1
|
Zhang G, Wei B, Ding Q. Identification of differentially expressed miRNAs between male sterile and fertile floral buds in watermelon ( Citrullus lanatus L.) via high-throughput sequencing. 3 Biotech 2024; 14:247. [PMID: 39345966 PMCID: PMC11424599 DOI: 10.1007/s13205-024-04084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
This experiment used floral buds from watermelon genic male sterile dual-purpose lines as materials to explore the differentially expressed miRNAs (DEMs) between male fertile and sterile floral buds of watermelon. Paraffin sectioning technology was employed for a cytological analysis, and small RNA sequencing was used to explore miRNAs related to anther or pollen development. Cytological analysis indicated that the abnormal development of tapetal cells may cause microspore abortion. Small RNA sequencing identified a total of 314 miRNAs (29 known and 285 novel, which belonged to 12 and 61 miRNA families, respectively) in floral buds. Differential expression revealed 36 (5 known and 31 novel) DEMs between male fertile and sterile buds, 7 and 29 of which were up-regulated and down-regulated, respectively. Target genes analysis showed that the 36 DEMs were predicted to target 577 genes, and these targets might participate in various biological processes, such as response to metal ions, floral organ development, stamen development, anther development, pollen maturation, and programmed cell death. Moreover, pathway analysis indicated that these genes were mainly enriched in purine metabolism, starch and sucrose metabolism, RNA transport, and other pathways. In addition, the 55 miRNA-target modules, including 3 known and 16 novel miRNAs with 30 target genes, might be related to anther or pollen development in watermelon. Our findings provide important miRNA-target modules related to watermelon anther or pollen development and can lay the foundation for biological functional analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04084-6.
Collapse
Affiliation(s)
- Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Qian Ding
- College of Floriculture, Weifang Engineering Vocational College, Qingzhou, 262500 Shandong China
| |
Collapse
|
2
|
Naim D, Ahsan A, Imtiaj A, Mollah NH. Genome-wide identification and in silico characterization of major RNAi gene families in date palm (Phoenix dactylifera). BMC Genom Data 2024; 25:31. [PMID: 38491426 PMCID: PMC10943882 DOI: 10.1186/s12863-024-01217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Dates contain various minerals that are essential for good health. The major RNA interference (RNAi) gene families play a vital role in plant growth and development by controlling the expression of protein-coding genes against different biotic and abiotic stresses. However, these gene families for date palm are not yet studied. Therefore, this study has explored major RNAi genes and their characteristics in date palm. RESULTS We have identified 4 PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins from the date palm genome by using AtRNAi genes as query sequences in BLASTp search. Domain analysis of predicted RNAi genes has revealed the Helicase_C, Dicer_dimer, PAZ, RNase III, and Piwi domains that are associated with the gene silencing mechanisms. Most PdRNAi proteins have been found in the nucleus and cytosol associated with the gene silencing actions. The gene ontology (GO) enrichment analysis has revealed some important GO terms including RNA interference, dsRNA fragmentation, and ribonuclease_III activity that are related to the protein-coding gene silencing mechanisms. Gene regulatory network (GRN) analysis has identified PAZ and SNF2 as the transcriptional regulators of PdRNAi genes. Top-ranked 10 microRNAs including Pda-miR156b, Pda-miR396a, Pda-miR166a, Pda-miR167d, and Pda-miR529a have been identified as the key post-transcriptional regulators of PdRNAi genes that are associated with different biotic/abiotic stresses. The cis-acting regulatory element analysis of PdRNAi genes has detected some vital cis-acting elements including ABRE, MBS, MYB, MYC, Box-4, G-box, I-box, and STRE that are linked with different abiotic stresses. CONCLUSION The results of this study might be valuable resources for the improvement of different characteristics in date palm by further studies in wet-lab.
Collapse
Affiliation(s)
- Darun Naim
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Asif Ahsan
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Ahmed Imtiaj
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh.
| |
Collapse
|
3
|
Han X, Tang S, Ma X, Liu W, Yang R, Zhang S, Wang N, Song X, Fu C, Yang R, Cao X. Blocking miR528 function promotes tillering and regrowth in switchgrass. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:712-721. [PMID: 37929781 PMCID: PMC10893936 DOI: 10.1111/pbi.14218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
MiRNAs have been reported to be the key regulators involving a wide range of biological processes in diverse plant species, but their functions in switchgrass, an important biofuel and forage crop, are largely unknown. Here, we reported the novel function of miR528, which has expanded to four copies in switchgrass, in controlling biomass trait of tillering number and regrowth rate after mowing. Blocking miR528 activity by expressing short tandem target mimic (STTM) increased tiller number and regrowth rate after mowing. The quadruple pvmir528 mutant lines derived from genome editing also showed such improved traits. Degradome and RNA-seq analysis, combined with in situ hybridization assay revealed that up-regulation of two miR528 targets coding for Cu/Zn-SOD enzymes, might be responsible for the improved traits of tillering and regrowth in pvmir528 mutant. Additionally, natural variations in the miR528-SOD interaction exist in C3 and C4 monocot species, implying the distinct regulatory strength of the miR528-SOD module during monocot evolution. Overall, our data illuminated a novel role of miR528 in controlling biomass traits and provided a new target for genetic manipulation-mediated crop improvement.
Collapse
Affiliation(s)
- Xiangyan Han
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life SciencesNankai UniversityTianjinChina
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Shanjie Tang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijingChina
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Wenwen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Ruijuan Yang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Shuaibin Zhang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Ningning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life SciencesNankai UniversityTianjinChina
| | - Xianwei Song
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Rongxin Yang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life ScienceNanchang UniversityJiangxiChina
| | - Xiaofeng Cao
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Machado KLDG, Faria DV, Duarte MBS, Silva LAS, de Oliveira TDR, Falcão TCA, Batista DS, Costa MGC, Santa-Catarina C, Silveira V, Romanel E, Otoni WC, Nogueira FTS. Plant age-dependent dynamics of annatto pigment (bixin) biosynthesis in Bixa orellana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1390-1406. [PMID: 37975812 DOI: 10.1093/jxb/erad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Collapse
Affiliation(s)
- Kleiton Lima de Godoy Machado
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Daniele Vidal Faria
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Marcos Bruno Silva Duarte
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Thais Castilho Arruda Falcão
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, 58220-000, Bananeiras, PB, Brazil
| | | | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | |
Collapse
|
5
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
6
|
Alisha A, Szweykowska-Kulinska Z, Sierocka I. Comparative analysis of SPL transcription factors from streptophyte algae and embryophytes reveals evolutionary trajectories of SPL family in streptophytes. Sci Rep 2024; 14:1611. [PMID: 38238367 PMCID: PMC10796333 DOI: 10.1038/s41598-024-51626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode plant-specific transcription factors which are important regulators of diverse plant developmental processes. We took advantage of available genome sequences of streptophyte algae representatives to investigate the relationships of SPL genes between freshwater green algae and land plants. Our analysis showed that streptophyte algae, hornwort and liverwort genomes encode from one to four SPL genes which is the smallest set, in comparison to other land plants studied to date. Based on the phylogenetic analysis, four major SPL phylogenetic groups were distinguished with Group 3 and 4 being sister to Group 1 and 2. Comparative motif analysis revealed conserved protein motifs within each phylogenetic group and unique bryophyte-specific motifs within Group 1 which suggests lineage-specific protein speciation processes. Moreover, the gene structure analysis also indicated the specificity of each by identifying differences in exon-intron structures between the phylogenetic groups, suggesting their evolutionary divergence. Since current understanding of SPL genes mostly arises from seed plants, the presented comparative and phylogenetic analyzes from freshwater green algae and land plants provide new insights on the evolutionary trajectories of the SPL gene family in different classes of streptophytes.
Collapse
Affiliation(s)
- Alisha Alisha
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
7
|
Madhuvanthi CK, Muthulakshmi E, Ghosh Dasgupta M. Integrated mRNA and small RNA sequencing reveals post-transcriptional regulation of the sesquiterpene pathway in Santalum album L. (Indian sandalwood). 3 Biotech 2023; 13:387. [PMID: 37942052 PMCID: PMC10628100 DOI: 10.1007/s13205-023-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Key message In sandalwood, negative pattern of regulation by miRNAs was documented in key genes from the sesquiterpene pathway, with cytochrome P450 reductase showing maximum miRNA targets, followed by sesquisabianene synthase 1. Abstract A comprehensive knowledge of the molecular regulation of sesquiterpene biosynthetic pathway through transcriptomic studies is well established in Santalum album (Indian Sandalwood). However, the post-transcriptional regulation of the genes regulating the pathway is still elusive in this genus. In the present study, an integrated analysis of wood transcriptome and small RNA datasets was conducted to investigate the role of miRNAs in regulating the expression of transcripts involved in santalol production mediated by the sesquiterpene biosynthesis pathway. A total of 24,237 transcripts were annotated from the wood transcriptome, and 45 transcripts were mapped to the sesquiterpenoid pathway. Small RNA data analysis identified 257 conserved miRNAs belonging to 50 families and 7 novel putative miRNAs. Sa-miR156, Sa-miR396, Sa-miR166, and Sa-miR319 had the most number of members among the miRNA families. An integrated analysis predicted 69 miRNA members belonging to 12 families that targeted 12 transcripts from the sesquiterpene pathway, with a maximum of 24 miRNAs regulating cytochrome P450 reductase, followed by sesquisabianene synthase 1, which was targeted by 23 miRNAs. Validation of miRNA-mRNA interaction by qRT-PCR revealed a negative pattern of regulation in six miRNA-mRNA target pairs across wood tissues sourced from four genotypes. The present study provides the first crucial insight into the post-transcriptional regulation of the sesquiterpene pathway genes in the genus Santalum and opens up a new perspective in metabolite engineering for enhanced essential oil production in sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03816-4.
Collapse
Affiliation(s)
- Chandramouli K. Madhuvanthi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| | - Eswaran Muthulakshmi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| |
Collapse
|
8
|
Ferigolo LF, Vicente MH, Correa JPO, Barrera-Rojas CH, Silva EM, Silva GFF, Carvalho A, Peres LEP, Ambrosano GB, Margarido GRA, Sablowski R, Nogueira FTS. Gibberellin and miRNA156-targeted SlSBP genes synergistically regulate tomato floral meristem determinacy and ovary patterning. Development 2023; 150:dev201961. [PMID: 37823342 DOI: 10.1242/dev.201961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Many developmental processes associated with fruit development occur at the floral meristem (FM). Age-regulated microRNA156 (miR156) and gibberellins (GAs) interact to control flowering time, but their interplay in subsequent stages of reproductive development is poorly understood. Here, in tomato (Solanum lycopersicum), we show that GA and miR156-targeted SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL or SBP) genes interact in the tomato FM and ovary patterning. High GA responses or overexpression of miR156 (156OE), which leads to low expression levels of miR156-silenced SBP genes, resulted in enlarged FMs, ovary indeterminacy and fruits with increased locule number. Conversely, low GA responses reduced indeterminacy and locule number, and overexpression of a S. lycopersicum (Sl)SBP15 allele that is miR156 resistant (rSBP15) reduced FM size and locule number. GA responses were partially required for the defects observed in 156OE and rSBP15 fruits. Transcriptome analysis and genetic interactions revealed shared and divergent functions of miR156-targeted SlSBP genes, PROCERA/DELLA and the classical WUSCHEL/CLAVATA pathway, which has been previously associated with meristem size and determinacy. Our findings reveal that the miR156/SlSBP/GA regulatory module is deployed differently depending on developmental stage and create novel opportunities to fine-tune aspects of fruit development that have been important for tomato domestication.
Collapse
Affiliation(s)
- Leticia F Ferigolo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Carlos H Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Airton Carvalho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), 13418-900 Piracicaba, São Paulo, Brazil
| | - Guilherme B Ambrosano
- Department of Genetics, University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Gabriel R A Margarido
- Department of Genetics, University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| |
Collapse
|
9
|
Chen G, Wang Y, Liu X, Duan S, Jiang S, Zhu J, Zhang Y, Hou H. The MdmiR156n Regulates Drought Tolerance and Flavonoid Synthesis in Apple Calli and Arabidopsis. Int J Mol Sci 2023; 24:ijms24076049. [PMID: 37047020 PMCID: PMC10094179 DOI: 10.3390/ijms24076049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Drought is the major abiotic stress that limits apple productivity and quality. To date, many important and divergent regulatory functions of miR156/SBP genes in plant growth and development have been well understood. However, little is known about the role of apple miR156 in response to abiotic stress. To better understand the functions of MdmiR156 in abiotic stress tolerance, we constructed the overexpression (OE) and short tandem target mimic (STTM) vector of MdmiR156n and performed its functional analysis through the characterization of transgenic apple calli and Arabidopsis thaliana plants. In this study, MdmiR156n overexpression significantly increased the length of primary roots and the number of lateral roots in transgenic Arabidopsis plants under drought stress. In addition, MdmiR156n transgenic Arabidopsis and apple calli had a lower electrolyte leakage rate and less cell membrane damage than WT and STTM156 after drought stress. Further studies showed that MdmiR156n overexpression promoted the accumulation of flavonoids and scavenging of reactive oxygen species (ROS) under drought conditions in transgenic apple calli and A. thaliana plants. Taken together, overexpression MdmiR156n enhances drought tolerance by regulating flavonoid synthesis and ROS signaling cascades in apple calli and A. thaliana.
Collapse
Affiliation(s)
- Guo Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaping Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Siyue Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Shenghui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongmin Hou
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, Ismail I. Overview of Repressive miRNA Regulation by Short Tandem Target Mimic (STTM): Applications and Impact on Plant Biology. PLANTS (BASEL, SWITZERLAND) 2023; 12:669. [PMID: 36771753 PMCID: PMC9918958 DOI: 10.3390/plants12030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
Collapse
Affiliation(s)
- Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Abdul Fatah A. Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
11
|
Akhter S, Westrin KJ, Zivi N, Nordal V, Kretzschmar WW, Delhomme N, Street NR, Nilsson O, Emanuelsson O, Sundström JF. Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. THE NEW PHYTOLOGIST 2022; 236:1951-1963. [PMID: 36076311 PMCID: PMC9825996 DOI: 10.1111/nph.18449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies.
Collapse
Affiliation(s)
- Shirin Akhter
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
| | - Karl Johan Westrin
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologySE‐171 65SolnaSweden
| | - Nathan Zivi
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
- Skogforsk, Uppsala Science ParkUppsalaSE‐751 83Sweden
| | - Veronika Nordal
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
| | - Warren W. Kretzschmar
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologySE‐171 65SolnaSweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences (SLU)SE‐901 83UmeåSweden
| | - Nathaniel R. Street
- Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences (SLU)SE‐901 83UmeåSweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologySE‐171 65SolnaSweden
| | - Jens F. Sundström
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
| |
Collapse
|
12
|
Spitzer-Rimon B, Shafran-Tomer H, Gottlieb GH, Doron-Faigenboim A, Zemach H, Kamenetsky-Goldstein R, Flaishman M. Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage. PLANT REPRODUCTION 2022; 35:265-277. [PMID: 36063227 DOI: 10.1007/s00497-022-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel.
| | - Hadas Shafran-Tomer
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Gilad H Gottlieb
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Moshe Flaishman
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| |
Collapse
|
13
|
Yao W, Li C, Fu H, Yang M, Wu H, Ding Y, Li L, Lin S. Genome-Wide Analysis of SQUAMOSA-Promoter-Binding Protein-like Family in Flowering Pleioblastus pygmaeus. Int J Mol Sci 2022; 23:ijms232214035. [PMID: 36430513 PMCID: PMC9695801 DOI: 10.3390/ijms232214035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) family is well-known for playing an important role in plant growth and development, specifically in the reproductive process. Bamboo plants have special reproductive characteristics with a prolonged vegetative phase and uncertain flowering time. However, the underlying functions of SPL genes in reproductive growth are undisclosed in bamboo plants. In the study, a total of 28 SPLs were screened from an ornamental dwarf bamboo species, Pleioblastus pygmaeus. Phylogenetic analysis indicates that 183 SPLs from eight plant species can be classified into nine subfamilies, and the 28 PpSPLs are distributed among eight subfamilies. Homologous analysis shows that as many as 32 pairs of homologous genes were found between P. pygmaeus and rice, and 83 pairs were found between P. pygmaeus and Moso bamboo, whose Ka/Ks values are all <1. MiRNA target prediction reveals that 13 out of the 28 PpSPLs have recognition sites complementary to miRNA156. To screen the SPLs involved in the reproductive growth of bamboo plants, the mRNA abundance of the 28 PpSPLs was profiled in the different tissues of flowering P. pygmaeus and non-flowering plants by RNA-Seq. Moreover, the relative expression level of eight PpSPLs is significantly higher in flowering P. pygmaeus than that in non-flowering plants, which was also validated by RT-qPCR. Combined with phylogenetic analysis and homologous analysis, the eight significant, differentially expressed PpSPLs were identified to be associated with the reproductive process and flower organ development. Among them, there are four potential miRNA156-targeting PpSPLs involved in the flowering process. Of significant interest in the study is the identification of 28 SPLs and the exploration of four key flowering-related SPLs from P. pygmaeus, which provides a theoretic basis for revealing the underlying functions of SPLs in the reproductive growth of bamboo plants.
Collapse
Affiliation(s)
- Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chuanzhe Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Huaian 223001, China
| | - Huajun Fu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Meng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (L.L.); (S.L.)
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (L.L.); (S.L.)
| |
Collapse
|
14
|
He J, Xu C, You C, Mo B, Chen X, Gao L, Liu L. Parallel analysis of RNA ends reveals global microRNA-mediated target RNA cleavage in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:268-283. [PMID: 35962593 PMCID: PMC9804894 DOI: 10.1111/tpj.15943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are endogenous 20-24-nucleotide non-coding RNAs that play important regulatory roles in many biological processes in eukaryotes. miRNAs modulate the expression of target genes at the post-transcriptional level by transcript cleavage or translational inhibition. The identification of miRNA target genes has been extensively investigated in Arabidopsis and rice, but an in-depth global analysis of miRNA-mediated target regulation is still lacking in maize. Here, we report a transcriptome-wide identification of miRNA targets by analyzing parallel analysis of RNA ends (PARE) datasets derived from nine different tissues at five developmental stages of the maize (Zea mays L.) B73 cultivar. In total, 246 targets corresponding to 60 miRNAs from 25 families were identified, including transcription factors and other genes. In addition, PARE analysis revealed that miRNAs guide specific target transcript cleavage in a tissue-preferential manner. Primary transcripts of MIR159c and MIR169e were found to be cleaved by mature miR159 and miR169, respectively, indicating a negative-feedback regulatory mechanism in miRNA biogenesis. Moreover, several miRNA-target gene pairs involved in seed germination were identified and experimentally validated. Our PARE analyses generated a wide and detailed miRNA-target interaction atlas, which provides a valuable resource for investigating the roles of miRNAs and their targets in maize.
Collapse
Affiliation(s)
- Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdong518060China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life SciencesDivision of Life Sciences and Medicine, University of Science and Technology of ChinaHefei230027China
| | - Chi Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdong518060China
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCA92521USA
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life SciencesFudan UniversityShanghai200438China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdong518060China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCA92521USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdong518060China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdong518060China
| |
Collapse
|
15
|
Chen C, Du X. LEAFY COTYLEDONs: Connecting different stages of plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:916831. [PMID: 36119568 PMCID: PMC9470955 DOI: 10.3389/fpls.2022.916831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The life of higher plants progresses successively through embryonic, juvenile, adult, and reproductive stages. LEAFY COTYLEDON (LEC) transcription factors, first discovered in Arabidopsis thaliana several decades ago, play a key role in regulating plant embryonic development, seed maturation, and subsequent growth. Existing studies have demonstrated that LECs together with other transcription factors form a huge and complex regulatory network to regulate many aspects of plant growth and development and respond to environmental stresses. Here, we focus on the role that has received little attention about the LECs linking different developmental stages and generational cycles in plants. We summarize the current fragmented research progress on the LECs role and molecular mechanism in connecting embryonic and vegetative growth periods and the reproductive stage. Furthermore, the possibility of LECs controlling the maintenance and transition of plant growth stages through epigenetic modifications is discussed.
Collapse
|
16
|
Lin F, Chen SP, Lin KH, Chen C, Yao F, Zhong L, Chen W, Kuo YW. Integrated small RNA profiling and degradome analysis of Anthurium andraeanum cultivars with different-colored spathes. JOURNAL OF PLANT RESEARCH 2022; 135:609-626. [PMID: 35534649 DOI: 10.1007/s10265-022-01394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are known to play vital roles in coloration of leaves, flowers, and fruits in plants. However, their functions in spathe coloration are poorly known. Anthurium andraeanum is a popular ornamental plant with various spathe colors. In this study, small RNA and degradome libraries from three A. andraeanum cultivars with different-colored spathes were constructed and sequenced. Illumina sequencing resulted in 94 conserved miRNAs, and 34 novel miRNAs in total were then identified based on precursor sequences and hairpin structures. Differential expression analysis showed that 52, 51, and 49 miRNAs were differentially expressed in comparisons of orange- versus white-colored spathe, purple- versus white-colored spathe, and purple- versus orange-colored spathe, respectively. The expression patterns of miRNAs and their corresponding targets involved in spathe coloration were further analyzed, and displayed that miR156b and miR529 were highly abundant in the spathes with higher anthocyanin content. These two miRNAs co-targeted a gene encoding SPL17, which may function as a negative regulator in anthocyanin accumulation. In addition, miR408 was also abundantly expressed in purple- and orange-colored spathes, and its typical targets were also identified. This comprehensive integrated analysis provides insight into the miRNA-mediated genetic regulation in spathe coloration of A. andraeanum.
Collapse
Affiliation(s)
- Fazhuang Lin
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Shi-Peng Chen
- Institute of Dryland Crops, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Changming Chen
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Fengqin Yao
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Linshan Zhong
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Weiting Chen
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Yun-Wei Kuo
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China.
| |
Collapse
|
17
|
Sai CB, Chidambaranathan P. In-silico evolutionary analysis of plant-OBERON proteins during compatible MYMV infection in respect of improving host resistance. JOURNAL OF PLANT RESEARCH 2022; 135:405-422. [PMID: 35201523 DOI: 10.1007/s10265-022-01372-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Yellow mosaic disease (YMD) of pulses caused by mungbean yellow mosaic virus is a major threat to crop production. An infection that is compatible with regulating and interacting host proteins and the virus causes YMD. Oberon families of proteins OBE1-4 and VIN1-4 are imperative for plants, functions in meristem and vascular development, and were also regulated during compatible disease infection. Furthermore, in-silico expression results suggested the involvement of OBE1 and OBE2 proteins during virus infection of Vigna, Arabidopsis and soybean. Moreover, a common ancestor for the meristem and virus movement related Oberons was inferred through phylogenetic analysis. Protein interaction studies showed three amino acids (Aspartate, glutamate and lysine) in the plant homeodomain (PHD), involved in interaction with the N-terminal region of the virus movement protein and were also conserved in both monocot and dicots. Additionally, major differences in the nuclear localization signal (NLS) showing clade specific conservation and significant variation between dicots and monocots were ascertained in meristem and virus movement related Oberons. Consequently, a combination of PHD, CCD and their interactions with the VPg viral domain increases the susceptibility to YMD. Further, modification in the NLS regions of the viral movement clade Oberons, to knock out allele generation in the OBE1 and OBE2 homologs through genome-editing approaches could be established as alternate strategies for the improvement of host resistance and control yellow mosaic disease in plants, especially in pulse crops.
Collapse
Affiliation(s)
- Cayalvizhi B Sai
- ICAR-National Rice Research Institute (ICAR-NRRI), Cuttack, 753006, India.
| | | |
Collapse
|
18
|
Sai CB, Chidambaranathan P, Samantaray S. Role of histone deacetylase inhibitors in androgenic callus induction of Oryza sativa sub indica, in sight into evolution and mode of action of histone deacetylase genes. Mol Biol Rep 2022; 49:2169-2183. [PMID: 34985645 DOI: 10.1007/s11033-021-07036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The potential of paddy breeding has reached its pinnacle, and hybrids have been the principal research outcome. Hence, our hypothesis was based on improvising the callus induction efficiency of recalcitrant Oryza sativa sub. indica hybrids by intervening into their cellular functions like cell division and histone regulation for the production of doubled haploids, a better output compared to hybrids. METHODOLOGY AND RESULTS Insight into the mechanism of cell division is the foremost concern in altering the same and hence studies on evolution, expression and action of histone deacetylase and its 12 genes (9 HDA and 3 HD-tunin genes) were chosen in the hypothesis. Expression of HDA genes at three stages (anther dehiscence, 1st callusing and second callusing stages) with inhibitor (trichostatin-A) interventions indicated 1st callusing stage as the most important in influencing callus induction and also the genes HDA19, 6, 15 and 5 were the most important. TSA alone had a significant impact on the regulation of the genes HDT 702, HDA19, HDA9, and HDA6. Higher expression of HDA19 and HDA6 was involved in maximizing callus induction; HDA15 had an antagonistic expression compared to HDA19/6 and might be involved in chlorophyll regulation during regeneration. Results of evolutionary analysis on histone deacetylases indicated a long and single lineage of origin denoting its importance in the basic cellular functions. The tubulin deacetylation gene HDA5, which was exclusively found in dicotyledons, had a recent evolutionary history only from terrestrial plants, and also had significant conservation in its motifs and NLS region. CONCLUSION By combating the recalcitrant nature of Indica cultivars, molecular editing on a combination of HDA genes will enhance the callus induction and regeneration efficiency of the next generation of doubled haploids, therby improving the total yield.
Collapse
Affiliation(s)
- Cayalvizhi B Sai
- Lab No 225, Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), CRRI-Post, Cuttack, Odisha, 753006, India.
| | - Parameswaran Chidambaranathan
- Lab No 225, Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), CRRI-Post, Cuttack, Odisha, 753006, India
| | - Sangamitra Samantaray
- Lab No 225, Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), CRRI-Post, Cuttack, Odisha, 753006, India
| |
Collapse
|
19
|
Abdullah SNA, Azzeme AM, Yousefi K. Fine-Tuning Cold Stress Response Through Regulated Cellular Abundance and Mechanistic Actions of Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:850216. [PMID: 35422820 PMCID: PMC9002269 DOI: 10.3389/fpls.2022.850216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
Inflictions caused by cold stress can result in disastrous effects on the productivity and survival of plants. Cold stress response in plants requires crosstalk between multiple signaling pathways including cold, heat, and reactive oxygen species (ROS) signaling networks. CBF, MYB, bHLH, and WRKY families are among the TFs that function as key players in the regulation of cold stress response at the molecular level. This review discusses some of the latest understanding on the regulation of expression and the mechanistic actions of plant TFs to address cold stress response. It was shown that the plant response consists of early and late responses as well as memory reprogramming for long-term protection against cold stress. The regulatory network can be differentiated into CBF-dependent and independent pathways involving different sets of TFs. Post-transcriptional regulation by miRNAs, control during ribosomal translation process, and post-translational regulation involving 26S proteosomic degradation are processes that affect the cellular abundance of key regulatory TFs, which is an important aspect of the regulation for cold acclimation. Therefore, fine-tuning of the regulation by TFs for adjusting to the cold stress condition involving the dynamic action of protein kinases, membrane ion channels, adapters, and modifiers is emphasized in this review.
Collapse
Affiliation(s)
- Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Siti Nor Akmar Abdullah,
| | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kobra Yousefi
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
20
|
Yamaoka S, Inoue K, Araki T. Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. PLANT REPRODUCTION 2021; 34:297-306. [PMID: 34117568 DOI: 10.1007/s00497-021-00419-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha regulates gametangia and gametangiophore development by using evolutionarily conserved regulatory modules that are shared with angiosperm mechanisms regulating flowering and germ cell differentiation. Bryophytes, the earliest diverged lineage of land plants comprised of liverworts, mosses, and hornworts, produce gametes in gametangia, reproductive organs evolutionarily conserved but lost in extant angiosperms. Initiation of gametangium development is dependent on environmental factors such as light, although the underlying mechanisms remain elusive. Recent studies showed that the liverwort Marchantia polymorpha regulates development of gametangia and stalked receptacles called gametangiophores by using conserved regulatory modules which, in angiosperms, are involved in light signaling, microRNA-mediated flowering regulation, and germ cell differentiation. These findings suggest that these modules were acquired by a common ancestor of land plants before divergence of bryophytes, and were later recruited to flowering mechanism in angiosperms.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
21
|
Barrera-Rojas CH, Otoni WC, Nogueira FTS. Shaping the root system: the interplay between miRNA regulatory hubs and phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6822-6835. [PMID: 34259838 DOI: 10.1093/jxb/erab299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The root system commonly lies underground, where it provides anchorage for the aerial organs, as well as nutrients and water. Both endogenous and environmental cues contribute to the establishment of the root system. Among the endogenous cues, microRNAs (miRNAs), transcription factors, and phytohormones modulate root architecture. miRNAs belong to a subset of endogenous hairpin-derived small RNAs that post-transcriptionally control target gene expression, mostly transcription factors, comprising the miRNA regulatory hubs. Phytohormones are signaling molecules involved in most developmental processes. Some miRNAs and targets participate in more than one hormonal pathway, thereby providing new bridges in plant hormonal crosstalk. Unraveling the intricate network of molecular mechanisms underlying the establishment of root systems is a central aspect in the development of novel strategies for plant breeding to increase yield and optimize agricultural land use. In this review, we summarize recent findings describing the molecular mechanisms associated with the interplay between miRNA regulatory hubs and phytohormones to ensure the establishment of a proper root system. We focus on post-embryonic growth and development of primary, lateral, and adventitious roots. In addition, we discuss novel insights for future research on the interaction between miRNAs and phytohormones in root architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Wagner Campos Otoni
- Department of Plant Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
22
|
Distinct Evolutionary Profiles and Functions of microRNA156 and microRNA529 in Land Plants. Int J Mol Sci 2021; 22:ijms222011100. [PMID: 34681763 PMCID: PMC8541648 DOI: 10.3390/ijms222011100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
MicroRNA156 (miR156) and miR529 have high sequence similarity and recognize overlapping sites in the same target genes, SQUAMOSA promoter binding protein-like (SPL or SBP box) genes, making it difficult to accurately distinguish their roles in regulatory networks that affect numerous biological functions. Here, we collected data about miR156 and miR529 family members from representative land plants and performed sequence comparisons, phylogenetic analysis, small RNA sequencing, and parallel analysis of RNA ends (PARE) analysis to dissect their evolutionary and functional differences. Although miR156 and miR529 are highly similar, there are differences in their mismatch-sensitive regions, which are essential for target recognition. In land plants, miR156 precursors are conserved mainly within the hairpin region, whereas miR529 precursors are conserved outside the hairpin region, including both the 5’ and 3’ arms. Phylogenetic analysis showed that MIR156 and MIR529 evolved independently, through divergent evolutionary patterns. The two genes also exhibit different expression patterns, with MIR529 preferentially expressed in reproductive tissues and MIR156 in other tissues. PARE analysis revealed that miR156 and miR529 possess specific targets in addition to common targets in maize, pointing to functional differences between them. Based on our findings, we developed a method for the rapid identification of miR529 and miR156 family members and uncovered the evolutionary divergence of these families, providing insights into their different regulatory roles in plant growth and development.
Collapse
|
23
|
Gao F, Nan F, Feng J, Xie S. Characterization and Comparative Analysis of MicroRNAs in 3 Representative Red Algae. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2868. [PMID: 35350641 PMCID: PMC8926317 DOI: 10.30498/ijb.2021.247164.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background MicroRNA (miRNA) is a key regulator at the gene posttranscriptional regulation level. We have previously identified miRNAs and their putative targets in 3 representative red algae, Chondrus crispus, Galdieria sulphurariais and Porphyridium purpureum. Objectives In this study, unique molecular and evolutionary characterization of miRNAs were revealed in the 3 red algae based on the comparative miRNAs profiling. Materials and Methods Genome locations of small RNAs (sRNAs), miRNAs and MIRNAs (MIRs) in the 3 red algae were shown by collinearity analysis. Characterization of miRNAs and MIRs were profiled via bioinformatics analysis. Taken MIR156s and miR156s for examples, red algae miRNAs evolutionary features were demonstrated via phylogenetic and evolutionary information analysis. MiRNA targets main inhibition type was validated via performing data statistics and RLM-RACE PCR. Key target genes and their function were predicted by the common Gene Ontolgoy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results Quantity, nucleotide bias and common sequences of miRNAs were analyzed in the 3 red algae. Four typical precursor structures and primary molecular features of red algae miRNAs were profiled. Genome-wide collinearity analysis of sRNAs, miRNAs and MIRs in the 3 red algae was performed to show their distribution and interrelation based on the deep sequencing data. Taken red algae MIR156s for example, their family members and sequences divergence were demonstrated. The whole evolutionary processes of miR156s and pre-miR156s in red algae were steady with negative selected pressure though diverse phylogenetic relationships and evolutionary parameters showed. Through 3 red algae miR156 targets validation, cleavage was validated as their main miRNA targets inhibition type. The common target genes (GO:0009536) enriched significantly for plastid formation will provide important insights for red algal biopigment research. The common KEGG pathways (ko01100) enriched significantly were predicted without a detailed reference metabolic map. Conclusions MiRNA plays an essential role in gene expression regulation involved in diverse biological processes of red algae. Comprehensive molecular and evolutionary features of miRNAs in the 3 red algae will provide insights for further utilizing the algae resources at the molecular level.
Collapse
Affiliation(s)
| | | | | | - Shulian Xie
- School of Life Science, Shanxi University, Wucheng Road No. 92, Taiyuan 030006, P. R. China
| |
Collapse
|
24
|
Šečić E, Zanini S, Wibberg D, Jelonek L, Busche T, Kalinowski J, Nasfi S, Thielmann J, Imani J, Steinbrenner J, Kogel KH. A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biol 2021; 19:171. [PMID: 34429124 PMCID: PMC8385953 DOI: 10.1186/s12915-021-01104-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silvia Zanini
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Busche
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Sabrine Nasfi
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jennifer Thielmann
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jens Steinbrenner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
25
|
Wang L, Ming L, Liao K, Xia C, Sun S, Chang Y, Wang H, Fu D, Xu C, Wang Z, Li X, Xie W, Ouyang Y, Zhang Q, Li X, Zhang Q, Xiao J, Zhang Q. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. MOLECULAR PLANT 2021; 14:1168-1184. [PMID: 33933648 DOI: 10.1016/j.molp.2021.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
Reproductive transition of grasses is characterized by switching the pattern of lateral branches, featuring the suppression of outgrowth of the subtending leaves (bracts) and rapid formation of higher-order branches in the inflorescence (panicle). However, the molecular mechanisms underlying such changes remain largely unknown. Here, we show that bract suppression is required for the reproductive branching in rice. We identified a pathway involving the intrinsic time ruler microRNA156/529, their targets SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, NECK LEAF1 (NL1), and PLASTOCHRON1 (PLA1), which regulates the bract outgrowth and thus affects the pattern switch between vegetative and reproductive branching. Suppression of the bract results in global reprogramming of transcriptome and chromatin accessibility following the reproductive transition, while these processes are largely dysregulated in the mutants of these genes. These discoveries contribute to our understanding of the dynamic plant architecture and provide novel insights for improving crop yields.
Collapse
Affiliation(s)
- Lei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyan Liao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongkai Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Conghao Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengji Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Muslu T, Biyiklioglu-Kaya S, Akpinar BA, Yuce M, Budak H. Pan-Genome miRNomics in Brachypodium. PLANTS 2021; 10:plants10050991. [PMID: 34065739 PMCID: PMC8156279 DOI: 10.3390/plants10050991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023]
Abstract
Pan-genomes are efficient tools for the identification of conserved and varying genomic sequences within lineages of a species. Investigating genetic variations might lead to the discovery of genes present in a subset of lineages, which might contribute into beneficial agronomic traits such as stress resistance or yield. The content of varying genomic regions in the pan-genome could include protein-coding genes as well as microRNA(miRNAs), small non-coding RNAs playing key roles in the regulation of gene expression. In this study, we performed in silico miRNA identification from the genomic sequences of 54 lineages of Brachypodium distachyon, aiming to explore varying miRNA contents and their functional interactions. A total of 115 miRNA families were identified in 54 lineages, 56 of which were found to be present in all lineages. The miRNA families were classified based on their conservation among lineages and potential mRNA targets were identified. Obtaining information about regulatory mechanisms stemming from these miRNAs offers strong potential to provide a better insight into the complex traits that were potentially present in some lineages. Future work could lead us to introduce these traits to different lineages or other economically important plant species in order to promote their survival in different environmental conditions.
Collapse
Affiliation(s)
- Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (T.M.); (S.B.-K.)
| | - Sezgi Biyiklioglu-Kaya
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (T.M.); (S.B.-K.)
| | | | - Meral Yuce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey;
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA;
- Correspondence:
| |
Collapse
|
27
|
Yue E, Tao H, Xu J. Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae. J Zhejiang Univ Sci B 2021; 22:366-382. [PMID: 33973419 DOI: 10.1631/jzus.b2000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play an important role in post-transcriptional gene regulation in plants and animals by targeting messenger RNAs (mRNAs) for cleavage or repressing translation of specific mRNAs. The first miRNA identified in plants, miRNA156 (miR156), targets the SQUAMOSA promoter-binding protein-like (SPL) transcription factors, which play critical roles in plant phase transition, flower and plant architecture, and fruit development. We identified multiple copies of MIR156 and SPL in the rice, Brachypodium, sorghum, maize, and foxtail millet genomes. Sequence and chromosomal synteny analysis showed that both MIR156s and SPLs are conserved across species in the grass family. Analysis of expression data of the SPLs in eleven juvenile and adult rice tissues revealed that four non-miR156-targeted genes were highly expressed and three miR156-targeted genes were only slightly expressed in all tissues/developmental stages. The remaining SPLs were highly expressed in the juvenile stage, but their expression was lower in the adult stage. It has been proposed that under strong selective pressure, non-miR156-targeted mRNA may be able to re-structure to form a miRNA-responsive element. In our analysis, some non-miR156-targeted SPLs (SPL5/8/10) had gene structure and gene expression patterns similar to those of miR156-targeted genes, suggesting that they could diversify into miR156-targeted genes. DNA methylation profiles of SPLs and MIR156s in different rice tissues showed diverse methylation patterns, and hypomethylation of non-CG sites was observed in rice endosperm. Our findings suggested that MIR156s and SPLs had different origination and evolutionary mechanisms: the SPLs appear to have resulted from vertical evolution, whereas MIR156s appear to have resulted from strong evolutionary selection on mature sequences.
Collapse
Affiliation(s)
- Erkui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Hua Tao
- Henan Agricultural Radio and Television School, Zhengzhou 450008, China
| | - Jianhong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Mallet J, Laufs P, Leduc N, Le Gourrierec J. Photocontrol of Axillary Bud Outgrowth by MicroRNAs: Current State-of-the-Art and Novel Perspectives Gained From the Rosebush Model. FRONTIERS IN PLANT SCIENCE 2021; 12:770363. [PMID: 35173747 PMCID: PMC8841825 DOI: 10.3389/fpls.2021.770363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is highly dependent on environmental factors. While many species show some light dependence for branching, the rosebush shows a strict requirement for light to allow branching, making this species an excellent model to further understand how light impinges on branching. Here, in the first part, we provide a review of the current understanding of how light may modulate the complex regulatory network of endogenous factors like hormones (SL, IAA, CK, GA, and ABA), nutrients (sugar and nitrogen), and ROS to control branching. We review the regulatory contribution of microRNAs (miRNAs) to branching in different species, highlighting the action of such evolutionarily conserved factors. We underline some possible pathways by which light may modulate miRNA-dependent regulation of branching. In the second part, we exploit the strict light dependence of rosebush for branching to identify putative miRNAs that could contribute to the photocontrol of branching. For this, we first performed a profiling of the miRNAs expressed in early light-induced rosebush buds and next tested whether they were predicted to target recognized regulators of branching. Thus, we identified seven miRNAs (miR156, miR159, miR164, miR166, miR399, miR477, and miR8175) that could target nine genes (CKX1/6, EXPA3, MAX4, CYCD3;1, SUSY, 6PFK, APX1, and RBOHB1). Because these genes are affecting branching through different hormonal or metabolic pathways and because expression of some of these genes is photoregulated, our bioinformatic analysis suggests that miRNAs may trigger a rearrangement of the regulatory network to modulate branching in response to light environment.
Collapse
Affiliation(s)
- Julie Mallet
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Nathalie Leduc
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - José Le Gourrierec
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- *Correspondence: José Le Gourrierec,
| |
Collapse
|
29
|
Mohanty P, Ayachit G, Mohanty JN, Pandya H, Mankad AU, Das J. Documentation of conserved and novel miRNAs participated in plant secondary metabolic pathways of sanctified Aegle marmelos. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Bhardwaj E, Lal M, Anand S, Das S. Independent recurrent evolution of MICRORNA genes converging onto similar non-canonical organisation across green plant lineages is driven by local and segmental duplication events in species, family and lineages. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110661. [PMID: 33218629 DOI: 10.1016/j.plantsci.2020.110661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The relationship between evolutionary history, organisation and transcriptional regulation of genes are intrinsically linked. These have been well studied in canonically organised protein-coding genes but not of MIRNAs. In the present study, we investigated the non-canonical arrangement of MIRNAs across taxonomic boundaries from algae to angiosperms employing a combination of genome organization, phylogeny and synteny. We retrieved the complete dataset of MIRNA from twenty-five species to identify and classify based on organisational patterns. The median size of cluster was between 2-5 kb and between 1-20 % of all MIRNAs are organized in head-to-head (with bidirectional promoter), head-to-tail (tandem), and overlapping manner. Although majority of the clusters are composed of MIRNA homologs, 25% of all clusters comprises of non-homologous genes with a potential of generating functional and regulatory complexity. A comparison of phylogeny and organizational patterns revealed that multiple independent events, some of which are species-specific, and some ancient, in different lineages, are responsible for non-canonical organization. Detailed investigation of MIR395 family across the plants revealed a complex origin of non-canonical arrangement through ancient and recent, segmental and local duplications; analysis of MIR399 family revealed major expansion occurred prior to monocot-dicot split, with few lineage-specific events. Evolution of "convergent" organization pattern of non-canonical arrangement originating from independent loci through recurrent event highlights our poor understanding of evolutionary process of MIRNA genes. The present investigation thus paves way for comparative functional genomics to understand the role of non-canonical organization on transcriptional regulation and regulatory diversity in MIRNA gene families.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - S Anand
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
31
|
Friedman J. The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024638] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flowering plants exhibit two principal life-history strategies: annuality (living and reproducing in one year) and perenniality (living more than one year). The advantages of either strategy depend on the relative benefits of immediate reproduction balanced against survivorship and future reproduction. This trade-off means that life-history strategies are associated with particular environments, with annuals being found more often in unpredictable habitats. Annuality and perenniality are the outcome of developmental genetic programs responding to their environment, with perennials being distinguished by their delayed competence to flower and reversion to growth after flowering. Evolutionary transitions between these strategies are frequent and have consequences for mating systems and genome evolution, with perennials being more likely to outcross with higher inbreeding depression and lower rates of molecular evolution. Integrating expectations from life-history theory with knowledge of the developmental genetics of flowering and seasonality is required to understand the mechanisms involved in the evolution of annual and perennial life histories.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
32
|
OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa. PLANTS 2020; 9:plants9101337. [PMID: 33050518 PMCID: PMC7601473 DOI: 10.3390/plants9101337] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
OsmiR535 belongs to the miR156/miR529/miR535 superfamily, a highly conserved miRNA family in plants. OsmiR535 is involved in regulating the cold-stress response, modulating plant development, and determining panicle architecture and grain length. However, the role that OsmiR535 plays in plant responses to drought and salinity are elusive. In the current study, molecular and genetic engineering techniques were used to elucidate the possible role of OsmiR535 in response to NaCl, PEG(Poly ethylene glycol), ABA(Abscisic acid), and dehydration stresses. Our results showed that OsmiR535 is induced under stressed conditions as compared to control. With transgenic and CRISPR/Cas9 knockout system techniques, our results verified that either inhibition or knockout of OsmiR535 in rice could enhance the tolerance of plants to NaCl, ABA, dehydration and PEG stresses. In addition, the overexpression of OsmiR535 significantly reduced the survival rate of rice seedlings during PEG and dehydration post-stress recovery. Our results demonstrated that OsmiR535 negatively regulates the stress response in rice. Moreover, our practical application of CRISPR/Cas9 mediated genome editing created a homozygous 5 bp deletion in the coding sequence of OsmiR535, demonstrating that OsmiR535 could be a useful genetic editing target for drought and salinity tolerance and a new marker for molecular breeding of Oryza sativa.
Collapse
|
33
|
Exploring Heat-Response Mechanisms of MicroRNAs Based on Microarray Data of Rice Post-meiosis Panicle. Int J Genomics 2020; 2020:7582612. [PMID: 33015150 PMCID: PMC7519984 DOI: 10.1155/2020/7582612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
To explore heat response mechanisms of mircoRNAs (miRNAs) in rice post-meiosis panicle, microarray analysis was performed on RNA isolated from rice post-meiosis panicles which were treated at 40°C for 0 min, 10 min, 20 min, 60 min, and 2 h. By integrating paired differentially expressed (DE) miRNAs and mRNA expression profiles, we found that the expression levels of 29 DE-miRNA families were negatively correlated to their 178 DE-target genes. Further analysis showed that the majority of miRNAs in 29 DE-miRNA families resisted the heat stress by downregulating their target genes and a time lag existed between expression of miRNAs and their target genes. Then, GO-Slim classification and functional identification of these 178 target genes showed that (1) miRNAs were mainly involved in a series of basic biological processes even under heat conditions; (2) some miRNAs might play important roles in the heat resistance (such as osa-miR164, osa-miR166, osa-miR169, osa-miR319, osa-miR390, osa-miR395, and osa-miR399); (3) osa-miR172 might play important roles in protecting the rice panicle under the heat stress, but osa-miR437, osa-miR418, osa-miR164, miR156, and miR529 might negatively affect rice fertility and panicle flower; and (4) osa-miR414 might inhibit the flowering gene expression by downregulation of LOC_Os 05g51830 to delay the heading of rice. Finally, a heat-induced miRNA-PPI (protein-protein interaction) network was constructed, and three miRNA coregulatory modules were discovered.
Collapse
|
34
|
Guo Z, Kuang Z, Wang Y, Zhao Y, Tao Y, Cheng C, Yang J, Lu X, Hao C, Wang T, Cao X, Wei J, Li L, Yang X. PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res 2020; 48:D1114-D1121. [PMID: 31602478 PMCID: PMC6943064 DOI: 10.1093/nar/gkz894] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function as diverse endogenous gene regulators at the post-transcriptional level. In the past two decades, as research effort on miRNA identification, function and evolution has soared, so has the demand for miRNA databases. However, the current plant miRNA databases suffer from several typical drawbacks, including a lack of entries for many important species, uneven annotation standards across different species, abundant questionable entries, and limited annotation. To address these issues, we developed a knowledge-based database called Plant miRNA Encyclopedia (PmiREN, http://www.pmiren.com/), which was based on uniform processing of sequenced small RNA libraries using miRDeep-P2, followed by manual curation using newly updated plant miRNA identification criteria, and comprehensive annotation. PmiREN currently contains 16,422 high confidence novel miRNA loci in 88 plant species and 3,966 retrieved from miRBase. For every miRNA entry, information on precursor sequence, precursor secondary structure, expression pattern, clusters and synteny in the genome, potential targets supported by Parallel Analysis of RNA Ends (PARE) sequencing, and references is attached whenever possible. PmiREN is hierarchically accessible and has eight built-in search engines. We believe PmiREN is useful for plant miRNA cataloguing and data mining, therefore a resource for data-driven miRNA research in plants.
Collapse
Affiliation(s)
- Zhonglong Guo
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Zheng Kuang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Ying Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Yongxin Zhao
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Chen Cheng
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Jing Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xiayang Lu
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Tianxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jianhua Wei
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P. R. China
| | - Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| |
Collapse
|
35
|
Small RNA sequencing revealed various microRNAs involved in ethylene-triggered flowering process in Aechmea fasciata. Sci Rep 2020; 10:7348. [PMID: 32355186 PMCID: PMC7193560 DOI: 10.1038/s41598-020-63597-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Ethylene-triggered flowering is a common phenomenon in plants of the family Bromeliaceae, but its molecular mechanism remains unclear. As a classical group of small RNAs, microRNAs play an essential role in the regulation of flowering. In this study, we found that various miRNAs participate in the ethylene-triggered flowering process in Aechmea fasciata via small RNA sequencing using juvenile and adult plants treated with ethylene for 24 hours. Finally, 63 known miRNAs, 52 novel miRNAs and 1721 target genes were identified or predicted. Expression changes of specific miRNAs were validated by qRT-PCR and northern blotting. Some predicted targets, including SPL, GAMYB and ARF, were verified in RLM-RACE experiments. Gene Ontology (GO) and KEGG analysis showed that numerous developmental and RNA-related processes were enriched. Integrated analysis of the transcriptomic data with small RNA sequencing revealed that numerous miRNAs and targets involved in ethylene-triggered flowering in A. fasciata. Our study is helpful for illuminating the molecular basis of the ethylene-triggered flowering phenomenon in Bromeliaceae.
Collapse
|
36
|
Barrera-Rojas CH, Rocha GHB, Polverari L, Pinheiro Brito DA, Batista DS, Notini MM, da Cruz ACF, Morea EGO, Sabatini S, Otoni WC, Nogueira FTS. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:934-950. [PMID: 31642910 DOI: 10.1093/jxb/erz475] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Root growth is modulated by different factors, including phytohormones, transcription factors, and microRNAs (miRNAs). MicroRNA156 and its targets, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, define an age-dependent pathway that controls several developmental processes, including lateral root emergence. However, it remains unclear whether miR156-regulated SPLs control root meristem activity and root-derived de novo shoot regeneration. Here, we show that MIR156 and SPL genes have opposing expression patterns during the progression of primary root (PR) growth in Arabidopsis, suggesting that age cues may modulate root development. Plants with high miR156 levels display reduced meristem size, resulting in shorter primary root (PRs). Conversely, plants with reduced miR156 levels show higher meristem activity. Importantly, loss of function of SPL10 decreases meristem activity, while SPL10 de-repression increases it. Meristem activity is regulated by SPL10 probably through the reduction of cytokinin responses, via the modulation of type-B ARABIDOPSIS RESPONSE REGULATOR1(ARR1) expression. We also show that SPL10 de-repression in the PRs abolishes de novo shoot regenerative capacity by attenuating cytokinin responses. Our results reveal a cooperative regulation of root meristem activity and root-derived de novo shoot regeneration by integrating age cues with cytokinin responses via miR156-targeted SPL10.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
- Bioscience Institute, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
| | - Gabriel Henrique Braga Rocha
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Laura Polverari
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, Rome, Italy
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Diego Silva Batista
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Ana Claudia Ferreira da Cruz
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Edna Gicela Ortiz Morea
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
- Bioscience Institute, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, Rome, Italy
| | - Wagner Campos Otoni
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
37
|
Gabriel AF, Costa MC, Enguita FJ, Leitão AL. Si vis pacem para bellum: A prospective in silico analysis of miRNA-based plant defenses against fungal infections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110241. [PMID: 31521215 DOI: 10.1016/j.plantsci.2019.110241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Fungal pathogens are an important threat for plant crops, being responsible for important reductions of production yields and a consequent economic impact. Among the molecular mediators of fungal infections of plant crops, non-coding RNAs (ncRNAs) have been described as relevant players either in the plant immune responses and mechanism of defense or in the colonization of plant tissues by fungi. Acting as a mechanism of defense, some plant small ncRNAs such as miRNAs and tasiRNAs can be secreted by cells and directed to target the transcriptome of pathogenic fungi, triggering an RNAi-like interference mechanism able to silence the expression of specific fungal genes. The detailed knowledge of this mechanism of defense against fungal pathogens could open new possibilities for the protection of human important crops. To infer putative functional relationships mediated by ncRNA communication, we performed a prospective analysis to determine potential plant miRNAs able to target the genome of fungal pathogens, which resulted in the description of enriched specific plant miRNA families and their putative fungal targets that could be further studied in the context of plant-fungi interactions. The expression profile of specific members of the enriched miRNAs families showed an infection-dependent behavior in laboratory models of infection. Plant miRNAs showed sequence complementarity with coding genes of their cognate fungal pathogens. Plant miRNAs could potentially target fungal genes belonging to functional families related to stress response, membrane architecture, vacuolar transport, membrane traffic, and anabolic processes. Families of specific infection-responsive miRNAs are included in the putative plant defense mechanism.
Collapse
Affiliation(s)
- André F Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica, 2829-516, Portugal.
| |
Collapse
|
38
|
Yang T, Ma H, Zhang J, Wu T, Song T, Tian J, Yao Y. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:572-590. [PMID: 31344284 DOI: 10.1111/tpj.14470] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 05/23/2023]
Abstract
Anthocyanin pigments contribute to the red color of apple (Malus × domestica) fruit and have a major influence on their ornamental, dietary and market value. In this study, we investigated the potential role of long noncoding RNAs (lncRNAs) in anthocyanin biosynthesis. RNA-seq analysis of apple peels from the 'Red Fuji' cultivar during light-induced rapid anthocyanin accumulation revealed 5297 putative lncRNAs. Differential expression analysis further showed that lncRNAs were induced during light treatment and were involved in photosynthesis. Using the miRNA-lncRNA-mRNA network and endogenous target mimic (eTM) analysis, we predicted that two differentially expressed lncRNAs, MLNC3.2 and MLNC4.6, were potential eTMs for miRNA156a and promoted the expression of the SPL2-like and SPL33 transcription factors. Transient expression in apple fruit and stable transformation of apple callus showed that overexpression of the eTMs and SPLs promoted anthocyanin accumulation, with the opposite results in eTM and SPL-silenced fruit. Silencing or overexpressing of miR156a also affected the expression of the identified eTMs and SPLs. These results indicated that MLNC3.2 and MLNC4.6 function as eTMs for miR156a and prevent cleavage of SPL2-like and SPL33 by miR156a during light-induced anthocyanin biosynthesis. Our study provides fundamental insights into lncRNA involvement in the anthocyanin biosynthetic pathway in apple fruit.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| |
Collapse
|
39
|
Identification of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) responsive miRNAs in banana root. Sci Rep 2019; 9:13682. [PMID: 31548557 PMCID: PMC6757108 DOI: 10.1038/s41598-019-50130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
The fungus, Fusarium oxysporum f. sp. cubense (Foc), is the causal agent of Fusarium wilt disease, which is the most serious disease affecting the whole banana industry. Although extensive studies have characterized many Foc-responsive genes in banana, the molecular mechanisms on microRNA level underlying both banana defense and Foc pathogenesis are not yet fully understood. In this study, we aimed to reveal the role of miRNA during banana-Foc TR4 interactions. Illumina sequencing was used to reveal the changes in small RNAome profiles in roots of Foc TR4-inoculated ‘Tianbaojiao’ banana (Musa acuminata cv. Tianbaojiao) in the early stages (i.e. 5 h, 10 h and 25 h post Foc TR4 inoculation, respectively). The expression of some differentially expressed (DE) miRNAs and their predicted target genes was studied by using quantitative real time PCR (qRT-PCR). Totally, 254 known miRNAs from 31 miRNA families and 28 novel miRNAs were identified. Differential expression analysis identified 84, 77 and 74 DE miRNAs at the three respective Foc TR4 infection time points compared with control healthy banana (CK). GO and KEGG analysis revealed that most of the predicted target genes of DE miRNAs (DET) were implicated in peroxisome, fatty acid metabolism, auxin-activated signaling pathway, sulfur metabolism, lignin metabolism and so on, and many known stress responsive genes were identified to be DETs. Moreover, expected inverse correlations were confirmed between some miRNA and their corresponding target genes by using qRT-PCR analysis. Our study revealed that miRNA play important regulatory roles during the banana-Foc TR4 interaction by regulating peroxidase, fatty acid metabolism, auxin signaling, sulfur metabolism, lignin metabolism related genes and many known stress responsive genes.
Collapse
|
40
|
Dhaka N, Sharma S, Vashisht I, Kandpal M, Sharma MK, Sharma R. Small RNA profiling from meiotic and post-meiotic anthers reveals prospective miRNA-target modules for engineering male fertility in sorghum. Genomics 2019; 112:1598-1610. [PMID: 31521711 DOI: 10.1016/j.ygeno.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Understanding male gametophyte development is essential to augment hybrid production in sorghum. Although small RNAs are known to critically influence anther/pollen development, their roles in sorghum reproduction have not been deciphered yet. Here, we report small RNA profiling and high-confidence annotation of microRNAs (miRNAs) from meiotic and post-meiotic anthers in sorghum. We identified 262 miRNAs (82 known and 180 novel), out of which 58 (35 known and 23 novel) exhibited differential expression between two stages. Out of 35 differentially expressed known miRNAs, 13 are known to regulate anther/pollen development in other plant species. We also demonstrated conserved spatiotemporal patterns of 21- and 24-nt phasiRNAs and their respective triggers, miR2118 and miR2275, in sorghum anthers as evidenced in other monocots. miRNA target identification yielded 5622 modules, of which 46 modules comprising 16 known and 8 novel miRNA families with 38 target genes are prospective candidates for engineering male fertility in grasses.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Shalini Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Ira Vashisht
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Manu Kandpal
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Manoj Kumar Sharma
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
41
|
Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, Fernandes AM, Barrera-Rojas CH, Ribeiro DM, Nogueira FTS, Otoni WC. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. ANNALS OF BOTANY 2019; 123:1191-1203. [PMID: 30861065 PMCID: PMC6612941 DOI: 10.1093/aob/mcz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Juvenile-to-adult phase transition is marked by changes in leaf morphology, mostly due to the temporal development of the shoot apical meristem, a phenomenon known as heteroblasty. Sugars and microRNA-controlled modules are components of the heteroblastic process in Arabidopsis thaliana leaves. However, our understanding about their roles during phase-changing in other species, such as Passiflora edulis, remains limited. Unlike Arabidopsis, P. edulis (a semi-woody perennial climbing vine) undergoes remarkable changes in leaf morphology throughout juvenile-to-adult transition. Nonetheless, the underlying molecular mechanisms are unknown. METHODS Here we evaluated the molecular mechanisms underlying the heteroblastic process by analysing the temporal expression of microRNAs and targets in leaves as well as the leaf metabolome during P. edulis development. KEY RESULTS Metabolic profiling revealed a unique composition of metabolites associated with leaf heteroblasty. Increasing levels of glucose and α-trehalose were observed during juvenile-to-adult phase transition. Accumulation of microRNA156 (miR156) correlated with juvenile leaf traits, whilst miR172 transcript accumulation was associated with leaf adult traits. Importantly, glucose may mediate adult leaf characteristics during de novo shoot organogenesis by modulating miR156-targeted PeSPL9 expression levels at early stages of shoot development. CONCLUSIONS Altogether, our results suggest that specific sugars may act as co-regulators, along with two microRNAs, leading to leaf morphological modifications throughout juvenile-to-adult phase transition in P. edulis.
Collapse
Affiliation(s)
- Priscila O Silva
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diego S Batista
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Andréa D Koehler
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lorena M Vieira
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda M Fernandes
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carlos Hernan Barrera-Rojas
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- Instituto de Biociências, Universidade Estadual de São Paulo, Botucatu, São Paulo, Brazil
| | | | - Fabio T S Nogueira
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- For correspondence. E-mail:
| | - Wagner C Otoni
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
42
|
Sun M, Shen Y, Li H, Yang J, Cai X, Zheng G, Zhu Y, Jia B, Sun X. The multiple roles of OsmiR535 in modulating plant height, panicle branching and grain shape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:60-69. [PMID: 31128716 DOI: 10.1016/j.plantsci.2019.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 05/20/2023]
Abstract
The miR156/miR529-SPL module acts a vital role in regulating plant growth and development. Though miR535 shows very high sequence identity to miR156 and miR529, it is still unknown whether miR535 could control plant growth and development. In this study, we performed the evolutionary analyses of miR535s in land plants and found that miR535s were less conserved than miR156s during evolution. In rice, miR535 expressed at a very low level during the vegetative growth but highly accumulated in young panicles, which is similar with OsmiR529, but opposite to OsmiR156. Expectedly, OsmiR535 overexpression in rice reduced plant height by decreasing the 1st and 2nd internode length. Furthermore, OsmiR535 overexpression imposed great influence in panicle architecture, such as more but shorter panicles, and fewer primary/secondary panicle branches. Moreover, OsmiR535 overexpression increased the grain length, but did not affect grain width. Through quantitative real-time PCR analyses, we further revealed that OsmiR535 overexpression repressed the expression of OsSPL7/12/16, as well as the OsSPLs downstream panicle related genes, including OsPIN1B, OsDEP1, OsLOG and OsSLR1. Taken together, our findings suggest that OsmiR535 multiply modulates plant height, panicle architecture and grain shape possibly by regulating OsSPLs genes in rice.
Collapse
Affiliation(s)
- Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hongyu Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Guiping Zheng
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
43
|
Li XY, Guo F, Ma SY, Zhu MY, Pan WH, Bian HW. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa). J Zhejiang Univ Sci B 2019; 20:322-331. [PMID: 30932377 PMCID: PMC6454313 DOI: 10.1631/jzus.b1800003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
We investigated the microRNA172 (miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA (cDNA) of gloxinia (Sinningia speciosa) APETALA2-like (SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up- or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172a, whereas the expression pattern of miR172a was negatively correlated with that of miR156a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.
Collapse
Affiliation(s)
- Xiao-yan Li
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Fu Guo
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-yun Ma
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mu-yuan Zhu
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-huai Pan
- College of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Hong-wu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Yang K, Wen X, Mudunuri S, Varma GPS, Sablok G. Diff isomiRs: Large-scale detection of differential isomiRs for understanding non-coding regulated stress omics in plants. Sci Rep 2019; 9:1406. [PMID: 30723229 PMCID: PMC6363768 DOI: 10.1038/s41598-019-38932-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
Plants have an amazing ability to cope with wide variety of stresses by regulating the expression of genes and thus by altering the physiological status. In the past few years, canonical microRNA variants (isomiRs) have been shown to play pivotal roles by acting as regulators of the transcriptional machinery. In the present research, we present Diff isomiRs, a web-based exploratory repository of differential isomiRs across 16 sequenced plant species representing a total of 433 datasets across 21 different stresses and 158 experimental states. Diff isomiRs provides the high-throughput detection of differential isomiRs using mapping-based and model-based differential analysis revealing a total of 16,157 and 2,028 differential isomiRs, respectively. Easy-to-use and web-based exploration of differential isomiRs provides several features such as browsing of the differential isomiRs according to stress or species, as well as association of the differential isomiRs to targets and plant endogenous target mimics (PeTMs). Diff isomiRs also provides the relationship between the canonical miRNAs, isomiRs and the miRNA-target interactions. This is the first web-based large-scale repository for browsing differential isomiRs and will facilitate better understanding of the regulatory role of the isomiRs with respect to the canonical microRNAs. Diff isomiRs can be accessed at: www.mcr.org.in/diffisomirs.
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, P. R. China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, P. R. China.
| | - Suresh Mudunuri
- Centre for Bioinformatics Research, SRKR Engineering College, Chinna Amiram, Bhimavaram, West Godavari District, Andhra Pradesh, 534204, India
| | - G P Saradhi Varma
- Centre for Bioinformatics Research, SRKR Engineering College, Chinna Amiram, Bhimavaram, West Godavari District, Andhra Pradesh, 534204, India
| | - Gaurav Sablok
- Finnish Museum of Natural History, Helsinki, Finland. .,Organismal and Evolutionary Biology (OEB) Research Programme, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
45
|
Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, Notini MM, Junior AC, De Jesus FA, Castilho P, Carrera E, López-Díaz I, Grotewold E, Peres LEP, Nogueira FTS. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. THE NEW PHYTOLOGIST 2019; 221:1328-1344. [PMID: 30238569 DOI: 10.1111/nph.15492] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Box gene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.
Collapse
Affiliation(s)
- Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Airton C Junior
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Frederico A De Jesus
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Pollyanna Castilho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
46
|
Multiple Regression Analysis Reveals MicroRNA Regulatory Networks in Oryza sativa under Drought Stress. Int J Genomics 2018; 2018:9395261. [PMID: 30402456 PMCID: PMC6196795 DOI: 10.1155/2018/9395261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Drought is a major abiotic stress that reduces rice development and yield. miRNAs (microRNAs) are known to mediate posttranscriptional regulation under drought stress. Although the importance of individual miRNAs has been established, the crosstalks between miRNAs and mRNAs remain unearthed. Here we performed microarray analysis of miRNAs and matched mRNA expression profiles of drought-treated rice cultivar Nipponbare. Drought-responsive miRNA-mRNA regulations were identified by a combination of a partial least square (PLS) regression approach and sequence-based target prediction. A drought-induced network with 13 miRNAs and 58 target mRNAs was constructed, and four miRNA coregulatory modules were revealed. Functional analysis suggested that drought-response miRNA targets are enriched in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defense. 13 candidate miRNAs and target genes were validated by RT-qPCR, hierarchical clustering, and ROC analysis. Two target genes (DWARF-3 and P0651G05.2) of miRNA coregulatory modules were further verified by RLM-5' RACE. Together, our integrative study of miRNA-mRNA interaction provided attractive candidates that will help elucidate the drought-response mechanisms in Oryza sativa.
Collapse
|
47
|
Lin SS, Bowman JL. MicroRNAs in Marchantia polymorpha. THE NEW PHYTOLOGIST 2018; 220:409-416. [PMID: 29959894 DOI: 10.1111/nph.15294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 409 I. Introduction 409 II. RNA silencing machinery in Marchantia polymorpha 410 III. miRNA prediction by integrating omics approach 410 IV. miRNAs and their targets in Marchantia polymorpha 410 V. Mpo-miR390-mediated MpTAS3 tasiRNA biogenesis and potential tasiARF target MpARF2 414 VI. Artificial miRNA and CRISPR-CAS9 edited MIR gene in Marchantia polymorpha 414 VII. Conclusions 415 Acknowledgements 415 References 415 SUMMARY: The liverwort Marchantia polymorpha occupies an important phylogenetic position for comparative studies of land plant gene regulation. Multiple gene regulatory pathways mediated by small RNAs, including microRNAs (miRNAs), trans-acting short-interfering RNAs, and heterochromatic siRNAs often associated with RNA-dependent DNA methylation, have been characterized in flowering plants. Genes for essential components for all of these small RNA-mediated gene silencing pathways are found in M. polymorpha as well as the moss Phsycomitrella patens, indicating that these pathways existed in the ancestral land plant. However, only seven miRNAs are conserved across land plants, with both ancestral and novel targets identified in M. polymorpha. There is little or no evidence that any of these conserved miRNAs are present in algae. As with other plants investigated, most miRNAs in M. polypmorpha exhibit lineage-specific evolution. Application of artificial miRNA and CRISPR-Cas9 technologies in genetic studies of M. polymorpha provide avenues to further investigate miRNA biology.
Collapse
Affiliation(s)
- Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
48
|
Wang Z, Zhu T, Ma W, Wang N, Qu G, Zhang S, Wang J. Genome-wide analysis of long non-coding RNAs in Catalpa bungei and their potential function in floral transition using high-throughput sequencing. BMC Genet 2018; 19:86. [PMID: 30236060 PMCID: PMC6149005 DOI: 10.1186/s12863-018-0671-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have crucial roles in various biological regulatory processes. However, the study of lncRNAs is limited in woody plants. Catalpa bungei is a valuable ornamental tree with a long cultivation history in China, and a deeper understanding of the floral transition mechanism in C. bungei would be interesting from both economic and scientific perspectives. RESULTS In this study, we categorized C. bungei buds from early flowering (EF) and normal flowering (NF) varieties into three consecutive developmental stages. These buds were used to systematically study lncRNAs during floral transition using high-throughput sequencing to identify molecular regulatory networks. Quantitative real-time PCR was performed to study RNA expression changes in different stages. In total, 12,532 lncRNAs and 26,936 messenger RNAs (mRNAs) were detected. Moreover, 680 differentially expressed genes and 817 differentially expressed lncRNAs were detected during the initiation of floral transition. The results highlight the mRNAs and lncRNAs that may be involved in floral transition, as well as the many lncRNAs serving as microRNA precursors. We predicted the functions of lncRNAs by analysing the relationships between lncRNAs and mRNAs. Seven lncRNA-mRNA interaction pairs may participate in floral transition. CONCLUSIONS This study is the first to identify lncRNAs and their potential functions in floral transition, providing a starting point for detailed determination of the functions of lncRNAs in C. bungei.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| |
Collapse
|
49
|
Morozov SY, Milyutina IA, Erokhina TN, Ozerova LV, Troitsky AV, Solovyev AG. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history. PeerJ 2018; 6:e4636. [PMID: 29682420 PMCID: PMC5907777 DOI: 10.7717/peerj.4636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.
Collapse
Affiliation(s)
- Sergey Y Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Irina A Milyutina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tatiana N Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Liudmila V Ozerova
- Tsitsin Main Botanical Garden, Russian Academy of Science, Moscow, Russia
| | - Alexey V Troitsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
50
|
Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Funct Integr Genomics 2018; 18:457-476. [PMID: 29626311 DOI: 10.1007/s10142-018-0606-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Abstract
Cytoplasmic male sterility (CMS) lines provide crucial material to harness heterosis for crop plants, which serves as an important strategy for hybrid seed production. However, the molecular mechanism remains obscure. Although microRNAs (miRNAs) play important roles in vegetative growth and reproductive growth, there are few reports on miRNAs regulating the development of male sterility in Upland cotton. In present study, 12 small RNA libraries were constructed and sequenced for two development stages of flower buds from a CMS line and its maintainer line. Based on the results, 256 novel miRNAs were allocated to 141 new miRNA families, and 77 known miRNAs belonging to 54 conserved miRNA families were identified as well. Comparative analysis revealed that 61 novel and 10 conserved miRNAs were differentially expressed. Further transcriptome analysis identified 232 target genes for these miRNAs, which participated in cellular developmental process, cell death, pollen germination, and sexual reproduction. In addition, expression patterns of typical miRNA and the negatively regulated target genes, such as PPR, ARF, AP2, and AFB, were verified by qRT-PCR in cotton flower buds. These targets were previously reported to be related to reproduction development and male sterility, suggesting that miRNAs might act as regulators of CMS occurrence. Some miRNAs displayed specific expression profiles in special developmental stages of CMS line and its fertile hybrid (F1). Present study offers new information on miRNAs and their related target genes in exploiting CMS mechanism, and revealing the miRNA regulatory networks in Upland cotton.
Collapse
|