated LRM and LB as potential candidates for managing the proliferation of cancer cells and improving human health.
Collapse
Affiliation(s)
- Lei Xiong
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Na Deng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China. and Guangdong ERA Food & Life Health Research Institute, Guangzhou, 510670, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA.
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
25
|
Ilić T, Dodevska M, Marčetić M, Božić D, Kodranov I, Vidović B. Chemical Characterization, Antioxidant and Antimicrobial Properties of Goji Berries Cultivated in Serbia. Foods 2020; 9:foods9111614. [PMID: 33172053 PMCID: PMC7694608 DOI: 10.3390/foods9111614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Since the fruits of Lycium L. species (Fructus lycii, goji berries) are promoted as a “superfood” with plenty of health benefits, there is extensive research interest in their nutritional and phytochemical composition. In the present study, the nutritional value, minerals, fatty acid composition, and bioactive compounds of L. barbarum L., red, yellow, and black goji berry (L. ruthenicum Murray.) cultivated in Serbia were investigated. Antioxidant and antimicrobial properties of their methanol extracts were assessed. Red goji berry had the highest content of fats, dietary fiber, iron, total carotenoids, and 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG). The yellow goji berry extract showed the highest level of flavonoids and the most prominent antimicrobial (especially against Gram-negative bacteria) properties. The highest total phenolic content and the most potent antioxidant activity were observed for the extract of black goji berry. Therefore, all goji berries could be a valuable source of bioactive compounds in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Tijana Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Margarita Dodevska
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”, Center for Hygiene and Human Ecology, 11000 Belgrade, Serbia;
| | - Mirjana Marčetić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Dragana Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Igor Kodranov
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojana Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
- Correspondence: ; Tel.: +381-11-39-51-395; Fax: +381-11-39-72-840
| |
Collapse
|
26
|
Zhou Y, Lai Y, Chen Z, Qu H, Ma S, Wang Y, Jiang Y. Evolution of physiological characteristics and nutritional quality in fresh goji berry (
Lycium barbarum
) stored under different temperatures. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yijie Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization Center of Economic Botany Core Botanical Gardens South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Yongkai Lai
- Department of Biotechnology Jinan University Guangzhou PR China
| | - Zhongsuzhi Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization Center of Economic Botany Core Botanical Gardens South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization Center of Economic Botany Core Botanical Gardens South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Sanmei Ma
- Department of Biotechnology Jinan University Guangzhou PR China
| | - Ying Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization Center of Economic Botany Core Botanical Gardens South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization Center of Economic Botany Core Botanical Gardens South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| |
Collapse
|
27
|
Long JT, Fan HX, Zhou ZQ, Sun WY, Li QW, Wang Y, Ma M, Gao H, Zhi H. The major zeaxanthin dipalmitate derivatives from wolfberry. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:746-753. [PMID: 31163996 DOI: 10.1080/10286020.2019.1621855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Zeaxanthin dipalmitate (3) and two zeaxanthin dipalmitate derivatives, including one new compound (1), were obtained from wolfberry [the fruit of Lycium barbarum L. (Solanaceae)]. Their structures were unambiguously elucidated by spectroscopic analyses. Compound 2 is isolated from the genus Lycium for the first time, and its 1D/2D NMR data are firstly reported. All the compounds belong to carotenoids which are a kind of major bioactive constituents in wolfberry and are also responsible for wolfberry's red color.
Collapse
Affiliation(s)
- Jia-Tang Long
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hong-Xia Fan
- College of Traditional Chinese Medicine/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Qing-Wen Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Min Ma
- College of Traditional Chinese Medicine/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
28
|
Zhao J, Li H, Yin Y, An W, Qin X, Wang Y, Fan Y, Li Y, Cao Y. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns. FEBS Open Bio 2020; 10:1550-1567. [PMID: 32533890 PMCID: PMC7396440 DOI: 10.1002/2211-5463.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022] Open
Abstract
Goji berries have been used as food and medicine for millennia. Due to their high morphological similarity, fruits of two distinct species belonging to the family Solanaceae, Lycium barbarum (LB) and Lycium chinense (Chinese boxthorn), are usually marketed together as goji berries, but nearly 90% of all commercially available goji berries belong to the former species. A third closely related species, a wild perennial thorny shrub native to north‐western China, Lycium ruthenicum (LR; known as Russian box thorn, and its fruit as black wolfberry), has become a popular choice for combating soil desertification and for alleviating soil salinity/alkalinity due to its high resistance to the harsh environment of saline deserts. Despite the phylogenetic closeness of LB and LR, their fruits are very different. To identify the genes involved in these distinct phenotypes, here we studied expression patterns of 22 transcriptional regulators that may be crucial drivers of these differences during five developmental stages. BAM1 may contribute to higher sugar content in LB. High expression of BFRUCT in ripe LR is likely to be an evolutionary adaptation to fruit ripening in an arid environment. Two arogenate dehydratase paralogues, CHS and LDOX, are probably crucial elements of the mechanism by which LR accumulates much higher levels of anthocyanin. DXS2 (carotenoid accumulation in LB) and CCD4 (carotenoid degradation in ripe LR fruit) may be crucial drivers behind the much higher content of carotenoids in LB. EIL3 and ERF5 are two transcription factors that may contribute to the higher abiotic stress resilience of LR. GATA22‐like appears to have more important roles in growth than ripening in LB fruit and vice versa in LR. HAT5‐like exhibited opposite temporal patterns in two fruits: high in the 1st stage in LB and high in the 5th stage in LR. PED1 was expressed at a much lower level in LR. Finally, we hypothesise that the poorly functionally characterised SCL32 gene may play a part in the increased resistance to environmental stress of LR. We suggest that BAM1, BFRUCT, EIL3, ERF5, ADT paralogues (for functional redundancy), PED1, GATA22‐like, HAT5‐like and SCL32 warrant further functional studies.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Wei An
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Xiaoya Qin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yajun Wang
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yunfang Fan
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yanlong Li
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Youlong Cao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| |
Collapse
|
29
|
Rao S, Tian Y, Xia X, Li Y, Chen J. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. HORTICULTURE RESEARCH 2020; 7:40. [PMID: 32257226 PMCID: PMC7109118 DOI: 10.1038/s41438-020-0260-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 05/05/2023]
Abstract
Plants are continuously affected by unfavorable external stimuli, which influences their productivity and growth. Differences in gene composition and expression patterns lead homologous polyploid plants to exhibit different physiological phenomena, among which enhanced environmental adaptability is a powerful phenotype conferred by polyploidization. The mechanisms underlying the differences in stress tolerance between diploids and autotetraploids at the molecular level remain unclear. In this research, a full-length transcription profile obtained via the single-molecule real-time (SMRT) sequencing of high-quality single RNA molecules for use as background was combined with next-generation transcriptome and proteome technologies to probe the variation in the molecular mechanisms of autotetraploids. Tetraploids exhibited an increase in ABA content of 78.4% under natural conditions and a superior stress-resistance phenotype under severe drought stress compared with diploids. The substantial differences in the transcriptome profiles observed between diploids and autotetraploids under normal growth conditions were mainly related to ABA biosynthesis and signal transduction pathways, and 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2, which encode key synthetic enzymes, were significantly upregulated. The increased expression of the ABRE-binding factor 5-like (ABF5-like) gene was a pivotal factor in promoting the activation of the ABA signaling pathway and downstream target genes. In addition, ABA strongly induced the expression of osmotic proteins to increase the stress tolerance of the plants at the translational level. We consider the intrinsic mechanisms by which ABA affects drought resistance in tetraploids and diploids to understand the physiological and molecular mechanisms that enhance abiotic stress tolerance in polyploid plants.
Collapse
Affiliation(s)
- Shupei Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yuru Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Jinhuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| |
Collapse
|
30
|
Cui Y, Zhou J, Chen X, Xu Z, Wang Y, Sun W, Song J, Yao H. Complete chloroplast genome and comparative analysis of three Lycium (Solanaceae) species with medicinal and edible properties. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Ultrasonic-assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L. Food Chem 2019; 310:125854. [PMID: 31784067 DOI: 10.1016/j.foodchem.2019.125854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Zeaxanthin dipalmitate (ZDP) is a major non-saponified carotenoid in fully ripe fruits of Lycium barbarum L. In the present study, response surface methodology was used to optimize the ultrasonic-assisted extraction (UAE) conditions of carotenoids from the fruits of L. barbarum, and the optimal extraction conditions were determined as follows: ultrasonic power of 360 W, ultrasonic time of 40 min and the ratio of extraction solvent to sample of 30 mL/g. An actual value of ZDP content of 5.40 mg/g and short extraction time indicated the efficiency of UAE. Furthermore, a promising high-speed counter-current chromatography (HSCCC) method was established for the purification of ZDP from the fruits of L. barbarum. With a developed two-phase solvent system composed of n-hexane/dichloromethane/acetonitrile (10/3/7, v/v/v), ZDP with a purity of higher than 95% was successfully isolated from the crude extract. This is the first report on the purification of ZDP by using HSCCC.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Zhijuan Zhang
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoying Li
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
32
|
Impact of Nitrogen Fertilizer Levels on Metabolite Profiling of the Lycium barbarum L. Fruit. Molecules 2019; 24:molecules24213879. [PMID: 31661883 PMCID: PMC6864581 DOI: 10.3390/molecules24213879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
The yield and quality of goji (Lycium barbarum L.) fruit are heavily dependent on fertilizer, especially the availability of nitrogen, phosphorus, and potassium (N, P, and K, respectively). In this study, we performed a metabolomic analysis of the response of goji berry to nitrogen fertilizer levels using an Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method. There was no significant difference in the fruit yield or the commodity grade between N0 (42.5 g/plant), N1 (85 g/plant), and N2 (127.5 g/plant). The primary nutrients of the goji berry changed with an increasing nitrogen fertilization. Comparative metabolomic profiling of three nitrogen levels resulted in the identification of 612 metabolites, including amino acids, flavonoids, carbohydrates, organic acids, and lipids/alcohols, among others, of which 53 metabolites (lipids, fatty acids, organic acids, and phenolamides) demonstrated significant changes. These results provide new insights into the molecular mechanisms of the relationship between yield and quality of goji berry and nitrogen fertilizer.
Collapse
|
33
|
Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.103916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Zeaxanthin Dipalmitate in the Treatment of Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1475163. [PMID: 31531108 PMCID: PMC6721266 DOI: 10.1155/2019/1475163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Goji berry, Lycium barbarum, has been widely used in traditional Chinese medicine (TCM), but its properties have not been studied until recently. The fruit is a major source of zeaxanthin dipalmitate (ZD), a xanthophyll carotenoid shown to benefit the liver. Liver disease is one of the most prevalent diseases in the world. Some conditions, such as chronic hepatitis B virus, liver cirrhosis, and hepatocellular carcinoma, remain incurable. Managing them can constitute an economic burden for patients and healthcare systems. Hence, development of more effective pharmacological drugs is warranted. Studies have shown the hepatoprotective, antifibrotic, antioxidant, anti-inflammatory, antiapoptotic, antitumor, and chemopreventive properties of ZD. These findings suggest that ZD-based drugs could hold promise for many liver disorders. In this paper, we reviewed the current literature regarding the therapeutic effects of ZD in the treatment of liver disease.
Collapse
|
35
|
Li G, Zhao J, Qin B, Yin Y, An W, Mu Z, Cao Y. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. BMC PLANT BIOLOGY 2019; 19:317. [PMID: 31307384 PMCID: PMC6631627 DOI: 10.1186/s12870-019-1931-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/09/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Anthocyanins, which are colored pigments, have long been used as food and pharmaceutical ingredients due to their potential health benefits, but the intermediate signals through which environmental or developmental cues regulate anthocyanin biosynthesis remains poorly understood. Fleshy fruits have become a good system for studying the regulation of anthocyanin biosynthesis, and exploring the mechanism underlying pigment metabolism is valuable for controlling fruit ripening. RESULTS The present study revealed that ABA accumulated during Lycium fruit ripening, and this accumulation was positively correlated with the anthocyanin contents and the LbNCED1 transcript levels. The application of exogenous ABA and of the ABA biosynthesis inhibitor fluridon increased and decreased the content of anthocyanins in Lycium fruit, respectively. This is the first report to show that ABA promotes the accumulation of anthocyanins in Lycium fruits. The variations in the anthocyanin content were consistent with the variations in the expression of the genes encoding the MYB-bHLH-WD40 transcription factor complex or anthocyanin biosynthesis-related enzymes. Virus-induced LbNCED1 gene silencing significantly slowed fruit coloration and decreased both anthocyanin and ABA accumulation during Lycium fruit ripening. An qRT-PCR analysis showed that LbNCED1 gene silencing clearly reduced the transcript levels of both structural and regulatory genes in the flavonoid biosynthetic pathway. CONCLUSIONS Based on the results, a model of ABA-mediated development-dependent anthocyanin biosynthesis and fruit coloration during Lycium fruit maturation was proposed. In this model, the developmental cues transcriptionally activates LbNCED1 and thus enhances accumulation of the phytohormone ABA, and the accumulated ABA stimulates transcription of the MYB-bHLH-WD40 transcription factor complex to upregulate the expression of structural genes in the flavonoid biosynthetic pathway and thereby promoting anthocyanin production and fruit coloration. Our results provide a valuable strategy that could be used in practice to regulate the ripening and quality of fresh fruit in medicinal and edible plants by modifying the phytohormone ABA.
Collapse
Affiliation(s)
- Gen Li
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
| | - Beibei Qin
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
| |
Collapse
|
36
|
Lu Y, Guo S, Zhang F, Yan H, Qian DW, Wang HQ, Jin L, Duan JA. Comparison of Functional Components and Antioxidant Activity of Lycium barbarum L. Fruits from Different Regions in China. Molecules 2019; 24:molecules24122228. [PMID: 31207958 PMCID: PMC6632000 DOI: 10.3390/molecules24122228] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The fruit of Lycium barbarum L. (FLB) has been used as medicines and functional foods for more than 2000 years in East Asia. In this study, carotenoid, phenolic, flavonoid, and polysaccharide contents as well as the antioxidant activities of FLB from 13 different regions in China from a total of 78 samples were analyzed. The results showed that total carotenoid contents ranged from 12.93 to 25.35 mg β-carotene equivalents/g DW. Zeaxanthin dipalmitate was the predominant carotenoid (4.260–10.07 mg/g DW) in FLB. The total phenolic, total flavonoid, and total polysaccharide contents ranged from 6.899 to 8.253 mg gallic acid equivalents/g DW, 3.177 to 6.144 mg rutin equivalents/g DW, and 23.62 to 42.45 mg/g DW, respectively. Rutin content ranged from 0.1812 to 0.4391 mg/g DW, and ferulic acid content ranged from 0.0994 to 0.1726 mg/g DW. All of these FLB could be divided into two clusters with PCA analysis, and both individual carotenoids and total carotenoid contents could be used as markers for regional characterization. The phenolic components were the main substance for the antioxidant activity of FLB. Considering the functional component and antioxidant activities, FLB produced in Guyuan of Ningxia was the closest to Daodi herbs (Zhongwei of Ningxia), which is commercially available high quality FLB. The results of this study could provide guidance for comprehensive applications of FLB production in different regions.
Collapse
Affiliation(s)
- Youyuan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Han-Qing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750021, China.
| | - Ling Jin
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
37
|
Wang Q, Zeng S, Wu X, Lei H, Wang Y, Tang H. Interspecies Developmental Differences in Metabonomic Phenotypes of Lycium ruthenicum and L. barbarum Fruits. J Proteome Res 2018; 17:3223-3236. [DOI: 10.1021/acs.jproteome.8b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qi Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
38
|
Chen JH, Zhang DZ, Zhang C, Xu ML, Yin WL. Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum. J Zhejiang Univ Sci B 2018; 18:1002-1021. [PMID: 29119738 DOI: 10.1631/jzus.b1700135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lycium ruthenicum is a perennial shrub species that has attracted considerable interest in recent years owing to its nutritional value and ability to thrive in a harsh environment. However, only extremely limited transcriptomic and genomic data related to this species can be found in public databases, thereby limiting breeding research and molecular function analysis. In this study, we characterized the physiological and biochemical responses to saline-alkaline mixed stress by measuring photochemical efficiency, chlorophyll content, and protective enzyme activity. We performed global transcriptomic profiling analysis using the Illumina platform. After optimizing the assembly, a total of 68 063 unique transcript sequences with an average length of 877 bp were obtained. Among these sequences, 4096 unigenes were upregulated and 4381 unigenes were down-regulated after saline-alkaline mixed treatment. The most abundant transcripts and over-represented items were assigned to gene ontology (GO) terms or Kyoto Encyclopedia of Genes and the Genomes (KEGG) categories for overall unigenes, and differentially expressed unigenes were analyzed in detail. Based on this set of RNA-sequencing data, a total of 9216 perfect potential simple sequence repeats (SSRs) were identified within 7940 unigenes with a frequency of 1/6.48 kb. A total of 77 primer pairs were synthesized and examined in wet-laboratory experiments, of which 68 loci (88.3%) were successfully amplified with specific products. Eleven pairs of polymorphic primers were verified in 225 individuals from nine populations. The inbreeding coefficient and the polymorphism information content value ranged from 0.011 to 0.179 and from 0.1112 to 0.6750, respectively. The observed and expected heterozygosities ranged from 0.064 to 0.840 and from 0.115 to 0.726, respectively. Nine populations were clustered into three groups based on a genetic diversity study using these novel markers. Our data will be useful for functional genomic investigations of L. ruthenicum and could be used as a basis for further research on the genetic diversity, genetic differentiation, and gene flow of L. ruthenicum and other closely related species.
Collapse
Affiliation(s)
- Jin-Huan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Dong-Zhi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Mei-Long Xu
- State Key Laboratory of Seedling Bioengineering, Yinchuan750004, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
39
|
Liu Y, Song Y, Zeng S, Patra B, Yuan L, Wang Y. Isolation and characterization of a salt stress-responsive betaine aldehyde dehydrogenase in Lycium ruthenicum Murr. PHYSIOLOGIA PLANTARUM 2018; 163:73-87. [PMID: 29297198 DOI: 10.1111/ppl.12669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
As compatible solute, glycine betaine (GB) plays a significant role in salinity tolerance in GB accumulating plants. Solanaceous crops such as tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum) are salt sensitive and naturally GB non-accumulators. In Solanaceae, only the Lycium genus has been recorded as halophytes in China, and several Lycium species have been reported as GB accumulators. The last biosynthetic step of GB is catalyzed by aminoaldehyde dehydrogenase (AMADH) with betaine aldehyde dehydrogenase (BADH) activities. Failure of GB synthesis in tomato and tobacco was attributed to lack of BADH activity. Here, by comparing the BADH functional residues of AMADHs between the Lycium genus and solanaceous crops, we predict that all studied AMADH1s have low BADH activities while only LbAMADH2 from L. barbarum has high BADH activity. For two AMADHs in L. ruthenicum, results from substrate enzyme assays confirmed low BADH activity of LrAMADH1 and no BADH activity of LrAMADH2. Despite the very low GB contents in L. ruthenicum seedlings (< 0.5 μmol g-1 fresh weight), GB contents in fruits are up to 150 μmol g-1 FW, inferring fruits of L. ruthenicum as good GB sources. In NaCl treated seedlings, accompanied by elevated GB accumulation, expression of LrAMADH1 was up-regulated, indicating response of LrAMADH1 to salt stress in L. ruthenicum. Virus-induced silence of LrAMADH1 leads to less GB accumulation than control, revealing that LrAMADH1 participates in GB synthesis in planta. Collectively, our results show that LrAMADH1 is the bona fide BADH, which responds to salt stress in L. ruthenicum.
Collapse
Affiliation(s)
- Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- The Kentucky Tobacco Research and Development Center, Lexington, KY 40546, USA
| | - Yanli Song
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Barunava Patra
- The Kentucky Tobacco Research and Development Center, Lexington, KY 40546, USA
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- The Kentucky Tobacco Research and Development Center, Lexington, KY 40546, USA
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
40
|
Wang H, Li J, Tao W, Zhang X, Gao X, Yong J, Zhao J, Zhang L, Li Y, Duan JA. Lycium ruthenicum studies: Molecular biology, Phytochemistry and pharmacology. Food Chem 2018; 240:759-766. [DOI: 10.1016/j.foodchem.2017.08.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/29/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
|
41
|
Yisilam G, Mamut R, Li J, Li P, Fu C. Characterization of the complete chloroplast genome of Lycium ruthenicum (Solanaceae). Mitochondrial DNA B Resour 2018; 3:361-362. [PMID: 33490508 PMCID: PMC7800349 DOI: 10.1080/23802359.2018.1450681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Gulbar Yisilam
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Reyim Mamut
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Pan Li
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Antioxidants Distribution in Pulp and Seeds of Black and Red Goji Berries as Affected by Boiling Processing. J FOOD QUALITY 2017. [DOI: 10.1155/2017/3145946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pulp and seeds from four varieties of black goji and two varieties of red goji with different geographical origins were examined for their total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTT), monomeric anthocyanin content (MAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) using colorimetric methods. Contribution rates of pulp and seed to phytochemical contents and overall antioxidant capacities of whole fruits were calculated for each parameter. It was observed that most of the phytochemicals and antioxidant activities were predominantly contributed by the pulp in all six varieties. Boiling led to significant (p< 0.05) losses in the phytochemical content and antioxidant capacity. The average MAC value in black goji was significantly (p< 0.05) higher than that observed for red goji.
Collapse
|
43
|
Li JJ, Gao H, Lv Y, Li MH, Ren CR, So KF, Xiao J. Zeaxanthin dipalmitate alleviates hepatic injury induced by superimposed chronic hepatitis B and non-alcoholic steatohepatitis in non-obese mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:910-923. [PMID: 28816082 DOI: 10.1080/10286020.2017.1349759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
A hepatitis B virus (HBV) transgenic mice model was used to establish the fatty liver superimposed model by feeding the methionine choline-deficient (MCD) diet for 8 weeks, with or without the gavage of 2 mg/kg zeaxanthin dipalmitate (ZD) three times per week. Both wild-type and HBV transgenic mice, with MCD diet, gained typical non-obese non-alcoholic steatohepatitis (NASH) and HBV symptoms. Coadministration with ZD exhibited evident therapeutic effects through alleviating those pathological events. Moreover, long-term vehicle-ZD treatment was found to be safe. Thus, ZD is a promising and safe hepato-protective agent against hepatic injury induced by superimposed HBV and NASH in non-obese mice.
Collapse
Affiliation(s)
- Jing-Jing Li
- a GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University , Guangzhou 510632 , China
| | - Hao Gao
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632 , China
| | - Yi Lv
- c Department of Immunobiology , Institute of Tissue Transplantation and Immunology, Jinan University , Guangzhou 510632 , China
| | - Mian-Huan Li
- c Department of Immunobiology , Institute of Tissue Transplantation and Immunology, Jinan University , Guangzhou 510632 , China
| | - Chao-Ran Ren
- a GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University , Guangzhou 510632 , China
| | - Kwok-Fai So
- a GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University , Guangzhou 510632 , China
| | - Jia Xiao
- c Department of Immunobiology , Institute of Tissue Transplantation and Immunology, Jinan University , Guangzhou 510632 , China
- d State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People's Hospital , Shenzhen 518112 , China
| |
Collapse
|
44
|
Islam T, Yu X, Badwal TS, Xu B. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chem Cent J 2017; 11:59. [PMID: 29086843 PMCID: PMC5483215 DOI: 10.1186/s13065-017-0287-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background The study on phytochemical difference between red and black goji berry is limited. Methods Antioxidant activities and phenolic profiles in terms of total phenol content, total flavonoid contents, condensed tannin content, monomeric anthocyanin content, and total carotenoid content of red goji berry (Lycium barbarum) and black goji berry (L. ruthenicum) were compared using colorimetric assays. Results All goji berries were rich in phenolics. Black goji berry had the highest phenolic, condensed tannin content and monomeric anthocyanin content. Black goji berry samples possessed higher antioxidant capacities than red goji berry, while the red goji berry had the highest carotenoid content. Goji berries exhibited a positive linear correlation between phenolic compounds and antioxidant capacities. The average value of carotenoid content in red goji berry was 233.04 µg/g. Conclusion The phenolics and antioxidant capacities are much higher in black goji berry than red goji berry, while carotenoid content is much higher in red than black.
Collapse
Affiliation(s)
- Tahidul Islam
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, 519085, Guangdong, China
| | - Xiaoming Yu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, 519085, Guangdong, China
| | - Tanvir Singh Badwal
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, 519085, Guangdong, China.
| |
Collapse
|
45
|
Hempel J, Schädle CN, Sprenger J, Heller A, Carle R, Schweiggert RM. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem 2017; 218:525-533. [DOI: 10.1016/j.foodchem.2016.09.065] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
46
|
Gong L, Yang Y, Chen Y, Shi J, Song Y, Zhang H. LbCML38 and LbRH52, two reference genes derived from RNA-Seq data suitable for assessing gene expression in Lycium barbarum L. Sci Rep 2016; 6:37031. [PMID: 27841319 PMCID: PMC5107986 DOI: 10.1038/srep37031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023] Open
Abstract
For quantitative real-time PCR (qRT-PCR) analysis, the key prerequisite that determines result accuracy is the selection of appropriate reference gene(s). Goji (Lycium barbarum L.) is a multi-branched shrub belonging to the Solanaceae family. To date, no systematic screening or evaluation of reference gene(s) in Goji has been performed. In this work, we identified 18 candidate reference genes from the transcriptomic sequencing data of 14 samples of Goji at different developmental stages and under drought stress condition. The expression stability of these candidate genes was rigorously analyzed using qRT-PCR and four different statistical algorithms: geNorm, BestKeeper, NormFinder and RefFinder. Two novel reference genes LbCML38 and LbRH52 showed the most stable expression, whereas the traditionally used reference genes such as LbGAPDH, LbHSP90 and LbTUB showed unstable expression in the tested samples. Expression of a target gene LbMYB1 was also tested and compared using optimal reference genes LbCML38 and LbRH52, mediocre reference gene LbActin7, and poor reference gene LbHSP90 as normalization standards, respectively. As expected, calculation of the target gene expression by normalization against LbCML38, LbActin7 or LbHSP90 showed significant differences. Our findings suggest that LbCML38 and LbRH52 can be used as reference genes for gene expression analysis in Goji.
Collapse
Affiliation(s)
- Lei Gong
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002 China
| | - Yajun Yang
- School of Life Sciences, Ningxia University, 489 Helanshan West Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750021 China
| | - Yuchao Chen
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002 China
| | - Jing Shi
- School of Life Sciences, Ningxia University, 489 Helanshan West Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750021 China
| | - Yuxia Song
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002 China
| | - Hongxia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025 China
| |
Collapse
|
47
|
Ahrazem O, Gómez-Gómez L, Rodrigo MJ, Avalos J, Limón MC. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int J Mol Sci 2016; 17:E1781. [PMID: 27792173 PMCID: PMC5133782 DOI: 10.3390/ijms17111781] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
48
|
Nardi GM, Farias Januario AG, Freire CG, Megiolaro F, Schneider K, Perazzoli MRA, Do Nascimento SR, Gon AC, Mariano LNB, Wagner G, Niero R, Locatelli C. Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation. Pharmacognosy Res 2016; 8:S42-9. [PMID: 27114691 PMCID: PMC4821106 DOI: 10.4103/0974-8490.178642] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. OBJECTIVE The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). MATERIALS AND METHODS Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. RESULTS High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. CONCLUSION These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this study were the investigation and comparison of chemical composition, antioxidant activity "in vitro" and "in vivo" and anti inflammatory property of berry fruits bought dry form.In summary, two main findings can be addressed with this study: (1) Berry fruits presented antioxidant and anti inflammatory activities "in vitro" and "in vivo"; (2) the extracts of GOJI, CRAN, and BLUE modulate the inflammatory process by different mechanisms.
Collapse
Affiliation(s)
- Geisson Marcos Nardi
- Laboratory of Pharmacology, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | | | - Cassio Geremia Freire
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | - Fernanda Megiolaro
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | - Kétlin Schneider
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | | | - Scheley Raap Do Nascimento
- Laboratory of Pharmacology, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | - Ana Cristina Gon
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Luísa Nathália Bolda Mariano
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Glauber Wagner
- Laboratory of Infectious and Parasitic Diseases, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | - Rivaldo Niero
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Claudriana Locatelli
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| |
Collapse
|
49
|
Chen C, Li A. Transcriptome Analysis of Differentially Expressed Genes Involved in Proanthocyanidin Accumulation in the Rhizomes of Fagopyrum dibotrys and an Irradiation-Induced Mutant. Front Physiol 2016; 7:100. [PMID: 27047386 PMCID: PMC4796566 DOI: 10.3389/fphys.2016.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
The rhizome of Fagopyrum dibotrys is a traditional Chinese medicine that has recently gained attention due to substantial findings regarding its bioactive proanthocyanidin (PA) compounds. However, the molecular mechanism underlying PA accumulation in F. dibotrys remains elusive. We previously obtained an irradiation-induced mutant (RM_R) of F. dibotrys that had a higher PA content compared to that of the wild-type (CK_R). The present study aimed to elucidate the molecular mechanism underlying PA accumulation in F. dibotrys by comparing the rhizome transcriptomes of the irradiation-induced mutant and wild-type using RNA-seq analysis. A total of 53,540 unigenes were obtained, of which 29,901 (55.84%) were annotated based on BLAST searches against public databases, and 501 unique sequences were differentially expressed between the two samples, which consisted of 204 up-regulated and 297 down-regulated unigenes. Further analysis showed that the expression patterns of some unigenes encoding enzymes involved in PAs biosynthesis in F. dibotrys rhizomes differed between RM_R and CK_R. In addition, we identified transcription factor families and several cytochrome P450s that may be involved in PA regulation in F. dibotrys. Finally, 12 unigenes that encode PA biosynthetic enzymes were confirmed by qRT-PCR analysis. This study sheds light on the molecular mechanism underlying radiation-mediated flavonoid accumulation and regulation in F. dibotrys rhizomes. These results will also provide a platform for further functional genomic research on this particular species.
Collapse
Affiliation(s)
| | - Ailian Li
- The Cultivation Center, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, China
| |
Collapse
|
50
|
Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. HORTICULTURE RESEARCH 2015; 2:15036. [PMID: 26504578 PMCID: PMC4591682 DOI: 10.1038/hortres.2015.36] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 05/05/2023]
Abstract
Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers.
Collapse
Affiliation(s)
- Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Junxiang Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Divyashree Nageswaran
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|