1
|
Jiang D, Yang G, Huang L, Peng X, Cui C, Kuzyakov Y, Li N. Integrative molecular and physiological insights into the phytotoxic impact of liquid crystal monomer exposure and the protective strategy in plants. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:644-659. [PMID: 39797561 PMCID: PMC11772339 DOI: 10.1111/pbi.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 01/13/2025]
Abstract
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches. The findings reveal specific impacts, with 4PiMeOP exerting the most pronounced effects, followed by 2BzoCP, 5CB, and 2OdF3B. LCM exposure disrupts the photosynthetic apparatus, exacerbating reactive oxygen species (ROS) levels in leaves, which in turn triggers the upregulation of antioxidative enzymes and the synthesis of antioxidant substances. Additionally, LCMs strongly stimulate the expression of genes involved in abscisic acid (ABA) biosynthesis and signalling pathways. The AI-assisted meta-analysis implicates ABA as a critical regulator in the tobacco response to LCMs. Notably, exogenous application of ABA alleviates LCM-induced toxicities, highlighting the pivotal role of ABA in stress amelioration. Our study provides novel insights into the toxicity and tolerance mechanisms of LCMs in plants, shedding light on both their harmful effects on the ecosystems and potential adaptation responses. This is crucial to develop sustainable agricultural systems by reducing the negative environmental impacts caused by emerging organic pollutants.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest Trees, Ministry of EducationCentral South University of Forestry and TechnologyChangshaChina
- Key Laboratory of Forest Bio‐resources and Integrated Pest Management for Higher Education in Hunan ProvinceCentral South University of Forestry and TechnologyChangshaChina
| | - Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest Trees, Ministry of EducationCentral South University of Forestry and TechnologyChangshaChina
- Key Laboratory of Forest Bio‐resources and Integrated Pest Management for Higher Education in Hunan ProvinceCentral South University of Forestry and TechnologyChangshaChina
| | - Li‐Jun Huang
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest Trees, Ministry of EducationCentral South University of Forestry and TechnologyChangshaChina
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest Trees, Ministry of EducationCentral South University of Forestry and TechnologyChangshaChina
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest Trees, Ministry of EducationCentral South University of Forestry and TechnologyChangshaChina
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil ScienceUniversity of GöttingenGöttingenGermany
- Peoples Friendship University of Russia (RUDN University)MoscowRussia
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest Trees, Ministry of EducationCentral South University of Forestry and TechnologyChangshaChina
- Key Laboratory of Forest Bio‐resources and Integrated Pest Management for Higher Education in Hunan ProvinceCentral South University of Forestry and TechnologyChangshaChina
| |
Collapse
|
2
|
Li YR, Cai W, Zhang YX, Zhang NX, Huang QL, Lu YT, Yuan TT. A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis. Int J Mol Sci 2024; 25:11455. [PMID: 39519008 PMCID: PMC11546484 DOI: 10.3390/ijms252111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Ying-Rui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China
| | - Ya-Xuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning-Xin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiao-Ling Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
5
|
El Baidouri M, Reichheld JP, Belin C. An evolutionary view of the function of CC-type glutaredoxins in plant development and adaptation to the environment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4287-4299. [PMID: 38787597 DOI: 10.1093/jxb/erae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Land plants have to face an oxidizing, heterogeneous, and fast changing environment. Redox-dependent post-translational modifications emerge as a critical component of plant responses to stresses. Among the thiol oxidoreductase superfamily, class III CC-type glutaredoxins (called ROXYs) are land plant specific, and their evolutionary history is highly dynamic. Angiosperms encode many isoforms, classified into five subgroups (Aα, Aβ, Bα, Bβ, Bγ) that probably evolved from five common ancestral ROXYs, with higher evolutionary dynamics in the Bγ subgroup compared with the other subgroups. ROXYs can modulate the transcriptional activity of TGA transcription factor target genes, although their biochemical function is still debated. ROXYs participate in the control of proper plant development and reproduction, and are mainly negative regulators of plant responses to biotic and abiotic stresses. This suggests that most ROXYs could play essential and conserved functions in resetting redox-dependent changes in transcriptional activity upon stress signaling to ensure the responsiveness of the system and/or avoid exaggerated responses that could lead to major defects in plant growth and reproduction. In Arabidopsis Bγ members acquired important functions in responses to nitrogen availability and endogenous status, but the rapid and independent evolution of this subclass might suggest that this function results from neofunctionalization, specifically observed in core eudicots.
Collapse
Affiliation(s)
- Moaïne El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
| | - Christophe Belin
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
| |
Collapse
|
6
|
Wang H, Su K, Liu M, Liu Y, Wu Z, Fu C. Overexpressing CYP81D11 enhances 2,4,6-trinitrotoluene tolerance and removal efficiency in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14364. [PMID: 38837226 DOI: 10.1111/ppl.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlong Su
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Meifeng Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuchen Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Zhenying Wu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Huang LJ, Yang W, Chen J, Yu P, Wang Y, Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108367. [PMID: 38237422 DOI: 10.1016/j.plaphy.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.
Collapse
Affiliation(s)
- Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wenhai Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiali Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiyao Yu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yukun Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ning Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
8
|
de la Fuente C, Grondin A, Sine B, Debieu M, Belin C, Hajjarpoor A, Atkinson JA, Passot S, Salson M, Orjuela J, Tranchant-Dubreuil C, Brossier JR, Steffen M, Morgado C, Dinh HN, Pandey BK, Darmau J, Champion A, Petitot AS, Barrachina C, Pratlong M, Mounier T, Nakombo-Gbassault P, Gantet P, Gangashetty P, Guedon Y, Vadez V, Reichheld JP, Bennett MJ, Kane NA, Guyomarc'h S, Wells DM, Vigouroux Y, Laplaze L. Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife 2024; 12:RP86169. [PMID: 38294329 PMCID: PMC10945517 DOI: 10.7554/elife.86169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.
Collapse
Affiliation(s)
| | - Alexandre Grondin
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
- LMI LAPSEDakarSenegal
- CERAAS, ISRAThiesSenegal
| | | | - Marilyne Debieu
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | - Amir Hajjarpoor
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Jonathan A Atkinson
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | - Sixtine Passot
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Marine Salson
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Julie Orjuela
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | | | - Maxime Steffen
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | - Hang Ngan Dinh
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Bipin K Pandey
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | - Julie Darmau
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Antony Champion
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | | | | | | | | | - Pascal Gantet
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | - Yann Guedon
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Vincent Vadez
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
- LMI LAPSEDakarSenegal
- CERAAS, ISRAThiesSenegal
| | | | - Malcolm J Bennett
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | | | | | - Darren M Wells
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | - Yves Vigouroux
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Laurent Laplaze
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
- LMI LAPSEDakarSenegal
| |
Collapse
|
9
|
Bodnar Y, Gellert M, Hossain FM, Lillig CH. Breakdown of Arabidopsis thaliana thioredoxins and glutaredoxins based on electrostatic similarity-Leads to common and unique interaction partners and functions. PLoS One 2023; 18:e0291272. [PMID: 37695767 PMCID: PMC10495010 DOI: 10.1371/journal.pone.0291272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The reversible reduction and oxidation of protein thiols was first described as mechanism to control light/dark-dependent metabolic regulation in photosynthetic organisms. Today, it is recognized as an essential mechanism of regulation and signal transduction in all kingdoms of life. Proteins of the thioredoxin (Trx) family, Trxs and glutaredoxins (Grxs) in particular, catalyze thiol-disulfide exchange reactions and are vital players in the operation of thiol switches. Various Trx and Grx isoforms are present in all compartments of the cell. These proteins have a rather broad but at the same time distinct substrate specificity. Understanding the molecular basis of their target specificity is central to the understanding of physiological and pathological redox signaling. Electrostatic complementarity of the redoxins with their target proteins has been proposed as a major reason. Here, we analyzed the electrostatic similarity of all Arabidopsis thaliana Trxs, Grxs, and proteins containing such domains. Clustering of the redoxins based on this comparison suggests overlapping and also distant target specificities and thus functions of the different sub-classes including all Trx isoforms as well as the three classes of Grxs, i.e. CxxC-, CGFS-, and CC-type Grxs. Our analysis also provides a rationale for the tuned substrate specificities of both the ferredoxin- and NADPH-dependent Trx reductases.
Collapse
Affiliation(s)
- Yana Bodnar
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Faruq Mohammed Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Faizan M, Tonny SH, Afzal S, Farooqui Z, Alam P, Ahmed SM, Yu F, Hayat S. β-Cyclocitral: Emerging Bioactive Compound in Plants. Molecules 2022; 27:molecules27206845. [PMID: 36296438 PMCID: PMC9608612 DOI: 10.3390/molecules27206845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - S Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Fangyuan Yu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
11
|
The TGA Transcription Factors from Clade II Negatively Regulate the Salicylic Acid Accumulation in Arabidopsis. Int J Mol Sci 2022; 23:ijms231911631. [PMID: 36232932 PMCID: PMC9569720 DOI: 10.3390/ijms231911631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Salicylic acid (SA) is a hormone that modulates plant defenses by inducing changes in gene expression. The mechanisms that control SA accumulation are essential for understanding the defensive process. TGA transcription factors from clade II in Arabidopsis, which include the proteins TGA2, TGA5, and TGA6, are known to be key positive mediators for the transcription of genes such as PR-1 that are induced by SA application. However, unexpectedly, stress conditions that induce SA accumulation, such as infection with the avirulent pathogen P. syringae DC3000/AvrRPM1 and UV-C irradiation, result in enhanced PR-1 induction in plants lacking the clade II TGAs (tga256 plants). Increased PR-1 induction was accompanied by enhanced isochorismate synthase-dependent SA production as well as the upregulation of several genes involved in the hormone’s accumulation. In response to avirulent P. syringae, PR-1 was previously shown to be controlled by both SA-dependent and -independent pathways. Therefore, the enhanced induction of PR-1 (and other defense genes) and accumulation of SA in the tga256 mutant plants is consistent with the clade II TGA factors providing negative feedback regulation of the SA-dependent and/or -independent pathways. Together, our results indicate that the TGA transcription factors from clade II negatively control SA accumulation under stress conditions that induce the hormone production. Our study describes a mechanism involving old actors playing new roles in regulating SA homeostasis under stress.
Collapse
|
12
|
Tian T, Yu R, Suo Y, Cheng L, Li G, Yao D, Song Y, Wang H, Li X, Gao G. A Genome-Wide Analysis of StTGA Genes Reveals the Critical Role in Enhanced Bacterial Wilt Tolerance in Potato During Ralstonia solanacearum Infection. Front Genet 2022; 13:894844. [PMID: 35957683 PMCID: PMC9360622 DOI: 10.3389/fgene.2022.894844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
TGA is one of the members of TGACG sequence-specific binding protein family, which plays a crucial role in the regulated course of hormone synthesis as a stress-responsive transcription factor (TF). Little is known, however, about its implication in response to bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum. Here, we performed an in silico identification and analysis of the members of the TGA family based on the whole genome data of potato. In total, 42 StTGAs were predicted to be distributed on four chromosomes in potato genome. Phylogenetic analysis showed that the proteins of StTGAs could be divided into six sub-families. We found that many of these genes have more than one exon according to the conserved motif and gene structure analysis. The heat map inferred that StTGAs are generally expressed in different tissues which are at different stages of development. Genomic collinear analysis showed that there are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting elements related to abiotic and biotic stress upstream of StTGA promoter including plant hormone response elements. A representative member StTGA39 was selected to investigate the potential function of the StTGA genes for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the StTGAs was significantly induced by R. solanacearum infection and upregulated by exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39 regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus, our study provides a theoretical basis for further research of the molecular mechanism of the StTGA gene of potato tolerance to bacterial wilt.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Ruimin Yu
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanyun Suo
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lixiang Cheng
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Guizhi Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Dan Yao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanjie Song
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Huanjun Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xinyu Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
13
|
Tomaž Š, Gruden K, Coll A. TGA transcription factors-Structural characteristics as basis for functional variability. FRONTIERS IN PLANT SCIENCE 2022; 13:935819. [PMID: 35958211 PMCID: PMC9360754 DOI: 10.3389/fpls.2022.935819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
TGA transcription factors are essential regulators of various cellular processes, their activity connected to different hormonal pathways, interacting proteins and regulatory elements. Belonging to the basic region leucine zipper (bZIP) family, TGAs operate by binding to their target DNA sequence as dimers through a conserved bZIP domain. Despite sharing the core DNA-binding sequence, the TGA paralogues exert somewhat different DNA-binding preferences. Sequence variability of their N- and C-terminal protein parts indicates their importance in defining TGA functional specificity through interactions with diverse proteins, affecting their DNA-binding properties. In this review, we provide a short and concise summary on plant TGA transcription factors from a structural point of view, including the relation of their structural characteristics to their functional roles in transcription regulation.
Collapse
Affiliation(s)
- Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
14
|
Li D, Zhou J, Zheng C, Zheng E, Liang W, Tan X, Xu R, Yan C, Yang Y, Yi K, Liu X, Chen J, Wang X. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. PLANT, CELL & ENVIRONMENT 2022; 45:1584-1602. [PMID: 35141931 DOI: 10.1111/pce.14288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Many TGA transcription factors participate in immune responses in the SA-mediated signaling pathway in Arabidopsis. This study identified a transcription factor OsTGAL1, which is induced upon infection by Xoo. Overexpression of OsTGAL1 increased the susceptibility of rice to Xoo. Plants overexpressing OsTGAL1 could affect the expression of many SA signaling-related genes. OsTGAL1 was able to interact with the promoter of OsSGT1, which encodes a key enzyme for SA metabolism. The transcript of OsSGT1 was induced by Xoo and this responsive expression was further increased in plants overexpressing OsTGAL1. OsSGT1 knockout lines had enhanced resistance to Xoo, and knocking out OsSGT1 in plants overexpressing OsTGAL1 blocked the susceptibility caused by OsTGAL1. Altered expression levels of several OsPRs in all the transgenic plants demonstrated that SA-mediated signaling had been affected. Furthermore, we identified an oxidoreductase of CC-type glutaredoxin, OsGRX17, which interacted with OsTGAL1. OsGRX17 reduced the regulation of OsTGAL1 on OsSGT1, and this may be due to its redox modulation. Thus, our results demonstrate that OsTGAL1 negatively regulates resistance to Xoo by its effects on SA metabolism via the activation of OsSGT1, which provides valuable targets for plant breeders in developing new cultivars that are resistant to Xoo.
Collapse
Affiliation(s)
- Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ersong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaojing Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rumeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Keke Yi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Ruan MB, Yu XL, Guo X, Zhao PJ, Peng M. Role of cassava CC-type glutaredoxin MeGRXC3 in regulating sensitivity to mannitol-induced osmotic stress dependent on its nuclear activity. BMC PLANT BIOLOGY 2022; 22:41. [PMID: 35057736 PMCID: PMC8772167 DOI: 10.1186/s12870-022-03433-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We previously identified six drought-inducible CC-type glutaredoxins in cassava cultivars, however, less is known about their potential role in the molecular mechanism by which cassava adapted to abiotic stress. RESULTS Herein, we investigate one of cassava drought-responsive CC-type glutaredoxins, namely MeGRXC3, that involved in regulation of mannitol-induced inhibition on seed germination and seedling growth in transgenic Arabidopsis. MeGRXC3 overexpression up-regulates several stress-related transcription factor genes, such as PDF1.2, ERF6, ORA59, DREB2A, WRKY40, and WRKY53 in Arabidopsis. Protein interaction assays show that MeGRXC3 interacts with Arabidopsis TGA2 and TGA5 in the nucleus. Eliminated nuclear localization of MeGRXC3 failed to result mannitol-induced inhibition of seed germination and seedling growth in transgenic Arabidopsis. Mutation analysis of MeGRXC3 indicates the importance of conserved motifs for its transactivation activity in yeast. Additionally, these motifs are also indispensable for its functionality in regulating mannitol-induced inhibition of seed germination and enhancement of the stress-related transcription factors in transgenic Arabidopsis. CONCLUSIONS MeGRXC3 overexpression confers mannitol sensitivity in transgenic Arabidopsis possibly through interaction with TGA2/5 in the nucleus, and nuclear activity of MeGRXC3 is required for its function.
Collapse
Affiliation(s)
- Meng-Bin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Xiao-Ling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Xin Guo
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
- Huazhong Agricultural University, Wuhan, 430070 China
| | - Ping-Juan Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| |
Collapse
|
16
|
Molecular Cloning, Transcriptional Profiling, Subcellular Localization, and miRNA-Binding Site Analysis of Six SCL9 Genes in Poplar. PLANTS 2021; 10:plants10071338. [PMID: 34208997 PMCID: PMC8309000 DOI: 10.3390/plants10071338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
The SCL9 subfamily is a key member of the GRAS family that regulates plant development and stress responses. Nevertheless, the functional role of these genes in the growth and development of poplar still unclear. Here, we reported the six SCL9 genes, which were found to be differentially expressed during poplar adventitious root formation. The full-length sequences of PeSCL9 genes of ‘Nanlin895’ poplar (Populus deltoids × Populus euramericana) were cloned by the RACE technique All PeSCL9 genes lacked introns. RT-qPCR revealed that PeSCL9 genes displayed a dynamic expression pattern in the adventitious root of poplar, according to RT-qPCR data. A series of comprehensive genes characteristics analysis were carried out for six genes by bioinformation. Meanwhile, transient expression analysis of the Populus protoplasts showed that all the PeSCL9 proteins were localized in the nucleus. In addition, the degradome and sRNA of ‘Nanlin895’ poplar in combination were used to predict miRNAs that regulate PeSCL9. It was found that miR396a and miR396c may affect PeSCL9 expression via cleavage, which was further verified by a transient expression experiment in Populus protoplasts. Overall, the development of poplar adventitious root and other tissues was closely related to these six SCL9 genes, and they serve as a starting point for further research into the mechanisms regulating poplar growth and development.
Collapse
|
17
|
Herrera-Vásquez A, Fonseca A, Ugalde JM, Lamig L, Seguel A, Moyano TC, Gutiérrez RA, Salinas P, Vidal EA, Holuigue L. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1891-1905. [PMID: 33188435 PMCID: PMC7921300 DOI: 10.1093/jxb/eraa534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/10/2020] [Indexed: 05/08/2023]
Abstract
Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.
Collapse
Affiliation(s)
- Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alejandro Fonseca
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Manuel Ugalde
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Lamig
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aldo Seguel
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Paula Salinas
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Elena A Vidal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Moreno JC, Martinez-Jaime S, Kosmacz M, Sokolowska EM, Schulz P, Fischer A, Luzarowska U, Havaux M, Skirycz A. A Multi-OMICs Approach Sheds Light on the Higher Yield Phenotype and Enhanced Abiotic Stress Tolerance in Tobacco Lines Expressing the Carrot lycopene β -cyclase1 Gene. FRONTIERS IN PLANT SCIENCE 2021; 12:624365. [PMID: 33613605 PMCID: PMC7893089 DOI: 10.3389/fpls.2021.624365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Recently, we published a set of tobacco lines expressing the Daucus carota (carrot) DcLCYB1 gene with accelerated development, increased carotenoid content, photosynthetic efficiency, and yield. Because of this development, DcLCYB1 expression might be of general interest in crop species as a strategy to accelerate development and increase biomass production under field conditions. However, to follow this path, a better understanding of the molecular basis of this phenotype is essential. Here, we combine OMICs (RNAseq, proteomics, and metabolomics) approaches to advance our understanding of the broader effect of LCYB expression on the tobacco transcriptome and metabolism. Upon DcLCYB1 expression, the tobacco transcriptome (~2,000 genes), proteome (~700 proteins), and metabolome (26 metabolites) showed a high number of changes in the genes involved in metabolic processes related to cell wall, lipids, glycolysis, and secondary metabolism. Gene and protein networks revealed clusters of interacting genes and proteins mainly involved in ribosome and RNA metabolism and translation. In addition, abiotic stress-related genes and proteins were mainly upregulated in the transgenic lines. This was well in line with an enhanced stress (high light, salt, and H2O2) tolerance response in all the transgenic lines compared with the wild type. Altogether, our results show an extended and coordinated response beyond the chloroplast (nucleus and cytosol) at the transcriptome, proteome, and metabolome levels, supporting enhanced plant growth under normal and stress conditions. This final evidence completes the set of benefits conferred by the expression of the DcLCYB1 gene, making it a very promising bioengineering tool to generate super crops.
Collapse
Affiliation(s)
- Juan C. Moreno
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Juan C. Moreno
| | | | - Monika Kosmacz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Philipp Schulz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Axel Fischer
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Urszula Luzarowska
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Michel Havaux
- Aix-Marseille Univ., CEA, CNRS UMR7265, BIAM, CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Aleksandra Skirycz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- Aleksandra Skirycz
| |
Collapse
|
19
|
Havaux M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:35-41. [PMID: 32738580 DOI: 10.1016/j.plaphy.2020.07.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
β-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid β-carotene. β-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, β-cyclocitral and its direct oxidation product, β-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, β-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of β-cyclocitral and of some of its derivatives.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CNRS UMR7265, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
20
|
Yang H, Shi G, Li X, Hu D, Cui Y, Hou J, Yu D, Huang F. Overexpression of a soybean YABBY gene, GmFILa, causes leaf curling in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:234. [PMID: 31159746 PMCID: PMC6547562 DOI: 10.1186/s12870-019-1810-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND YABBY genes play important roles in the growth and polar establishment of lateral organs such as leaves and floral organs in angiosperms. However, the functions of YABBY homologous genes are largely unknown in soybean. RESULTS In this study, we identified GmFILa encoding a YABBY transcription factor belonging to FIL subfamily. In situ mRNA hybridization analysis indicated that GmFILa had specific expression patterns in leaf as well as in flower bud primordia. Ectopic expression of GmFILa in Arabidopsis thaliana altered the partial abaxialization of the adaxial epidermises of leaves. Besides, GmFILa transgenic plants also exhibited longer flowering period and inhibition of shoot apical meristem (SAM) development compared to the wild type plants. Digital expression data and quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that the expression of GmFILa was induced by biotic and abiotic stresses and hormone treatments. Transcriptome analysis suggested that overexpressing GmFILa yielded 82 significant differentially expressed genes (DEGs) in Arabidopsis leaves, which can be classified into transcription factors, transporters, and genes involved in growth and development, metabolism, signal transduction, redox reaction and stress response. CONCLUSIONS These results not only demonstrate the roles of GmFILa involved in leaf adaxial-abaxial polarity in Arabidopsis, but also help to reveal the molecular regulatory mechanism of GmFILa based on the transcriptomic data.
Collapse
Affiliation(s)
- Hui Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Guixia Shi
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanmei Cui
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinfeng Hou
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
21
|
Li N, Muthreich M, Huang LJ, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1906-1918. [PMID: 30252136 DOI: 10.1111/nph.15496] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.
Collapse
Affiliation(s)
- Ning Li
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Martin Muthreich
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Li-Jun Huang
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| |
Collapse
|
22
|
Sng NJ, Kolaczkowski B, Ferl RJ, Paul AL. A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AOB PLANTS 2019; 11:ply075. [PMID: 30705745 PMCID: PMC6348315 DOI: 10.1093/aobpla/ply075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
A feature of the physiological adaptation to spaceflight in Arabidopsis thaliana (Arabidopsis) is the induction of reactive oxygen species (ROS)-associated gene expression. The patterns of ROS-associated gene expression vary among Arabidopsis ecotypes, and the role of ROS signalling in spaceflight acclimation is unknown. What could differences in ROS gene regulation between ecotypes on orbit reveal about physiological adaptation to novel environments? Analyses of ecotype-dependent responses to spaceflight resulted in the elucidation of a previously uncharacterized gene (OMG1) as being ROS-associated. The OMG1 5' flanking region is an active promoter in cells where ROS activity is commonly observed, such as in pollen tubes, root hairs, and in other tissues upon wounding. qRT-PCR analyses revealed that upon wounding on Earth, OMG1 is an apparent transcriptional regulator of MYB77 and GRX480, which are associated with the ROS pathway. Fluorescence-based ROS assays show that OMG1 affects ROS production. Phylogenetic analysis of OMG1 and closely related homologs suggests that OMG1 is a distant, unrecognized member of the CONSTANS-Like protein family, a member that arose via gene duplication early in the angiosperm lineage and subsequently lost its first DNA-binding B-box1 domain. These data illustrate that members of the rapidly evolving COL protein family play a role in regulating ROS pathway functions, and their differential regulation on orbit suggests a role for ROS signalling in spaceflight physiological adaptation.
Collapse
Affiliation(s)
- Natasha J Sng
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Robert J Ferl
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Anna-Lisa Paul
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
23
|
Jung JY, Ahn JH, Schachtman DP. CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:281. [PMID: 30424734 PMCID: PMC6234535 DOI: 10.1186/s12870-018-1512-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plants. Despite the importance of nitrogen for plant growth and agricultural productivity, signal transduction pathways in response to nitrate starvation have not been fully elucidated in plants. RESULTS Gene expression analysis and ectopic expression were used to discover that many CC-type glutaredoxins (ROXYs) are differentially expressed in response to nitrate deprivation. A gain-of-function approach showed that ROXYs may play a role in nutrient sensing through the regulation of chlorophyll content, root hair growth, and transcription of nitrate-related genes such as NRT2.1 under low or high nitrate conditions. Reactive oxygen species (ROS) were produced in plant roots under nitrate starvation and H2O2 treatment differentially regulated the expression of the ROXYs, suggesting the involvement of ROS in signaling pathways under nitrate deficiency. CONCLUSION This work adds to what is known about nitrogen sensing and signaling through the findings that the ROXYs and ROS are likely to be involved in the nitrate deprivation signaling pathway.
Collapse
Affiliation(s)
- Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul, 02841 South Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul, 02841 South Korea
| | - Daniel P. Schachtman
- Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
24
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
25
|
D'Alessandro S, Ksas B, Havaux M. Decoding β-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. THE PLANT CELL 2018; 30:2495-2511. [PMID: 30262551 PMCID: PMC6241270 DOI: 10.1105/tpc.18.00578] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 05/19/2023]
Abstract
When exposed to unfavorable environmental conditions, plants can absorb light energy in excess of their photosynthetic capacities, with the surplus energy leading to the production of reactive oxygen species and photooxidative stress. Subsequent lipid peroxidation generates toxic reactive carbonyl species whose accumulation culminates in cell death. β-Cyclocitral, an oxidized by-product of β-carotene generated in the chloroplasts, mediates a protective retrograde response that lowers the levels of toxic peroxides and carbonyls, limiting damage to intracellular components. In this study, we elucidate the molecular mechanism induced by β-cyclocitral in Arabidopsis thaliana and show that the xenobiotic detoxification response is involved in the tolerance to excess light energy. The involvement of the xenobiotic response suggests a possible origin for this pathway. Furthermore, we establish the hierarchical structure of this pathway that is mediated by the β-cyclocitral-inducible GRAS protein SCARECROW LIKE14 (SCL14) and involves ANAC102 as a pivotal component upstream of other ANAC transcription factors and of many enzymes of the xenobiotic detoxification response. Finally, the SCL14-dependent protective mechanism is also involved in the low sensitivity of young leaf tissues to high-light stress.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille Université, CEA, CNRS, UMR 7265, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS, UMR 7265, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS, UMR 7265, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
26
|
Findling S, Stotz HU, Zoeller M, Krischke M, Zander M, Gatz C, Berger S, Mueller MJ. TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2. PLoS One 2018; 13:e0195398. [PMID: 29608605 PMCID: PMC5880405 DOI: 10.1371/journal.pone.0195398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 01/18/2023] Open
Abstract
Reactive electrophile species (RES), including prostaglandins, phytoprostanes and 12-oxo phytodienoic acid (OPDA), activate detoxification responses in plants and animals. However, the pathways leading to the activation of defense reactions related to abiotic or biotic stress as a function of RES formation, accumulation or treatment are poorly understood in plants. Here, the thiol-modification of proteins, including the RES-activated basic region/leucine zipper transcription factor TGA2, was studied. TGA2 contains a single cysteine residue (Cys186) that was covalently modified by reactive cyclopentenones but not required for induction of detoxification genes in response to OPDA or prostaglandin A1. Activation of the glutathione-S-transferase 6 (GST6) promoter was responsive to cyclopentenones but not to unreactive cyclopentanones, including jasmonic acid suggesting that thiol reactivity of RES is important to activate the TGA2-dependent signaling pathway resulting in GST6 activation We show that RES modify thiols in numerous proteins in vivo, however, thiol reactivity alone appears not to be sufficient for biological activity as demonstrated by the failure of several membrane permeable thiol reactive reagents to activate the GST6 promoter.
Collapse
Affiliation(s)
- Simone Findling
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Henrik U. Stotz
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Maria Zoeller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Mark Zander
- Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Goettingen, Goettingen, Germany
| | - Christiane Gatz
- Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Goettingen, Goettingen, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S. Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors. PLANT DIRECT 2017; 1:e00030. [PMID: 31245678 PMCID: PMC6508501 DOI: 10.1002/pld3.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana CC-type glutaredoxin (GRX) ROXY1 and the bZIP TGA transcription factor (TF) PERIANTHIA (PAN) interact in the nucleus and together regulate petal development. The CC-type GRXs exist exclusively in land plants, and in contrast to the ubiquitously occurring CPYC and CGFS GRX classes, only the CC-type GRXs expanded strongly during land plant evolution. Phylogenetic analyses show that TGA TFs evolved before the CC-type GRXs in charophycean algae. MpROXY1/2 and MpTGA were isolated from the liverwort Marchantia polymorpha to analyze regulatory ROXY/TGA interactions in a basal land plant. Homologous and heterologous protein interaction studies demonstrate that nuclear ROXY/TGA interactions are conserved since the occurrence of CC-type GRXs in bryophytes and mediated by a conserved ROXY C-terminus. Redox EMSA analyses show a redox-sensitive binding of MpTGA to the cis-regulatory as-1-like element. Furthermore, we demonstrate that MpTGA binds together with MpROXY1/2 to this motif under reducing conditions, whereas this interaction is not observed under oxidizing conditions. Remarkably, heterologous complementation studies reveal a strongly conserved land plant ROXY activity, suggesting an ancestral role for CC-type GRXs in modulating the activities of TGA TFs. Super-resolution microscopy experiments detected a strong colocalization of ROXY1 with the active form of the RNA polymerase II in the nucleus. Together, these data shed new light on the function of ROXYs and TGA TFs and the evolution of redox-sensitive transcription regulation processes, which likely contributed to adapt land plants to novel terrestrial habitats.
Collapse
Affiliation(s)
- Nora Gutsche
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Lucia Maß
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Andrea Busch
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Sabine Zachgo
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| |
Collapse
|
28
|
Uhrig JF, Huang LJ, Barghahn S, Willmer M, Thurow C, Gatz C. CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:218-226. [DOI: 10.1016/j.bbagrm.2016.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
|