1
|
Ma F, Song S, Li C, Huang D, Wu B, Xing W, Huang H, Tan Y, Xu Y. Passion fruit HD-ZIP genes: Characterization, expression variance, and overexpression PeHB31 enhanced drought tolerance via lignin pathway. Int J Biol Macromol 2024; 276:133603. [PMID: 38969043 DOI: 10.1016/j.ijbiomac.2024.133603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
The HD-ZIP (homeodomain-leucine zipper) genes hold significant importance in transcriptional regulation, especially in plant development and responses to abiotic stresses. However, a comprehensive study targeting HD-ZIP family members in passion fruit has been absent. In our current research, 34 HD-ZIP family members (PeHBs) were identified by bioinformatics analysis. Transcriptome analysis revealed that PeHBs exhibited distinct expression patterns when subjected to the four different abiotic stresses, and significant differential expression of PeHBs was also found among the three developmental stages of the fruit and between the purple and yellow genotype passion fruit leaves. An integrated metabolome and transcriptome analysis further revealed that the HD-ZIP III class gene PeHB31 (homologous to ATHB8), was co-upexpressed with lignans in yellow fruit P. edulis (commonly used as a resistance rootstock) when compared to purple fruit P. edulis. The transformation of Arabidopsis and yeast with the PeHB31 gene showed an enhancement in their capacity to withstand drought conditions. Notably, the transgenic Arabidopsis plants exhibited an increase in lignin content within the vascular tissues of their stems. This research lays the groundwork for future studies on the control mechanisms of lignin biosynthesis by HD-ZIP genes (especially HD-ZIP classes III and I) involved in drought tolerance.
Collapse
Affiliation(s)
- Funing Ma
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Shun Song
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Hainan Seed Industry Laboratory, Sanya 572024, China.
| | - Chuanlin Li
- Sanya Institute of Technology, Sanya 572099, China
| | - Dongmei Huang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Haijie Huang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Yuxin Tan
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Hainan 571101, China; Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Hainan Seed Industry Laboratory, Sanya 572024, China.
| |
Collapse
|
2
|
Fang Y, Wang L, Liu K, Wu H, Zheng Y, Duan Y, Feng S, Wang Y. Genome-wide investigation of HD-ZIP gene family and functional characterization of BnaHDZ149 and BnaHDZ22 in salt and drought response in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112130. [PMID: 38795751 DOI: 10.1016/j.plantsci.2024.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
HD-ZIP proteins comprise a plant-specific transcription factor family, which play pivotal roles in plant development and adaptation to ever-changing environment. Although HD-ZIP family members have been identified in some plant species, so far our knowledge about HD-ZIP genes in rapeseed is still limited. In this study, 178 Brassica napus HD-ZIP (BnaHDZ) family members were identified in the rapeseed genome. The phylogenetic relationship, chromosomal locations, intron-exon structures, motif composition, and expression patterns of the BnaHDZ members were analyzed. The BnaHDZ family can be phylogenetically divided into four categories (Ⅰ, Ⅱ, Ⅲ and Ⅳ). Genome-wide transcriptome analysis revealed that most of the HD-ZIP I members respond to at least one abiotic stress. Two closely homologous stress-responsive HD-ZIP Ⅰ genes, BnaHDZ22 and BnaHDZ149, were identified to be involved in drought and salt responses, and selected for further functional characterization. Overexpressing BnaHDZ149 in rapeseed increased salt sensitivity of the transgenic plants, whereas overexpressing BnaHDZ22 increased sensitivity of the transgenic plants to polyethylene glycol (PEG)-simulated drought stress. This research provides not only a comprehensive landscape of BnaHDZ genes, but also a theoretical basis for elucidating the molecular mechanism of the abiotic stress responses of the HD-ZIP family in rapeseed.
Collapse
Affiliation(s)
- Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Lu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kuan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuqian Zheng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yujing Duan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shanshan Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
3
|
Mou S, He W, Jiang H, Meng Q, Zhang T, Liu Z, Qiu A, He S. Transcription factor CaHDZ15 promotes pepper basal thermotolerance by activating HEAT SHOCK FACTORA6a. PLANT PHYSIOLOGY 2024; 195:812-831. [PMID: 38270532 DOI: 10.1093/plphys/kiae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Weihong He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Haitao Jiang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianqian Meng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tingting Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
4
|
Sharma M, Tisarum R, Kohli RK, Batish DR, Cha-Um S, Singh HP. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. PLANTA 2024; 259:130. [PMID: 38647733 DOI: 10.1007/s00425-024-04368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Environmental Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Amity University, Mohali Campus, Sector 82A, Mohali, 140306, Punjab, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
5
|
Feng M, Gui Y, An J, Cao X, Lu W, Yang G, Jian S, Hu B, Wen C. The thioredoxin expression of Cristaria plicata is regulated by Nrf2/ARE pathway under microcystin stimulation. Int J Biol Macromol 2023; 242:124509. [PMID: 37085063 DOI: 10.1016/j.ijbiomac.2023.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Thioredoxin plays an important role in inhibiting apoptosis and protecting cells from oxidative stress. This study was aimed to clarify how the expression of Trx from Cristaria plicata is regulated by Nrf2/ARE pathway. The expression of CpTrx mRNA was significantly up-regulated in gill and kidney tissues under microcystin stress. The Nrf2 gene of Cristaria plicata was identified to possess an auto active domain bit. While CpNrf2 was knocked down by specific small RNA, CpTrx mRNA expression was significantly down-regulated. The promoter of CpTrx gene had high transcriptional activity, and this basic transcriptional activity persisted after ARE element mutation. The region of promoter -206 to +217 bp was a core promoter region and had forward regulatory elements. Gel shift Assay exhibited that the CpTrx promoter could bind to the purified proteins CpNrf2 and CpMafK in vitro. The binding phenomenon disappeared after the ARE element mutation in promoter region. Subcellular localization experiments displayed that fluorescence overlap between CpNrf2 and Trx promoter increased under microcystin toxin stress. These results suggested that Trx expression was regulated by Nrf2/ARE pathway under oxidative stress.
Collapse
Affiliation(s)
- Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yingping Gui
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - XinYing Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
6
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
7
|
Liu Y, Cao L, Wu X, Wang S, Zhang P, Li M, Jiang J, Ding X, Cao X. Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153881. [PMID: 36463657 DOI: 10.1016/j.jplph.2022.153881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Protein kinases play crucial roles in the regulation of plant resistance to various stresses. In this work, we determined that GsSnRK1.1 was actively responsive to saline-alkali, drought, and abscisic acid (ABA) stresses by histochemical staining and qRT-PCR analyses. The wild-type GsSnRK1.1 but not the kinase-dead mutant, GsSnRK1.1(K49M), demonstrated in vitro kinase activity by phosphorylating GsABF2. Intriguingly, we found that GsSnRK1.1 could complement the loss of SNF1 kinase in yeast Msy1193 (-snf1) mutant, rescue growth defects of yeast cells on medium with glycerol as a carbon resource, and promote yeast resistance to NaCl or NaHCO3. To further elucidate GsSnRK1.1 function in planta, we knocked out SnRK1.1 gene from the Arabidopsis genome by the CRISPR/Cas9 approach, and then expressed GsSnRK1.1 and a series of mutants into snrk1.1-null lines. The transgenic Arabidopsis lines were subjected to various abiotic stress treatments. The results showed that GsSnRK1.1(T176E) mutant with enhanced protein kinase activity significantly promoted, but GsSnRK1.1(K49M) and GsSnRK1.1(T176A) mutants with disrupted protein kinase activity abrogated, plant stomatal closure and tolerance to abiotic stresses. In conclusion, this study provides the molecular clues to fully understand the physiological functions of plant SnRK1 protein kinases.
Collapse
Affiliation(s)
- Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Wu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Sai Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaoying Cao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
8
|
Cao Y, Song H, Zhang L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int J Mol Sci 2022; 23:ijms232416048. [PMID: 36555693 PMCID: PMC9781758 DOI: 10.3390/ijms232416048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.
Collapse
|
9
|
Mukherjee T, Subedi B, Khosla A, Begler EM, Stephens PM, Warner AL, Lerma-Reyes R, Thompson KA, Gunewardena S, Schrick K. The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. PLANT PHYSIOLOGY 2022; 190:2315-2334. [PMID: 35984304 PMCID: PMC9706451 DOI: 10.1093/plphys/kiac383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Class IV homeodomain leucine-zipper transcription factors (HD-Zip IV TFs) are key regulators of epidermal differentiation that are characterized by a DNA-binding HD in conjunction with a lipid-binding domain termed steroidogenic acute regulatory-related lipid transfer (START). Previous work established that the START domain of GLABRA2 (GL2), a HD-Zip IV member from Arabidopsis (Arabidopsis thaliana), is required for TF activity. Here, we addressed the functions and possible interactions of START and the HD in DNA binding, dimerization, and protein turnover. Deletion analysis of the HD and missense mutations of a conserved lysine (K146) resulted in phenotypic defects in leaf trichomes, root hairs, and seed mucilage, similar to those observed for START domain mutants, despite nuclear localization of the respective proteins. In vitro and in vivo experiments demonstrated that while HD mutations impair binding to target DNA, the START domain is dispensable for DNA binding. Vice versa, protein interaction assays revealed impaired GL2 dimerization for multiple alleles of START mutants, but not HD mutants. Using in vivo cycloheximide chase experiments, we provided evidence for the role of START, but not HD, in maintaining protein stability. This work advances our mechanistic understanding of HD-Zip TFs as multidomain regulators of epidermal development in plants.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Donald Danforth Plant Science Center, Olivette, Missouri 63132, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Aashima Khosla
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Erika M Begler
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Preston M Stephens
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adara L Warner
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Interdepartmental Genetics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Kyle A Thompson
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
10
|
Liu X, Li A, Wang S, Lan C, Wang Y, Li J, Zhu J. Overexpression of Pyrus sinkiangensis HAT5 enhances drought and salt tolerance, and low-temperature sensitivity in transgenic tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1036254. [PMID: 36420018 PMCID: PMC9676457 DOI: 10.3389/fpls.2022.1036254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper protein HAT belongs to the homeodomain leucine zipper subfamily (HD-Zip) and is important for regulating plant growth and development and stress tolerance. To investigate the role of HAT5 in tolerance to drought, salt, and low temperature stress, we selected a HAT gene from Pyrus sinkiangensis Yü (Pyrus sinkiangensis T.T. Yu). The sequences were analyzed using ioinformatics, and the overexpressed tomato lines were obtained using molecular biology techniques. The phenotypes, physiological, and biochemical indexes of the wild-type and transgenic tomato lines were observed under different stress conditions. We found that the gene had the highest homology with PbrHAT5. Under drought and NaCl stress, osmotic regulatory substances (especially proline) were significantly accumulated, and antioxidant enzyme activities were enhanced. The malondialdehyde level and relative electrical conductivity of transgenic tomatoes under low temperature (freezing) stress were significantly higher than those of wild-type tomatoes. The reactive oxygen species scavenging system was unbalanced. This study found that PsHAT5 improved the tolerance of tomatoes to drought and salt stress by regulating proline metabolism and oxidative stress ability, reducing the production of reactive oxygen species, and maintaining normal cell metabolism. In conclusion, the PsHAT5 transcription factor has great potential in crop resistance breeding, which lays a theoretical foundation for future excavation of effective resistance genes of the HD-Zip family and experimental field studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Li
- *Correspondence: Jianbo Zhu, ; Jin Li,
| | | |
Collapse
|
11
|
Cai X, Jia B, Sun M, Sun X. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1002302. [PMID: 36340388 PMCID: PMC9627173 DOI: 10.3389/fpls.2022.1002302] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 05/24/2023]
Abstract
Soybean is an important grain and oil crop. In China, there is a great contradiction between soybean supply and demand. China has around 100 million ha of salt-alkaline soil, and at least 10 million could be potentially developed for cultivated land. Therefore, it is an effective way to improve soybean production by breeding salt-alkaline-tolerant soybean cultivars. Compared with wild soybean, cultivated soybean has lost a large number of important genes related to environmental adaptation during the long-term domestication and improvement process. Therefore, it is greatly important to identify the salt-alkaline tolerant genes in wild soybean, and investigate the molecular basis of wild soybean tolerance to salt-alkaline stress. In this review, we summarized the current research regarding the salt-alkaline stress response in wild soybean. The genes involved in the ion balance and ROS scavenging in wild soybean were summarized. Meanwhile, we also introduce key protein kinases and transcription factors that were reported to mediate the salt-alkaline stress response in wild soybean. The findings summarized here will facilitate the molecular breeding of salt-alkaline tolerant soybean cultivars.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Sun
- *Correspondence: Mingzhe Sun, ; Xiaoli Sun,
| |
Collapse
|
12
|
Jiao P, Jiang Z, Wei X, Liu S, Qu J, Guan S, Ma Y. Overexpression of the homeobox-leucine zipper protein ATHB-6 improves the drought tolerance of maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111159. [PMID: 35151445 DOI: 10.1016/j.plantsci.2021.111159] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Homeo-Leucine Zipper (HD-Zip) proteins are a class of transcription factors unique to higher plants and are involved in plant stress responses and regulation of growth and development. However, the function of maize HD-Zip genes in enhancing drought tolerance is unknown. Here, Sub-Cellular Localization results showed that ATHB-6 fusion proteins were only localized in the nucleus. The malondialdehyde content was lower than the wild type under drought tolerance, proving that the introduction of the ATHB-6 gene can improve the drought tolerance of plants. Follow-up analysis showed that ATHB-6 could promote root growth and activities of a series of ROS-scavenging enzymes in maize. Moreover, overexpression of ATHB-6 in maize activated the expression of critical genes in the ROS signals pathway and ABA-dependent pathway under drought tolerance.Our results provides a significant advancement in undestanding the functions of HD-Zip transcription factors in maize.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Xiaotong Wei
- College of Life Sciences, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China.
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China; Joint Laboratory of Intemational Cooperation in Modem Agricultural Technology of Ministry of Educaltion, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
13
|
Li X, Hou Y, Zhang F, Li M, Yi F, Kang J, Yang Q, Long R. Identification and characterization of stress responsive homeodomain leucine zipper transcription factors in Medicago truncatula. Mol Biol Rep 2022; 49:3569-3581. [PMID: 35118569 DOI: 10.1007/s11033-022-07197-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Homeodomain leucine zipper (HD-ZIP) transcription factors play roles in regulating plant development and responses to abiotic stresses; however, how HD-ZIP genes in Medicago truncatula are involved in abiotic stress response remains elusive. METHODS AND RESULTS The HD-ZIP I genes in Medicago truncatula were identified and characterized, and their expression patterns in different tissues and under different abiotic stresses were analyzed. A total of 15 Medicago truncatula HD-ZIP I genes were identified and a phylogenetic analysis of HD-ZIP I proteins in Arabidopsis thaliana and Medicago truncatula was conducted. Fifteen HD-ZIP I genes showed diverse tissue preferences. Among them, expressions of MtHB22 and MtHB51 were specially detected in vegetative buds. In addition, they responded to various abiotic stresses, including salinity and osmotic stress and abscisic acid (ABA). For instance, MtHB7 and MtHB12 expression levels were found to be positively associated with salt, osmotic stress and ABA in both shoots and roots, while MtHB13 and MtHB23 were negatively associated with these stresses in Medicago truncatula. CONCLUSION The HD-ZIP I genes in Medicago truncatula are evolutionarily conserved, but also exhibit gene duplication and gene loss events. Differential expression analysis of Medicago truncatula HD-ZIP I genes indicated their crucial roles in abiotic stress responses. Our genome-wide analysis of the HD-ZIP I transcription factor family in Medicago truncatula provided a valuable reference for further research.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yiyao Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Fan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
14
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
15
|
Hussain Q, Asim M, Zhang R, Khan R, Farooq S, Wu J. Transcription Factors Interact with ABA through Gene Expression and Signaling Pathways to Mitigate Drought and Salinity Stress. Biomolecules 2021; 11:1159. [PMID: 34439825 PMCID: PMC8393639 DOI: 10.3390/biom11081159] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022] Open
Abstract
Among abiotic stressors, drought and salinity seriously affect crop growth worldwide. In plants, research has aimed to increase stress-responsive protein synthesis upstream or downstream of the various transcription factors (TFs) that alleviate drought and salinity stress. TFs play diverse roles in controlling gene expression in plants, which is necessary to regulate biological processes, such as development and environmental stress responses. In general, plant responses to different stress conditions may be either abscisic acid (ABA)-dependent or ABA-independent. A detailed understanding of how TF pathways and ABA interact to cause stress responses is essential to improve tolerance to drought and salinity stress. Despite previous progress, more active approaches based on TFs are the current focus. Therefore, the present review emphasizes the recent advancements in complex cascades of gene expression during drought and salinity responses, especially identifying the specificity and crosstalk in ABA-dependent and -independent signaling pathways. This review also highlights the transcriptional regulation of gene expression governed by various key TF pathways, including AP2/ERF, bHLH, bZIP, DREB, GATA, HD-Zip, Homeo-box, MADS-box, MYB, NAC, Tri-helix, WHIRLY, WOX, WRKY, YABBY, and zinc finger, operating in ABA-dependent and -independent signaling pathways.
Collapse
Affiliation(s)
- Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (R.Z.)
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, China; (M.A.); (R.K.)
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (R.Z.)
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, China; (M.A.); (R.K.)
| | - Saqib Farooq
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, China;
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (R.Z.)
| |
Collapse
|
16
|
Song T, Sun N, Dong L, Cai H. Enhanced alkali tolerance of rhizobia-inoculated alfalfa correlates with altered proteins and metabolic processes as well as decreased oxidative damage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:301-311. [PMID: 33418189 DOI: 10.1016/j.plaphy.2020.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
AIMS Alkaline salt is one of the most devastating environmental factors limiting alfalfa productivity, however, the mechanisms underlying adaptation of alfalfa to alkaline remain unclear. Our aim is to investigate proteomic and metabolomic differences in growth and root of alfalfa under alkaline salt in Rhizobium-alfalfa symbiotic relationships. METHODS Rhizobium-inoculated and non-inoculated alfalfa plants were treated with 200 mmol/L NaHCO3 to investigate physiological, metabolic, and proteomic responses of root-nodule symbiosis under alkaline-induced stress, using an integrated approach combining metabolome and proteome analysis with measurements of physiological parameters. RESULTS The improved tolerance to alkalinity was observed in RI-plants compared with NI-plants. RI-plants accumulated more proline and MDH, and had higher antioxidant activity and relatively high RWC but low MDA content and low Na+/K+ ratio. The stress-related genes (P5CS, GST13, H+-Ppase, NADP-Me, SDH, and CS) were actively upregulated in RI plants under alkaline stress. In RI-plants, damage caused by alkaline stress was mainly alleviated by decreasing oxidative damage, enhancing the organic acid and amino acid metabolic processes, and scavenging harmful ROS by activating the phenylpropanoid biosynthetic pathway. CONCLUSIONS We revealed distinct proteins and metabolites related to alkali tolerance in RI-plants compared to NI-plants. Alkali tolerance of rhizobia-inoculated alfalfa was enhanced by altered proteins and metabolic processes as well as decreased oxidative damage.
Collapse
Affiliation(s)
- Tingting Song
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Na Sun
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Li Dong
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Cai
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC Genomics 2021; 22:82. [PMID: 33509088 PMCID: PMC7841905 DOI: 10.1186/s12864-021-07368-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here we investigated the physiological responses and transcriptome changes in the roots of Alamo (alkaline-tolerant genotype) and AM-314/MS-155 (alkaline-sensitive genotype) under alkaline salt stress. Results Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes. Conclusions Alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene expression dynamic and act network induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07368-w.
Collapse
|
18
|
Xiao JL, Sun JG, Pang B, Zhou X, Gong Y, Jiang L, Zhang L, Ding X, Yin J. Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China. Appl Microbiol Biotechnol 2021; 105:755-768. [PMID: 33409608 DOI: 10.1007/s00253-020-11048-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
In this study, we firstly reported the large-scale screening and isolation of endophytic fungi from nine wild and six cultivated soybeans in the cold regions of China. We totally isolated 302 endophytic fungal strains, of which 215 strains are isolated from the wild soybeans and 87 are identified from cultivated soybeans. Among these endophytic fungal strains, in the roots, stems, and leaves, 24.17% were isolated from roots, 28.8% were isolated from stems, and 47.01% were isolated from leaves, respectively. Most endophytic fungal strains isolated from the wild soybean roots were the species of Fusarium genus, and the fungal strains in the stems were the species of ascomycetes and Fusarium fungi, whereas most strains in the leaves were Alternaria fungi. To analyze the taxonomy of the obtained samples, we sequenced and compared their rDNA internal transcribed spacer (ITS) sequences. The data showed that 6 strains are putatively novel strains exhibiting ≤ 97% homology with the known strains. We next measured the secondary metabolites produced by the different strains and we found 11 strains exhibited high-performance synthesis of triterpenoids, phenols, and polysaccharides. Furthermore, we characterized their tolerance to abiotic stresses. The results indicated that 4 strains exhibited high tolerance to cadmium, and some strains exhibited resistance to acid, and alkali. The results of the study could facilitate the further exploration of the diversity of plant endophytic fungi and the potential applications of the fungi to practical agriculture and medicine industries. KEY POINTS: • 302 endophytic fungal strains isolated from wild soybean and cultivated soybean • 11 strains had high contents of triterpenoids, phenols, and polysaccharides • 4 strains exhibited high Cd tolerance, and a few strains with strong tolerance to acid and alkali solution.
Collapse
Affiliation(s)
- Jia-Lei Xiao
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Jian-Guang Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Bo Pang
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Xin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Yuan Gong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Lichao Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Luan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Xiaodong Ding
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China.
| | - Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Tan Z, Wen X, Wang Y. Betula platyphylla BpHOX2 transcription factor binds to different cis-acting elements and confers osmotic tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1762-1779. [PMID: 32681705 DOI: 10.1111/jipb.12994] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/16/2020] [Indexed: 05/22/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) proteins play crucial roles in plant developmental and environmental responses. However, how they mediate gene expression to facilitate abiotic stress tolerance remains unknown. In the present study, we characterized BpHOX2 (encoding a HD-Zip I family protein) from birch (Betula platyphylla). BpHOX2 is predominately expressed in mature stems and leaves, but expressed at a low level in apical buds and roots, suggesting that it has tissue-specific characteristics. BpHOX2 expression was highly induced by osmotic and salt, but only slightly induced by abscisic acid. Overexpression of BpHOX2 markedly improved osmotic tolerance, while knockdown of BpHOX2 increased sensitivity to osmotic stress. BpHOX2 could induce the expression of pyrroline-5-carboxylate synthase, peroxidase, and superoxide dismutase genes to improve proline levels and the reactive oxygen species scavenging capability. Chromatin immunoprecipitation sequencing combined with RNA sequencing showed that BpHOX2 could bind to at least four cis-acting elements, including dehydration-responsive element "RCCGAC", Myb-p binding box "CCWACC," and two novel cis-acting elements with the sequences of "AAGAAG" and "TACGTG" (termed HBS1 and HBS2, respectively) to regulate gene expression. Our results suggested that BpHOX2 is a transcription factor that binds to different cis-acting elements to regulate gene expression, ultimately improving osmotic tolerance in birch.
Collapse
Affiliation(s)
- Zilong Tan
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yucheng Wang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
20
|
Sun S, Song H, Li J, Chen D, Tu M, Jiang G, Yu G, Zhou Z. Comparative transcriptome analysis reveals gene expression differences between two peach cultivars under saline-alkaline stress. Hereditas 2020; 157:9. [PMID: 32234076 PMCID: PMC7110815 DOI: 10.1186/s41065-020-00122-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide. Two peach cultivars (GF677 and Maotao) display distinct phenotypes under saline-alkaline stress. The molecular mechanism explaining the differences between the two cultivars is still unclear. RESULTS In the present study, we systematically analysed the changes in GF677 and Maotao leaves upon saline-alkaline stress by using cytological and biochemical technologies as well as comparative transcriptome analysis. Transmission electron microscopy (TEM) observations showed that the structure of granum was dispersive in Maotao chloroplasts. The biochemical analysis revealed that POD activity and the contents of chlorophyll a and chlorophyll b, as well as iron, were notably decreased in Maotao. Comparative transcriptome analysis detected 881 genes with differential expression (including 294 upregulated and 587 downregulated) under the criteria of |log2 Ratio| ≥ 1 and FDR ≤0.01. Gene ontology (GO) analysis showed that all differentially expressed genes (DEGs) were grouped into 30 groups. MapMan annotation of DEGs showed that photosynthesis, antioxidation, ion metabolism, and WRKY TF were activated in GF677, while cell wall degradation, secondary metabolism, starch degradation, MYB TF, and bHLH TF were activated in Maotao. Several iron and stress-related TFs (ppa024966m, ppa010295m, ppa0271826m, ppa002645m, ppa010846m, ppa009439m, ppa008846m, and ppa007708m) were further discussed from a functional perspective based on the phylogenetic tree integration of other species homologues. CONCLUSIONS According to the cytological and molecular differences between the two cultivars, we suggest that the integrity of chloroplast structure and the activation of photosynthesis as well as stress-related genes are crucial for saline-alkaline resistance in GF677. The results presented in this report provide a theoretical basis for cloning saline-alkaline tolerance genes and molecular breeding to improve saline-alkaline tolerance in peach.
Collapse
Affiliation(s)
- Shuxia Sun
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.,Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China.,Fruit Technology Promotion Station of Longquanyi District, Chengdu, 610100, Sichuan Province, China
| | - Haiyan Song
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Jing Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Meiyan Tu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Guoliang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Guoqing Yu
- Fruit Technology Promotion Station of Longquanyi District, Chengdu, 610100, Sichuan Province, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
21
|
Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G. Genome-Wide Identification and Expression Analysis of HD-ZIP I Gene Subfamily in Nicotiana tabacum. Genes (Basel) 2019; 10:E575. [PMID: 31366162 PMCID: PMC6723700 DOI: 10.3390/genes10080575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/30/2023] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family, whose members play vital roles in plant growth and development, and participate in responding to various stresses, is an important class of transcription factors currently only found in plants. Although the HD-Zip gene family, especially the HD-Zip I subfamily, has been extensively studied in many plant species, the systematic report on HD-Zip I subfamily in cultivated tobacco (Nicotiana tabacum) is lacking. In this study, 39 HD-Zip I genes were systematically identified in N. tabacum (Nt). Interestingly, that 64.5% of the 31 genes with definite chromosome location information were found to originate from N. tomentosoformis, one of the two ancestral species of allotetraploid N. tabacum. Phylogenetic analysis divided the NtHD-Zip I subfamily into eight clades. Analysis of gene structures showed that NtHD-Zip I proteins contained conserved homeodomain and leucine-zipper domains. Three-dimensional structure analysis revealed that most NtHD-Zip I proteins in each clade, except for those in clade η, share a similar structure to their counterparts in Arabidopsis. Prediction of cis-regulatory elements showed that a number of elements responding to abscisic acid and different abiotic stresses, including low temperature, drought, and salinity, existed in the promoter region of NtHD-Zip I genes. The prediction of Arabidopsis ortholog-based protein-protein interaction network implied that NtHD-Zip I proteins have complex connections. The expression profile of these genes showed that different NtHD-Zip I genes were highly expressed in different tissues and could respond to abscisic acid and low-temperature treatments. Our study provides insights into the evolution and expression patterns of NtHD-Zip I genes in N. tabacum and will be useful for further functional characterization of NtHD-Zip I genes in the future.
Collapse
Affiliation(s)
- Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Bingchuan Bai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Min Zhao
- Chongqing Institute of Tobacco Science, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
22
|
Zhang H, Yasmin F, Song BH. Neglected treasures in the wild - legume wild relatives in food security and human health. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:17-26. [PMID: 31085425 PMCID: PMC6817337 DOI: 10.1016/j.pbi.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
The legume family (Fabaceae) is the third-largest flowering family with over 18 000 species worldwide that are rich in proteins, oils, and nutrients. However, the production potential of legume-derived food cannot meet increasing global demand. Wild legumes represent a large group of wild species adaptive to diverse habitats and harbor rich genetic diversity for the improvement of the agronomic, nutritional, and medicinal values of the domesticated legumes. Accumulating evidence suggests that the genetic variation retained in these under-exploited leguminous wild relatives can be used to improve crop yield, nutrient contents, and resistance/tolerance to environmental stresses via the integration of omics, genetics, and genome-editing technologies.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Farida Yasmin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
23
|
Song Y, Zhang H, You H, Liu Y, Chen C, Feng X, Yu X, Wu S, Wang L, Zhong S, Li Q, Zhu Y, Ding X. Identification of novel interactors and potential phosphorylation substrates of GsSnRK1 from wild soybean (Glycine soja). PLANT, CELL & ENVIRONMENT 2019; 42:145-157. [PMID: 29664126 DOI: 10.1111/pce.13217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The plant sucrose nonfermenting kinase 1 (SnRK1) kinases play the central roles in the processes of energy balance, hormone perception, stress resistance, metabolism, growth, and development. However, the functions of these kinases are still elusive. In this study, we used GsSnRK1 of wild soybean as bait to perform library-scale screens by the means of yeast two-hybrid to identify its interacting proteins. The putative interactions were verified by yeast retransformation and β-galactosidase assays, and the selected interactions were further confirmed in planta by bimolecular fluorescence complementation and biochemical Co-IP assays. Protein phosphorylation analyses were carried out by phos-tag assay and anti-phospho-(Ser/Thr) substrate antibodies. Finally, we obtained 24 GsSnRK1 interactors and several putative substrates that can be categorized into SnRK1 regulatory β subunit, protein modification, biotic and abiotic stress-related, hormone perception and signalling, gene expression regulation, water and nitrogen transport, metabolism, and unknown proteins. Intriguingly, we first discovered that GsSnRK1 interacted with and phosphorylated the components of soybean nodulation and symbiotic nitrogen fixation. The interactions and potential functions of GsSnRK1 and its associated proteins were extensively discussed and analysed. This work provides plausible clues to elucidate the novel functions of SnRK1 in response to variable environmental, metabolic, and physiological requirements.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hang Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongguang You
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xingyu Yu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengyang Wu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Libo Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shihua Zhong
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
24
|
Wu S, Zhu P, Jia B, Yang J, Shen Y, Cai X, Sun X, Zhu Y, Sun M. A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa. BMC PLANT BIOLOGY 2018; 18:234. [PMID: 30316294 PMCID: PMC6186066 DOI: 10.1186/s12870-018-1466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Even though bicarbonate alkaline stress is a serious threat to crop growth and yields, it attracts much fewer researches than high salinity stress. The basic leucine zipper (bZIP) transcription factors have been well demonstrated to function in diverse abiotic stresses; however, their biological role in alkaline tolerance still remains elusive. In this study, we functionally characterized a bZIP gene from Glycine soja GsbZIP67 in bicarbonate alkaline stress responses. RESULTS GsbZIP67 was initially identified as a putative bicarbonate responsive gene, on the basis of previous RNA-seq data of 50 mM NaHCO3-treated Glycine soja roots. GsbZIP67 protein possessed a conserved bZIP domain, and belonged to the group S2 bZIP, which is yet less well-studied. Our studies showed that GsbZIP67 targeted to nucleus in Arabidopsis protoplasts, and displayed transcriptional activation activity in yeast cells. The quantitative real-time PCR analyses unraveled the bicarbonate stress responsive expression and tissue specific expression of GsbZIP67 in wild soybean. Further phenotypic analysis illustrated that GsbZIP67 overexpression in alfalfa promoted plant growth under bicarbonate alkaline stress, as evidenced by longer roots and shoots. Furthermore, GsbZIP67 overexpression also modified the physiological indices of transgenic alfalfa under bicarbonate alkaline stress. In addition, the expression levels of several stress responsive genes were also augmented by GsbZIP67 overexpression. CONCLUSIONS Collectively, in this study, we demonstrated that GsbZIP67 acted as a positive regulator of plant tolerance to bicarbonate alkaline stress. These results provide direct genetic evidence of group S2 bZIPs in bicarbonate alkaline stress, and will facilitate further studies concerning the cis-elements and/or downstream genes targeted by GsbZIP67 in stress responses.
Collapse
Affiliation(s)
- Shengyang Wu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Pinhui Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Yanming Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Mingzhe Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| |
Collapse
|
25
|
Duan X, Yu Y, Duanmu H, Chen C, Sun X, Cao L, Li Q, Ding X, Liu B, Zhu Y. GsSLAH3, a Glycine soja slow type anion channel homolog, positively modulates plant bicarbonate stress tolerance. PHYSIOLOGIA PLANTARUM 2018; 164:145-162. [PMID: 29243826 DOI: 10.1111/ppl.12683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow-type anion channel homolog 3 gene, GsSLAH3, was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3- than wild-type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.
Collapse
Affiliation(s)
- Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Huizi Duanmu
- College of Life Science, Heilongjiang University, Harbin 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoli Sun
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-413 90, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
26
|
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D, Ye W. Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl, NaOH and Na 2CO 3 Stress Tolerance. Sci Rep 2018; 8:13527. [PMID: 30202076 PMCID: PMC6131252 DOI: 10.1038/s41598-018-31668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/23/2018] [Indexed: 11/29/2022] Open
Abstract
As an important source of fiber and edible oil, cotton has great economic value. In comparison to their individual studies, association and differentiation between salt and alkaline tolerance has not been focused yet by scientists. We have used next-generation RNA-Seq technique to analyze transcriptional changes under salt and alkaline stresses in cotton. Overall, 25,929 and 6,564 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Gene functional annotation showed that genes involving ionic homeostasis were significantly up-regulated under NaCl stress and Na2CO3 stress, and genes enriched in starch and sucrose metabolism were up-regulated under NaOH stress and Na2CO3 stress. Furthermore, a synergistic enhancing effect between NaCl and NaOH stress was also observed in this study. Likewise, our studies indicate further that genes related with starch and sucrose metabolism were regulated to respond to the high pH under Na2CO3 stress, inducing plant hormone signal transduction and key enzyme reactive oxygen species (ROS) activity to respond to ionic toxicity and intracellular ionic homeostasis. By analyzing the expression profiles of diverse tissues under different salt and alkaline stresses, this study provides valuable ideas for genetic improvements of cotton tolerance to salt-alkaline stress.
Collapse
Affiliation(s)
- Binglei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaomin Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China.
| |
Collapse
|
27
|
Mou S, Liu Z, Gao F, Yang S, Su M, Shen L, Wu Y, He S. CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:960-973. [PMID: 28840788 DOI: 10.1094/mpmi-06-17-0130-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Homeodomain-leucine zipper class I (HD-Zip I) transcription factors have been functionally characterized in plant responses to abiotic stresses, but their roles in plant immunity are poorly understood. Here, a HD-Zip I gene, CaHZ27, was isolated from pepper (Capsicum annum) and characterized for its role in pepper immunity. Quantitative real-time polymerase chain reaction showed that CaHDZ27 was transcriptionally induced by Ralstonia solanacearum inoculation and exogenous application of methyl jasmonate, salicylic acid, or ethephon. The CaHDZ27-green fluorescent protein fused protein was targeted exclusively to the nucleus. Chromatin immunoprecipitation demonstrated that CaHDZ27 bound to the 9-bp pseudopalindromic element (CAATAATTG) and triggered β-glucuronidase expression in a CAATAATTG-dependent manner. Virus-induced gene silencing of CaHDZ27 significantly attenuated the resistance of pepper plants against R. solanacearum and downregulated defense-related marker genes, including CaHIR1, CaACO1, CaPR1, CaPR4, CaPO2, and CaBPR1. By contrast, transient overexpression of CaHDZ27 triggered strong cell death mediated by the hypersensitive response and upregulated the tested immunity-associated marker genes. Ectopic CaHDZ27 expression in tobacco enhances its resistance against R. solanacearum. These results collectively suggest that CaHDZ27 functions as a positive regulator in pepper resistance against R. solanacearum. Bimolecular fluorescence complementation and coimmunoprecipitation assays indicate that CaHDZ27 monomers bind with each other, and this binding is enhanced significantly by R. solanacearum inoculation. We speculate that homodimerization of CaHZ27 might play a role in pepper response to R. solanacearum, further direct evidence is required to confirm it.
Collapse
Affiliation(s)
- Shaoliang Mou
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Zhiqin Liu
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Feng Gao
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Meixia Su
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Lei Shen
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Yang Wu
- 4 College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| |
Collapse
|
28
|
Cao L, Yu Y, Ding X, Zhu D, Yang F, Liu B, Sun X, Duan X, Yin K, Zhu Y. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity. PLANT MOLECULAR BIOLOGY 2017; 95:253-268. [PMID: 28884328 DOI: 10.1007/s11103-017-0643-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/29/2017] [Indexed: 05/23/2023]
Abstract
Overexpression of Gshdz4 or GsNAC019 enhanced alkaline tolerance in transgenic Arabidopsis. We proved that Gshdz4 up-regulated both GsNAC019 and GsRD29B but GsNAC019 may repress the GsRD29B expression under alkaline stress. Wild soybean (Glycine soja) has a high tolerance to environmental challenges. It is a model species for dissecting the molecular mechanisms of salt-alkaline stresses. Although many NAC transcription factors play important roles in response to multiple abiotic stresses, such as salt, osmotic and cold, their mode of action in alkaline stress resistance is largely unknown. In our study, we identified a G. soja NAC gene, GsNAC019, which is a homolog of the Arabidopsis AtNAC019 gene. GsNAC019 was highly up-regulated by 50 mM NaHCO3 treatment in the roots of wild soybean. Further investigation showed that a well-characterized transcription factor, Gshdz4 protein, bound the cis-acting element sequences (CAATA/TA), which are located in the promoter of the AtNAC019/GsNAC019 genes. Overexpression of Gshdz4 positively regulated AtNAC019 expression in transgenic Arabidopsis, implying that AtNAC019/GsNAC019 may be the target genes of Gshdz4. GsNAC019 was demonstrated to be a nuclear-localized protein in onion epidermal cells and possessed transactivation activity in yeast cells. Moreover, overexpression of GsNAC019 in Arabidopsis resulted in enhanced tolerance to alkaline stress at the seedling and mature stages, but reduced ABA sensitivity. The closest Arabidopsis homolog mutant plants of Gshdz4, GsNAC019 and GsRD29B containing athb40, atnac019 and atrd29b were sensitive to alkaline stress. Overexpression or the closest Arabidopsis homolog mutant plants of the GsNAC019 gene in Arabidopsis positively or negatively regulated the expression of stress-related genes, such as AHA2, RD29A/B and KIN1. Moreover, this mutation could phenotypically promoted or compromised plant growth under alkaline stress, implying that GsNAC019 may contribute to alkaline stress tolerance via the ABA signal transduction pathway and regulate expression of the downstream stress-related genes.
Collapse
Affiliation(s)
- Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Fan Yang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Xiaoli Sun
- Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kuide Yin
- Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
29
|
Perotti MF, Ribone PA, Chan RL. Plant transcription factors from the homeodomain-leucine zipper family I. Role in development and stress responses. IUBMB Life 2017; 69:280-289. [PMID: 28337836 DOI: 10.1002/iub.1619] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
Abstract
In front of stressful conditions plants display adaptation mechanisms leading to changes in their morphology, physiology, development and molecular composition. Transcription factors (TFs) play crucial roles in these complex adaptation processes. This work is focused in the homeodomain-leucine zipper I (HD-Zip I) family of TFs, unique to plants. First discovered in 1991, they were identified and isolated from monocotyledonous and dicotyledonous plants showing high structural similarity and diversified functions. These TFs have, besides the homeodomain and leucine zipper, conserved motifs in their carboxy-termini allowing the interaction with the basal machinery and with other regulatory proteins. The model dicotyledonous plant Arabidopsis thaliana has 17 HD-Zip I members; most of them regulated by external stimuli and hormones. These TFs are involved in key developmental processes like root and stem elongation, rosette leaves morphology determination, inflorescence stem branching, flowering and pollen hydration. Moreover, they are key players in responses to environmental stresses and illumination conditions. Several HD-Zip I encoding genes from different species were protected in patents because their overexpression or mutation generates improved agronomical phenotypes. Here we discuss many aspects about these TFs including structural features, biological functions and their utilization as biotechnological tools to improve crops. © 2017 IUBMB Life, 69(5):280-289, 2017.
Collapse
Affiliation(s)
- María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Pamela Anahí Ribone
- Instituto de Agrobiotecnología del Litoral Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| |
Collapse
|