1
|
Marinov L, Magris G, Di Gaspero G, Morgante M, Maletić E, Bubola M, Pejić I, Zdunić G. Single nucleotide polymorphism (SNP) analysis reveals ancestry and genetic diversity of cultivated and wild grapevines in Croatia. BMC PLANT BIOLOGY 2024; 24:975. [PMID: 39420269 PMCID: PMC11483961 DOI: 10.1186/s12870-024-05675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Croatia is a geographically small country with a remarkable diversity of cultivated and spontaneous grapevines. Local germplasm has been characterised by microsatellite markers, but a detailed analysis based on single nucleotide polymorphisms (SNPs) is still lacking. Here we characterize the genetic diversity of 149 accessions from three germplasm repositories and four natural sites using 516,101 SNPs to identify complete parent-offspring trios and their relations with spontaneous populations, offering a proof-of-concept for the use of reduced-representation genome sequencing in population genetics and genome-wide association studies (GWAS). RESULTS Principal component analysis revealed a clear discontinuity between cultivated (V. vinifera subsp. sativa) and spontaneous grapevines, supporting the notion that the latter represent local populations of the wild progenitor (V. vinifera subsp. sylvestris). ADMIXTURE identified three ancestry components. Two sativa components are alternatively predominant in cultivars grown either in northern Adriatic Croatia and Continental Croatia or in Dalmatia (i.e. central and southern Adriatic Croatia). A sylvestris component, which is predominant in accessions from spontaneous populations, is a minor ancestry component in cultivated accessions. TREEMIX provided evidence of unidirectional migration from the vineyards to natural sites, suggesting that gene flow has gone preferentially from the introduced domesticated germplasm into local wild populations rather than vice versa. Identity-by-descent analysis indicated an extensive kinship network, including 14 complete parent-offspring trios, involving only cultivated accessions, six full-sibling relationships and invalidated a presumed pedigree of one of the most important varieties in Croatia, 'Plavac Mali'. Despite this strong population structure, significant association was found between 143 SNPs and berry skin colour and between 2 SNPs and leaf hairiness, across two previously known genomic regions. CONCLUSIONS The clear genetic separation between Croatian cultivars and sylvestris ruled out the hypothesis that those cultivars originated from local domestication events. On the other hand, the evidence of a crop-to-wild gene flow signals the need for an urgent adoption of conservation strategies that preserve the residual genetic integrity of wild relatives. The use of this reduced-representation genome sequencing protocol in grapevine enables an accurate pedigree reconstruction and can be recommended for GWAS experiments.
Collapse
Affiliation(s)
- Luka Marinov
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Gabriele Magris
- Istituto di Genomica Applicata, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Gabriele Di Gaspero
- Istituto di Genomica Applicata, Udine, Italy
- Fondazione per la Ricerca Genomica ed Epigenomica, Udine, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Fondazione per la Ricerca Genomica ed Epigenomica, Udine, Italy
| | - Edi Maletić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - Marijan Bubola
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
- Institute of Agriculture and Tourism, Poreč, Croatia
| | - Ivan Pejić
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia.
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia.
| |
Collapse
|
2
|
Tello J, Todić S, Ferradás Y, Nikolic M, Sabovljević A, Ivanišević D, Tomanović Ž, Grbić M, Martínez-Zapater JM, Ibáñez J. The genetic characterization of grapevines prospected in old Serbian vineyards reveals multiple relationships between traditional varieties of the Balkans. FRONTIERS IN PLANT SCIENCE 2024; 15:1391679. [PMID: 39055361 PMCID: PMC11269227 DOI: 10.3389/fpls.2024.1391679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Serbia preserves a high number of local grape varieties, which have been cultivated across the country for centuries. Now, these ancient varieties are in the spotlight, and there is a global trend towards their recovery and characterization because they can revitalize regional, national and international grape and wine sectors. In addition, their genetic study can be useful to find new pedigree relationships to reveal how local varietal assortment evolved over time. Here, the genetic characterization of 138 grapevines from old Serbian vineyards revealed 59 different genetic profiles, 49 of which were identified as grapevine varieties whose origin in the country could be linked to some major Serbian historical periods. Most of the genetic profiles found in this work arranged in a complex pedigree network that integrates numerous grapevine varieties from diverse Balkan countries, agreeing with an intense exchange of plant material among Balkan regions for centuries. This analysis identified some varieties as important founders of Balkan genetic resources, like 'Alba Imputotato', 'Braghina Rosie', 'Coarna Alba', and 'Vulpea'. After deepening into their genealogy, these major direct founders might have ultimately derived from 'Visparola', an ancient variety of likely Balkan origin with a major founding role in some European regions. Our results also indicated the genetic singularity of the grapevine resources from the Balkans when compared to those from other relevant winemaking regions, supporting the interest of their detailed study to evaluate their oenological potential and for the eventual identification of useful traits to counteract current viticulture challenges.
Collapse
Affiliation(s)
- Javier Tello
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino [ICVV, CSIC-Gobierno de La Rioja-Universidad de La Rioja (CSIC-CAR-UR)], Logroño, Spain
| | - Slavica Todić
- Faculty of Agriculture, Department of Viticulture, University of Belgrade, Belgrade, Serbia
| | - Yolanda Ferradás
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino [ICVV, CSIC-Gobierno de La Rioja-Universidad de La Rioja (CSIC-CAR-UR)], Logroño, Spain
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | | | | | - Željko Tomanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Miodrag Grbić
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino [ICVV, CSIC-Gobierno de La Rioja-Universidad de La Rioja (CSIC-CAR-UR)], Logroño, Spain
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Department of Biology, University of Western Ontario, London, ON, Canada
- Center for Interdisciplinary and Multidisciplinary Studies, University of Montenegro, Podgorica, Montenegro
| | - José Miguel Martínez-Zapater
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino [ICVV, CSIC-Gobierno de La Rioja-Universidad de La Rioja (CSIC-CAR-UR)], Logroño, Spain
| | - Javier Ibáñez
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino [ICVV, CSIC-Gobierno de La Rioja-Universidad de La Rioja (CSIC-CAR-UR)], Logroño, Spain
| |
Collapse
|
3
|
Abbasi Holasou H, Panahi B, Shahi A, Nami Y. Integration of machine learning models with microsatellite markers: New avenue in world grapevine germplasm characterization. Biochem Biophys Rep 2024; 38:101678. [PMID: 38495412 PMCID: PMC10940787 DOI: 10.1016/j.bbrep.2024.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Development of efficient analytical techniques is required for effective interpretation of biological data to take novel hypotheses and finding the critical predictive patterns. Machine Learning algorithms provide a novel opportunity for development of low-cost and practical solutions in biology. In this study, we proposed a new integrated analytical approach using supervised machine learning algorithms and microsatellites data of worldwide vitis populations. A total of 1378 wild (V. vinifera spp. sylvestris) and cultivated (V. vinifera spp. sativa) accessions of grapevine were investigated using 20 microsatellite markers. Data cleaning, feature selection, and supervised machine learning classification models vis, Naive Bayes, Support Vector Machine (SVM) and Tree Induction methods were implied to find most indicative and diagnostic alleles to represent wild/cultivated and originated geography of each population. Our combined approaches showed microsatellite markers with the highest differentiating capacity and proved efficiency for our pipeline of classification and prediction of vitis accessions. Moreover, our study proposed the best combination of markers for better distinguishing of populations, which can be exploited in future germplasm conservation and breeding programs.
Collapse
Affiliation(s)
- Hossein Abbasi Holasou
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Ali Shahi
- Faculty of Agriculture (Meshgin Shahr Campus), Mohaghegh Ardabili University, Ardabil, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
4
|
Brault C, Segura V, Roques M, Lamblin P, Bouckenooghe V, Pouzalgues N, Cunty C, Breil M, Frouin M, Garcin L, Camps L, Ducasse MA, Romieu C, Masson G, Julliard S, Flutre T, Le Cunff L. Enhancing grapevine breeding efficiency through genomic prediction and selection index. G3 (BETHESDA, MD.) 2024; 14:jkae038. [PMID: 38401528 PMCID: PMC10989862 DOI: 10.1093/g3journal/jkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20-25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.
Collapse
Affiliation(s)
- Charlotte Brault
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Vincent Segura
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier 34398, France
| | - Maryline Roques
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Pauline Lamblin
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Virginie Bouckenooghe
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | | | - Constance Cunty
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
- Centre du Rosé, Vidauban 83550, France
| | - Matthieu Breil
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Marina Frouin
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Léa Garcin
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Louise Camps
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Marie-Agnès Ducasse
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Charles Romieu
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier 34398, France
| | - Gilles Masson
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
- Centre du Rosé, Vidauban 83550, France
| | - Sébastien Julliard
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Timothée Flutre
- INRAE, CNRS, AgroParisTech, Université Paris-Saclay, GQE—Le Moulon, Gif-sur-Yvette 91190, France
| | - Loïc Le Cunff
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| |
Collapse
|
5
|
Coupel-Ledru A, Westgeest AJ, Albasha R, Millan M, Pallas B, Doligez A, Flutre T, Segura V, This P, Torregrosa L, Simonneau T, Pantin F. Clusters of grapevine genes for a burning world. THE NEW PHYTOLOGIST 2024; 242:10-18. [PMID: 38320579 DOI: 10.1111/nph.19540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Affiliation(s)
| | | | - Rami Albasha
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- ITK, 45 Allée Yves Stourdze, F-34830, Clapiers, France
| | - Mathilde Millan
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Benoît Pallas
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Agnès Doligez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | - Timothée Flutre
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Vincent Segura
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | - Patrice This
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | - Laurent Torregrosa
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398, Montpellier, France
| | | | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| |
Collapse
|
6
|
Cochetel N, Minio A, Guarracino A, Garcia JF, Figueroa-Balderas R, Massonnet M, Kasuga T, Londo JP, Garrison E, Gaut BS, Cantu D. A super-pangenome of the North American wild grape species. Genome Biol 2023; 24:290. [PMID: 38111050 PMCID: PMC10729490 DOI: 10.1186/s13059-023-03133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Capturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. RESULTS Here we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce's disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. CONCLUSIONS This study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research.
Collapse
Affiliation(s)
- Noé Cochetel
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Human Technopole, Milan, Italy
| | - Jadran F Garcia
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | | | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, CA, USA
| | - Jason P Londo
- Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Daviet B, Fournier C, Cabrera-Bosquet L, Simonneau T, Cafier M, Romieu C. Ripening dynamics revisited: an automated method to track the development of asynchronous berries on time-lapse images. PLANT METHODS 2023; 19:146. [PMID: 38098093 PMCID: PMC10720176 DOI: 10.1186/s13007-023-01125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Grapevine berries undergo asynchronous growth and ripening dynamics within the same bunch. Due to the lack of efficient methods to perform sequential non-destructive measurements on a representative number of individual berries, the genetic and environmental origins of this heterogeneity, remain nearly unknown. To address these limitations, we propose a method to track the growth and coloration kinetics of individual berries on time-lapse images of grapevine bunches. RESULTS First, a deep-learning approach is used to detect berries with at least 50 ± 10% of visible contours, and infer the shape they would have in the absence of occlusions. Second, a tracking algorithm was developed to assign a common label to shapes representing the same berry along the time-series. Training and validation of the methods were performed on challenging image datasets acquired in a robotised high-throughput phenotyping platform. Berries were detected on various genotypes with a F1-score of 91.8%, and segmented with a mean absolute error of 4.1% on their area. Tracking allowed to label and retrieve the temporal identity of more than half of the segmented berries, with an accuracy of 98.1%. This method was used to extract individual growth and colour kinetics of various berries from the same bunch, allowing us to propose the first statistically relevant analysis of berry ripening kinetics, with a time resolution lower than one day. CONCLUSIONS We successfully developed a fully-automated open-source method to detect, segment and track overlapping berries in time-series of grapevine bunch images acquired in laboratory conditions. This makes it possible to quantify fine aspects of individual berry development, and to characterise the asynchrony within the bunch. The interest of such analysis was illustrated here for one cultivar, but the method has the potential to be applied in a high throughput phenotyping context. This opens the way for revisiting the genetic and environmental variations of the ripening dynamics. Such variations could be considered both from the point of view of fruit development and the phenological structure of the population, which would constitute a paradigm shift.
Collapse
Affiliation(s)
- Benoit Daviet
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | | | | | - Maxence Cafier
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Charles Romieu
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
8
|
Magon G, De Rosa V, Martina M, Falchi R, Acquadro A, Barcaccia G, Portis E, Vannozzi A, De Paoli E. Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1293186. [PMID: 38148866 PMCID: PMC10750425 DOI: 10.3389/fpls.2023.1293186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci. On these premises, innovative strategies are emerging which could help guide selection, taking advantage of the genetic diversity within the Vitis genus in its entirety. Multiple germplasm collections are also available as a source of genetic material for the introgression of alleles of interest via adapted and pioneering transformation protocols, which present themselves as promising tools for future applications on a notably recalcitrant species such as grapevine. Genome editing intersects both these strategies, not only by being an alternative to obtain focused changes in a relatively rapid way, but also by supporting a fine-tuning of new genotypes developed with other methods. A review on the state of the art concerning the available genetic resources and the possibilities of use of innovative techniques in aid of selection is presented here to support the production of climate-smart grapevine genotypes.
Collapse
Affiliation(s)
- Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| |
Collapse
|
9
|
Kaya HB, Dilli Y, Oncu-Oner T, Ünal A. Exploring genetic diversity and population structure of a large grapevine ( Vitis vinifera L.) germplasm collection in Türkiye. FRONTIERS IN PLANT SCIENCE 2023; 14:1121811. [PMID: 37235025 PMCID: PMC10208073 DOI: 10.3389/fpls.2023.1121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/06/2023] [Indexed: 05/28/2023]
Abstract
Grapevine (Vitis Vinifera L.) has been one of the significant perennial crops in widespread temperate climate regions since its domestication around 6000 years ago. Grapevine and its products, particularly wine, table grapes, and raisins, have significant economic importance not only in grapevine-growing countries but also worldwide. Grapevine cultivation in Türkiye dates back to ancient times, and Anatolia is considered one of the main grapevine migration routes around the Mediterranean basin. Turkish germplasm collection, conserved at the Turkish Viticulture Research Institutes, includes cultivars and wild relatives mainly collected in Türkiye, breeding lines, rootstock varieties, and mutants, but also cultivars of international origin. Genotyping with high-throughput markers enables the investigation of genetic diversity, population structure, and linkage disequilibrium, which are crucial for applying genomic-assisted breeding. Here, we present the results of a high-throughput genotyping-by-sequencing (GBS) study of 341 genotypes from grapevine germplasm collection at Manisa Viticulture Research Institute. A total of 272,962 high-quality single nucleotide polymorphisms (SNP) markers on the nineteen chromosomes were identified using genotyping-by-sequencing (GBS) technology. The high-density coverage of SNPs resulted in an average of 14,366 markers per chromosome, an average polymorphism information content (PIC) value of 0.23 and an expected heterozygosity (He) value of 0.28 indicating the genetic diversity within 341 genotypes. LD decayed very fast when r2 was between 0.45 and 0.2 and became flat when r2 was 0.05. The average LD decay for the entire genome was 30 kb when r2 = 0.2. The PCA and structure analysis did not distinguish the grapevine genotypes based on different origins, highlighting the occurrence of gene flow and a high amount of admixture. Analysis of molecular variance (AMOVA) results indicated a high level of genetic differentiation within populations, while variation among populations was extremely low. This study provides comprehensive information on the genetic diversity and population structure of Turkish grapevine genotypes.
Collapse
Affiliation(s)
- Hilal Betul Kaya
- Department of Bioengineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Yıldız Dilli
- Republic of Türkiye Ministry of Agriculture and Forestry, Viticulture Research Institute, Manisa, Türkiye
| | - Tulay Oncu-Oner
- Department of Bioengineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Akay Ünal
- Republic of Türkiye Ministry of Agriculture and Forestry, Viticulture Research Institute, Manisa, Türkiye
| |
Collapse
|
10
|
Tympakianakis S, Trantas E, Avramidou EV, Ververidis F. Vitis vinifera genotyping toolbox to highlight diversity and germplasm identification. FRONTIERS IN PLANT SCIENCE 2023; 14:1139647. [PMID: 37180393 PMCID: PMC10169827 DOI: 10.3389/fpls.2023.1139647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
The contribution of vine cultivation to human welfare as well as the stimulation of basic social and cultural features of civilization has been great. The wide temporal and regional distribution created a wide array of genetic variants that have been used as propagating material to promote cultivation. Information on the origin and relationships among cultivars is of great interest from a phylogenetics and biotechnology perspective. Fingerprinting and exploration of the complicated genetic background of varieties may contribute to future breeding programs. In this review, we present the most frequently used molecular markers, which have been used on Vitis germplasm. We discuss the scientific progress that led to the new strategies being implemented utilizing state-of-the-art next generation sequencing technologies. Additionally, we attempted to delimit the discussion on the algorithms used in phylogenetic analyses and differentiation of grape varieties. Lastly, the contribution of epigenetics is highlighted to tackle future roadmaps for breeding and exploitation of Vitis germplasm. The latter will remain in the top of the edge for future breeding and cultivation and the molecular tools presented herein, will serve as a reference point in the challenging years to come.
Collapse
Affiliation(s)
- Stylianos Tympakianakis
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Emmanouil Trantas
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
- Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Heraklion, Greece
| | - Evangelia V. Avramidou
- Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organisation “DIMITRA“, Athens, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
- Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
11
|
Tello J, Ibáñez J. Review: Status and prospects of association mapping in grapevine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111539. [PMID: 36410567 DOI: 10.1016/j.plantsci.2022.111539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Thanks to current advances in sequencing technologies, novel bioinformatics tools, and efficient modeling solutions, association mapping has become a widely accepted approach to unravel the link between genotype and phenotype diversity in numerous crops. In grapevine, this strategy has been used in the last decades to understand the genetic basis of traits of agronomic interest (fruit quality, crop yield, biotic and abiotic resistance), of special relevance nowadays to improve crop resilience to cope with future climate scenarios. Genome-wide association studies have identified many putative causative loci for different traits, some of them overlapping well-known causal genes identified by conventional quantitative trait loci studies in biparental progenies, and/or validated by functional approaches. In addition, candidate-gene association studies have been useful to pinpoint the causal mutation underlying phenotypic variation for several traits of high interest in breeding programs (like berry color, seedlessness, and muscat flavor), information that has been used to develop highly informative and useful markers already in use in marker-assisted selection processes. Thus, association mapping has proved to represent a valuable step towards high quality and sustainable grape production. This review summarizes current applications of association mapping in grapevine research and discusses future prospects in view of current viticulture challenges.
Collapse
Affiliation(s)
- Javier Tello
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño 26007, Spain.
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño 26007, Spain
| |
Collapse
|
12
|
Brault C, Lazerges J, Doligez A, Thomas M, Ecarnot M, Roumet P, Bertrand Y, Berger G, Pons T, François P, Le Cunff L, This P, Segura V. Interest of phenomic prediction as an alternative to genomic prediction in grapevine. PLANT METHODS 2022; 18:108. [PMID: 36064570 PMCID: PMC9442960 DOI: 10.1186/s13007-022-00940-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phenomic prediction has been defined as an alternative to genomic prediction by using spectra instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability. RESULTS For the first time, we showed that the similarity between spectra and genomic relationship matrices was stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability, while using spectra collected on wood or leaves from one year or another had less impact. Differences between populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits between predictive ability of genomic and phenomic predictions. CONCLUSION NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment interactions and confirms that phenomic prediction can rely only on genetics.
Collapse
Affiliation(s)
- Charlotte Brault
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
- Institut Français de la vigne et du vin, 34398, Montpellier, France
| | - Juliette Lazerges
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Agnès Doligez
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Miguel Thomas
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Martin Ecarnot
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
| | - Pierre Roumet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
| | - Yves Bertrand
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Gilles Berger
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Thierry Pons
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Pierre François
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Loïc Le Cunff
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
- Institut Français de la vigne et du vin, 34398, Montpellier, France
| | - Patrice This
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France.
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France.
| |
Collapse
|
13
|
Flutre T, Le Cunff L, Fodor A, Launay A, Romieu C, Berger G, Bertrand Y, Terrier N, Beccavin I, Bouckenooghe V, Roques M, Pinasseau L, Verbaere A, Sommerer N, Cheynier V, Bacilieri R, Boursiquot JM, Lacombe T, Laucou V, This P, Péros JP, Doligez A. A genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs. G3 (BETHESDA, MD.) 2022; 12:6575896. [PMID: 35485948 PMCID: PMC9258538 DOI: 10.1093/g3journal/jkac103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.
Collapse
Affiliation(s)
- Timothée Flutre
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France.,Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Loïc Le Cunff
- UMT Géno-Vigne, 34398 Montpellier, France.,IFV, 30240 Le Grau-du-Roi, France
| | - Agota Fodor
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Amandine Launay
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Charles Romieu
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Gilles Berger
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Yves Bertrand
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Nancy Terrier
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | | | | | - Maryline Roques
- UMT Géno-Vigne, 34398 Montpellier, France.,IFV, 30240 Le Grau-du-Roi, France
| | - Lucie Pinasseau
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Arnaud Verbaere
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Nicolas Sommerer
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | - Roberto Bacilieri
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Jean-Michel Boursiquot
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Thierry Lacombe
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Patrice This
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Jean-Pierre Péros
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Agnès Doligez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| |
Collapse
|
14
|
Martínez-García PJ, Mas-Gómez J, Wegrzyn J, Botía JA. Bioinformatic approach for the discovery of cis-eQTL signals during fruit ripening of a woody species as grape (Vitis vinifera L.). Sci Rep 2022; 12:7481. [PMID: 35523985 PMCID: PMC9076688 DOI: 10.1038/s41598-022-11689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Expression quantitative trait loci (eQTLs) are associations between genetic variants, such as Single Nucleotide Polymorphisms (SNPs), and gene expression. eQTLs are an important tool to understand the genetic variance of gene expression of complex phenotypes. eQTLs analyses are common in biomedical models but are scarce in woody crop species such as fruit trees or grapes. In this study, a comprehensive bioinformatic analysis was conducted leveraging with expression data from two different growth stages, around ripening onset, of 10 genotypes of grape (Vitis vinifera L.). A total of 2170 cis-eQTL were identified in 212 gene modulated at ripening onset. The 48% of these DEGs have a known function. Among the annotated protein-coding genes, terpene synthase, auxin-regulatory factors, GRFS, ANK_REP_REGION domain-containing protein, Kinesin motor domain-containing protein and flavonol synthase were noted. This new inventory of cis-eQTLs influencing gene expression during fruit ripening will be an important resource to examine variation for this trait and will help to elucidate the complex genetic architecture underlying this process in grape.
Collapse
Affiliation(s)
- Pedro José Martínez-García
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, P.O. Box 164, 30100, Espinardo, Spain.
| | - Jorge Mas-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, P.O. Box 164, 30100, Espinardo, Spain
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Juan A Botía
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK.,Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
15
|
Brault C, Segura V, This P, Le Cunff L, Flutre T, François P, Pons T, Péros JP, Doligez A. Across-population genomic prediction in grapevine opens up promising prospects for breeding. HORTICULTURE RESEARCH 2022; 9:uhac041. [PMID: 35184162 PMCID: PMC9070645 DOI: 10.1093/hr/uhac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/01/2022] [Indexed: 05/15/2023]
Abstract
Crop breeding involves two selection steps: choosing progenitors and selecting individuals within progenies. Genomic prediction, based on genome-wide marker estimation of genetic values, could facilitate these steps. However, its potential usefulness in grapevine (Vitis vinifera L.) has only been evaluated in non-breeding contexts mainly through cross-validation within a single population. We tested across-population genomic prediction in a more realistic breeding configuration, from a diversity panel to ten bi-parental crosses connected within a half-diallel mating design. Prediction quality was evaluated over 15 traits of interest (related to yield, berry composition, phenology and vigour), for both the average genetic value of each cross (cross mean) and the genetic values of individuals within each cross (individual values). Genomic prediction in these conditions was found useful: for cross mean, average per-trait predictive ability was 0.6, while per-cross predictive ability was halved on average, but reached a maximum of 0.7. Mean predictive ability for individual values within crosses was 0.26, about half the within-half-diallel value taken as a reference. For some traits and/or crosses, these across-population predictive ability values are promising for implementing genomic selection in grapevine breeding. This study also provided key insights on variables affecting predictive ability. Per-cross predictive ability was well predicted by genetic distance between parents and when this predictive ability was below 0.6, it was improved by training set optimization. For individual values, predictive ability mostly depended on trait-related variables (magnitude of the cross effect and heritability). These results will greatly help designing grapevine breeding programs assisted by genomic prediction.
Collapse
Affiliation(s)
- Charlotte Brault
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- Institut Français de la Vigne et du Vin, F-34398 Montpellier, France
| | - Vincent Segura
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Patrice This
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Loïc Le Cunff
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- Institut Français de la Vigne et du Vin, F-34398 Montpellier, France
| | - Timothée Flutre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190, Gif-sur-Yvette, France
| | - Pierre François
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Thierry Pons
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Jean-Pierre Péros
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Agnès Doligez
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
16
|
Brault C, Doligez A, Cunff L, Coupel-Ledru A, Simonneau T, Chiquet J, This P, Flutre T. Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine. G3-GENES GENOMES GENETICS 2021; 11:6325507. [PMID: 34544146 PMCID: PMC8496232 DOI: 10.1093/g3journal/jkab248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022]
Abstract
Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.
Collapse
Affiliation(s)
- Charlotte Brault
- Institut Français de la Vigne et du Vin, Montpellier F-34398, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Agnès Doligez
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Le Cunff
- Institut Français de la Vigne et du Vin, Montpellier F-34398, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Aude Coupel-Ledru
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier 34000, France
| | - Thierry Simonneau
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier 34000, France
| | | | - Patrice This
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Timothée Flutre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| |
Collapse
|
17
|
Zhong H, Zhang F, Zhou X, Pan M, Xu J, Hao J, Han S, Mei C, Xian H, Wang M, Ji J, Shi W, Wu X. Genome-Wide Identification of Sequence Variations and SSR Marker Development in the Munake Grape Cultivar. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.664835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Munake grape cultivar produces uniquely flavored and high-quality fruits. Despite the numerous beneficial agronomic traits of Munake, there are few genetic resources available for this cultivar. To address this knowledge gap, the entire genome was sequenced using whole-genome sequencing approaches and compared with a Vitis vinifera L. reference genome. This study describes more than 3 million single nucleotide polymorphism (SNP), 300,000 insertion and deletion (InDel), 14,000 structural variation (SV), and 80,000 simple sequence repeat (SSR) markers (one SSR per 4.23 kb), as well as their primers. Among the SSRs, 44 SSR primer pairs were randomly selected and validated by polymerase chain reaction (PCR), allowing discrimination between the different Munake cultivar genotypes. The genetic data provided allow a deeper understanding of Munake cultivar genomic sequence and contribute to better knowledge of the genetic basis behind its key agronomic traits.
Collapse
|
18
|
Péros JP, Cousins P, Launay A, Cubry P, Walker A, Prado E, Peressotti E, Wiedemann-Merdinoglu S, Laucou V, Merdinoglu D, This P, Boursiquot JM, Doligez A. Genetic diversity and population structure in Vitis species illustrate phylogeographic patterns in eastern North America. Mol Ecol 2021; 30:2333-2348. [PMID: 33710711 DOI: 10.1111/mec.15881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Geographical distribution and diversity of current plant species have been strongly shaped by climatic oscillations during the Quaternary. Analysing the resulting divergence among species and differentiation within species is crucial to understand the evolution of taxa like the Vitis genus, which provides very useful genetic resources for grapevine improvement and might reveal original recolonization patterns due to growth habit and dispersal mode. Here, we studied the genetic structure in natural populations of three species from eastern North America: Vitis aestivalis, V. cinerea and V. riparia using different marker types. Vitis aestivalis and V. cinerea showed higher diversity than V. riparia. The two former species are less differentiated, confirming an earlier divergence of V. riparia. V. aestivalis and V. riparia exhibited different genetic groups on both sides of the Appalachian Mountains that could mirror different recolonization routes from southern refugia. Genetic structure was stronger in V. cinerea, for which two varieties (var. berlandieri and var. cinerea) are morphologically recognized. Our results confirm this distinction and suggest the existence of three other lineages within var. cinerea. These discontinuities appear linked to adaptation of var. berlandieri to dry and limy areas of Texas and partially to the Mississippi River Valley. Rapid range expansions from refugia upon climate warming are also suggested by the low linkage disequilibrium values observed. Furthermore, large variation for downy mildew resistance was observed in the three species. Our findings appeared consistent with the vegetation history of eastern North America.
Collapse
Affiliation(s)
- Jean-Pierre Péros
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - Amandine Launay
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Philippe Cubry
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Andy Walker
- Department of Viticulture and Enology, University of Davis, Davis, CA, USA
| | | | | | | | - Valérie Laucou
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - Patrice This
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Jean-Michel Boursiquot
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Agnès Doligez
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
19
|
Su K, Guo Y, Zhong W, Lin H, Liu Z, Li K, Li Y, Guo X. High-Density Genetic Linkage Map Construction and White Rot Resistance Quantitative Trait Loci Mapping for Genus Vitis Based on Restriction Site-Associated DNA Sequencing. PHYTOPATHOLOGY 2021; 111:659-670. [PMID: 33635092 DOI: 10.1094/phyto-12-19-0480-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| | - Weihao Zhong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, People's Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| |
Collapse
|
20
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
21
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
22
|
Delfini J, Moda-Cirino V, dos Santos Neto J, Ruas PM, Sant’Ana GC, Gepts P, Gonçalves LSA. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Sci Rep 2021; 11:2964. [PMID: 33536468 PMCID: PMC7859210 DOI: 10.1038/s41598-021-82437-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
Brazil is the world's largest producer of common bean. Knowledge of the genetic diversity and relatedness of accessions adapted to Brazilian conditions is of great importance for the conservation of germplasm and for directing breeding programs aimed at the development of new cultivars. In this context, the objective of this study was to analyze the genetic diversity, population structure, and linkage disequilibrium (LD) of a diversity panel consisting of 219 common bean accessions, most of which belonging to the Mesoamerican gene pool. Genotyping by sequencing (GBS) of these accessions allowed the identification of 49,817 SNPs with minor allele frequency > 0.05. Of these, 17,149 and 12,876 were exclusive to the Mesoamerican and Andean pools, respectively, and 11,805 SNPs could differentiate the two gene pools. Further the separation according to the gene pool, bayesian analysis of the population structure showed a subdivision of the Mesoamerican accessions based on the origin and color of the seed tegument. LD analysis revealed the occurrence of long linkage blocks and low LD decay with physical distance between SNPs (LD half decay in 249 kb, corrected for population structure and relatedness). The GBS technique could effectively characterize the Brazilian common bean germplasms, and the diversity panel used in this study may be of great use in future genome-wide association studies.
Collapse
Affiliation(s)
- Jessica Delfini
- grid.411400.00000 0001 2193 3537Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, 86051-900 Brazil ,Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-Iapar-Emater (IDR-Paraná), Londrina, 86047-902 Brazil
| | - Vânia Moda-Cirino
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-Iapar-Emater (IDR-Paraná), Londrina, 86047-902 Brazil
| | - José dos Santos Neto
- grid.411400.00000 0001 2193 3537Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, 86051-900 Brazil ,Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-Iapar-Emater (IDR-Paraná), Londrina, 86047-902 Brazil
| | - Paulo Maurício Ruas
- grid.411400.00000 0001 2193 3537Biology Department, Universidade Estadual de Londrina (UEL), Londrina, 86051-900 Brazil
| | | | - Paul Gepts
- grid.27860.3b0000 0004 1936 9684Section of Crop and Ecosystem Sciences, Department of Plant Sciences, University of California, Davis, 95616-8780 USA
| | | |
Collapse
|
23
|
Pirrello C, Zeilmaker T, Bianco L, Giacomelli L, Moser C, Vezzulli S. Mining Grapevine Downy Mildew Susceptibility Genes: A Resource for Genomics-Based Breeding and Tailored Gene Editing. Biomolecules 2021; 11:181. [PMID: 33525704 PMCID: PMC7912118 DOI: 10.3390/biom11020181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Several pathogens continuously threaten viticulture worldwide. Until now, the investigation on resistance loci has been the main trend to understand the interaction between grapevine and the mildew causal agents. Dominantly inherited gene-based resistance has shown to be race-specific in some cases, to confer partial immunity, and to be potentially overcome within a few years since its introgression. Recently, on the footprint of research conducted in Arabidopsis, putative genes associated with downy mildew susceptibility have been discovered also in the grapevine genome. In this work, we deep-sequenced four putative susceptibility genes-namely VvDMR6.1, VvDMR6.2, VvDLO1, VvDLO2-in 190 genetically diverse grapevine genotypes to discover new sources of broad-spectrum and recessively inherited resistance. Identified Single Nucleotide Polymorphisms were screened in a bottleneck analysis from the genetic sequence to their impact on protein structure. Fifty-five genotypes showed at least one impacting mutation in one or more of the scouted genes. Haplotypes were inferred for each gene and two of them at the VvDMR6.2 gene were found significantly more represented in downy mildew resistant genotypes. The current results provide a resource for grapevine and plant genetics and could corroborate genomic-assisted breeding programs as well as tailored gene editing approaches for resistance to biotic stresses.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Luca Bianco
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
| | - Silvia Vezzulli
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
| |
Collapse
|
24
|
Trenti M, Lorenzi S, Bianchedi PL, Grossi D, Failla O, Grando MS, Emanuelli F. Candidate genes and SNPs associated with stomatal conductance under drought stress in Vitis. BMC PLANT BIOLOGY 2021; 21:7. [PMID: 33407127 PMCID: PMC7789618 DOI: 10.1186/s12870-020-02739-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Understanding the complexity of the vine plant's response to water deficit represents a major challenge for sustainable winegrowing. Regulation of water use requires a coordinated action between scions and rootstocks on which cultivars are generally grafted to cope with phylloxera infestations. In this regard, a genome-wide association study (GWAS) approach was applied on an 'ad hoc' association mapping panel including different Vitis species, in order to dissect the genetic basis of transpiration-related traits and to identify genomic regions of grape rootstocks associated with drought tolerance mechanisms. The panel was genotyped with the GrapeReSeq Illumina 20 K SNP array and SSR markers, and infrared thermography was applied to estimate stomatal conductance values during progressive water deficit. RESULTS In the association panel the level of genetic diversity was substantially lower for SNPs loci (0.32) than for SSR (0.87). GWAS detected 24 significant marker-trait associations along the various stages of drought-stress experiment and 13 candidate genes with a feasible role in drought response were identified. Gene expression analysis proved that three of these genes (VIT_13s0019g03040, VIT_17s0000g08960, VIT_18s0001g15390) were actually induced by drought stress. Genetic variation of VIT_17s0000g08960 coding for a raffinose synthase was further investigated by resequencing the gene of 85 individuals since a SNP located in the region (chr17_10,497,222_C_T) was significantly associated with stomatal conductance. CONCLUSIONS Our results represent a step forward towards the dissection of genetic basis that modulate the response to water deprivation in grape rootstocks. The knowledge derived from this study may be useful to exploit genotypic and phenotypic diversity in practical applications and to assist further investigations.
Collapse
Affiliation(s)
- Massimiliano Trenti
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Pier Luigi Bianchedi
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Daniele Grossi
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133 Milan, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133 Milan, Italy
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Francesco Emanuelli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
25
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
26
|
Yu SH, Lee CM, Ha SH, Lee J, Jang KY, Park SH. Induction of cell cycle arrest and apoptosis by tomentosin in hepatocellular carcinoma HepG2 and Huh7 cells. Hum Exp Toxicol 2020; 40:231-244. [PMID: 32787465 DOI: 10.1177/0960327120943935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tomentosin, a sesquiterpene lactone, is known to possess various biological activities. However, its anticarcinogenic activity against human hepatocellular carcinoma (HCC) cells has not been investigated in detail. Thus, this study aimed to elucidate the cytotoxic mechanism of tomentosin in human HCC cell lines HepG2 and Huh7. WST-1, cell counting, and colony formation assay results showed that treatment with tomentosin decreased the viability and suppressed the proliferation rate of HepG2 and Huh7 cells in a dose- and time-dependent manner. Cell cycle analysis revealed increased population of cells at the SubG1 and G2/M stage, and decreased population of cells at the G0/1 stage in HepG2 and Huh7 cells treated with tomentosin. Annexin V/propidium iodide double staining and TUNEL assay results showed increased apoptotic cell population and DNA fragmentation in HepG2 and Huh7 cells treated with tomentosin. Western blotting analysis results showed that tomentosin treatment significantly increased the expression level of Bax, Bim (short form), cleaved PARP1, FOXO3, p53, pSer15p53, pSer20p53, pSer46p53, p21, and p27, but decreased the expression of Bcl2, caspase3, caspase7, caspase9, cyclin-dependent kinase 2 (CDK2), CDK4, CDK6, cyclinB1, cyclinD1, cyclinD2, cyclinD3, and cyclinE in a dose-dependent manner. Taken together, this study revealed that tomentosin, which acted through cell cycle arrest and apoptosis, may be a useful therapeutic option against HCC.
Collapse
Affiliation(s)
- S H Yu
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| | - C M Lee
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| | - S H Ha
- Division of Biotechnology, 26714Jeonbuk National University, Iksan, Republic of Korea
| | - J Lee
- Department of Integrative Biotechnology, 65666Sungkyunkwan University, Suwon, Republic of Korea
| | - K Y Jang
- Department of Pathology, 26714Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea.,Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - S H Park
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| |
Collapse
|
27
|
Genetic Diversity, Population Structure, and Parentage Analysis of Croatian Grapevine Germplasm. Genes (Basel) 2020; 11:genes11070737. [PMID: 32630730 PMCID: PMC7397172 DOI: 10.3390/genes11070737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
Croatian viticulture was most extensive at the beginning of the 20th century, when about 400 varieties were in use. Autochthonous varieties are the result of spontaneous hybridization from the pre-phylloxera era and are still cultivated today on about 35 % of vineyard area, while some exist only in repositories. We present what is the most comprehensive genetic analysis of all major Croatian national repositories, with a large number of microsatellite, or simple sequence repeat (SSR) markers, and it is also the first study to apply single nucleotide polymorphism (SNP) markers. After 212 accessions were fingerprinted, 95 were classified as unique to Croatian germplasm. Genetic diversity of Croatian germplasm is rather high considering its size. SNP markers proved useful for fingerprinting but less informative and practical than SSRs. Analysis of the genetic structure showed that Croatian germplasm is predominantly part of the Balkan grape gene pool. A high number of admixed varieties and synonyms is a consequence of complex pedigrees and migrations. Parentage analysis confirmed 24 full parentages, as well as 113 half-kinships. Unexpectedly, several key genitors could not be detected within the present Croatian germplasm. The low number of reconstructed parentages (19%) points to severe genetic erosion and stresses the importance of germplasm repositories.
Collapse
|
28
|
Su K, Xing H, Guo Y, Zhao F, Liu Z, Li K, Li Y, Guo X. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 2020; 21:419. [PMID: 32571215 PMCID: PMC7310074 DOI: 10.1186/s12864-020-06836-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| |
Collapse
|
29
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, D'Agostino N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front Genet 2020; 11:447. [PMID: 32587600 PMCID: PMC7299185 DOI: 10.3389/fgene.2020.00447] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype–phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Kui L, Tang M, Duan S, Wang S, Dong X. Identification of Selective Sweeps in the Domesticated Table and Wine Grape ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572. [PMID: 32477387 PMCID: PMC7240110 DOI: 10.3389/fpls.2020.00572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
Grapevine (Vitis vinifera) is one of the most important fruit species in the Classical Mediterranean world. It is thought to have been domesticated 6,000-8,000 years ago in the Near East. However, the domestication of its wild relative into wine grapes or table grapes remains largely unknown. In this study, we analyzed 30 table grapes, 30 wine grapes, 30 dual-purpose grape accessions, as well as 30 wild relatives (Vitis vinifera ssp. sylvestris). The phenotypic comparison showed striking differences in berry weight, acidity and the content of aroma. Based on a total of 7,522,958 single-nucleotide polymorphisms, we identified several significant selective sweep regions for table and wine grapes. Besides the well-known sex-determination locus on chromosome 2, the other four highest signals shared by table and wine grapes could not be linked to the known QTLs. The identification of these genomic regions under selection sweep may reveal agronomically important traits that have been selected during grape domestication. This information not only sheds light on the mechanisms of adaptions and diversification, but also guide the genetic improvement in breeding programs.
Collapse
Affiliation(s)
- Ling Kui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Min Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Nowbio Biotechnology Company, Kunming, China
| | | | - Xiao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Nowbio Biotechnology Company, Kunming, China
- *Correspondence: Xiao Dong,
| |
Collapse
|
31
|
He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape ( Vitis Vinifera L.). Genes (Basel) 2019; 10:genes10090680. [PMID: 31492001 PMCID: PMC6771001 DOI: 10.3390/genes10090680] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023] Open
Abstract
Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.
Collapse
Affiliation(s)
- Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Pingping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaomei Sun
- College of Resource and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
32
|
Negro SS, Millet EJ, Madur D, Bauland C, Combes V, Welcker C, Tardieu F, Charcosset A, Nicolas SD. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC PLANT BIOLOGY 2019; 19:318. [PMID: 31311506 PMCID: PMC6636005 DOI: 10.1186/s12870-019-1926-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/05/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Single Nucleotide Polymorphism (SNP) array and re-sequencing technologies have different properties (e.g. calling rate, minor allele frequency profile) and drawbacks (e.g. ascertainment bias). This lead us to study their complementarity and the consequences of using them separately or combined in diversity analyses and Genome-Wide Association Studies (GWAS). We performed GWAS on three traits (grain yield, plant height and male flowering time) measured in 22 environments on a panel of 247 F1 hybrids obtained by crossing 247 diverse dent maize inbred lines with a same flint line. The 247 lines were genotyped using three genotyping technologies (Genotyping-By-Sequencing, Illumina Infinium 50 K and Affymetrix Axiom 600 K arrays). RESULTS The effects of ascertainment bias of the 50 K and 600 K arrays were negligible for deciphering global genetic trends of diversity and for estimating relatedness in this panel. We developed an original approach based on linkage disequilibrium (LD) extent in order to determine whether SNPs significantly associated with a trait and that are physically linked should be considered as a single Quantitative Trait Locus (QTL) or several independent QTLs. Using this approach, we showed that the combination of the three technologies, which have different SNP distributions and densities, allowed us to detect more QTLs (gain in power) and potentially refine the localization of the causal polymorphisms (gain in resolution). CONCLUSIONS Conceptually different technologies are complementary for detecting QTLs by tagging different haplotypes in association studies. Considering LD, marker density and the combination of different technologies (SNP-arrays and re-sequencing), the genotypic data available were most likely enough to well represent polymorphisms in the centromeric regions, whereas using more markers would be beneficial for telomeric regions.
Collapse
Affiliation(s)
- Sandra S. Negro
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Emilie J. Millet
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, INRA, SupAgro, 34060 Montpellier, France
- Present address: Biometris, Department of Plant Science, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| | - Delphine Madur
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Cyril Bauland
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Valérie Combes
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Claude Welcker
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, INRA, SupAgro, 34060 Montpellier, France
| | - François Tardieu
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, INRA, SupAgro, 34060 Montpellier, France
| | - Alain Charcosset
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Stéphane D. Nicolas
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
33
|
Urrestarazu J, Kägi C, Bühlmann A, Gassmann J, Santesteban LG, Frey JE, Kellerhals M, Miranda C. Integration of expert knowledge in the definition of Swiss pear core collection. Sci Rep 2019; 9:8934. [PMID: 31221983 PMCID: PMC6586639 DOI: 10.1038/s41598-019-44871-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Core collections (CCs) constitute a key tool for the characterization and management of genetic resources (GR). When the institutions involved in GR preservation decide to define a CC, they frequently prefer to select accessions based not only on strictly objective criteria, but also to add others following expert knowledge considerations (popularity, prestige, role in breeding history, or presence of phenotypic features of interest). The aim of this study was to evaluate the implications of approaches that combine formal analytical procedures and expert knowledge on the efficiency of CC definition through a case study to establish a pear CC from the Swiss National Pear Inventory. The CC had to represent a maximum of the genetic diversity, not to exceed 150 accessions, and required to include a priority set (SPPS) with 86 genotypes selected based on expert knowledge. In total, nine strategies were evaluated, resulting of combining compositions of the dataset sampled, sampling sizes and methods. The CCs sampled by mixed approaches provided similar scores, irrespective of the approach considered, and obtained similar efficiency in optimizing the genetic diversity retained. Therefore, mixed approaches can be an appropriate choice for applications involving genetic conservation in tree germplasm collections.
Collapse
Affiliation(s)
- J Urrestarazu
- Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, 31006, Pamplona, Spain.
| | - C Kägi
- Federal Office for Agriculture, 3003, Bern, Switzerland
| | | | | | - L G Santesteban
- Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, 31006, Pamplona, Spain
| | - J E Frey
- Agroscope, 8820, Wädenswil, Switzerland
| | | | - C Miranda
- Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, 31006, Pamplona, Spain
| |
Collapse
|
34
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
35
|
Yao F, Zhang X, Ye X, Li J, Long L, Yu C, Li J, Wang Y, Wu Y, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G. Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genet 2019; 20:38. [PMID: 30914040 PMCID: PMC6434810 DOI: 10.1186/s12863-019-0736-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/03/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Stripe rust is a serious fungal disease of wheat (Triticum aestivum L.) caused by Puccinia striiformis f. sp. tritici (Pst), which results in yield reduction and decreased grain quality. Breeding for genetic resistance to stripe rust is the most cost-effective method to control the disease. In the present study, a genome-wide association study (GWAS) was conducted to identify markers linked to stripe rust resistance genes (or loci) in 93 Northern Chinese wheat landraces, using Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) molecular marker technology based on phenotypic data from two field locations over two growing seasons in China. RESULTS Seventeen accessions were verified to display stable and high levels of adult plant resistance (APR) to stripe rust via multi-environment field assessments. Significant correlations among environments and high heritability were observed for stripe rust infection type (IT) and disease severity (DS). Using mixed linear models (MLM) for the GWAS, a total of 32 significantly associated loci (P < 0.001) were detected. In combination with the linkage disequilibrium (LD) decay distance (6.4 cM), 25 quantitative trait loci (QTL) were identified. Based on the integrated map of previously reported genes and QTL, six QTL located on chromosomes 4A, 6A and 7D were mapped far from resistance regions identified previously, and represent potentially novel stripe rust resistance loci at the adult plant stage. CONCLUSIONS The present findings demonstrated that identification of genes or loci linked to significant markers in wheat by GWAS is feasible. Seventeen elite accessions conferred with stable and high resistance to stripe rust, and six putative newly detected APR loci were identified among the 93 Northern Chinese wheat landraces. The results illustrate the potential for acceleration of molecular breeding of wheat, and also provide novel sources of stripe rust resistance with potential utility in the breeding of improved wheat cultivars.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xuemei Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|
36
|
Liang Z, Duan S, Sheng J, Zhu S, Ni X, Shao J, Liu C, Nick P, Du F, Fan P, Mao R, Zhu Y, Deng W, Yang M, Huang H, Liu Y, Ding Y, Liu X, Jiang J, Zhu Y, Li S, He X, Chen W, Dong Y. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 2019; 10:1190. [PMID: 30867414 PMCID: PMC6416300 DOI: 10.1038/s41467-019-09135-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/21/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the Vitis species at the genomic level is important for cultivar improvement of grapevine. Here we report whole-genome genetic variation at single-base resolution of 472 Vitis accessions, which cover 48 out of 60 extant Vitis species from a wide geographic distribution. The variation helps to identify a recent dramatic expansion and contraction of effective population size in the domesticated grapevines and that cultivars from the pan-Black Sea region have a unique demographic history in comparison to the other domesticated cultivars. We also find selective sweeps for berry edibility and stress resistance improvement. Furthermore, we find associations between candidate genes and important agronomic traits, such as berry shape and aromatic compounds. These results demonstrate resource value of the resequencing data for illuminating the evolutionary biology of Vitis species and providing targets for grapevine genetic improvement. Despite the importance of grapevine cultivation in human history and the economic values of cultivar improvement, large-scale genomic variation data are lacking. Here the authors resequence 472 Vitis accessions and use the identified genetic variations for domestication history, demography, and GWAS analyses.
Collapse
Affiliation(s)
- Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Nowbio Biotechnology Company, Kunming, 650201, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuemei Ni
- BGI, BGI-Shenzhen, Shenzhen, 518120, China.,BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jianhui Shao
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, 76128, Germany
| | - Fei Du
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ruzhi Mao
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiping Deng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixiang Liu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiqing Ding
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.
| |
Collapse
|
37
|
Smit SJ, Vivier MA, Young PR. Linking Terpene Synthases to Sesquiterpene Metabolism in Grapevine Flowers. FRONTIERS IN PLANT SCIENCE 2019; 10:177. [PMID: 30846994 PMCID: PMC6393351 DOI: 10.3389/fpls.2019.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/05/2019] [Indexed: 05/23/2023]
Abstract
Grapevine (Vitis vinifera L.) terpene synthases (VviTPS) are responsible for the biosynthesis of terpenic volatiles. Volatile profiling of nine commercial wine cultivars showed unique cultivar-specific variation in volatile terpenes emitted from grapevine flowers. The flower chemotypes of three divergent cultivars, Muscat of Alexandria, Sauvignon Blanc and Shiraz were subsequently investigated at two flower developmental stages (EL-18 and -26). The cultivars displayed unique flower sesquiterpene compositions that changed during flower organogenesis and the profiles were dominated by either (E)-β-farnesene, (E,E)-α-farnesene or (+)-valencene. In silico remapping of microarray probes to VviTPS gene models allowed for a meta-analysis of VviTPS expression patterns in the grape gene atlas to identify genes that could regulate terpene biosynthesis in flowers. Selected sesquiterpene synthase genes were isolated and functionally characterized in three cultivars. Genotypic differences that could be linked to the function of a targeted gene model resulted in the isolation of a novel and cultivar-specific single product sesquiterpene synthase from Muscat of Alexandria flowers (VvivMATPS10), synthesizing (E)-β-farnesene as its major volatile. Furthermore, we identified structural variations (SNPs, InDels and splice variations) in the characterized VviTPS genes that potentially impact enzyme function and/or volatile sesquiterpene production in a cultivar-specific manner.
Collapse
Affiliation(s)
| | | | - Philip Richard Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Mariotti R, Fornasiero A, Mousavi S, Cultrera NG, Brizioli F, Pandolfi S, Passeri V, Rossi M, Magris G, Scalabrin S, Scaglione D, Di Gaspero G, Saumitou-Laprade P, Vernet P, Alagna F, Morgante M, Baldoni L. Genetic Mapping of the Incompatibility Locus in Olive and Development of a Linked Sequence-Tagged Site Marker. FRONTIERS IN PLANT SCIENCE 2019; 10:1760. [PMID: 32117338 PMCID: PMC7025539 DOI: 10.3389/fpls.2019.01760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Alice Fornasiero
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Soraya Mousavi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | | | - Federico Brizioli
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Saverio Pandolfi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Valentina Passeri
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Martina Rossi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Gabriele Magris
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | | | | | | | - Philippe Vernet
- University of Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | | | - Michele Morgante
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Luciana Baldoni
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
- *Correspondence: Luciana Baldoni,
| |
Collapse
|
39
|
Guo DL, Zhao HL, Li Q, Zhang GH, Jiang JF, Liu CH, Yu YH. Genome-wide association study of berry-related traits in grape [ Vitis vinifera L.] based on genotyping-by-sequencing markers. HORTICULTURE RESEARCH 2019; 6:11. [PMID: 30603096 PMCID: PMC6312537 DOI: 10.1038/s41438-018-0089-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 05/18/2023]
Abstract
Deciphering the genetic control of grape berry traits is crucial for optimizing yield, fruit quality, and consumer acceptability. In this study, an association panel of 179 grape genotypes comprising a mixture of ancient cultivars, landraces, and modern varieties collected worldwide were genotyped with genotyping-by-sequencing using a genome-wide association approach based on 32,311 single-nucleotide polymorphism (SNP) markers. Genome-wide efficient mixed-model association was selected as the optimal statistical model based on the results of known control loci of grape berry color traits. Many of the associated SNPs identified in this study were in accordance with the previous QTL analyses using biparental mapping. The grape skin color locus was found to be associated with a mybA transcription factor on chromosome 2. Two strong and distinct association signals associated with berry development periods were found on chromosome 16. Most candidate genes of the interval were highlighted as receptor-like protein kinase. For berry weight, significant association loci were identified on chromosome 18, as previously known, and on chromosome 19 and chromosome 17, as newly mapped. Berry flesh texture was newly located on chromosome 16; candidate genes in the interval were related to calcium. Berry flavor was determined on chromosome 5. Genomic regions were further investigated to reveal candidate genes. In this work, we identified interesting genetic determinants of grape berry-related traits. The identification of the markers closely associated with these berry traits may be useful for grape molecular breeding.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Hui-Li Zhao
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Jian-Fu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 Henan Province China
| | - Chong-Huai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 Henan Province China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| |
Collapse
|
40
|
Diniz AL, Giordani W, Costa ZP, Margarido GRA, Perseguini JMKC, Benchimol-Reis LL, Chiorato AF, Garcia AAF, Vieira MLC. Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans. Genes (Basel) 2018; 10:E5. [PMID: 30583474 PMCID: PMC6356217 DOI: 10.3390/genes10010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Phaseolus vulgaris is an important grain legume for human consumption. Recently, association mapping studies have been performed for the species aiming to identify loci underlying quantitative variation of traits. It is now imperative to know whether the linkage disequilibrium (LD) reflects the true association between a marker and causative loci. The aim of this study was to estimate and analyze LD on a diversity panel of common beans using ordinary r² and r2 extensions which correct bias due to population structure (rS²), kinship (rV²), and both (rVS²). A total of 10,362 single nucleotide polymorphisms (SNPs) were identified by genotyping by sequencing (GBS), and polymorphisms were found to be widely distributed along the 11 chromosomes. In terms of r2, high values of LD (over 0.8) were identified between SNPs located at opposite chromosomal ends. Estimates for rV² were lower than those for rS². Results for rV² and rVS² were similar, suggesting that kinship may also include information on population structure. Over genetic distance, LD decayed to 0.1 at a distance of 1 Mb for rVS². Inter-chromosomal LD was also evidenced. This study showed that LD estimates decay dramatically according to the population structure, and especially the degree of kinship. Importantly, the LD estimates reported herein may influence our ability to perform association mapping studies on P. vulgaris.
Collapse
Affiliation(s)
- Augusto Lima Diniz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Willian Giordani
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Zirlane Portugal Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Gabriel R A Margarido
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Juliana Morini K C Perseguini
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná 85660-000, Brazil.
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Luciana L Benchimol-Reis
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Alisson F Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Antônio Augusto F Garcia
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| |
Collapse
|
41
|
Singh P, Gobbi A, Santoni S, Hansen LH, This P, Péros JP. Assessing the impact of plant genetic diversity in shaping the microbial community structure of Vitis vinifera phyllosphere in the Mediterranean. FRONTIERS IN LIFE SCIENCE 2018. [DOI: 10.1080/21553769.2018.1552628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Prashant Singh
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Alex Gobbi
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Lars H Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Patrice This
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Péros
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
42
|
Indole-3-Carbinol Induces Apoptosis in Human Osteosarcoma MG-63 and U2OS Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7970618. [PMID: 30627573 PMCID: PMC6304504 DOI: 10.1155/2018/7970618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
This study was focused on investigating the anticancer potential of indole-3-carbinol (I3C) against osteosarcoma MG-63 and U2OS cells. A wound healing assay indicated that IC3 inhibited migration of MG-63 and U2OS cells. MTT, WST-1, and colony formation assays revealed that treatment of MG-63 and U2OS cells with I3C decreased cell viability. Fluorescence-activated cell sorting (FACS) analysis showed that I3C induced apoptosis in a dose- and time-dependent manner in MG-63 and U2OS cells. Moreover, via terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP-biotin nick-end labeling (TUNEL) assay, we detected that I3C induced DNA fragmentation. Western blotting demonstrated that activated forms of caspase-3, caspase-7, and caspase-9, as well as poly (ADP-ribose) polymerase (PARP) were increased in MG-63 and U2OS cells, following treatment with I3C. Furthermore, protein expression levels of FOXO3, Bax, and Bim extra-large form were increased while those of Akt, JNK, p38, phosphorylated ERK, and Bcl-xL were decreased by I3C treatment in MG-63 and U2OS cells. Thus, the study indicates that I3C may induce apoptosis in human osteosarcoma MG-63 and U2OS cells via the activation of apoptotic signaling pathways by FOXO3.
Collapse
|
43
|
Molecular characterization of a diverse Iranian table grapevine germplasm using REMAP markers: population structure, linkage disequilibrium and association mapping of berry yield and quality traits. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Singh P, Santoni S, This P, Péros JP. Genotype-Environment Interaction Shapes the Microbial Assemblage in Grapevine's Phyllosphere and Carposphere: An NGS Approach. Microorganisms 2018; 6:microorganisms6040096. [PMID: 30248973 PMCID: PMC6313654 DOI: 10.3390/microorganisms6040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Plant surface or phyllosphere is the habitat of hyperdiverse microbial communities and it is always exposed to the fluctuating environmental factors, which is thought to be one of the potential drivers of microbial community structuring. Impact of grapevine genotypes in variable environmental factors (i.e., at different geographic locations) on the phyllosphere has never been studied and is the main objective of this report. Using high throughput short amplicon sequencing of 16S rRNA genes and internal transcribed spacer (ITS), we analyzed the impacts of genotypes of Vitis Vinifera (coming from three genetic pool), on the microbial (bacterial and fungal) assemblage in the phyllosphere. First, we performed the analysis of the phyllosphere microbiome while using fifteen genotypes that were chosen to maximize intra-specific diversity and grown in two Mediterranean vineyards. Then, the same analysis was performed on five commercially important varieties of Vitis vinifera that were sampled from three different French agro-climatic zones (or terroir: a combination of climate, soils, and human practices). Our study revealed that, at a particular geographic location, genotypes have an impact on microbial assemblage in the phyllosphere and carposphere of leaf and fruit (or berries), respectively, which is more prominent on the carposphere but the effect of terroir was much stronger than the genotype when the leaf phyllosphere of five grapevine varieties grown in different agro-climatic zones was compared. Impacts of the season and exterior plant organs (leaf and berries) on microbial taxa structuring in the phyllosphere was also assessed and presented in this report.
Collapse
Affiliation(s)
- Prashant Singh
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Patrice This
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Jean-Pierre Péros
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| |
Collapse
|
45
|
Marrano A, Micheletti D, Lorenzi S, Neale D, Grando MS. Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. HORTICULTURE RESEARCH 2018; 5:34. [PMID: 29977570 PMCID: PMC6026492 DOI: 10.1038/s41438-018-0041-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/23/2018] [Accepted: 04/06/2018] [Indexed: 05/03/2023]
Abstract
The application of population genetic methods in combination with gene mapping strategies can help to identify genes and mutations selected during the evolution from wild plants to crops and to explore the considerable genetic variation still maintained in natural populations. We genotyped a grapevine germplasm collection of 44 wild (Vitis vinifera subsp. sylvestris) and 48 cultivated (V. vinifera subsp. sativa) accessions at 54 K single-nucleotide polymorphisms (SNPs) to perform a whole-genome comparison of the main population genetic statistics. The analysis of Wright Fixation Index (FST) along the whole genome allowed us to identify several putative "signatures of selection" spanning over two thousand SNPs significantly differentiated between sativa and sylvestris. Many of these genomic regions included genes involved in the adaptation to environmental changes. An overall reduction of nucleotide diversity was observed across the whole genome within sylvestris, supporting a small effective population size of the wild grapevine. Tajima's D resulted positive in both wild and cultivated subgroups, which may indicate an ongoing balancing selection. Association mapping for six domestication-related traits was performed in combination with population genetics, providing further evidence of different perception and response to environmental stresses between sativa and sylvestris.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all ‘Adige (TN), Italy
| | - Diego Micheletti
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all ‘Adige (TN), Italy
| | - Silvia Lorenzi
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all ‘Adige (TN), Italy
| | - David Neale
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - M. Stella Grando
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all ‘Adige (TN), Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all ‘Adige (TN), Italy
| |
Collapse
|
46
|
Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF, Bérard A, Chauveau A, de Andrés MT, Hausmann L, Ibáñez J, Le Paslier MC, Maghradze D, Martinez-Zapater JM, Maul E, Ponnaiah M, Töpfer R, Péros JP, Boursiquot JM. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS One 2018; 13:e0192540. [PMID: 29420602 PMCID: PMC5805323 DOI: 10.1371/journal.pone.0192540] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26-0.32) and linkage disequilibrium (LD, 28.8-58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine.
Collapse
Affiliation(s)
- Valérie Laucou
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Amandine Launay
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Roberto Bacilieri
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Thierry Lacombe
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,INRA Unité Expérimentale de Vassal, Centre de Ressources Biologiques de la Vigne, Marseillan-plage, France
| | | | - Aurélie Bérard
- EPGV, Univ Paris-Saclay, CEA, IG-CNG, INRA, Evry, France
| | | | | | - Ludger Hausmann
- JKI, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Javier Ibáñez
- ICVV, CSIC, Universidad de La Rioja, Gobierno de la Rioja, Logroño, Spain
| | | | | | | | - Erika Maul
- JKI, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Maharajah Ponnaiah
- EPGV, Univ Paris-Saclay, CEA, IG-CNG, INRA, Evry, France.,LBD, Univ UPMC, CNRS, INSERM, Paris, France
| | - Reinhard Töpfer
- JKI, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Jean-Pierre Péros
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Michel Boursiquot
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,INRA Unité Expérimentale de Vassal, Centre de Ressources Biologiques de la Vigne, Marseillan-plage, France
| |
Collapse
|
47
|
Gumpinger AC, Roqueiro D, Grimm DG, Borgwardt KM. Methods and Tools in Genome-wide Association Studies. Methods Mol Biol 2018; 1819:93-136. [PMID: 30421401 DOI: 10.1007/978-1-4939-8618-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many traits, such as height, the response to a given drug, or the susceptibility to certain diseases are presumably co-determined by genetics. Especially in the field of medicine, it is of major interest to identify genetic aberrations that alter an individual's risk to develop a certain phenotypic trait. Addressing this question requires the availability of comprehensive, high-quality genetic datasets. The technological advancements and the decreasing cost of genotyping in the last decade led to an increase in such datasets. Parallel to and in line with this technological progress, an analysis framework under the name of genome-wide association studies was developed to properly collect and analyze these data. Genome-wide association studies aim at finding statistical dependencies-or associations-between a trait of interest and point-mutations in the DNA. The statistical models used to detect such associations are diverse, spanning the whole range from the frequentist to the Bayesian setting.Since genetic datasets are inherently high-dimensional, the search for associations poses not only a statistical but also a computational challenge. As a result, a variety of toolboxes and software packages have been developed, each implementing different statistical methods while using various optimizations and mathematical techniques to enhance the computations.This chapter is devoted to the discussion of widely used methods and tools in genome-wide association studies. We present the different statistical models and the assumptions on which they are based, explain peculiarities of the data that have to be accounted for and, most importantly, introduce commonly used tools and software packages for the different tasks in a genome-wide association study, complemented with examples for their application.
Collapse
Affiliation(s)
- Anja C Gumpinger
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Damian Roqueiro
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominik G Grimm
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karsten M Borgwardt
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
48
|
The long non-coding RNA MIAT regulates zinc finger E-box binding homeobox 1 expression by sponging miR-150 and promoteing cell invasion in non-small-cell lung cancer. Gene 2017; 633:61-65. [PMID: 28843520 DOI: 10.1016/j.gene.2017.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 06/02/2017] [Accepted: 08/20/2017] [Indexed: 01/14/2023]
Abstract
The myocardial infarction associated transcript (MIAT), a long non-coding RNA (lncRNA), was originally identified as a candidate gene for myocardial infarction, and was recently shown to participate in the progression of cancer and the process of metastasis. However, the biological role of MIAT and the underlying mechanisms that mediate its role in non-small-cell lung cancer (NSCLC) remain unclear. Here, we have shown that the expression of MIAT in NSCLC tissues was upregulated. Knockdown of MIAT substantially inhibited the invasive ability of NSCLC cells. Moreover, the knockdown of MIAT significantly downregulated the expression of the zinc finger E-box binding homeobox 1 (ZEB1), that was upregulated in NSCLC and that promoted cell invasion. Rather than by direct interactions, we found that MIAT indirectly regulated ZEB1 expression through sponging and suppressing microRNA (miR)-150, which represses ZEB1 and interacts with MIAT in a sequence-specific manner. Thus, MIAT may inhibit ZEB1 expression and promote cell invasion of NSCLC cells via the miR-150/ZEB1 pathway. Taken together, our findings suggested that MIAT plays an oncogenic role in NSCLC through the ZEB1 signaling pathway by sponging miR-150, and MIAT may therefore serve as a valuable prognostic biomarker and therapeutic target for NSCLC.
Collapse
|
49
|
Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. FRONTIERS IN PLANT SCIENCE 2017; 8:652. [PMID: 28553296 PMCID: PMC5427129 DOI: 10.3389/fpls.2017.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratory of Plant-Microbe Interactions, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Toulouse UniversityCastanet Tolosan, France
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research CentreRome, Italy
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, Instituto de Biossistemas e Ciências Integrativas (BioISI), Universidade de LisboaLisboa, Portugal
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| |
Collapse
|
50
|
Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O. New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:435-455. [PMID: 28226236 DOI: 10.1146/annurev-arplant-042916-040820] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative genetics has a long history in plants: It has been used to study specific biological processes, identify the factors important for trait evolution, and breed new crop varieties. These classical approaches to quantitative trait locus mapping have naturally improved with technology. In this review, we show how quantitative genetics has evolved recently in plants and how new developments in phenotyping, population generation, sequencing, gene manipulation, and statistics are rejuvenating both the classical linkage mapping approaches (for example, through nested association mapping) as well as the more recently developed genome-wide association studies. These strategies are complementary in most instances, and indeed, one is often used to confirm the results of the other. Despite significant advances, an emerging trend is that the outcome and efficiency of the different approaches depend greatly on the genetic architecture of the trait in the genetic material under study.
Collapse
Affiliation(s)
- Christos Bazakos
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Mathieu Hanemian
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Charlotte Trontin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| |
Collapse
|