1
|
Xue Q, Zhang Q, Zhang A, Li D, Liu Y, Xu H, Yang Q, Liu F, Han T, Tang X, Zhang X. Integrated metabolome and transcriptome analysis provides clues to fruit color formation of yellow, orange, and red bell pepper. Sci Rep 2024; 14:29737. [PMID: 39613866 DOI: 10.1038/s41598-024-81005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Fruit color is a crucial trait for bell pepper. To investigate the mechanism of color formation, three bell pepper lines with different color (yellow, orange and red) were used as materials to conduct comprehensive targeted metabolomic and transcriptomic analyses. During the process of fruit development, 54 carotenoids metabolites were discovered, exhibiting unique accumulation patterns and notable variety specificity. The types and content of carotenoids in orange fruit (OM) were notably greater compared to the other two varieties. Red pigment (capsanthin and capsorubin) was specifically enriched in red fruit (RM), and yellow pigment (lutein and zeaxanthin) is the highest in yellow fruit (YM) and OM. Five modules positively correlated with carotenoid accumulation and one negative module was determined by weighted gene co-expression network analysis (WGCNA). Additionally, transcription factors (TFs) and hub genes related to carotenoid synthesis were predicted. By elucidating the regulation of 7 key carotenoid metabolites by 14 critical genes and 5 key TFs, we constructed a comprehensive carotenoid biosynthesis metabolic network that comprehensively explains the pigment changes observed in green and mature pepper fruit. Overall, the results not only provide important insights into carotenoid synthesis pathway, but also lay a solid base for revealing the mechanism of bell pepper color transformation.
Collapse
Affiliation(s)
- Qiqin Xue
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Qingxia Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Aiai Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Da Li
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Yongguang Liu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Haicheng Xu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Qinghua Yang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Fengyan Liu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Tongyao Han
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xiaozhen Tang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xiurong Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China.
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China.
| |
Collapse
|
2
|
Zhang Y, Jin J, Wang N, Sun Q, Feng D, Zhu S, Wang Z, Li S, Ye J, Chai L, Xie Z, Deng X. Cytochrome P450 CitCYP97B modulates carotenoid accumulation diversity by hydroxylating β-cryptoxanthin in Citrus. PLANT COMMUNICATIONS 2024; 5:100847. [PMID: 38379285 PMCID: PMC11211522 DOI: 10.1016/j.xplc.2024.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
Carotenoids in plant foods provide health benefits by functioning as provitamin A. One of the vital provitamin A carotenoids, β-cryptoxanthin, is typically plentiful in citrus fruit. However, little is known about the genetic basis of β-cryptoxanthin accumulation in citrus. Here, we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of β-cryptoxanthin. We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of β-cryptoxanthin accumulation through a genome-wide association study. We identified a causal gene, CitCYP97B, which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined. We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the β-ring of β-cryptoxanthin in a heterologous expression system. In planta experiments provided further evidence that CitCYP97B negatively regulates β-cryptoxanthin content. Using the sequenced Citrus accessions, we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B, thereby altering β-cryptoxanthin accumulation in fruit. Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution. Overall, these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of β-cryptoxanthin-biofortified products.
Collapse
Affiliation(s)
- Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Jin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenchao Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zexin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shunxin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Lautier T, Smith DJ, Yang LK, Chen X, Zhang C, Truan G, Lindley ND. β-Cryptoxanthin Production in Escherichia coli by Optimization of the Cytochrome P450 CYP97H1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4683-4695. [PMID: 36888893 DOI: 10.1021/acs.jafc.2c08970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cytochromes P450, forming a superfamily of monooxygenases containing heme as a cofactor, show great versatility in substrate specificity. Metabolic engineering can take advantage of this feature to unlock novel metabolic pathways. However, the cytochromes P450 often show difficulty being expressed in a heterologous chassis. As a case study in the prokaryotic host Escherichia coli, the heterologous synthesis of β-cryptoxanthin was addressed. This carotenoid intermediate is difficult to produce, as its synthesis requires a monoterminal hydroxylation of β-carotene whereas most of the classic carotene hydroxylases are dihydroxylases. This study was focused on the optimization of the in vivo activity of CYP97H1, an original P450 β-carotene monohydroxylase. Engineering the N-terminal part of CYP97H1, identifying the matching redox partners, defining the optimal cellular background and adjusting the culture and induction conditions improved the production by 400 times compared to that of the initial strain, representing 2.7 mg/L β-cryptoxanthin and 20% of the total carotenoids produced.
Collapse
Affiliation(s)
- Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, 138602 Singapore
| | - Derek J Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Nic D Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
4
|
Zhang Y, Jin J, Zhu S, Sun Q, Zhang Y, Xie Z, Ye J, Deng X. Citrus β-carotene hydroxylase 2 (BCH2) participates in xanthophyll synthesis by catalyzing the hydroxylation of β-carotene and compensates for BCH1 in citrus carotenoid metabolism. HORTICULTURE RESEARCH 2023; 10:uhac290. [PMID: 36938563 PMCID: PMC10018782 DOI: 10.1093/hr/uhac290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
As an essential horticultural crop, Citrus has carotenoid diversity, which affects its aesthetic and nutritional values. β,β-Xanthophylls are the primary carotenoids accumulated in citrus fruits, and non-heme di-iron carotene hydroxylase (BCH) enzymes are mainly responsible for β,β-xanthophyll synthesis. Previous studies have focused on the hydroxylation of BCH1, but the role of its paralogous gene in citrus, BCH2, remains largely unknown. In this study, we revealed the β-hydroxylation activity of citrus BCH2 (CsBCH2) for the first time through the functional complementation assay using Escherichia coli, although CsBCH2 exhibited a lower activity in hydroxylating β-carotene into β-cryptoxanthin than citrus BCH1 (CsBCH1). Our results showed that overexpression of CsBCH2 in citrus callus increased xanthophyll proportion and plastoglobule size with feedback regulation of carotenogenic gene expression. This study revealed the distinct expression patterns and functional characteristics of two paralogous genes, CsBCH1 and CsBCH2, and illustrated the backup compensatory role of CsBCH2 for CsBCH1 in citrus xanthophyll biosynthesis. The independent function of CsBCH2 and its cooperative function with CsBCH1 in β-cryptoxanthin biosynthesis suggested the potential of CsBCH2 to be employed for expanding the synthetic biology toolkit in carotenoid engineering.
Collapse
Affiliation(s)
- Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiajing Jin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenchao Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | | |
Collapse
|
5
|
Liu X, Gong Q, Zhao C, Wang D, Ye X, Zheng G, Wang Y, Cao J, Sun C. Genome-wide analysis of cytochrome P450 genes in Citrus clementina and characterization of a CYP gene encoding flavonoid 3'-hydroxylase. HORTICULTURE RESEARCH 2023; 10:uhac283. [PMID: 36818367 PMCID: PMC9930397 DOI: 10.1093/hr/uhac283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Cytochrome P450s (CYPs) are the largest family of enzymes in plant and play multifarious roles in development and defense but the available information about the CYP superfamily in citrus is very limited. Here we provide a comprehensive genome-wide analysis of the CYP superfamily in Citrus clementina genome, identifying 301 CYP genes grouped into ten clans and 49 families. The characteristics of both gene structures and motif compositions strongly supported the reliability of the phylogenetic relationship. Duplication analysis indicated that tandem duplication was the major driving force of expansion for this superfamily. Promoter analysis revealed numerous cis-acting elements related to various responsiveness. RNA-seq data elucidated their expression patterns in citrus fruit peel both during development and in response to UV-B. Furthermore, we characterize a UV-B-induced CYP gene (Ciclev10019637m, designated CitF3'H) as a flavonoid 3'-hydroxylase for the first time. CitF3'H catalyzed numerous flavonoids and favored naringenin in yeast assays. Virus-induced silencing of CitF3'H in citrus seedlings significantly reduced the levels of 3'-hydroxylated flavonoids and their derivatives. These results together with the endoplasmic reticulum-localization of CitF3'H in plant suggest that this enzyme is responsible for the biosynthesis of 3'-hydroxylated flavonoids in citrus. Taken together, our findings provide extensive information about the CYP superfamily in citrus and contribute to further functional verification.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Qin Gong
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Acience, Quzhou, China
| | - Xianming Ye
- Research and Development Department, Zhejiang Jianong Fruit &Vegetable Co., Ltd, Quzhou, China
| | - Guixia Zheng
- Research and Development Department, Zhejiang Jianong Fruit &Vegetable Co., Ltd, Quzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
6
|
Li T, Liu JX, Deng YJ, Duan AQ, Liu H, Zhuang FY, Xiong AS. Differential hydroxylation efficiency of the two non-heme carotene hydroxylases: DcBCH1, rather than DcBCH2, plays a major role in carrot taproot. HORTICULTURE RESEARCH 2022; 9:uhac193. [PMID: 36338853 PMCID: PMC9630967 DOI: 10.1093/hr/uhac193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Carotene hydroxylase plays an important role in catalyzing the hydroxylation of carotene to xanthopylls, including two types: non-heme carotene hydroxylase (BCH type) and heme-containing cytochrome P450 hydroxylase (P450 type). Two BCH-encoding genes were annotated in the carrot genome. However, the role of BCHs and whether there are functional interactions between the duplicated BCHs in carrot remains unclear. In this study, two BCH encoding genes, DcBCH1 and DcBCH2, were cloned from carrot. The relative expression level of DcBCH1 was much higher than that of DcBCH2 in carrot taproots with different carotene accumulation levels. Overexpression of DcBCH1 in 'KRD' (high carotene accumulated) carrot changed the taproot color from orange to yellow, accompanied by substantial reductions in α-carotene and β-carotene. There was no obvious change in taproot color between transgenic 'KRD' carrot overexpressing DcBCH2 and control carrot. Simultaneously, the content of α-carotene in the taproot of DcBCH2-overexpressing carrot decreased, but the content of β-carotene did not change significantly in comparison with control carrot. Using the CRISPR/Cas9 system to knock out DcBCH1 in 'KRD' carrot lightened the taproot color from orange to pink-orange; the content of α-carotene in the taproot increased slightly, while the β-carotene content was still significantly decreased, compared with control carrot. In DcBCH1-knockout carrot, the transcript level of DcBCH2 was significantly increased. These results indicated that in carrot taproot, DcBCH1 played the main function of BCH enzyme, which could hydroxylate α-carotene and β-carotene; DcBCH1 and DcBCH2 had functional redundancy, and these two DcBCHs could partially compensate for each other.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Fei-Yun Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
7
|
Xia H, Zhou Y, Lin Z, Guo Y, Liu X, Wang T, Wang J, Deng H, Lin L, Deng Q, Lv X, Xu K, Liang D. Characterization and functional validation of β-carotene hydroxylase AcBCH genes in Actinidia chinensis. HORTICULTURE RESEARCH 2022; 9:uhac063. [PMID: 35611182 PMCID: PMC9123235 DOI: 10.1093/hr/uhac063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 05/06/2023]
Abstract
Carotenoids are the pigment substances of yellow-fleshed kiwifruit, and among them β-cryptoxanthin has only been detected in the brighter yellow-fleshed variety 'Jinshi 1'. β-Carotene hydroxylase (BCH) catalyzes the formation of β-cryptoxanthin and zeaxanthin, but its molecular characteristics and functions have not been fully explained. Here we isolated two β-carotene hydroxylase genes, AcBCH1 and AcBCH2 from kiwifruit (Actinidia chinensis), and their relative expression levels exhibited a close correlation with the content of β-cryptoxanthin. AcBCH1 catalyzed the formation of β-cryptoxanthin when transformed into β-carotene-accumulating yeast cells. Moreover, silenced expression of AcBCH1 in kiwifruit caused decreases in the contents of zeaxanthin, lutein, and β-cryptoxanthin, and an increase in β-carotene content. The content of β-carotene decreased significantly after the AcBCH1/2 genes were overexpressed in tomato. The content of zeaxanthin increased and β-carotene decreased in transgenic kiwifruit seedlings. The results will enrich our knowledge of the molecular mechanisms of carotenoid biosynthesis in kiwifruit.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanjie Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyi Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinling Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Kunfu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Keawmanee N, Ma G, Zhang L, Yahata M, Murakami K, Yamamoto M, Kojima N, Kato M. Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:14-24. [PMID: 35091187 DOI: 10.1016/j.plaphy.2022.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we studied the effects of gibberellic acid (GA) on chlorophyll and carotenoid metabolites and related gene expression during the regreening process in Valencia orange fruits (Citrus sinensis Osbeck). During the regreening, fruits treated with GA turned green much faster than those of the control. Compared with untreated fruits, chlorophyll accumulation was induced and the content of carotenoids (β-cryptoxanthin, all-trans-violaxanthin, and 9-cis-violaxanthin) was decreased by the GA treatment. Chlorophyll and carotenoid contents following GA treatment appeared to be highly regulated at the gene transcription level. Correspondingly, the up-regulation of chlorophyll biosynthesis genes (CitGGDR, CitCHL27, CitPORA, and CitCAO) and down-regulation of degradation genes (CitCLH1, CitSGR, CitPPH, CitPAO, and CitRCCR) led to the increase of chlorophyll contents, and the down-regulation of carotenoid biosynthesis genes (CitPSY, CitPDS, CitZDS, CitLCYb2, and CitHYb) led to the decrease of carotenoid contents. These observations indicated that GA acted as a crucial regulator in the regreening process of citrus fruits.
Collapse
Affiliation(s)
- Nichapat Keawmanee
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan; Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Kan Murakami
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masashi Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Nami Kojima
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.
| |
Collapse
|
9
|
Production and structural characterization of the cytochrome P450 enzymes in carotene ring hydroxylation. Methods Enzymol 2022; 671:223-241. [DOI: 10.1016/bs.mie.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Davis I, Geng J, Liu A. Metalloenzymes involved in carotenoid biosynthesis in plants. Methods Enzymol 2022; 671:207-222. [PMID: 35878978 PMCID: PMC9315058 DOI: 10.1016/bs.mie.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carotenoids are a family of pigment compounds, a subset of which are precursors for vitamin A biosynthesis. These pigments are derived from isopentenyl pyrophosphate (IPP), with geranylgeranyl diphosphate being the first metabolite unique to carotenoid biosynthesis in plants, algae, fungi, some bacteria, and arthropods. This chapter highlights the metal-dependent enzymes involved in synthesizing carotenoids in plants and the current state of knowledge of their cofactors and mechanisms. Emphasis is given to spectroscopic methods used to characterize metal centers. The recently discovered heme-dependent isomerase Z-ISO is presented as a case study in how to interrogate a metalloenzyme. Use of UV-vis, electron paramagnetic resonance, and magnetic circular dichroism spectroscopies of a metal center at various oxidation states and with external small molecule probes (CN-, CO, and NO) can provide information about the nature of the metal center, the identity of its ligands, and its mechanism of action. Z-ISO is a histidine/cysteine ligated heme-dependent enzyme that is only active in the ferrous state and possesses redox-linked ligand switching. The choice and design of experiments are discussed as well as the conclusions that can be drawn.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, United States.
| | - Jiafeng Geng
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
11
|
Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods Enzymol 2022; 671:63-98. [DOI: 10.1016/bs.mie.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Li T, Liu JX, Deng YJ, Xu ZS, Xiong AS. Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:475. [PMID: 34663216 PMCID: PMC8522057 DOI: 10.1186/s12870-021-03236-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Carrot (Daucus carota L.), an important root vegetable, is very popular among consumers as its taproot is rich in various nutrients. Abiotic stresses, such as drought, salt, and low temperature, are the main factors that restrict the growth and development of carrots. Non-heme carotene hydroxylase (BCH) is a key regulatory enzyme in the β-branch of the carotenoid biosynthesis pathway, upstream of the abscisic acid (ABA) synthesis pathway. RESULTS In this study, we characterized a carrot BCH encoding gene, DcBCH1. The expression of DcBCH1 was induced by drought treatment. The overexpression of DcBCH1 in Arabidopsis thaliana resulted in enhanced tolerance to drought, as demonstrated by higher antioxidant capacity and lower malondialdehyde content after drought treatment. Under drought stress, the endogenous ABA level in transgenic A. thaliana was higher than that in wild-type (WT) plants. Additionally, the contents of lutein and β-carotene in transgenic A. thaliana were lower than those in WT, whereas the expression levels of most endogenous carotenogenic genes were significantly increased after drought treatment. CONCLUSIONS DcBCH1 can increase the antioxidant capacity and promote endogenous ABA levels of plants by regulating the synthesis rate of carotenoids, thereby regulating the drought resistance of plants. These results will help to provide potential candidate genes for plant drought tolerance breeding.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
13
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wang F, Wu Y, Wu W, Huang Y, Zhu C, Zhang R, Chen J, Zeng J. Integrative analysis of metabolome and transcriptome profiles provides insight into the fruit pericarp pigmentation disorder caused by 'Candidatus Liberibacter asiaticus' infection. BMC PLANT BIOLOGY 2021; 21:397. [PMID: 34433413 PMCID: PMC8385863 DOI: 10.1186/s12870-021-03167-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mandarin 'Shatangju' is susceptible to Huanglongbing (HLB) and the HLB-infected fruits are small, off-flavor, and stay-green at the maturity period. To understand the relationship between pericarp color and HLB pathogen and the effect mechanism of HLB on fruit pericarp coloration, quantitative analyses of HLB bacterial pathogens and carotenoids and also the integrative analysis of metabolome and transcriptome profiles were performed in the mandarin 'Shatangju' variety with four different color fruits, whole green fruits (WGF), top-yellow and base-green fruits (TYBGF), whole light-yellow fruits (WLYF), and whole dark-yellow fruits (WDYF) that were infected with HLB. RESULTS the HLB bacterial population followed the order WGF > TYBGF > WLYF > WDYF. And there were significant differences between each group of samples. Regarding the accumulation of chlorophyll and carotenoid, the chlorophyll-a content in WGF was the highest and in WDYF was the lowest. The content of chlorophyll-b in WGF was significantly higher than that in other three pericarps. There were significant differences in the total content of carotenoid between each group. WGF and TYBGF pericarps were low in phytoene, γ-carotene, β-cryptoxanthin and apocarotenal, while other kinds of carotenoids were significantly higher than those in WDYF. And WLYF was only short of apocarotenal. We comprehensively compared the transcriptome and metabolite profiles of abnormal (WGF, TYBGF and WLYF) and normal (WDYF, control) pericarps. In total, 2,880, 2,782 and 1,053 differentially expressed genes (DEGs), including 121, 117 and 43 transcription factors were identified in the three comparisons, respectively. The qRT-PCR confirmed the expression levels of genes selected from transcriptome. Additionally, a total of 77 flavonoids and other phenylpropanoid-derived metabolites were identified in the three comparisons. Most (76.65 %) showed markedly lower abundances in the three comparisons. The phenylpropanoid biosynthesis pathway was the major enrichment pathway in the integrative analysis of metabolome and transcriptome profiles. CONCLUSIONS Synthesizing the above analytical results, this study indicated that different color pericarps were associated with the reduced levels of some carotenoids and phenylpropanoids derivatives products and the down-regulation of proteins in flavonoids, phenylpropanoids derivatives biosynthesis pathway and the photosynthesis-antenna proteins.
Collapse
Affiliation(s)
- Feiyan Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Yunli Wu
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Wen Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Yongjing Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Congyi Zhu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Ruimin Zhang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Jiezhong Chen
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| |
Collapse
|
15
|
Carotenoid Accumulation and the Expression of Carotenoid Metabolic Genes in Mango during Fruit Development and Ripening. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carotenoids are considered to be important components in mango fruits. However, there is a lack of understanding about the regulation of carotenoids in mango. To gain an insight into the carotenoid metabolism pathway, carotenoid content and the expression of carotenoid metabolic genes were investigated in the peel and pulp of mango during fruit development and ripening in three cultivars, ‘Kaituk’, ‘Nam Dok Mai No.4′, and ‘Nam Dok Mai Sithong’, which are different in color. The highest carotenoid content was observed in ‘Kaituk’, followed by ‘Nam Dok Mai No.4′ and ‘Nam Dok Mai Sithong’, with the major carotenoid being β-carotene. The gene expression analysis found that carotenoid metabolism in mango fruit was primarily regulated at the transcriptional level. The changing patterns of carotenoid biosynthetic gene expression (MiPSY, MiPDS, MiZDS, MiCRTISO, MiLCYb, MiLCYe, MiHYb, and MiZEP) were similar to carotenoid accumulation, and ‘Kaituk’ exhibited a higher expression level than the other two cultivars. In addition, the differential regulation of carotenoid catabolic genes was found to be a mechanism responsible for variability in carotenoid content among the three mango cultivars. The expression of carotenoid catabolic genes (MiCCD1, MiNCED2, and MiNCED3) more rapidly decreased in ‘Kaituk’, resulting in a larger amount of carotenoids in ‘Kaituk’ than the other two cultivars.
Collapse
|
16
|
Ma G, Zhang L, Kudaka R, Inaba H, Furuya T, Kitamura M, Kitaya Y, Yamamoto R, Yahata M, Matsumoto H, Kato M. Exogenous Application of ABA and NAA Alleviates the Delayed Coloring Caused by Puffing Inhibitor in Citrus Fruit. Cells 2021; 10:cells10020308. [PMID: 33546256 PMCID: PMC7913354 DOI: 10.3390/cells10020308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/14/2023] Open
Abstract
Combined spraying of gibberellin (GA) and prohydrojasmon (PDJ) was an effective method to reduce peel puffing in Satsuma mandarins. However, in the GA-and-PDJ combined treatment, fruit color development was delayed during the ripening process. In the present study, to improve the coloration of the GA and PDJ-treated fruit, the effects of exogenous application of 1-naphthaleneacetic acid (NAA) and abscisic acid (ABA) on chlorophyll and carotenoid accumulation were investigated. The results showed that both ABA and NAA treatments accelerated the color changes from green to orange in the GA and PDJ-treated fruit during the ripening process. With the NAA and ABA treatments, chlorophylls contents were decreased rapidly, and the contents of β,β-xanthophylls were significantly enhanced in the GA and PDJ-treated fruit. In addition, gene expression results showed that the changes of the chlorophyll and carotenoid metabolisms in the NAA and ABA treatments were highly regulated at the transcriptional level. The results presented in this study suggested that the application of NAA and ABA could potentially be used for improving the coloration of the GA and PDJ-treated fruit.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
| | - Rin Kudaka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Hayato Inaba
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Takuma Furuya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Minami Kitamura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Yurika Kitaya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Risa Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Hikaru Matsumoto
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan;
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
- Correspondence: ; Tel.: +81-54-238-4830
| |
Collapse
|
17
|
Lana G, Zacarias-Garcia J, Distefano G, Gentile A, Rodrigo MJ, Zacarias L. Transcriptional Analysis of Carotenoids Accumulation and Metabolism in a Pink-Fleshed Lemon Mutant. Genes (Basel) 2020; 11:E1294. [PMID: 33143225 PMCID: PMC7692314 DOI: 10.3390/genes11111294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Pink lemon is a spontaneous bud mutation of lemon (Citrus limon, L. Burm. f) characterized by the production of pink-fleshed fruits due to an unusual accumulation of lycopene. To elucidate the genetic determinism of the altered pigmentation, comparative carotenoid profiling and transcriptional analysis of both the genes involved in carotenoid precursors and metabolism, and the proteins related to carotenoid-sequestering structures were performed in pink-fleshed lemon and its wild-type. The carotenoid profile of pink lemon pulp is characterized by an increased accumulation of linear carotenoids, such as lycopene, phytoene and phytofluene, from the early stages of development, reaching their maximum in mature green fruits. The distinctive phenotype of pink lemon is associated with an up-regulation and down-regulation of the genes upstream and downstream the lycopene cyclase, respectively. In particular, 9-cis epoxycarotenoid dioxygenase genes were overexpressed in pink lemon compared with the wild-type, suggesting an altered regulation of abscisic acid biosynthesis. Similarly, during early development of the fruits, genes of the carotenoid-associated proteins heat shock protein 21, fibrillin 1 and 2 and orange gene were overexpressed in the pulp of the pink-fleshed lemon compared to the wild-type, indicating its increased capacity for sequestration, stabilization or accumulation of carotenes. Altogether, the results highlighted significant differences at the transcriptomic level between the pink-fleshed lemon and its wild-type, in terms of carotenoid metabolism and the capacity of stabilization in storage structures between the two accessions. Such changes may be either responsible for the altered carotenoid accumulation or in contrast, a metabolic consequence.
Collapse
Affiliation(s)
- Giuseppe Lana
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.L.); (G.D.); (A.G.)
| | - Jaime Zacarias-Garcia
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Paterna, 46980 Valencia, Spain; (J.Z.-G.); (M.J.R.)
| | - Gaetano Distefano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.L.); (G.D.); (A.G.)
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.L.); (G.D.); (A.G.)
| | - María J. Rodrigo
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Paterna, 46980 Valencia, Spain; (J.Z.-G.); (M.J.R.)
| | - Lorenzo Zacarias
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Paterna, 46980 Valencia, Spain; (J.Z.-G.); (M.J.R.)
| |
Collapse
|
18
|
Ma G, Zhang L, Kitaya Y, Seoka M, Kudaka R, Yahata M, Yamawaki K, Shimada T, Fujii H, Endo T, Kato M. Blue LED light induces regreening in the flavedo of Valencia orange in vitro. Food Chem 2020; 335:127621. [PMID: 32738533 DOI: 10.1016/j.foodchem.2020.127621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
In the present study, the effects of blue LED light on the regreening of citrus fruit were investigated in an in vitro system of Valencia orange flavedos. The results showed that blue LED light irradiation induced regreening in the flavedos. After four-week culture in vitro, the flavedos exhibited obviously green color in the blue LED light treatment, while the flavedos in the control were still in orange color. During the regreening process, the blue LED light treatment induced chlorophyll accumulation, and substantially altered the carotenoid composition in the flavedos. Compared with the control, the content of 9-cis-violaxanthin was decreased, while the contents of lutein, β-carotene, and all-trans-violaxanthin were increased by blue LED light. In addition, gene expression results showed that the up-regulation of CitLCYe and down-regulation of CitLCYb2 by blue LED light led to a shift from β,β-branch to β,ε-branch of the carotenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Yurika Kitaya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Mao Seoka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Rin Kudaka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Kazuki Yamawaki
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Takehiko Shimada
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan.
| | - Hiroshi Fujii
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan.
| | - Tomoko Endo
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan.
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| |
Collapse
|
19
|
Rodrigo MJ, Lado J, Alós E, Alquézar B, Dery O, Hirschberg J, Zacarías L. A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "Pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. BMC PLANT BIOLOGY 2019; 19:465. [PMID: 31684878 PMCID: PMC6829850 DOI: 10.1186/s12870-019-2078-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing β,β-xanthophylls more than 80% of the total content. 'Pinalate' is a spontaneous bud mutant, or somatic mutation, derived from sweet orange 'Navelate', characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced β,β-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. RESULTS To identify the molecular basis of 'Pinalate' yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. 'Pinalate' fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9'-tri-cis- and 9,9'-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in 'Pinalate'; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9'-tri-cis- to 9,9'-di-cis-ζ-carotene, was significantly reduced both in 'Pinalate' fruit and leaf tissues. Isolation of the 'Pinalate' Z-ISO genomic sequence identified a new allele with a single nucleotide insertion at the second exon, which generates an alternative splicing site that alters Z-ISO transcripts encoding non-functional enzyme. Moreover, functional assays of citrus Z-ISO in E.coli showed that light is able to enhance a non-enzymatic isomerization of tri-cis to di-cis-ζ-carotene, which is in agreement with the partial rescue of mutant phenotype when 'Pinalate' fruits are highly exposed to light during ripening. CONCLUSION A single nucleotide insertion has been identified in 'Pinalate' Z-ISO gene that results in truncated proteins. This causes a bottleneck in the carotenoid pathway with an unbalanced content of carotenes upstream to β,β-xanthophylls in fruit tissues. In chloroplastic tissues, the effects of Z-ISO alteration are mainly manifested as a reduction in total carotenoid content. Taken together, our results indicate that the spontaneous single nucleotide insertion in Z-ISO is the molecular basis of the yellow pigmentation in 'Pinalate' sweet orange and points this isomerase as an essential activity for carotenogenesis in citrus fruits.
Collapse
Affiliation(s)
- María J. Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980 Valencia, Spain
| | - Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980 Valencia, Spain
- Instituto Nacional de Investigación Agropecuaria (INIA), Salto, Uruguay
| | - Enriqueta Alós
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980 Valencia, Spain
| | - Berta Alquézar
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980 Valencia, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) UPV-CSIC, Valencia, Spain
| | - Orly Dery
- Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Hirschberg
- Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980 Valencia, Spain
| |
Collapse
|
20
|
Cloning, identification and functional characterization of two cytochrome P450 carotenoids hydroxylases from the diatom Phaeodactylum tricornutum. J Biosci Bioeng 2019; 128:755-765. [PMID: 31277909 DOI: 10.1016/j.jbiosc.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The diatom microalgal Phaeodactylum tricornutum accumulates a large amount of fucoxanthin. Carotenoids hydroxylases (CHYs) play key roles in fucoxanthin biosynthesis in diatoms. However, not any type of CHYs had been identified in P. tricornutum. In this study, two genes (designated Ptrcyp97b1 and Ptrcyp97b2) were cloned, identified and functionally characterized. They shared high sequence identity (50-94 %) with lutein deficient 1-like proteins from other eukaryotes. The typical catalytic active motifs of cytochrome P450s (CYP) were detected in the amino acid sequences of PtrCYP97B1 and PtrCYP97B2. The two genes were probably due to gene duplication. Ptrcyp97b1 and Ptrcyp97b2 transcriptional expression was up-regulated with distinct patterns under high light conditions. The metabolic profiles of the major carotenoids (β-carotene, zeaxanthin, diadinoxanthin, diatoxanthin and fucoxanthin) were determined based on the high performance liquid chromatography method. The fucoxanthin and diatoxanthin contents were increased, while the β-carotene content was decreased. By truncation of the N-terminal trans-membrane anchor or chloroplast transit peptide and addition of a 6 × His-tag, PtrCYP97B1 and PtrCYP97B2 were separately heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. Functional analysis showed that PrtCYP97B2 was able to catalyze the hydroxylation of the β-rings of β-carotene to produce zeaxanthin in β-carotene-accumulating E. coli BL21(DE3) cells. PtrCYP97B1 might have the ability to catalyze the hydroxylation of other substrates other than β-carotene. These results contribute to the further elucidation of xanthophyll biosynthesis in diatoms.
Collapse
|
21
|
Tamaki S, Kato S, Shinomura T, Ishikawa T, Imaishi H. Physiological role of β-carotene monohydroxylase (CYP97H1) in carotenoid biosynthesis in Euglena gracilis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:80-87. [PMID: 30471732 DOI: 10.1016/j.plantsci.2018.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/30/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
Some carotenoids are found in the Euglena gracilis, including β-carotene, diadinoxanthin, diatoxanthins, and neoxanthin as the major species; however, the molecular mechanism underlying carotenoid biosynthesis in E. gracilis is not well understood. To clarify the pathway and regulation of carotenoid biosynthesis in this alga, we functionally characterized the cytochrome P450 (CYP)-type carotene hydroxylase gene EgCYP97H1. Heterologous in vivo enzyme assay in E. coli indicated that EgCYP97H1 hydroxylated β-carotene to β-cryptoxanthin. E. gracilis cells suppressing EgCYP97H1 resulted in marked growth inhibition and reductions in total carotenoid and chlorophyll contents. Analysis of carotenoid composition revealed that suppression of EgCYP97H1 resulted in higher level of β-carotene, suggesting that EgCYP97H1 is physiologically essential for carotenoid biosynthesis and thus normal cell growth. To our knowledge, this is the first time EgCYP97H1 has been suggested to be β-carotene monohydroxylase, but not β-carotene dihydroxylase. Moreover, during light adaptation of dark-grown E. gracilis, transcript levels of the carotenoid biosynthetic genes (EgCYP97H1, geranylgeranyl pyrophosphate synthase EgcrtE, and phytoene synthase EgcrtB) remained virtually unchanged. In contrast, carotenoid accumulation in E. gracilis grown under the same conditions was inhibited by treatment with a translational inhibitor but not a transcriptional inhibitor, indicating that photo-responsive carotenoid biosynthesis is regulated post-transcriptionally in this alga.
Collapse
Affiliation(s)
- Shun Tamaki
- Division of Signal Responses, Biosignal Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Shota Kato
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Tomoko Shinomura
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Takahiro Ishikawa
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Hiromasa Imaishi
- Division of Signal Responses, Biosignal Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
22
|
Ma G, Zhang L, Yungyuen W, Sato Y, Furuya T, Yahata M, Yamawaki K, Kato M. Accumulation of carotenoids in a novel citrus cultivar 'Seinannohikari' during the fruit maturation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:349-356. [PMID: 29936241 DOI: 10.1016/j.plaphy.2018.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In the present study, carotenoid metabolism was investigated in the fruits of a novel citrus cultivar, 'Seinannohikari' (Citrus spp.). During the maturation, β,β-xanthophylls were accumulated rapidly with β-cryptoxanthin being the dominant carotenoid compound in the flavedo and juice sacs of 'Seinannohikari'. In the juice sacs of mature fruits, 'Seinannohikari' accumulated high amount of carotenoids, especially β-cryptoxanthin. The content of β-cryptoxanthin in the juice sacs of 'Seinannohikari' was approximately 2.5 times of that in 'Miyagawa-wase' (Citrus unshiu), which is one of its parental cultivars, at the mature stage. Gene expression results showed that the massive accumulation of β-cryptoxanthin might be attributed to the higher expression of carotenoid biosynthetic genes (CitPSY, CitPDS, CitZDS, CitLCYb2, CitHYb, and CitZEP), and lower expression of carotenoid catabolic genes (CitNCED2 and CitNCED3) in the juice sacs of 'Seinannohikari'.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Witchulada Yungyuen
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; The United Graduate School of Agricultural Science, Gifu University (Shizuoka University), Yanagido, Gifu 501-1193, Japan
| | - Yuki Sato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Takuma Furuya
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Kazuki Yamawaki
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| |
Collapse
|
23
|
Zhu F, Luo T, Liu C, Wang Y, Yang H, Yang W, Zheng L, Xiao X, Zhang M, Xu R, Xu J, Zeng Y, Xu J, Xu Q, Guo W, Larkin RM, Deng X, Cheng Y. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. THE NEW PHYTOLOGIST 2017; 216:178-192. [PMID: 28681945 DOI: 10.1111/nph.14684] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/30/2017] [Indexed: 05/23/2023]
Abstract
Although the functions of carotenogenic genes are well documented, little is known about the mechanisms that regulate their expression, especially those genes involved in α - and β-branch carotenoid metabolism. In this study, an R2R3-MYB transcriptional factor (CrMYB68) that directly regulates the transformation of α- and β-branch carotenoids was identified using Green Ougan (MT), a stay-green mutant of Citrus reticulata cv Suavissima. A comprehensive analysis of developing and harvested fruits indicated that reduced expression of β-carotene hydroxylases 2 (CrBCH2) and 9-cis-epoxycarotenoid dioxygenase 5 (CrNCED5) was responsible for the delay in the transformation of α- and β-carotene and the biosynthesis of ABA. Additionally, the expression of these genes was negatively correlated with the expression of CrMYB68 in MT. Further, electrophoretic mobility shift assays (EMSAs) and dual luciferase assays indicated that CrMYB68 can directly and negatively regulate CrBCH2 and CrNCED5. Moreover, transient overexpression experiments using leaves of Nicotiana benthamiana indicated that CrMYB68 can also negatively regulate NbBCH2 and NbNCED5. To overcome the difficulty of transgenic validation, we quantified the concentrations of carotenoids and ABA, and gene expression in a revertant of MT. The results of these experiments provide more evidence that CrMYB68 is an important regulator of carotenoid metabolism.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tao Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Xiao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mingfei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, Zhejiang, 318020, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
24
|
Ma G, Zhang L, Iida K, Madono Y, Yungyuen W, Yahata M, Yamawaki K, Kato M. Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process. Food Chem 2017; 234:356-364. [PMID: 28551247 DOI: 10.1016/j.foodchem.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
In this study, to investigate the xanthophyll accumulation in citrus fruits, the major fatty acid esters of β-cryptoxanthin and β-citraurin were identified, and changes in their contents were investigated in two Satsuma mandarin varieties, 'Miyagawa-wase' and 'Yamashitabeni-wase', during the ripening process. The results showed that β-cryptoxanthin and β-citraurin were mainly esterified with lauric acid, myristic acid, and palmitic acid in citrus fruits. During the ripening process, β-cryptoxanthin laurate, myristate, and palmitate were accumulated gradually in the flavedos and juice sacs of the two varieties. In the flavedo of 'Yamashitabeni-wase', β-citraurin laurate, myristate, and palmitate were specifically accumulated, and their contents increased rapidly with a peak in November. In addition, functional analyses showed that CitCCD1 and CitCCD4 efficiently cleaved the free β-cryptoxanthin, but not the β-cryptoxanthin esters in vitro. The substrate specificity of CitCCDs towards free β-cryptoxanthin indicated that β-cryptoxanthin esters might be more stable than free β-cryptoxanthin in citrus fruits.
Collapse
Affiliation(s)
- Gang Ma
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Lancui Zhang
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Kohei Iida
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Yuki Madono
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Witchulada Yungyuen
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; The United Graduate School of Agricultural Science, Gifu University (Shizuoka University), Yanagido, Gifu 501-1193, Japan.
| | - Masaki Yahata
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Kazuki Yamawaki
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Masaya Kato
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| |
Collapse
|