1
|
Kuczyńska A, Michałek M, Ogrodowicz P, Kempa M, Witaszak N, Dziurka M, Gruszka D, Daszkowska-Golec A, Szarejko I, Krajewski P, Mikołajczak K. Drought-induced molecular changes in crown of various barley phytohormone mutants. PLANT SIGNALING & BEHAVIOR 2024; 19:2371693. [PMID: 38923879 PMCID: PMC11210921 DOI: 10.1080/15592324.2024.2371693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Natalia Witaszak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Dziurka
- Faculty of Natural Sciences, The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Qanmber G, Liu Z, Li F, Yang Z. Brassinosteroids in cotton: orchestrating fiber development. THE NEW PHYTOLOGIST 2024; 244:1732-1741. [PMID: 39307962 DOI: 10.1111/nph.20143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Cotton cultivation spans over 30 million hectares across 85 countries and regions, with more than half participating in the global cotton textile trade. The elongated cotton fiber cell is an ideal model for studying cell elongation and understanding plant growth and development. Brassinosteroids (BRs), recognized for their role in cell elongation, offer the potential for improving cotton fiber quality and yield. Despite extensive research highlighting BR's positive impact on fiber development, a comprehensive review on this topic has been lacking. This review addresses this gap, providing a detailed analysis of the latest advancements in BR signaling and its effects on cotton fiber development. We explore the complex network of BR biosynthesis components, signaling molecules, and regulators, including crosstalk with other pathways and transcriptional control mechanisms. Additionally, we propose molecular strategies and highlight key genetic elements for optimizing BR-related genes to enhance fiber quality and yield. The review emphasizes the importance of BR homeostasis and the hormonal landscape during cotton fiber development, offering insights into targeted manipulation opportunities and challenges. This consolidation offers a comprehensive understanding of BR's multifaceted roles in fiber development, outlining a strategic approach for BR optimization in cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
3
|
Yue J, Tan Y, Wei R, Wang X, Mubeen S, Chen C, Cao S, Wang C, Chen P. Genome-wide identification of bHLH transcription factors in Kenaf ( Hibiscus cannabinus L.) and gene function analysis of HcbHLH88. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1517-1532. [PMID: 39310705 PMCID: PMC11413277 DOI: 10.1007/s12298-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
Among plants' transcription factor families, the bHLHs family has a significant influence on plant development processes and stress tolerance. However, there have been no relevant studies performed on the bHLHs family in kenaf (Hibiscus cannabinus L). Here, the bHLH transcription factors in kenaf were found using bioinformatics, and a total of 141 kenaf HcbHLH transcription factors were identified. Phylogenetic analysis revealed that these transcription factors were irregularly distributed on 18 chromosomes and separated into 20 subfamilies. Additionally, utilizing the transcriptome data under diverse abiotic pressures, the expression of HcbHLH members was analyzed under different stress conditions. A typical HcbHLH abiotic stress transcription factor, HcbHLH88, was exposed to salt, drought, heavy metals, and ABA. The findings revealed that HcbHLH88 might be activated under salt, drought, cadmium stress, and ABA conditions. Furthermore, HcbHLH88's function under salt stress conditions was studied after it was silenced using the virus-induced gene silencing (VIGS) technique. Reduced antioxidant enzyme activity and stunted plant development were seen in VIGS-silenced seedlings. Stress-related genes were shown to be considerably downregulated in the HcbHLH88-silenced kenaf plants, according to the qRT-PCR study. In conclusion, this study provides the first systematic gene family analysis of the kenaf bHLH gene family and provides a preliminary validation of the salt tolerance function of the HcbHLH88 gene. This study lays the foundation for future research on the regulatory mechanisms of bHLH genes in response to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01504-y.
Collapse
Affiliation(s)
- Jiao Yue
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Yuqi Tan
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Rujian Wei
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Xu Wang
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Canni Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Shan Cao
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Caijin Wang
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| |
Collapse
|
4
|
Cui S, Zhou X, Xiao G, Feng H. Genomic Analysis of Brassinosteroid Biosynthesis Gene Family Reveals Its Roles in Cotton Development across Gossypium Species. BIOLOGY 2024; 13:380. [PMID: 38927259 PMCID: PMC11200700 DOI: 10.3390/biology13060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Cotton is a globally significant economic crop. Brassinosteroids (BRs) are crucial to cotton development. This study systematically analyzed the BR synthase gene family in four cotton species and identified 60 BR genes: 20 in Gossypium hirsutum (GhBRs), 20 in G. barbadense (GbBRs), 10 in G. arboreum (GaBRs), and 10 in G. raimondii (GrBRs). The analysis was extended to chromosomal localization, evolutionary relationships, domain features, and cis-regulatory elements in the promoter regions of BR synthase genes. The results showed that the BR synthase genes were evenly distributed across different subgenomes and chromosomes. Bioinformatics analyses revealed high conservation of amino acid sequences, secondary structures, and conserved domains among the subfamily members, which is closely linked to their pivotal roles in the BR biosynthesis pathway. Cis-element distribution analysis of the BR synthase genes further underscored the complexity of BR gene expression regulation, which is influenced by multiple factors, including plant hormones, abiotic stress, and transcription factors. Expression profiling of GhBRs genes in various cotton tissues and developmental stages highlighted the key roles of GhROT3-1 and GhDET2-1 in fiber elongation and initiation, respectively. Protein-protein interactions and transcription factor analyses further elucidated the regulatory mechanisms of GhROT3-1 and GhDET2-1 in cotton growth and development. This study lays a theoretical foundation for understanding the role of the BR signaling pathway in cotton development, facilitating molecular breeding.
Collapse
Affiliation(s)
- Shiyan Cui
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China;
| | - Xin Zhou
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China;
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China;
| | - Hongjie Feng
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
5
|
Wang X, Chai J, Liu W, Zhu X, Liu H, Wei X. Promotion of Ca 2+ Accumulation in Roots by Exogenous Brassinosteroids as a Key Mechanism for Their Enhancement of Plant Salt Tolerance: A Meta-Analysis and Systematic Review. Int J Mol Sci 2023; 24:16123. [PMID: 38003311 PMCID: PMC10671333 DOI: 10.3390/ijms242216123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Brassinosteroids (BRs), the sixth major phytohormone, can regulate plant salt tolerance. Many studies have been conducted to investigate the effects of BRs on plant salt tolerance, generating a large amount of research data. However, a meta-analysis on regulating plant salt tolerance by BRs has not been reported. Therefore, this study conducted a meta-analysis of 132 studies to elucidate the most critical physiological mechanisms by which BRs regulate salt tolerance in plants from a higher dimension and analyze the best ways to apply BRs. The results showed that exogenous BRs significantly increased germination, plant height, root length, and biomass (total dry weight was the largest) of plants under salt stress. There was no significant difference between seed soaking and foliar spraying. However, the medium method (germination stage) and stem application (seedling stage) may be more effective in improving plant salt tolerance. BRs only inhibit germination in Solanaceae. BRs (2 μM), seed soaking for 12 h, and simultaneous treatment with salt stress had the highest germination rate. At the seedling stage, the activity of Brassinolide (C28H48O6) was higher than that of Homobrassinolide (C29H50O6), and post-treatment, BRs (0.02 μM) was the best solution. BRs are unsuitable for use in the germination stage when Sodium chloride is below 100 mM, and the effect is also weakest in the seedling stage. Exogenous BRs promoted photosynthesis, and antioxidant enzyme activity increased the accumulation of osmoregulatory and antioxidant substances and reduced the content of harmful substances and Na+, thus reducing cell damage and improving plant salt tolerance. BRs induced the most soluble protein, chlorophyll a, stomatal conductance, net photosynthetic rate, Glutathione peroxidase, and root-Ca2+, with BRs causing Ca2+ signals in roots probably constituting the most important reason for improving salt tolerance. BRs first promoted the accumulation of Ca2+ in roots, which increased the content of the above vital substances and enzyme activities through the Ca2+ signaling pathway, improving plant salt tolerance.
Collapse
Affiliation(s)
- Xian Wang
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Jiali Chai
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaolin Zhu
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Haixun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Bao Y, Wei Y, Liu Y, Gao J, Cheng S, Liu G, You Q, Liu P, Lu Q, Li P, Zhang S, Hu N, Han Y, Liu S, Wu Y, Yang Q, Li Z, Ao G, Liu F, Wang K, Jiang J, Zhang T, Zhang W, Peng R. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol 2023; 21:165. [PMID: 37525156 PMCID: PMC10391996 DOI: 10.1186/s12915-023-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.
Collapse
Affiliation(s)
- Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jingjing Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Shuang Cheng
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qi You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Peng Liu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Nan Hu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guowei Ao
- Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Fang Liu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Kunbo Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Michigan State University AgBioResearch, East Lansing, MI, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, 455000, China.
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
- Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
9
|
Wang Y, Xi Z, Wang X, Zhang Y, Liu Y, Yuan S, Zhao S, Sheng J, Meng D. Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism-related genes by AbbHLH1 after harvest. Int J Biol Macromol 2023; 226:496-509. [PMID: 36521696 DOI: 10.1016/j.ijbiomac.2022.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Collapse
Affiliation(s)
- Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhiai Xi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shirui Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
10
|
Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family and Its Response to Abiotic Stress in Mongolian Oak ( Quercus mongolica). Curr Issues Mol Biol 2023; 45:1127-1148. [PMID: 36826020 PMCID: PMC9955707 DOI: 10.3390/cimb45020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The basic helix-loop-helix (bHLH) family, one of the largest families of transcription factors in plants, is extensively involved in the growth, development, and stress response of several woody plants. However, no systematic analysis of the bHLH gene family in Quercus mongolica has been reported. We characterize QmbHLH genes and identify the functions of QmbHLH proteins in Q. mongolica. We used bioinformatics approaches, qRT-PCR analysis, and RNA sequencing data to examine chromosomal distributions, gene structures, and conserved patterns, and identified 89 QmbHLH genes, which were divided into 21 subgroups based on the phylogenetic analysis of bHLH genes in Arabidopsis thaliana. Segmental replication played a more prominent role than tandem duplication in the expansion of the QmbHLH gene family. Based on patterns of tissue-specific expression, protein interactions, and cis-element analysis, QmbHLH genes may be extensively involved in the growth and development of Q. mongolica. In leaves, stems, and roots, 12 selected QmbHLH genes exhibited responsiveness to abiotic stresses (salt, cold, weak light, and drought). Our study facilitates follow-up functional investigations of the bHLH gene family in Q. mongolica and provides novel insights into bHLH superfamilies in woody plants.
Collapse
|
11
|
Wang N, Shu X, Zhang F, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. FRONTIERS IN PLANT SCIENCE 2023; 13:975530. [PMID: 36704164 PMCID: PMC9872026 DOI: 10.3389/fpls.2022.975530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
As one of the biggest plant specific transcription factor (TF) families, basic helix-loop-helix (bHLH) protein, plays significant roles in plant growth, development, and abiotic stress responses. However, there has been minimal research about the effects of methyl jasmonate (MeJA) treatment on the bHLH gene family in Lycoris radiata (L'Her.) Herb. In this study, based on transcriptome sequencing data, 50 putative L. radiata bHLH (LrbHLH) genes with complete open reading frames (ORFs), which were divided into 20 bHLH subfamilies, were identified. The protein motif analyses showed that a total of 10 conserved motifs were found in LrbHLH proteins and motif 1 and motif 2 were the most highly conserved motifs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of LrbHLH genes revealed their involvement in regulation of plant growth, jasmonic acid (JA) mediated signaling pathway, photoperiodism, and flowering. Furthermore, subcellular localization revealed that most LrbHLHs were located in the nucleus. Expression pattern analysis of LrbHLH genes in different tissues and at flower developmental stages suggested that their expression differed across lineages and might be important for plant growth and organ development in Lycoris. In addition, all LrbHLH genes exhibited specific spatial and temporal expression patterns under MeJA treatment. Moreover, protein-protein interaction (PPI) network analysis and yeast two-hybrid assay showed that numerous LrbHLHs could interact with jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins. This research provides a theoretical basis for further investigation of LrbHLHs to find their functions and insights for their regulatory mechanisms involved in JA signaling pathway.
Collapse
|
12
|
Chen E, Yang X, Liu R, Zhang M, Zhang M, Zhou F, Li D, Hu H, Li C. GhBEE3-Like gene regulated by brassinosteroids is involved in cotton drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1019146. [PMID: 36311136 PMCID: PMC9606830 DOI: 10.3389/fpls.2022.1019146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are important phytohormones that play a vital role in plant drought tolerance, but their mechanisms in cotton (Gossypium hirsutum L.) are poorly understood. Numerous basic helix-loop-helix (bHLH) family genes are involved in the responses to both BRs and drought stress. GhBEE3-Like, a bHLH transcription factor, is repressed by both 24-epi-BL (an active BR substance) and PEG8000 (drought simulation) treatments in cotton. Moreover, GhBZR1, a crucial transcription factor in BR signaling pathway, directly binds to the E-box element in GhBEE3-Like promoter region and inhibits its expression, which has been confirmed by electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assay. Functional analysis revealed that Arabidopsis with GhBEE3-Like overexpression had drought sensitive phenotype, while GhBEE3-Like knock-down cotton plants obtained by virus-induced gene silencing (VIGS) technology were more tolerant to drought stress. Furthermore, the expression levels of three stress-related genes, GhERD10, GhCDPK1 and GhRD26, were significantly higher in GhBEE3-Like knock-down cotton than in control cotton after drought treatment. These results suggest that GhBEE3-Like is inhibited by BRs which elevates the expressions of stress-related genes to enhance plant drought tolerance. This study lays the foundation for understanding the mechanisms of BR-regulated drought tolerance and establishment of drought-resistant cotton lines.
Collapse
Affiliation(s)
- Eryong Chen
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobei Yang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruie Liu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengke Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongxiao Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
13
|
Liu W, Yi Y, Zhuang J, Ge C, Cao Y, Zhang L, Liu M. Genome-wide identification and transcriptional profiling of the basic helix-loop-helix gene family in tung tree ( Vernicia fordii). PeerJ 2022; 10:e13981. [PMID: 36193421 PMCID: PMC9526410 DOI: 10.7717/peerj.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor gene family is one of the largest gene families and is extensively involved in plant growth, development, biotic and abiotic stress responses. Tung tree (Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. However, the characteristics of the bHLH gene family in the tung tree genome are still unclear. Hence, VfbHLHs were first searched at a genome-wide level, and their expression levels in various tissues or under low temperature were investigated systematically. In this study, we identified 104 VfbHLHs in the tung tree genome, and these genes were classified into 18 subfamilies according to bHLH domains. Ninety-eight VfbHLHs were mapped to but not evenly distributed on 11 pseudochromosomes. The domain sequences among VfbHLHs were highly conserved, and their conserved residues were also identified. To explore their expression, we performed gene expression profiling using RNA-Seq and RT-qPCR. We identified five, 18 and 28 VfbHLH genes in female flowers, male flowers and seeds, respectively. Furthermore, we found that eight genes (VfbHLH29, VfbHLH31, VfbHLH47, VfbHLH51, VfbHLH57, VfbHLH59, VfbHLH70, VfbHLH72) were significant differential expressed in roots, leaves and petioles under low temperature stress. This study lays the foundation for future studies on bHLH gene cloning, transgenes, and biological mechanisms.
Collapse
Affiliation(s)
- Wenjuan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yaqi Yi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jingyi Zhuang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Chang Ge
- School of Urban Design, Wuhan University, Wuhan, Hubei, China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
14
|
Lu X, Zhang H, Hu J, Nie G, Khan I, Feng G, Zhang X, Wang X, Huang L. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct Integr Genomics 2022; 22:1331-1344. [PMID: 35941266 DOI: 10.1007/s10142-022-00890-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.
Collapse
Affiliation(s)
- Xiaowen Lu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
15
|
Li C, Cai X, Shen Q, Chen X, Xu M, Ye T, Si D, Wu L, Chen D, Han Z, Si J. Genome-wide analysis of basic helix-loop-helix genes in Dendrobium catenatum and functional characterization of DcMYC2 in jasmonate-mediated immunity to Sclerotium delphinii. FRONTIERS IN PLANT SCIENCE 2022; 13:956210. [PMID: 35982703 PMCID: PMC9378844 DOI: 10.3389/fpls.2022.956210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium catenatum, belonging to the Orchidaceae, is a precious Chinese herbal medicine. Sclerotium delphinii (P1) is a broad-spectrum fungal disease, which causes widespread loss in the near-wild cultivation of D. catenatum. Thus, resistance breeding of D. catenatum has become the key to solve this problem. The basic helix-loop-helix (bHLH) gene family is closely related to plant resistance to external stresses, but the related research in D. catenatum is not deep enough yet. Phylogenetic analysis showed that 108 DcbHLH genes could be divided into 23 subgroups. Promoter cis-acting elements revealed that DcbHLHs contain a large number of stress-related cis-acting elements. Transcriptome analysis of MeJA and P1 treatment manifested that exogenous MeJA can change the expression pattern of most bHLH genes, especially the IIIe subgroup, including inhibiting the expression of DcbHLH026 (MYC2a) and promoting the expression of DcbHLH027 (MYC2b). Subcellular localization indicated that they were located in the nucleus. Furthermore, exogenous MeJA treatment significantly delayed disease time and reduced lesion size after infection with P1. DcMYC2b-overexpression Arabidopsis lines showed significantly smaller lesions after being infected with P1 than the wild type, indicating that DcMYC2b functions as an important positive regulator in D. catenatum defense against P1. Our findings shed more insights into the critical role of the DcbHLH family in plants and the resistance breeding of D. catenatum.
Collapse
|
16
|
Shi Z, Chen X, Xue H, Jia T, Meng F, Liu Y, Luo X, Xiao G, Zhu S. GhBZR3 suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:785-799. [PMID: 35653239 PMCID: PMC9544170 DOI: 10.1111/tpj.15852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
The BRASSINAZOLE-RESISTANT (BZR) transcription factor is a core component of brassinosteroid (BR) signaling and is involved in the development of many plant species. BR is essential for the initiation and elongation of cotton fibers. However, the mechanism of BR-regulating fiber development and the function of BZR is poorly understood in Gossypium hirsutum L. (cotton). Here, we identified a BZR family transcription factor protein referred to as GhBZR3 in cotton. Overexpression of GhBZR3 in Arabidopsis caused shorter root hair length, hypocotyl length, and hypocotyl cell length, indicating that GhBZR3 negatively regulates cell elongation. Pathway enrichment analysis from VIGS-GhBZR3 cotton plants found that fatty acid metabolism and degradation might be the regulatory pathway that is primarily controlled by GhBZR3. Silencing GhBZR3 expression in cotton resulted in taller plant height as well as longer fibers. The very-long-chain fatty acid (VLCFA) content was also significantly increased in silenced GhBZR3 plants compared with the wild type. The GhKCS13 promoter, a key gene for VLCFA biosynthesis, contains two GhBZR3 binding sites. The results of yeast one-hybrid, electrophoretic mobility shift, and luciferase assays revealed that GhBZR3 directly interacted with the GhKCS13 promoter to suppress gene expression. Taken together, these results indicate that GhBZR3 negatively regulates cotton fiber development by reducing VLCFA biosynthesis. This study not only deepens our understanding of GhBZR3 function in cotton fiber development, but also highlights the potential of improving cotton fiber length and plant growth using GhBZR3 and its related genes in future cotton breeding programs.
Collapse
Affiliation(s)
- Zemin Shi
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xia Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huidan Xue
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'an710021China
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710012China
| | - Tingting Jia
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Funing Meng
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunfei Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaomin Luo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| | - Guanghui Xiao
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| |
Collapse
|
17
|
Wei X, Cao J, Lan H. Genome-Wide Characterization and Analysis of the bHLH Transcription Factor Family in Suaeda aralocaspica, an Annual Halophyte With Single-Cell C4 Anatomy. Front Genet 2022; 13:927830. [PMID: 35873472 PMCID: PMC9301494 DOI: 10.3389/fgene.2022.927830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors play important roles in plant growth, development, metabolism, hormone signaling pathways, and responses to abiotic stresses. However, comprehensive genomic and functional analyses of bHLH genes have not yet been reported in desert euhalophytes. Suaeda aralocaspica, an annual C4 halophyte without Kranz anatomy, presents high photosynthetic efficiency in harsh natural habitats and is an ideal plant for identifying transcription factors involved in stress resistance. In this study, 83 bHLH genes in S. aralocaspica were identified and categorized into 21 subfamilies based on conserved motifs, gene structures, and phylogenetic analysis. Functional annotation enrichment revealed that the majority of SabHLHs were enriched in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the response to stress conditions, as transcription factors. A number of cis-acting elements related to plant hormones and stress responses were also predicted in the promoter regions of SabHLHs, which were confirmed by expression analysis under various abiotic stress conditions (NaCl, mannitol, low temperature, ABA, GA3, MeJA, and SA); most were involved in tolerance to drought and salinity. SabHLH169 (076) protein localized in the nucleus was involved in transcriptional activity, and gene expression could be affected by different light qualities. This study is the first comprehensive analysis of the bHLH gene family in S. aralocaspica. These data will facilitate further characterization of their molecular functions in the adaptation of desert plants to abiotic stress.
Collapse
|
18
|
Lu R, Li Y, Zhang J, Wang Y, Zhang J, Li Y, Zheng Y, Li XB. The bHLH/HLH transcription factors GhFP2 and GhACE1 antagonistically regulate fiber elongation in cotton. PLANT PHYSIOLOGY 2022; 189:628-643. [PMID: 35226094 PMCID: PMC9157132 DOI: 10.1093/plphys/kiac088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
Basic helix-loop-helix/helix-loop-helix (bHLH/HLH) transcription factors play important roles in cell elongation in plants. However, little is known about how bHLH/HLH transcription factors antagonistically regulate fiber elongation in cotton (Gossypium hirsutum). In this study, we report that two bHLH/HLH transcription factors, fiber-related protein 2 (GhFP2) and ACTIVATOR FOR CELL ELONGATION 1 (GhACE1), function in fiber development of cotton. GhFP2 is an atypical bHLH protein without the basic region, and its expression is regulated by brassinosteroid (BR)-related BRASSINAZOLE RESISTANT 1 (GhBZR1). Overexpression of GhFP2 in cotton hindered fiber elongation, resulting in shortened fiber length. In contrast, suppression of GhFP2 expression in cotton promoted fiber development, leading to longer fibers compared with the wild-type. GhFP2 neither contains a DNA-binding domain nor has transcriptional activation activity. Furthermore, we identified GhACE1, a bHLH protein that interacts with GhFP2 and positively regulates fiber elongation. GhACE1 could bind to promoters of plasma membrane intrinsic protein 2;7 (GhPIP2;7) and expansions 8 (GhEXP8) for directly activating their expression, but the interaction between GhFP2 and GhACE1 suppressed transcriptional activation of these target genes by GhACE1. Taken together, our results indicate that GhACE1 promotes fiber elongation by activating expressions of GhPIP2;7 and GhEXP8, but its transcription activation on downstream genes may be obstructed by BR-modulated GhFP2. Thus, our data reveal a key mechanism for fiber cell elongation through a pair of antagonizing HLH/bHLH transcription factors in cotton.
Collapse
Affiliation(s)
- Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
19
|
Molecular Regulation of Cotton Fiber Development: A Review. Int J Mol Sci 2022; 23:ijms23095004. [PMID: 35563394 PMCID: PMC9101851 DOI: 10.3390/ijms23095004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton (Gossypium spp.) is an economically important natural fiber crop. The quality of cotton fiber has a substantial effect on the quality of cotton textiles. The identification of cotton fiber development-related genes and exploration of their biological functions will not only enhance our understanding of the elongation and developmental mechanisms of cotton fibers but also provide insights that could aid the cultivation of new cotton varieties with improved fiber quality. Cotton fibers are single cells that have been differentiated from the ovule epidermis and serve as a model system for research on single-cell differentiation, growth, and fiber production. Genes and fiber formation mechanisms are examined in this review to shed new light on how important phytohormones, transcription factors, proteins, and genes linked to fiber development work together. Plant hormones, which occur in low quantities, play a critically important role in regulating cotton fiber development. Here, we review recent research that has greatly contributed to our understanding of the roles of different phytohormones in fiber development and regulation. We discuss the mechanisms by which phytohormones regulate the initiation and elongation of fiber cells in cotton, as well as the identification of genes involved in hormone biosynthetic and signaling pathways that regulate the initiation, elongation, and development of cotton fibers.
Collapse
|
20
|
Jan M, Liu Z, Guo C, Zhou Y, Sun X. An Overview of Cotton Gland Development and Its Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094892. [PMID: 35563290 PMCID: PMC9103798 DOI: 10.3390/ijms23094892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton refers to species in the genus Gossypium that bear spinnable seed coat fibers. A total of 50 species in the genus Gossypium have been described to date. Of these, only four species, viz. Gossypium, hirsutum, G. barbadense, G. arboretum, and G. herbaceum are cultivated; the rest are wild. The black dot-like structures on the surfaces of cotton organs or tissues, such as the leaves, stem, calyx, bracts, and boll surface, are called gossypol glands or pigment glands, which store terpenoid aldehydes, including gossypol. The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that stores gossypol and its derivatives. It provides an ideal system for studying cell differentiation and organogenesis. However, only a few genes involved in the process of gland formation have been identified to date, and the molecular mechanisms underlying gland initiation remain unclear. The terpenoid aldehydes in the lysigenous glands of Gossypium species are important secondary phytoalexins (with gossypol being the most important) and one of the main defenses of plants against pests and diseases. Here, we review recent research on the development of gossypol glands in Gossypium species, the regulation of the terpenoid aldehyde biosynthesis pathway, discoveries from genetic engineering studies, and future research directions.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Correspondence:
| |
Collapse
|
21
|
Li T, Shi Y, Zhu B, Zhang T, Feng Z, Wang X, Li X, You C. Genome-Wide Identification of Apple Atypical bHLH Subfamily PRE Members and Functional Characterization of MdPRE4.3 in Response to Abiotic Stress. Front Genet 2022; 13:846559. [PMID: 35401662 PMCID: PMC8987198 DOI: 10.3389/fgene.2022.846559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Paclobutrazol Resistance (PRE) genes encode atypical basic helix–loop–helix (bHLH) transcription factor family. Typical bHLH proteins contain a bifunctional structure with a basic region involved in DNA binding and an adjacent helix–loop–helix domain involved in protein–protein interaction. PRE members lack the basic region but retain the HLH domain, which interacts with other typical bHLH proteins to suppress or enhance their DNA-binding activity. PRE proteins are involved in phytohormone responses, light signal transduction, and fruit pigment accumulation. However, apple (Malus domestica) PRE protein functions have not been studied. In this study, nine MdPRE genes were identified from the apple GDDH13 v1.1 reference genome and were mapped to seven chromosomes. The cis-acting element analysis revealed that MdPRE promoters possessed various elements related to hormones, light, and stress responses. Expression pattern analysis showed that MdPRE genes have different tissue expression profiles. Hormonal and abiotic stress treatments can induce the expression of several MdPRE genes. Moreover, we provide molecular and genetic evidence showing that MdPRE4.3 increases the apple’s sensitivity to NaCl, abscisic acid (ABA), and indoleacetic acid (IAA) and improves tolerance to brassinosteroids (BR); however, it does not affect the apple’s response to gibberellin (GA). Finally, the protein interaction network among the MdPRES proteins was predicted, which could help us elucidate the molecular and biological functions of atypical bHLH transcription factors in the apple.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuming Li
- *Correspondence: Xiuming Li, ; Chunxiang You,
| | | |
Collapse
|
22
|
Ruan X, Wang Z, Su Y, Wang T. Full-length transcriptome analysis of multiple organs and identification of adaptive genes and pathways in Mikania micrantha. Sci Rep 2022; 12:3272. [PMID: 35228580 PMCID: PMC8885683 DOI: 10.1038/s41598-022-07198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mikania micrantha is a notorious invasive weed that has caused huge economic loss and negative ecological consequences in invaded areas. This species can adapt well to invasive environments with various stress factors. The identification of gene families and functional pathways related to environmental adaptability is lack in M. micrantha at the multi-organ full-length transcriptome level. In this study, we sequenced the transcriptomes of five M. micrantha organs using PacBio single-molecule real-time sequencing and Illumina RNA sequencing technologies. Based on the transcriptome data, full-length transcripts were captured and gene expression patterns among the five organs were analyzed. KEGG enrichment analysis of genes with higher expression indicated their special roles in environmental stress response and adversity adaptation in the various five organs. The gene families and pathways related to biotic and abiotic factors, including terpene synthases, glutathione S-transferases, antioxidant defense system, and terpenoid biosynthesis pathway, were characterized. The expression levels of most differentially expressed genes in the antioxidant defense system and terpenoid biosynthesis pathway were higher in root, stem, and leaf than in the other two organs, suggesting that root, stem, and leaf have strong ability to respond to adverse stresses and form the important organs of terpenoid synthesis and accumulation. Additionally, a large number of transcription factors and alternative splicing events were predicted. This study provides a comprehensive transcriptome resource for M. micrantha, and our findings facilitate further research on the adaptive evolution and functional genomics of this species.
Collapse
Affiliation(s)
- Xiaoxian Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China. .,College of Life Sciences, South China Agricultural University, Guangzhou, 510641, China.
| |
Collapse
|
23
|
Mei H, Qi B, Han Z, Zhao T, Guo M, Han J, Zhang J, Guan X, Hu Y, Zhang T, Fang L. Subgenome Bias and Temporal Postponement of Gene Expression Contributes to the Distinctions of Fiber Quality in Gossypium Species. FRONTIERS IN PLANT SCIENCE 2021; 12:819679. [PMID: 35003198 PMCID: PMC8733733 DOI: 10.3389/fpls.2021.819679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As two cultivated widely allotetraploid cotton species, although Gossypium hirsutum and Gossypium barbadense evolved from the same ancestor, they differ in fiber quality; the molecular mechanism of that difference should be deeply studied. Here, we performed RNA-seq of fiber samples from four G. hirsutum and three G. barbadense cultivars to compare their gene expression patterns on multiple dimensions. We found that 15.90-37.96% of differentially expressed genes showed biased expression toward the A or D subgenome. In particular, interspecific biased expression was exhibited by a total of 330 and 486 gene pairs at 10 days post-anthesis (DPA) and 20 DPA, respectively. Moreover, 6791 genes demonstrated temporal differences in expression, including 346 genes predominantly expressed at 10 DPA in G. hirsutum (TM-1) but postponed to 20 DPA in G. barbadense (Hai7124), and 367 genes predominantly expressed at 20 DPA in TM-1 but postponed to 25 DPA in Hai7124. These postponed genes mainly participated in carbohydrate metabolism, lipid metabolism, plant hormone signal transduction, and starch and sucrose metabolism. In addition, most of the co-expression network and hub genes involved in fiber development showed asymmetric expression between TM-1 and Hai7124, like three hub genes detected at 10 DPA in TM-1 but not until 25 DPA in Hai7124. Our study provides new insights into interspecific expression bias and postponed expression of genes associated with fiber quality, which are mainly tied to asymmetric hub gene network. This work will facilitate further research aimed at understanding the mechanisms underlying cotton fiber improvement.
Collapse
Affiliation(s)
- Huan Mei
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bowen Qi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Menglan Guo
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yan Hu
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
24
|
Bai G, Yang DH, Chao P, Yao H, Fei M, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H. Genome-wide identification and expression analysis of NtbHLH gene family in tobacco ( Nicotiana tabacum) and the role of NtbHLH86 in drought adaptation. PLANT DIVERSITY 2021; 43:510-522. [PMID: 35024520 PMCID: PMC8720692 DOI: 10.1016/j.pld.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The bHLH transcription factors play pivotal roles in plant growth and development, production of secondary metabolites and responses to various environmental stresses. Although the bHLH genes have been well studied in model plant species, a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome. In the present study, a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies. The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins. Moreover, the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs. A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome. Moreover, transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues, and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR, indicating their potential functions in the plant growth and development. Importantly, overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress. Therefore, our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco.
Collapse
Affiliation(s)
- Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Peijian Chao
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Heng Yao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - MingLiang Fei
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Yihan Zhang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Xuejun Chen
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Bingguang Xiao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Feng Li
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Zhen-Yu Wang
- Institute ofBioengineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Jun Yang
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
25
|
Li J, Li X, Han P, Liu H, Gong J, Zhou W, Shi B, Liu A, Xu L. Genome-wide investigation of bHLH genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L. Int J Biol Macromol 2021; 189:72-83. [PMID: 34411617 DOI: 10.1016/j.ijbiomac.2021.08.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play important roles in many processes such as plant growth, metabolism and response to biotic/abiotic stresses. Sunflower (Helianthus annuus) is a major oil crop, cultivated throughout the world. However, no systematic characterization of bHLH gene members in sunflower (HabHLH) and their functions involved in drought, cadmium tolerance and Orobanche cumana resistance has been reported yet. In this study, 183 HabHLH genes were identified and named according to their chromosomal locations. We classified these proteins into 21 subfamilies by phylogenetic tree analysis. Subsequently, DNA-binding patterns, sequence analysis, duplication analysis and gene structures were analyzed. All of the HabHLH genes were randomly distributed on 17 chromosomes, and 10 pairs of tandem duplicated genes and one pair of segmental duplicated genes were detected in the HabHLH family. Among the duplicated gene pairs, eight pairs of HabHLH genes suffer from positive selection. Moreover, qRT-PCR results revealed significant up-regulated expression of HabHLH024 gene in response to both abiotic (cadmium, drought) and biotic (Orobanche cumana) stresses, suggesting its important functions in response to different stresses. Therefore, HabHLH024 would be the potential candidate gene for the sunflower tolerance breeding.
Collapse
Affiliation(s)
- Juanjuan Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Han
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, WA 6009, Australia
| | - Jianchuan Gong
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Bixian Shi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
26
|
Xiong CY, Gong QY, Pei H, Liao CJ, Yang RC, Li GK, Huang J. Comparative Transcriptome Analysis Reveals Regulatory Networks during the Maize Ear Shank Elongation Process. Int J Mol Sci 2021; 22:ijms22137029. [PMID: 34209973 PMCID: PMC8268914 DOI: 10.3390/ijms22137029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.
Collapse
Affiliation(s)
- Cai-Yun Xiong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
| | - Qing-You Gong
- Zhuhai Modern Agriculture Development Center, Zhuhai 519070, China;
| | - Hu Pei
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Chang-Jian Liao
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Rui-Chun Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
| | - Gao-Ke Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.-K.L.); (J.H.)
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
- Correspondence: (G.-K.L.); (J.H.)
| |
Collapse
|
27
|
Fan Y, Yang H, Lai D, He A, Xue G, Feng L, Chen L, Cheng XB, Ruan J, Yan J, Cheng J. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:415. [PMID: 34090335 PMCID: PMC8178921 DOI: 10.1186/s12864-021-07652-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Basic helix-loop-helix (bHLH) is a superfamily of transcription factors that is widely found in plants and animals, and is the second largest transcription factor family in eukaryotes after MYB. They have been shown to be important regulatory components in tissue development and many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in Sorghum bicolor. RESULTS We conducted the first genome-wide analysis of the bHLH transcription factor family of Sorghum bicolor and identified 174 SbbHLH genes. Phylogenetic analysis of SbbHLH proteins and 158 Arabidopsis thaliana bHLH proteins was performed to determine their homology. In addition, conserved motifs, gene structure, chromosomal spread, and gene duplication of SbbHLH genes were studied in depth. To further infer the phylogenetic mechanisms in the SbbHLH family, we constructed six comparative syntenic maps of S. bicolor associated with six representative species. Finally, we analyzed the gene-expression response and tissue-development characteristics of 12 typical SbbHLH genes in plants subjected to six different abiotic stresses. Gene expression during flower and fruit development was also examined. CONCLUSIONS This study is of great significance for functional identification and confirmation of the S. bicolor bHLH superfamily and for our understanding of the bHLH superfamily in higher plants.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Liang Feng
- Chengdu Food and Drug Inspection Institute, Chengdu, 610000, P.R. China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, Mianzhu, 618200, P.R. China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, Kangding, 626001, P.R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China.
| |
Collapse
|
28
|
Medina-Puche L, Martínez-Rivas FJ, Molina-Hidalgo FJ, García-Gago JA, Mercado JA, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. Ectopic expression of the atypical HLH FaPRE1 gene determines changes in cell size and morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110830. [PMID: 33691964 DOI: 10.1016/j.plantsci.2021.110830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 05/22/2023]
Abstract
PACLOBUTRAZOL RESISTANCE (PRE) genes code atypical HLH transcriptional regulators characterized by the absence of a DNA-binding domain but present an HLH dimerization domain. In vegetative tissues, the function of these HLH proteins has been related with cell elongation processes. In strawberry, three FaPRE genes are expressed, two of them (FaPRE2 and FaPRE3) in vegetative tissues while FaPRE1 is fruit receptacle-specific. Ubiquitous FaPRE1 accumulation produced elongated flower receptacles and plants due to the elongation of the main aerial vegetative organs, with the exception of leaves. Histological analysis clearly demonstrated that the observed phenotype was due to significant changes in the parenchymal cell's morphology. In addition, transcriptomic studies of the transgenic elongated flower receptacles allowed to identify a small group of differentially expressed genes that encode cell wall-modifying enzymes. Together, the data seem to indicate that, in the strawberry plant vegetative organs, FaPRE proteins could modulate the expression of genes related with the determination of the size and shape of the parenchymal cells.
Collapse
Affiliation(s)
- L Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - F J Martínez-Rivas
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - F J Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - J A García-Gago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain.
| | - J A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain.
| | - J L Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - J Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - R Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
29
|
Wang X, Shen C, Meng P, Tan G, Lv L. Analysis and review of trichomes in plants. BMC PLANT BIOLOGY 2021; 21:70. [PMID: 33526015 PMCID: PMC7852143 DOI: 10.1186/s12870-021-02840-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trichomes play a key role in the development of plants and exist in a wide variety of species. RESULTS In this paper, it was reviewed that the structure and morphology characteristics of trichomes, alongside the biological functions and classical regulatory mechanisms of trichome development in plants. The environment factors, hormones, transcription factor, non-coding RNA, etc., play important roles in regulating the initialization, branching, growth, and development of trichomes. In addition, it was further investigated the atypical regulation mechanism in a non-model plant, found that regulating the growth and development of tea (Camellia sinensis) trichome is mainly affected by hormones and the novel regulation factors. CONCLUSIONS This review further displayed the complex and differential regulatory networks in trichome initiation and development, provided a reference for basic and applied research on trichomes in plants.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Chao Shen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Pinghong Meng
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China
| | - Guofei Tan
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China.
| | - Litang Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
30
|
Lang Y, Liu Z. Basic Helix-Loop-Helix (bHLH) transcription factor family in Yellow horn (Xanthoceras sorbifolia Bunge): Genome-wide characterization, chromosome location, phylogeny, structures and expression patterns. Int J Biol Macromol 2020; 160:711-723. [DOI: 10.1016/j.ijbiomac.2020.05.253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
|
31
|
Wang Y, Liu A. Genomic Characterization and Expression Analysis of Basic Helix-Loop-Helix (bHLH) Family Genes in Traditional Chinese Herb Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9081044. [PMID: 32824436 PMCID: PMC7463459 DOI: 10.3390/plants9081044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Dendrobium officinale Kimura et Migo is of great importance as a traditional Chinese herb due to its abundant metabolites. The family of basic helix-loop-helix (bHLH) transcription factors widely exists in plants and plays an essential role in plant growth and development, secondary metabolism as well as responses to environmental changes. However, there is limited information on bHLH genes in D. officinale. In the present study, a total of 98 putative DobHLH genes were identified at the genomic level, which could be classified into 18 clades. Gene structures and conserved motifs in DobHLH genes showed high conservation during their evolution. The conserved amino acids and DNA bindings of DobHLH proteins were predicted, both of which are pivotal for their function. Furthermore, gene expression from eight tissues showed that some DobHLH genes were ubiquitously expressed while other DobHLH genes were expressed in the specific tissues. Expressional changes of DobHLH genes under MeJA and ABA treatments were detected by qRT-PCR. The protein-protein interactions between DobHLHs were predicted and several interactions were confirmed by yeast two hybrid. Therefore, our results here contribute to the understanding of bHLH genes in D. officinale and lay a foundation for the further functional study of its biological processes.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China;
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 Yunnan, China
| |
Collapse
|
32
|
Wang L, Wang G, Long L, Altunok S, Feng Z, Wang D, Khawar KM, Mujtaba M. Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions. Int J Biol Macromol 2020; 163:1301-1313. [PMID: 32679330 DOI: 10.1016/j.ijbiomac.2020.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023]
Abstract
Cotton is among the most important fiber crops for the textile-based industry, thanks to its cellulose-rich mature fibers. The fiber initiation and elongation are one of the best models for deciphering mechanisms of single-cell differentiation and growth, that also target of fiber development programs. During the last couple of decades, high yielding omics approaches (genomics, transcriptomics, and proteomics), have helped in the identification of several genes and gene products involved in fiber development along with functional relationship to phytohormones. For example, MYB transcription factor family and Sus gene family have been evidenced by controlling cotton fiber initiation. Most importantly, the biosynthesis, responses, and transporting of phytohormones is documented to participate in the initiation of cotton fibers. Herein, in this review, the reliable genetic evidence by manipulating the above genes in cotton have been summarized to describe the relationships among key phytohormones, transcription factors, proteins, and downstream fiber growth-related genes such as Sus. The effect of other important factors such as ROS, fatty acid metabolism, and actin (globular multi-functional proteins) over fiber development has also been discussed. The challenges and deficiencies in the research of cotton fiber development have been mentioned along with a future perspective to discover new crucial genes using multiple omics analysis.
Collapse
Affiliation(s)
- Lichen Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Guifeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China; Shandong Cotton Production Technical Guidance Station, Jinan, Shandong 250100, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Sumeyye Altunok
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey
| | - Zongqin Feng
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06100 Ankara, Turkey
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey.
| |
Collapse
|
33
|
Wang Z, Jia C, Wang JY, Miao HX, Liu JH, Chen C, Yang HX, Xu B, Jin Z. Genome-Wide Analysis of Basic Helix-Loop-Helix Transcription Factors to Elucidate Candidate Genes Related to Fruit Ripening and Stress in Banana ( Musa acuminata L. AAA Group, cv. Cavendish). FRONTIERS IN PLANT SCIENCE 2020; 11:650. [PMID: 32536932 PMCID: PMC7267074 DOI: 10.3389/fpls.2020.00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/27/2020] [Indexed: 05/25/2023]
Abstract
The basic helix-loop-helix (bHLH) proteins are a superfamily of transcription factors (TFs) that can bind to specific DNA target sites, playing a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. However, no systemic analysis of bHLH TFs has been reported in banana, a typical climacteric fruit in tropical and subtropical regions. In our study, 259 MabHLH TF genes were identified in the genome of Musa acuminata (A genome), and phylogenetic analysis indicated that these MabHLHs could be classified into 23 subfamilies with the bHLHs from rice and Arabidopsis. The amino acid sequences of the bHLH domain in all MabHLH protein sequences were quite conserved, especially Arg-12, Arg-13, Leu-23, and Leu-79. Distribution mapping results showed that 258 MabHLHs were localized on the 11 chromosomes in the M. acuminata genome. The results indicated that 40.7% of gene duplication events were located in collinear fragments, and segmental duplications might have played a key role in the expansion of MabHLHs. Moreover, the expression profiles of MabHLHs in different fruit development and ripening stages and under various abiotic and biotic stresses were investigated using available RNA-sequencing data to obtain fruit development, ripening-specific, and stress-responsive candidate genes. Finally, a co-expression network of MabHLHs was constructed by weighted gene co-expression network analysis to elucidate the MabHLHs that might participate in important metabolic biosynthesis pathways in banana during development and the response to stress. A total of 259 MabHLHs were identified, and their sequence features, conserved domains, phylogenetic relationships, chromosomal distributions, gene duplications, expression profiles, and co-expression networks were investigated. This study systematically identified the MabHLHs in the M. acuminata genome at the genome-wide level, providing important candidate genes for further functional analysis. These findings improve our understanding of the molecular basis of developmental and stress tolerance in an important banana cultivar.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Jing-Yi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Hong-Xia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Ju-Hua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Cui Chen
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Hui-Xiao Yang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| |
Collapse
|
34
|
Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Crocin Biosynthesis in Gardenia jasminoides Ellis (Rubiaceae). BIOMED RESEARCH INTERNATIONAL 2020; 2020:2903861. [PMID: 32337236 PMCID: PMC7165322 DOI: 10.1155/2020/2903861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022]
Abstract
Crocins, enriched in Gardenia jasminoides fruits, have a pharmacological activity against central nervous system diseases, cardiovascular diseases, and cancer cell growth. The biosynthesis of crocins has been widely explored, but its regulatory mechanism remains unknown. Here, the basic helix-loop-helix (bHLH) transcription factors related to crocin biosynthesis were systematically identified on the basis of the genome of G. jasminoides. A total of 95 GjbHLH transcription factor genes were identified, and their phylogenetic analysis indicated that they could be classified into 23 subfamilies. The combination of gene-specific bHLH expression patterns, the coexpression analysis of biosynthesis genes, and the analysis of promoter sequences in crocin biosynthesis pathways suggested that nine bHLHs in G. jasminoides might negatively regulate crocin biosynthesis. This study laid a foundation for understanding the regulatory mechanism of crocin biosynthesis and the improvement and breeding of G. jasminoides varieties.
Collapse
|
35
|
Liu ZH, Chen Y, Wang NN, Chen YH, Wei N, Lu R, Li Y, Li XB. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. THE NEW PHYTOLOGIST 2020; 225:2439-2452. [PMID: 31667846 DOI: 10.1111/nph.16301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/26/2019] [Indexed: 05/20/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins are involved in transcriptional networks controlling a number of biological processes in plants. However, little information is known on the roles of bHLH proteins in cotton fibre development so far. Here, we show that a cotton bHLH protein (GhFP1) positively regulates fibre elongation. GhFP1 transgenic cotton and Arabidopsis plants were generated to study how GhFP1 regulates fibre cell elongation. Fibre length of the transgenic cotton overexpressing GhFP1 was significantly longer than that of wild-type, whereas suppression of GhFP1 expression hindered fibre elongation. Furthermore, overexpression of GhFP1 in Arabidopsis promoted trichome development. Expression of the brassinosteroid (BR)-related genes was markedly upregulated in fibres of GhFP1 overexpression cotton, but downregulated in GhFP1-silenced fibres. BR content in the transgenic fibres was significantly altered, relative to that in wild-type. Moreover, GhFP1 protein could directly bind to the promoters of GhDWF4 and GhCPD to activate expression of these BR-related genes. Therefore, our data suggest that GhFP1 as a positive regulator participates in controlling fibre elongation by activating BR biosynthesis and signalling. Additionally, homodimerisation of GhFP1 may be essential for its function, and interaction between GhFP1 and other cotton bHLH proteins may interfere with its DNA-binding activity.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yi-Hao Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ning Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
36
|
Medina-Puche L, Martínez-Rivas FJ, Molina-Hidalgo FJ, Mercado JA, Moyano E, Rodríguez-Franco A, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle. BMC PLANT BIOLOGY 2019; 19:586. [PMID: 31881835 PMCID: PMC6933692 DOI: 10.1186/s12870-019-2092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/21/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND In soft fruits, the differential expression of many genes during development and ripening is responsible for changing their organoleptic properties. In strawberry fruit, although some genes involved in the metabolic regulation of the ripening process have been functionally characterized, some of the most studied genes correspond to transcription factors. High throughput transcriptomics analyses performed in strawberry red receptacle (Fragaria x ananassa) allowed us to identify a ripening-related gene that codes an atypical HLH (FaPRE1) with high sequence homology with the PACLOBUTRAZOL RESISTANCE (PRE) genes. PRE genes are atypical bHLH proteins characterized by the lack of a DNA-binding domain and whose function has been linked to the regulation of cell elongation processes. RESULTS FaPRE1 sequence analysis indicates that this gene belongs to the subfamily of atypical bHLHs that also includes ILI-1 from rice, SlPRE2 from tomato and AtPRE1 from Arabidopsis, which are involved in transcriptional regulatory processes as repressors, through the blockage by heterodimerization of bHLH transcription factors. FaPRE1 presented a transcriptional model characteristic of a ripening-related gene with receptacle-specific expression, being repressed by auxins and activated by abscisic acid (ABA). However, its expression was not affected by gibberellic acid (GA3). On the other hand, the transitory silencing of FaPRE1 transcription by agroinfiltration in receptacle produced the down-regulation of a group of genes related to the ripening process while inducing the transcription of genes involved in receptacle growth and development. CONCLUSIONS In summary, this work presents for the first time experimental data that support an important novel function for the atypical HLH FaPRE1 during the strawberry fruit ripening. We hypothesize that FaPRE1 modulates antagonistically the transcription of genes related to both receptacle growth and ripening. Thus, FaPRE1 would repress the expression of receptacle growth promoting genes in the ripened receptacle, while it would activate the expression of those genes related to the receptacle ripening process.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
- Present Address: Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Félix J. Martínez-Rivas
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
- Present Address: VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - José A. Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
37
|
Li H, Gao W, Xue C, Zhang Y, Liu Z, Zhang Y, Meng X, Liu M, Zhao J. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics 2019; 20:568. [PMID: 31291886 PMCID: PMC6617894 DOI: 10.1186/s12864-019-5936-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background The bHLH (basic helix-loop-helix) transcription factor is one of the largest families of transcription factors in plants, containing a large number of members with diverse functions. Chinese jujube (Ziziphus jujuba Mill.) is the species with the highest economic value in the family Rhamnaceae. However, the characteristics of the bHLH family in the jujube genome are still unclear. Hence, ZjbHLHs were first searched at a genome-wide level, their expression levels under various conditions were investigated systematically, and their protein-protein interaction networks were predicted. Results We identified 92 ZjbHLHs in the jujube genome, and these genes were classified into 16 classes according to bHLH domains. Ten ZjbHLHs with atypical bHLH domains were found. Seventy ZjbHLHs were mapped to but not evenly distributed on 12 pseudo- chromosomes. The domain sequences among ZjbHLHs were highly conserved, and their conserved residues were also identified. The tissue-specific expression of 37 ZjbHLH genes in jujube and wild jujube showed diverse patterns, revealing that these genes likely perform multiple functions. Many ZjbHLH genes were screened and found to be involved in flower and fruit development, especially in earlier developmental stages. A few genes responsive to phytoplasma invasion were also verified. Based on protein-protein interaction prediction and homology comparison, protein-protein interaction networks composed of 92 ZjbHLHs were also established. Conclusions This study provides a comprehensive bioinformatics analysis of 92 identified ZjbHLH genes. We explored their expression patterns in various tissues, the flowering process, and fruit ripening and under phytoplasma stress. The protein-protein interaction networks of ZjbHLHs provide valuable clues toward further studies of their biological functions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5936-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Yu Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Xianwei Meng
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
38
|
Co-Expression Network Analysis and Hub Gene Selection for High-Quality Fiber in Upland Cotton (Gossypium hirsutum) Using RNA Sequencing Analysis. Genes (Basel) 2019; 10:genes10020119. [PMID: 30736327 PMCID: PMC6410125 DOI: 10.3390/genes10020119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
Upland cotton (Gossypium hirsutum) is grown for its elite fiber. Understanding differential gene expression patterns during fiber development will help to identify genes associated with fiber quality. In this study, we used two recombinant inbred lines (RILs) differing in fiber quality derived from an intra-hirsutum population to explore expression profiling differences and identify genes associated with high-quality fiber or specific fiber-development stages using RNA sequencing. Overall, 72/27, 1137/1584, 437/393, 1019/184, and 2555/1479 differentially expressed genes were up-/down-regulated in an elite fiber line (L1) relative to a poor-quality fiber line (L2) at 10, 15, 20, 25, and 30 days post-anthesis, respectively. Three-hundred sixty-three differentially expressed genes (DEGs) between two lines were colocalized in fiber strength (FS) quantitative trait loci (QTL). Short Time-series Expression Miner (STEM) analysis discriminated seven expression profiles; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation were performed to identify difference in function between genes unique to L1 and L2. Co-expression network analysis detected five modules highly associated with specific fiber-development stages, especially for high-quality fiber tissues. The hub genes in each module were identified by weighted gene co-expression network analysis. Hub genes encoding actin 1, Rho GTPase-activating protein with PAK-box, TPX2 protein, bHLH transcription factor, and leucine-rich repeat receptor-like protein kinase were identified. Correlation networks revealed considerable interaction among the hub genes, transcription factors, and other genes.
Collapse
|
39
|
Xiao G, Zhao P, Zhang Y. A Pivotal Role of Hormones in Regulating Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2019; 10:87. [PMID: 30838005 PMCID: PMC6382683 DOI: 10.3389/fpls.2019.00087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
Cotton is the main source of renewable fiber in the world and is primarily used for textile production. Cotton fibers are single cells differentiated from the ovule epidermis and are an excellent model system for studying cell elongation, polyploidization, and cell wall biosynthesis. Plant hormones, which are present in relatively low concentrations, play important roles in various developmental processes, and recently, multiple reports have revealed the pivotal roles of hormones in regulating cotton fiber development. For example, exogenous application of hormones has been shown to promote the initiation and growth of fiber cells. However, a comprehensive understanding about phytohormone regulating fiber development is still unknown. Here, we focus on recent advances in elucidating the roles of multiple phytohormones in the control of fiber development, namely auxin, gibberellin, brassinosteroid, ethylene, cytokinin, abscisic acid, and strigolactones. We not only review the identification of genes involved in hormone biosynthetic and signaling pathways but also discuss the mechanisms of these phytohormones in regulating the initiation and elongation of fiber cells in cotton. Auxin, gibberellin, brassinosteroid, ethylene, jasmonic acid, and strigolactones play positive roles in fiber development, whereas cytokinin and abscisic acid inhibit fiber growth. Our aim is to provide a comprehensive review of the role of phytohormones in cotton fiber development that will serve as the basis for further elucidation of the mechanisms by which plant hormones regulate fiber growth.
Collapse
Affiliation(s)
- Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guanghui Xiao,
| | - Peng Zhao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|