1
|
Arya A, Arora S, Hamid F, Kumar S. PFusionDB: a comprehensive database of plant-specific fusion transcripts. 3 Biotech 2024; 14:282. [PMID: 39479298 PMCID: PMC11519250 DOI: 10.1007/s13205-024-04132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Fusion transcripts (FTs) are well known cancer biomarkers, relatively understudied in plants. Here, we developed PFusionDB (www.nipgr.ac.in/PFusionDB), a novel plant-specific fusion-transcript database. It is a comprehensive repository of 80,170, 39,108, 83,330, and 11,500 unique fusions detected in 1280, 637, 697, and 181 RNA-Seq samples of Arabidopsis thaliana, Oryza sativa japonica, Oryza sativa indica, and Cicer arietinum respectively. Here, a total of 76,599 (Arabidopsis thaliana), 35,480 (Oryza sativa japonica), 72,099 (Oryza sativa indica), and 9524 (Cicer arietinum) fusion transcripts are non-recurrent i.e., only found in one sample. Identification of FTs was performed by using a total of five tools viz. EricScript-Plants, STAR-Fusion, TrinityFusion, SQUID, and MapSplice. At PFusionDB, available fundamental details of fusion events includes the information of parental genes, junction sequence, expression levels of fusion transcripts, breakpoint coordinates, strand information, tissue type, treatment information, fusion type, PFusionDB ID, and Sequence Read Archive (SRA) ID. Further, two search modules: 'Simple Search' and 'Advanced Search', along with a 'Browse' option to data download, are present for the ease of users. Three distinct modules viz. 'BLASTN', 'SW Align', and 'Mapping' are also available for efficient query sequence mapping and alignment to FTs. PFusionDB serves as a crucial resource for delving into the intricate world of fusion transcript in plants, providing researchers with a foundation for further exploration and analysis. Database URL: www.nipgr.ac.in/PFusionDB. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04132-1.
Collapse
Affiliation(s)
- Ajay Arya
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Simran Arora
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Fiza Hamid
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
2
|
Wang JX, Zhang Y, Hu J, Li YF, Egorovich KV, Nikolaevna PN, Vasilevich MV, Zhang ZF, Tang ZH. Metabolomics combined with physiology reveal how white clover (Trifolium repens L.) respond to 6PPD stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176121. [PMID: 39260487 DOI: 10.1016/j.scitotenv.2024.176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
As a ubiquitous tire antioxidant, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylene- diamine (6PPD) exists widely in various environmental media and has been detected at high levels in the environment. However, the effects of 6PPD on plants are still poorly understood. In this study, a hydroponic experiment was carried out to investigate the response of white clover (Trifolium repens L.) stressed by 6PPD on physiology and metabolomics. The results indicated that the length of stem and root, as well as biomass were significantly reduced after 500 μg L-1 6PPD treatment. Photosynthetic performances including photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and chlorophyll content of leaves decreased in all treatments except 500 μg L-1 of 6PPD. The malondialdehyde (MDA) content in the shoot of white clover increased by 66.33 % when exposed to 500 μg L-1 of 6PPD compared to control group (CK). Hydrogen peroxide and superoxide anion presented a U-shape trend and began to increase at 500 μg L-1. Besides, peroxidase and catalase significantly decreased compared to CK after exposure to 500 μg L-1. Metabolic analysis of clover showed that 6PPD treatment induced changes in 10 metabolic pathways of white clover. Metabolites were significantly down-regulated after exposure to 500 μg L-1 in shoot, while significantly down-regulated in all treatment groups except 500 μg L-1 in root. These findings may provide a novel perspective for phytotoxicity assessment and phytoremediation of 6PPD.
Collapse
Affiliation(s)
- Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | | | | | - Mukhin Vasilii Vasilevich
- Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Yakutsk 677000, Russia
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Guo S, Zang H, Liu X, Jing X, Liu Z, Zhang W, Wang M, Zheng Y, Li Z, Qiu J, Chen D, Yan T, Guo R. Full-Length Transcriptome Construction and Systematic Characterization of Virulence Factor-Associated Isoforms in Vairimorpha ( Nosema) Ceranae. Genes (Basel) 2024; 15:1111. [PMID: 39336702 PMCID: PMC11431495 DOI: 10.3390/genes15091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Vairimorpha (Nosema) ceranae is a single-cellular fungus that obligately infects the midgut epithelial cells of adult honeybees, causing bee microsporidiosis and jeopardizing bee health and production. This work aims to construct the full-length transcriptome of V. ceranae and conduct a relevant investigation using PacBio single-molecule real-time (SMRT) sequencing technology. Following PacBio SMRT sequencing, 41,950 circular consensus (CCS) were generated, and 25,068 full-length non-chimeric (FLNC) reads were then detected. After polishing, 4387 high-quality, full-length transcripts were gained. There are 778, 2083, 1202, 1559, 1457, 1232, 1702, and 3896 full-length transcripts that could be annotated to COG, GO, KEGG, KOG, Pfam, Swiss-Prot, eggNOG, and Nr databases, respectively. Additionally, 11 alternative splicing (AS) events occurred in 6 genes were identified, including 1 alternative 5' splice-site and 10 intron retention. The structures of 225 annotated genes in the V. ceranae reference genome were optimized, of which 29 genes were extended at both 5' UTR and 3' UTR, while 90 and 106 genes were, respectively, extended at the 5' UTR as well as 3' UTR. Furthermore, a total of 29 high-confidence lncRNAs were obtained, including 12 sense-lncRNAs, 10 lincRNAs, and 7 antisense-lncRNAs. Taken together, the high-quality, full-length transcriptome of V. ceranae was constructed and annotated, the structures of annotated genes in the V. ceranae reference genome were improved, and abundant new genes, transcripts, and lncRNAs were discovered. Findings from this current work offer a valuable resource and a crucial foundation for molecular and omics research on V. ceranae.
Collapse
Affiliation(s)
- Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Wende Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Mengyi Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Zhengyuan Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Tizhen Yan
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Institute of Reproduction and Genetics, Dongguan Maternal and Children Health Hospital, Dongguan 510110, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (H.Z.); (X.L.); (X.J.); (Z.L.); (W.Z.); (M.W.); (Y.Z.); (Z.L.); (J.Q.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
4
|
Čeksterytė V, Kaupinis A, Aleliūnas A, Navakauskienė R, Jaškūnė K. Composition of Proteins Associated with Red Clover ( Trifolium pratense) and the Microbiota Identified in Honey. Life (Basel) 2024; 14:862. [PMID: 39063616 PMCID: PMC11278118 DOI: 10.3390/life14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The nutritional composition of honey is determined by environmental conditions, and botanical and geographical origin. In addition to carbohydrates, honey also contain pollen grains, proteins, free amino acids, and minerals. Although the content of proteins in honey is low, they are an important component that confirms the authenticity and quality of honey; therefore, they became a popular study object. The aim of the study was to evaluate protein content and composition of monofloral red clover and rapeseed honey collected from five different districts of Lithuania. Forty-eight proteins were identified in five different origin honey samples by liquid chromatography. The number of red clover proteins identified in individual honey samples in monofloral red clover honey C3 was 39 in polyfloral honey S22-36, while in monofloral rapeseed honey S5, S15, and S23 there was 33, 32, and 40 respectively. Aphids' proteins and lactic acid bacteria were identified in all honey samples tested. The linear relationship and the strongest correlation coefficient (r = 0.97) were determined between the content of Apilactobacillus kunkeei and Apilactobacillus apinorum, as well as between the number of faba bean (Vicia faba) pollen and lactic acid bacteria (r = 0.943). The data show a strong correlation coefficient between the amount of lactic acid and aphid protein number (r = 0.693). More studies are needed to evaluate the relationship between the pollination efficiency of red clover by bees and the multiplicity of red clover proteins in honey protein, as well as microbiota diversity and the influence of nature or plant diversity on the occurrence of microbiota in honey.
Collapse
Affiliation(s)
- Violeta Čeksterytė
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| | - Algirdas Kaupinis
- VU GMC—Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (A.K.); (R.N.)
| | - Andrius Aleliūnas
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| | - Rūta Navakauskienė
- VU GMC—Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (A.K.); (R.N.)
| | - Kristina Jaškūnė
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| |
Collapse
|
5
|
Drużyńska B, Łukasiewicz J, Majewska E, Wołosiak R. Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts. Antioxidants (Basel) 2024; 13:414. [PMID: 38671862 PMCID: PMC11047408 DOI: 10.3390/antiox13040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this study was to analyze the effect of the type of extraction solution (water, different concentrations of ethanol), temperature and time on the polyphenol content and antioxidant properties of red clover extracts and the effect of the addition of selected extracts on the antioxidant properties of enriched blackcurrant beverages. In both the extractions carried out under different conditions and in the enriched beverages, the content of selected polyphenols was determined by HPLC. This study confirmed the significant effect of the alcohol content of the extract, extraction time and temperature on the antioxidant properties of clover extracts. Ethanolic extracts had better antioxidant properties than aqueous extracts. The addition of ethanol extracts had a significant effect on the antioxidant properties of the fortified beverages. Increasing the temperature, time or ethanol content in the extracts mostly resulted in an increase in the total polyphenol content in the obtained extracts. Based on the analysis of the response surface, it was found that for the DPPH radical, the best activity was obtained by extraction for 20 min with a solution of approximately 65% at low temperatures. In the case of the ABTS radical, the best antiradical activity was obtained after extraction for 60 min at 80 °C with a solution of approximately 50% ethanol. It was also found that the use of a solution of approximately 60% ethanol after extraction for 60 min at 80 °C would provide an extract with high antiradical activity against both radicals.
Collapse
Affiliation(s)
- Beata Drużyńska
- Institute of Food Sciences, Department of Food Technology and Assessment, Division of Food Quality Assessment, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (J.Ł.); (E.M.); (R.W.)
| | | | | | | |
Collapse
|
6
|
Yu Y, Liufu Y, Ren Y, Zhang J, Li M, Tian S, Wang J, Liao S, Gong G, Zhang H, Guo S. Comprehensive Profiling of Alternative Splicing and Alternative Polyadenylation during Fruit Ripening in Watermelon ( Citrullus lanatus). Int J Mol Sci 2023; 24:15333. [PMID: 37895011 PMCID: PMC10607834 DOI: 10.3390/ijms242015333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Yuxiang Liufu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| |
Collapse
|
7
|
Li Y, Li H, Wang S, Li J, Bacha SAS, Xu G, Li J. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway in blueberry ( Vaccinium spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1082245. [PMID: 37152168 PMCID: PMC10157174 DOI: 10.3389/fpls.2023.1082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
As a highly economic small fruit crop, blueberry is enjoyed by most people in terms of color, taste, and rich nutrition. To better understand its coloring mechanism on the process of ripening, an integrative analysis of the metabolome and transcriptome profiles was performed in three blueberry varieties at three developmental stages. In this study, 41 flavonoid metabolites closely related to the coloring in blueberry samples were analyzed. It turned out that the most differential metabolites in the ripening processes were delphinidin-3-O-arabinoside (dpara), peonidin-3-O-glucoside (pnglu), and delphinidin-3-O-galactoside (dpgal), while the most differential metabolites among different varieties were flavonols. Furthermore, to obtain more accurate and comprehensive transcripts of blueberry during the developmental stages, PacBio and Illumina sequencing technology were combined to obtain the transcriptome of the blueberry variety Misty, for the very first time. Finally, by applying the gene coexpression network analysis, the darkviolet and bisque4 modules related to flavonoid synthesis were determined, and the key genes related to two flavonoid 3', 5'-hydroxylase (F3'5'H) genes in the darkviolet module and one bHLH transcription factor in the bisque4 module were predicted. It is believed that our findings could provide valuable information for the future study on the molecular mechanism of flavonoid metabolites and flavonoid synthesis pathways in blueberries.
Collapse
Affiliation(s)
- Yinping Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Haifei Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Shiyao Wang
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Syed Asim Shah Bacha
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guofeng Xu
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
8
|
Meng L, Wu Y, Mu M, Wang Z, Chen Z, Wang L, Ma Z, Cui G, Yin X. Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover ( Trifolium pretense L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1112002. [PMID: 37056492 PMCID: PMC10088434 DOI: 10.3389/fpls.2023.1112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
9
|
Wei J, Luo B, Kong S, Liu W, Zhang C, Wei Z, Min X. Screening and identification of multiple abiotic stress responsive candidate genes based on hybrid-sequencing in Vicia sativa. Heliyon 2023; 9:e13536. [PMID: 36816321 PMCID: PMC9929474 DOI: 10.1016/j.heliyon.2023.e13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
Common vetch is an important leguminous forage for both livestock fodder and green manure and has a tremendous latent capacity in a sustainable agroecosystem. In the present study, a comprehensive transcriptome analysis of the aboveground leaves and underground roots of common vetch under multiple abiotic stress treatments, including NaCl, drought, cold, and cold drought, was performed using hybrid-sequencing technology, i. e. single-molecule real-time sequencing technology (SMRT) and supplemented by next-generation sequencing (NGS) technology. A total of 485,038 reads of insert (ROIs) with a mean length of 2606 bp and 228,261 full-length nonchimeric (FLNC) reads were generated. After deduplication, 39,709 transcripts were generated. Of these transcripts, we identified 1059 alternative splicing (AS) events, 17,227 simple sequence repeats (SSRs), and 1647 putative transcription factors (TFs). Furthermore, 640 candidates long noncoding RNAs (lncRNAs) and 28,256 complete coding sequences (CDSs) were identified. In gene annotation analyses, a total of 38,826 transcripts (97.78%) were annotated in eight public databases. Finally, seven multiple abiotic stress-responsive candidate genes were obtained through gene expression, annotation information, and protein-protein interaction (PPI) networks. Our research not only enriched the structural information of FL transcripts in common vetch, but also provided useful information for exploring the molecular mechanism of multiple abiotic stress tolerance between aboveground and underground tissues in common vetch and related legumes.
Collapse
Affiliation(s)
- Jia Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Bo Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Shiyi Kong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Chuanjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
- Corresponding author.
| | - Xueyang Min
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
- Corresponding author.
| |
Collapse
|
10
|
Zeng Z, Liu Y, Feng XY, Li SX, Jiang XM, Chen JQ, Shao ZQ. The RNAome landscape of tomato during arbuscular mycorrhizal symbiosis reveals an evolving RNA layer symbiotic regulatory network. PLANT COMMUNICATIONS 2023; 4:100429. [PMID: 36071667 PMCID: PMC9860192 DOI: 10.1016/j.xplc.2022.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) is an ancient plant-fungus relationship that is widely distributed in terrestrial plants. The formation of symbiotic structures and bidirectional nutrient exchange requires the regulation of numerous genes. However, the landscape of RNAome during plant AMS involving different types of regulatory RNA is poorly understood. In this study, a combinatorial strategy utilizing multiple sequencing approaches was used to decipher the landscape of RNAome in tomato, an emerging AMS model. The annotation of the tomato genome was improved by a multiple-platform sequencing strategy. A total of 3,174 protein-coding genes were upregulated during AMS, 42% of which were alternatively spliced. Comparative-transcriptome analysis revealed that genes from 24 orthogroups were consistently induced by AMS in eight phylogenetically distant angiosperms. Seven additional orthogroups were specifically induced by AMS in all surveyed dicot AMS host plants. However, these orthogroups were absent or not induced in monocots and/or non-AMS hosts, suggesting a continuously evolving AMS-responsive network in addition to a conserved core regulatory module. Additionally, we detected 587 lncRNAs, ten miRNAs, and 146 circRNAs that responded to AMS, which were incorporated to establish a tomato AMS-responsive, competing RNA-responsive endogenous RNA (ceRNA) network. Finally, a tomato symbiotic transcriptome database (TSTD, https://efg.nju.edu.cn/TSTD) was constructed to serve as a resource for deep deciphering of the AMS regulatory network. These results help elucidate the reconfiguration of the tomato RNAome during AMS and suggest a sophisticated and evolving RNA layer responsive network during AMS processes.
Collapse
Affiliation(s)
- Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Mei Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Vlk D, Trněný O, Řepková J. Genes Associated with Biological Nitrogen Fixation Efficiency Identified Using RNA Sequencing in Red Clover ( Trifolium pratense L.). LIFE (BASEL, SWITZERLAND) 2022; 12:life12121975. [PMID: 36556339 PMCID: PMC9785344 DOI: 10.3390/life12121975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Commonly studied in the context of legume-rhizobia symbiosis, biological nitrogen fixation (BNF) is a key component of the nitrogen cycle in nature. Despite its potential in plant breeding and many years of research, information is still lacking as to the regulation of hundreds of genes connected with plant-bacteria interaction, nodulation, and nitrogen fixation. Here, we compared root nodule transcriptomes of red clover (Trifolium pratense L.) genotypes with contrasting nitrogen fixation efficiency, and we found 491 differentially expressed genes (DEGs) between plants with high and low BNF efficiency. The annotation of genes expressed in nodules revealed more than 800 genes not yet experimentally confirmed. Among genes mediating nodule development, four nod-ule-specific cysteine-rich (NCR) peptides were confirmed in the nodule transcriptome. Gene duplication analyses revealed that genes originating from tandem and dispersed duplication are significantly over-represented among DEGs. Weighted correlation network analysis (WGCNA) organized expression profiles of the transcripts into 16 modules linked to the analyzed traits, such as nitrogen fixation efficiency or sample-specific modules. Overall, the results obtained broaden our knowledge about transcriptomic landscapes of red clover's root nodules and shift the phenotypic description of BNF efficiency on the level of gene expression in situ.
Collapse
Affiliation(s)
- David Vlk
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 611 37 Brno, Czech Republic
| | - Oldřich Trněný
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Jana Řepková
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 611 37 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-6895
| |
Collapse
|
12
|
Kishi-Kaboshi M, Tanaka T, Sasaki K, Noda N, Aida R. Combination of long-read and short-read sequencing provides comprehensive transcriptome and new insight for Chrysanthemum morifolium ray-floret colorization. Sci Rep 2022; 12:17874. [PMID: 36284128 PMCID: PMC9596691 DOI: 10.1038/s41598-022-22589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Chrysanthemum morifolium is one of the most popular ornamental plants globally. Owing to its large and complex genome (around 10 Gb, segmental hexaploid), it has been difficult to obtain comprehensive transcriptome, which will promote to perform new breeding technique, such as genome editing, in C. morifolium. In this study, we used single-molecule real-time (SMRT) sequencing and RNA-seq technologies, combined them with an error-correcting process, and obtained high-coverage ray-floret transcriptome. The SMRT-seq data increased the ratio of long mRNAs containing complete open-reading frames, and the combined dataset provided a more complete transcriptomic data than those produced from either SMRT-seq or RNA-seq-derived transcripts. We finally obtained 'Sei Arabella' transcripts containing 928,645 non-redundant mRNA, which showed 96.6% Benchmarking Universal Single-Copy Orthologs (BUSCO) score. We also validated the reliability of the dataset by analyzing a mapping rate, annotation and transcript expression. Using the dataset, we searched anthocyanin biosynthesis gene orthologs and performed a qRT-PCR experiment to assess the usability of the dataset. The assessment of the dataset and the following analysis indicated that our dataset is reliable and useful for molecular biology. The combination of sequencing methods provided genetic information and a way to analyze the complicated C. morifolium transcriptome.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan ,grid.416835.d0000 0001 2222 0432Present Address: Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Tsuyoshi Tanaka
- grid.416835.d0000 0001 2222 0432Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Katsutomo Sasaki
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Naonobu Noda
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Ryutaro Aida
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| |
Collapse
|
13
|
Chen T, Liu Y, Song S, Bai J, Li C. Full-length transcriptome analysis of the bloom-forming dinoflagellate Akashiwo sanguinea by single-molecule real-time sequencing. Front Microbiol 2022; 13:993914. [PMID: 36325025 PMCID: PMC9618608 DOI: 10.3389/fmicb.2022.993914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The dinoflagellate Akashiwo sanguinea is a harmful algal species and commonly observed in estuarine and coastal waters around the world. Harmful algal blooms (HABs) caused by this species lead to serious environmental impacts in the coastal waters of China since 1998 followed by huge economic losses. However, the full-length transcriptome information of A. sanguinea is still not fully explored, which hampers basic genetic and functional studies. Herein, single-molecule real-time (SMRT) sequencing technology was performed to characterize the full-length transcript in A. sanguinea. Totally, 83.03 Gb SMRT sequencing clean reads were generated, 983,960 circular consensus sequences (CCS) with average lengths of 3,061 bp were obtained, and 81.71% (804,016) of CCS were full-length non-chimeric reads (FLNC). Furthermore, 26,461 contigs were obtained after being corrected with Illumina library sequencing, with 20,037 (75.72%) successfully annotated in the five public databases. A total of 13,441 long non-coding RNA (lncRNA) transcripts, 3,137 alternative splicing (AS) events, 514 putative transcription factors (TFs) members from 23 TF families, and 4,397 simple sequence repeats (SSRs) were predicted, respectively. Our findings provided a sizable insights into gene sequence characteristics of A. sanguinea, which can be used as a reference sequence resource for A. sanguinea draft genome annotation, and will contribute to further molecular biology research on this harmful bloom algae.
Collapse
Affiliation(s)
- Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China
| | - Yun Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuqun Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China
| | - Caiwen Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Zhang Y, Lou F, Chen J, Han Z, Yang T, Gao T, Song N. Single-molecule Real-time (SMRT) Sequencing Facilitates Transcriptome Research and Genome Annotation of the Fish Sillago sinica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1002-1013. [PMID: 36083383 DOI: 10.1007/s10126-022-10163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a newly described Sillaginidae species, Chinese sillago (Sillago sinica) needs a better understanding of gene annotation information. In this study, we reported the first full-length transcriptome data of S. sinica using the PacBio isoform sequencing Iso-seq and a description of transcriptome structure analysis. A total of 454,979 high-quality full-length transcripts were obtained by single-molecule real-time (SMRT) sequencing, which was corrected by Illumina sequencing data. After that, 66,948 non-redundant full-length transcripts were generated after mapping to the reference genome of S. sinica, including 49 fusion isoforms and 9,250 novel isoforms. 63,459 isoforms were successfully annotated by one of the Nr, Nt, SwissProt, Pfam, KOG, GO, and KEGG databases. Additionally, 30,987 alternative polyadenylation (APA) sites, 451,867 alternative splicing (AS) events, 21,928 long non-coding RNAs (lncRNAs) and 12,911 transcription factors (TFs) were identified. The full-length transcripts of S. sinica would provide a precious resource for characterizing the transcriptome of S. sinica and for the further study of gene function and regulatory mechanism of this species.
Collapse
Affiliation(s)
- Yuan Zhang
- Fishery College, Ocean University of China, Qingdao, 266003, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Na Song
- Fishery College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
15
|
Meng L, Yang Y, Ma Z, Jiang J, Zhang X, Chen Z, Cui G, Yin X. Integrated physiological, transcriptomic and metabolomic analysis of the response of Trifolium pratense L. to Pb toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129128. [PMID: 35594664 DOI: 10.1016/j.jhazmat.2022.129128] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) interferes with plant gene expression, alters metabolite contents and affects plant growth. However, the molecular mechanism underlying the plant response to Pb is not completely understood. In the present study, Trifolium pratense L. was exposed to Pb concentrations of 0 (Pb0), 500 (Pb500), 1000 (Pb1000), 2000 (Pb2000) and 3000 (Pb3000) mg/kg in soils. Pb stress affected the ability of T. pratense to accumulate and transport Pb, increased the activity of peroxidase (POD) and the contents of malondialdehyde (MDA) and proline, decreased the amount of photosynthetic pigments and soluble proteins, and led to changes in growth and biomass. Transcriptomic and metabolomic analyses showed that Pb mainly affected eight pathways, and LHC, flavonoids, organic acids, amino acids and carbohydrates were upregulated or downregulated. Moreover, Pb500 induced the upregulation of serA, promoted the synthesis of citric acid, maintained photosynthetic pigment levels, and ultimately promoted an increase in stem length. Pb3000 induced the upregulation of ARF, GH3 and SAUR genes, but the saccharide contents and stem length decreased in response to Pb stress. We used a variety of methods to provide a molecular perspective on the mechanism underlying the response of T. pratense to Pb stress.
Collapse
Affiliation(s)
- Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yupeng Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zewang Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zirui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Xuhui L, Weiwei C, Siqi L, Junteng F, Hang Z, Xiangbo Z, Yongwen Q. Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage. BMC PLANT BIOLOGY 2022; 22:398. [PMID: 35963989 PMCID: PMC9375949 DOI: 10.1186/s12870-022-03787-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As maize originated in tropical or subtropical zones, most maize germplasm is extremely sensitive to low temperatures during the seedling stage. Clarifying the molecular mechanism of cold acclimation would facilitate the breeding of cold tolerant maize varieties, which is one of the major sustainability factors for crop production. To meet this goal, we investigated two maize inbred lines with contrasting levels of cold tolerance at the seedling stage (IL85, a cold tolerant line; B73, a cold sensitive line), and performed full-length transcriptome sequencing on the root tips of seedlings before and after 24 h of cold treatment. RESULTS We identified 152,263 transcripts, including 20,993 novel transcripts, and determined per-transcript expression levels. A total of 1,475 transcripts were specifically up-regulated in the cold tolerant line IL85 under cold stress. GO enrichment analysis revealed that 25 transcripts were involved in reactive oxygen species (ROS) metabolic processes and 15 transcripts were related to the response to heat. Eight genes showed specific differential alternative splicing (DAS) in IL85 under cold stress, and were mainly involved in amine metabolism. A total of 1,111 lncRNAs were further identified, 62 of which were up-regulated in IL85 or B73 under cold stress, and their corresponding target genes were enriched in protein phosphorylation. CONCLUSIONS These results provide new insights into the molecular mechanism of cold acclimation during the seedling stage in maize, and will facilitate the development of cultivars with improved cold stress tolerance.
Collapse
Affiliation(s)
- Li Xuhui
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Chen Weiwei
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Lu Siqi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Fang Junteng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Zhu Hang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Zhang Xiangbo
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Qi Yongwen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China.
| |
Collapse
|
17
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
18
|
Zhang R, Kuo R, Coulter M, Calixto CPG, Entizne JC, Guo W, Marquez Y, Milne L, Riegler S, Matsui A, Tanaka M, Harvey S, Gao Y, Wießner-Kroh T, Paniagua A, Crespi M, Denby K, Hur AB, Huq E, Jantsch M, Jarmolowski A, Koester T, Laubinger S, Li QQ, Gu L, Seki M, Staiger D, Sunkar R, Szweykowska-Kulinska Z, Tu SL, Wachter A, Waugh R, Xiong L, Zhang XN, Conesa A, Reddy ASN, Barta A, Kalyna M, Brown JWS. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biol 2022; 23:149. [PMID: 35799267 PMCID: PMC9264592 DOI: 10.1186/s13059-022-02711-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.
Collapse
Affiliation(s)
- Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Max Coulter
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Present address: Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Yamile Marquez
- Centre for Genomic Regulation, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Linda Milne
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- Present address: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Sarah Harvey
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York Wentworth Way, York, YO10 5DD, UK
| | - Yubang Gao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Alejandro Paniagua
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Martin Crespi
- French National Centre for Scientific Research | CNRS INRAE-Universities of Paris Saclay and Paris, Institute of Plant Sciences Paris Saclay IPS2, Rue de Noetzlin, 91192, Gif sur Yvette, France
| | - Katherine Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York Wentworth Way, York, YO10 5DD, UK
| | - Asa Ben Hur
- Department of Computer Science, Colorado State University, 1873 Campus Delivery, Fort Collins, CO, 80523-1873, USA
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, 100 East 24th St., Austin, TX, 78712-1095, USA
| | - Michael Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17 A-1090, Vienna, Austria
| | - Artur Jarmolowski
- Department of Gene Expression, Adam Mickiewicz University, Poznań, Poland
| | - Tino Koester
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Sascha Laubinger
- Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Qingshun Quinn Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lianfeng Gu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
- Present address: Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Ning Zhang
- Biology Department, School of Arts and Sciences, St. Bonaventure University, 3261 West State Road, St. Bonaventure, NY, 14778, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Center of Medical Biochemistry, Dr.-Bohr-Gasse 9/3, A-1030, Vienna, Austria
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
19
|
Feng J, Li Y, Zhang J, Zhang M, Zhang X, Shahzad K, Guo L, Qi T, Tang H, Wang H, Qiao X, Lin Z, Xing C, Wu J. Transcript Complexity and New Insights of Restorer Line in CMS-D8 Cotton Through Full-Length Transcriptomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:930131. [PMID: 35800603 PMCID: PMC9253813 DOI: 10.3389/fpls.2022.930131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Hybrid utilization has proficiently increased crop production worldwide. The cytoplasmic male sterility (CMS) system has emerged as an efficient tool for commercial hybrid cotton seed production. The restorer line with dominant Rf2 gene can restore the fertility of the CMS-D8 sterile line. However, the molecular mechanism of fertility restoration remains unclear in CMS-D8 cotton that limits wider utilization of three-line hybrid breeding. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to understand fertility restoration mechanism of CMS-D8 cotton. In total, 228,106 full-length non-chimeric transcriptome sequences were obtained from anthers of developing flowering buds. The analysis results identified 3,174 novel isoforms, 2,597 novel gene loci, 652 long non-coding RNAs predicted from novel isoforms, 7,234 alternative splicing events, 114 fusion transcripts, and 1,667 genes with alternative polyadenylation. Specially, two novel genes associated with restoration function, Ghir_D05.742.1 and m64033_190821_201011/21103726/ccs were identified and showed significant higher levels of expression in restorer line than sterile and maintainer lines. Our comparative full-length transcriptome analysis provides new insights into the molecular function of Rf2 fertility restorer gene. The results of this study offer a platform for fertility restoration candidate gene discovery in CMS-D8 cotton.
Collapse
Affiliation(s)
- Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
20
|
Guan J, Yin S, Yue Y, Liu L, Guo Y, Zhang H, Fan X, Teng K. Single-molecule long-read sequencing analysis improves genome annotation and sheds new light on the transcripts and splice isoforms of Zoysia japonica. BMC PLANT BIOLOGY 2022; 22:263. [PMID: 35614434 PMCID: PMC9134579 DOI: 10.1186/s12870-022-03640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zoysia japonica is an important warm-season turfgrass used worldwide. Although the draft genome sequence and a vast amount of next-generation sequencing data have been published, the current genome annotation and complete mRNA structure remain incomplete. Therefore, to analyze the full-length transcriptome of Z. japonica, we used the PacBio single-molecule long-read sequencing method in this study. RESULTS First, we generated 37,056 high-confidence non-redundant transcripts from 16,005 gene loci. Next, 32,948 novel transcripts, 913 novel gene loci, 8035 transcription factors, 89 long non-coding RNAs, and 254 fusion transcripts were identified. Furthermore, 15,675 alternative splicing events and 5325 alternative polyadenylation sites were detected. In addition, using bioinformatics analysis, the underlying transcriptional mechanism of senescence was explored based on the revised reference transcriptome. CONCLUSION This study provides a full-length reference transcriptome of Z. japonica using PacBio single-molecule long-read sequencing for the first time. These results contribute to our knowledge of the transcriptome and improve the knowledge of the reference genome of Z. japonica. This will also facilitate genetic engineering projects using Z. japonica.
Collapse
Affiliation(s)
- Jin Guan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Shuxia Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083 China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Lingyun Liu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yidi Guo
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
21
|
Liu L, Teng K, Fan X, Han C, Zhang H, Wu J, Chang Z. Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum. PLANT MOLECULAR BIOLOGY 2022; 109:159-175. [PMID: 35338443 DOI: 10.1007/s11103-022-01264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Combination analysis of single-molecule long-read and Illumina sequencing provide full-length transcriptome information and shed new light on the anthocyanin accumulation mechanism of Pennisetum setaceum cv. 'Rubrum'. Pennisetum setaceum cv. 'Rubrum' is an ornamental grass with purple leaves widely used in landscaping. However, the current next-generation sequencing (NGS) transcriptome information of this species is not satisfactory due to the difficulties in obtaining full-length transcripts. Furthermore, the molecular mechanisms of anthocyanin accumulation in P. setaceum have not been thoroughly studied. In this study, we used PacBio full-length transcriptome sequencing (SMRT) combined with NGS technology to build and improve the transcriptomic datasets and reveal the molecular mechanism of anthocyanin accumulation in P. setaceum cv. 'Rubrum'. Therefore, 280,413 full-length non-chimeric reads sequences were obtained using the SMRT technology. We obtained 97,450 high-quality non-redundant transcripts and identified 5352 alternative splicing events. In addition, 93,066 open reading frames (ORFs), including 57,457 full ORFs and 2910 long non-coding RNA (lncRNAs) were screened out. Furthermore, 10,795 differentially expressed genes were identified using NGS. We also explored key genes, synthesis pathways, and detected lncRNA involved in anthocyanin accumulation, providing new insights into anthocyanin accumulation in P. setaceum cv. 'Rubrum'. To our best knowledge, we provided the full-length transcriptome information of P. setaceum cv. 'Rubrum' for the first time. The results of this study will provide baseline information for gene function studies and pave the way for future P. setaceum cv. 'Rubrum' breeding projects.
Collapse
Affiliation(s)
- Lingyun Liu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chao Han
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Juying Wu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhihui Chang
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
22
|
Zhang H, Liu Z, Hu A, Wu H, Zhu J, Wang F, Cao P, Yang X, Zhang H. Full-Length Transcriptome Analysis of the Halophyte Nitraria sibirica Pall. Genes (Basel) 2022; 13:genes13040661. [PMID: 35456467 PMCID: PMC9032868 DOI: 10.3390/genes13040661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Nitraria sibirica Pall. is one of the pioneer tree species in saline–alkali areas due to its extreme salt tolerance. However, the lack of information on its genome limits the further exploration of the molecular mechanisms in N. sibirica under salt stress. Methods: In this study, we used single-molecule real-time (SMRT) technology based on the PacBio Iso-Seq platform to obtain transcriptome data from N. sibirica under salt treatment for the first time, which is helpful for our in-depth analysis of the salt tolerance and molecular characteristics of N. sibirica. Results: Our results suggested that a total of 234,508 circular consensus sequences (CCSs) with a mean read length of 2121 bp were obtained from the 19.26 Gb raw data. Furthermore, based on transcript cluster analysis, 93,713 consensus isoforms were obtained, including 92,116 high-quality isoforms. After removing redundant sequences, 49,240 non-redundant transcripts were obtained from high-quality isoforms. A total of 37,261 SSRs, 1816 LncRNAs and 47,314 CDSs, of which 40,160 carried complete ORFs, were obtained. Based on our transcriptome data, we also analyzed the coding genes of H+-PPase, and the results of both bioinformatics and functional analyses indicated that the gene prediction via full-length transcripts obtained by SMRT technology is reliable and effective. In summary, our research data obtained by SMRT technology provides more reliable and accurate information for the further analysis of the regulatory network and molecular mechanism of N. sibirica under salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Zhen Liu
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Aishuang Hu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China
| | - Haiwen Wu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Jianfeng Zhu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Pingping Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Xiuyan Yang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Huaxin Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| |
Collapse
|
23
|
He W, Zhang X, Lv P, Wang W, Wang J, He Y, Song Z, Cai D. Full-length transcriptome reconstruction reveals genetic differences in hybrids of Oryza sativa and Oryza punctata with different ploidy and genome compositions. BMC PLANT BIOLOGY 2022; 22:131. [PMID: 35313821 PMCID: PMC8935693 DOI: 10.1186/s12870-022-03502-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2022] [Indexed: 07/07/2023]
Abstract
BACKGROUND Allopolyploid breeding is an efficient technique for improving the low seed setting rate of autotetraploids in plant breeding and one of the most promising breeding methods. However, there have been few comprehensive studies of the posttranscriptional mechanism in allopolyploids. RESULTS By crossing cultivated rice (Oryza sativa, genome AA) with wild rice (Oryza punctata, genome BB), we created hybrid rice lines with different ploidy and genome compositions [diploid hybrid F01 (AB), allotetraploid hybrid F02 (AABB) and F03 (AAAB)]. The genetic differences of the hybrids and the mechanism of allopolyploid breeding dominance were revealed through morphological and cytological observations and single molecule real-time sequencing techniques. The tissues and organs of allotetraploid hybrid F02 exhibited "gigantism" and the highest levels of fertility. The numbers of non-redundant transcripts, gene loci and new isoforms in the polyploid rice lines were higher and the isoform lengths greater than those of the diploid line. Moreover, alternative splicing (AS) events occurred twice as often in the polyploid rice lines than the diploid line. During these events, intron retention dominated. Furthermore, a large number of new genes and isoforms specific to the lines of different ploidy were discovered. CONCLUSIONS The results indicated that alternative polyadenylation (APA) and AS events contributed to the complexity and superiority of polyploids in the activity of translation regulators, nucleic acid binding transcription factor activities and the regulation of molecular function. Therefore, these APA and AS events in allopolyploid rice were found to play a role in regulation. Our study provides new germplasm for polyploid rice breeding and reveals complex regulatory mechanisms that may be related to heterosis and fertility.
Collapse
Affiliation(s)
- Wenting He
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Pincang Lv
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Wei Wang
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jie Wang
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yuchi He
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Zhaojian Song
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Detian Cai
- School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
- Wuhan Polyploid Biotechnology Co., Ltd., Wuhan, 430345, People's Republic of China.
| |
Collapse
|
24
|
Chen Z, Guo Z, Niu J, Xu N, Sui X, Kareem HA, Hassan MU, Yan M, Zhang Q, Wang Z, Mi F, Kang J, Cui J, Wang Q. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis. CHEMOSPHERE 2022; 290:133368. [PMID: 34933027 DOI: 10.1016/j.chemosphere.2021.133368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes. Physiological results showed antioxidant defence system and photosynthesis was significantly disturbed under high environmental concentration of graphene. With Ultra high performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS), 406 metabolites were detected and 62/13 and 110/58 metabolites significantly changed in the leaves of Gold/Bara under the 1% and 2%-graphene treatments (w/w), respectively. The most important metabolites which were accumulated under graphene stress includes amino acids, flavonoids, organic acids and sugars. Transcriptomic analysis reveals 1125 of core graphene-responsive genes in alfalfa that was robustly differently expressed in both genotypes. And differential expression genes (DEGs) potentially related to photosynthetic enzymes, antioxidant enzymes, amino acids metabolism, and sucrose and starch metabolic which finding was supported by the metabolome study. Gold was more disturbed by graphene stress at both transcriptional and metabolic levels, since more stress-responsive genes/metabolites were identified in Gold. A comprehensive analysis of transcriptomic and metabolomic data highlights the important role of amino acid metabolism and nicotinate and nicotinamide metabolism pathways for graphene tolerance in alfalfa. Our study provide necessary information for better understanding the phytotoxicity molecular mechanism underlying nanomaterials tolerance of plant.
Collapse
Affiliation(s)
- Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Sui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quan Zhang
- Jiuquan Daye Seed Industry Co. Ltd., Jiefang Road 325#, Suzhouqu, Jiuquan, 735000, Gansu Province, China
| | - Zhaolan Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot, 010010, Inner Mongolia, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100094, China
| | - Jian Cui
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
25
|
Hong CP, Kim CK, Lee DJ, Jeong HJ, Lee Y, Park SG, Kim HJ, Kang JN, Ryu H, Kwon SJ, Kang SH. Long-read transcriptome sequencing provides insight into lignan biosynthesis during fruit development in Schisandra chinensis. BMC Genomics 2022; 23:17. [PMID: 34996357 PMCID: PMC8742460 DOI: 10.1186/s12864-021-08253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. RESULTS To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. CONCLUSIONS Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea.
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Dong Jin Lee
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hee Jeong Jeong
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sin-Gi Park
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hyo-Jin Kim
- Jeollabukdo ARES Medicinal Resource Research Institute, Jinan, 55440, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
26
|
Sun D, Li X, Yin Z, Hou Z. The Full-Length Transcriptome Provides New Insights Into the Transcript Complexity of Abdominal Adipose and Subcutaneous Adipose in Pekin Ducks. Front Physiol 2021; 12:767739. [PMID: 34858212 PMCID: PMC8631521 DOI: 10.3389/fphys.2021.767739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Adipose tissues have a central role in organisms, and adipose content is a crucial economic trait of poultry. Pekin duck is an ideal model to study the mechanism of abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis and deposition. Alternative splicing contributes to functional diversity in abdominal and subcutaneous adipose. However, there has been no systematic analysis of the dynamics of differential alternative splicing of abdominal and subcutaneous adipose in Pekin duck. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to explore the transcriptional complexity of abdominal and subcutaneous adipose in Pekin ducks. In total, 143,931 and 111,337 full-length non-chimeric transcriptome sequences of abdominal and subcutaneous adipocytes were obtained from 41.78 GB raw data, respectively. These data led us to identify 19,212 long non-coding RNAs (lncRNAs) and 74,571 alternative splicing events. In addition, combined with the next-generation sequencing technology, we correlated the structure and function annotation with the differential expression profiles of abdominal and subcutaneous adipose transcripts. This study identified lots of novel alternative splicing events and major transcripts of transcription factors related to adipose synthesis. STAT3 was reported as a vital gene for adipogenesis, and we found that its major transcript is STAT3-1, which may play a considerable role in the process of adipose synthesis in Pekin duck. This study greatly increases our understanding of the gene models, genome annotations, genome structures, and the complexity and diversity of abdominal and subcutaneous adipose in Pekin duck. These data provide insights into the regulation of alternative splicing events, which form an essential part of transcript diversity during adipogenesis in poultry. The results of this study provide an invaluable resource for studying alternative splicing and tissue-specific expression.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoqin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhongtao Yin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuocheng Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Chen Z, He X. Application of third-generation sequencing in cancer research. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:150-171. [PMID: 37724303 PMCID: PMC10388785 DOI: 10.1515/mr-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 09/20/2023]
Abstract
In the past several years, nanopore sequencing technology from Oxford Nanopore Technologies (ONT) and single-molecule real-time (SMRT) sequencing technology from Pacific BioSciences (PacBio) have become available to researchers and are currently being tested for cancer research. These methods offer many advantages over most widely used high-throughput short-read sequencing approaches and allow the comprehensive analysis of transcriptomes by identifying full-length splice isoforms and several other posttranscriptional events. In addition, these platforms enable structural variation characterization at a previously unparalleled resolution and direct detection of epigenetic marks in native DNA and RNA. Here, we present a comprehensive summary of important applications of these technologies in cancer research, including the identification of complex structure variants, alternatively spliced isoforms, fusion transcript events, and exogenous RNA. Furthermore, we discuss the impact of the newly developed nanopore direct RNA sequencing (RNA-Seq) approach in advancing epitranscriptome research in cancer. Although the unique challenges still present for these new single-molecule long-read methods, they will unravel many aspects of cancer genome complexity in unprecedented ways and present an encouraging outlook for continued application in an increasing number of different cancer research settings.
Collapse
Affiliation(s)
- Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Li T, Zhang X, Guo L, Qi T, Tang H, Wang H, Qiao X, Zhang M, Zhang B, Feng J, Zuo Z, Zhang Y, Xing C, Wu J. Single-molecule real-time transcript sequencing of developing cotton anthers facilitates genome annotation and fertility restoration candidate gene discovery. Genomics 2021; 113:4245-4253. [PMID: 34793949 DOI: 10.1016/j.ygeno.2021.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/04/2021] [Accepted: 11/10/2021] [Indexed: 01/23/2023]
Abstract
Heterosis refers to the superior phenotypes observed in hybrids. Cytoplasmic male sterility (CMS) system plays an important role in cotton heterosis utilization. However, the global gene expression patterns of CMS-D2 and its interaction with the restorer gene Rf1 remain unclear. Here, the full-length transcript sequencing was performed in anthers of the CMS-D2 restorer line using PacBio single-molecule real-time sequencing technology. Combining PacBio SMRT long-read isoforms and Illumina RNA-seq data, 107,066 isoforms from 44,338 loci were obtained, including 10,086 novel isoforms of novel genes and 66,419 new isoforms of known genes. Totally 56,572 alternative splicing (AS) events, 1146 lncRNAs, 61 fusion transcripts and 10,466 genes exhibited alternative polyadenylation (APA), and 60,995 novel isoforms with predicted open reading frames (ORFs) were further identified. Furthermore, the specifically expressed genes in restorer line were selected and confirmed by qRT-PCR. These findings provide a basis for upland cotton genome annotation and transcriptome research, and will help to reveal the molecular mechanism of interaction between Rf1 and CMS-D2 cytoplasm.
Collapse
Affiliation(s)
- Ting Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Zhidan Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China
| | - Yongjie Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| | - Jianyong Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, 38 Huanghe Dadao, Anyang 455000, Henan, China.
| |
Collapse
|
29
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Li J, Yan X, Ahmad M, Yu W, Song Z, Ni J, Yang Q, Teng Y, Zhang H, Bai S. Alternative splicing of the dormancy-associated MADS-box transcription factor gene PpDAM1 is associated with flower bud dormancy in 'Dangshansu' pear (Pyrus pyrifolia white pear group). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1096-1108. [PMID: 34304127 DOI: 10.1016/j.plaphy.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Alternative splicing (AS) plays a crucial role in plant growth, development and response to various environmental changes. However, whether alternative splicing of MADS-box transcription factors contributes to the flower bud dormancy process in fruit trees still remains unknown. In this work, the AS profile of genes in the dormant flower buds of 'Dangshansu' pear tree were examined. A total number of 3661 alternatively spliced genes were identified, and three mRNA isoforms of the dormancy associated MADS box (DAM) gene, PpDAM1, derived by alternative splicing, designated as PpDAM1.1, PpDAM1.2 and PpDAM1.3, were characterized. Bimolecular fluorescence complementation (BiFC) analysis indicated that AS of PpDAM1 didn't affect the nucleus localization and homo-/heterodimerization of PpDAM1.1, PpDAM1.2 and PpDAM1.3 proteins, but disturbed the translocation of PpDAM1.1/PpDAM1.1, PpDAM1.3/PpDAM1.3, PpDAM1.1/PpDAM1.3, and PpDAM1.2/PpDAM1.3 dimers to the nucleus. Constitutive expression of PpDAM1.2, but not PpDAM1.1 and PpDAM1.3, in Arabidopsis retarded the growth and development of transgenic plants. Further comparative expression analyses of PpDAM1.1, PpDAM1.2 and PpDAM1.3 in the flower buds of 'Dangshansu' and a less dormant pear cultivar, 'Cuiguan', exhibited that the expression of all the three isoforms in 'Dangshansu' were significantly higher than in 'Cuiguan', especially PpDAM1.2, which showed a predominantly higher expression than PpDAM1.1 and PpDAM1.3 in both cultivars. Our results suggest that alternative splicing of PpDAM1 could play a crucial role in pear flower bud dormancy process.
Collapse
Affiliation(s)
- Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Xinhui Yan
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Mudassar Ahmad
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Qinsong Yang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Songling Bai
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
31
|
Zhang C, Ren H, Yao X, Wang K, Chang J. Full-length transcriptome analysis of pecan ( Carya illinoinensis) kernels. G3 GENES|GENOMES|GENETICS 2021; 11:6288450. [PMID: 34849807 PMCID: PMC8496322 DOI: 10.1093/g3journal/jkab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Pecan is rich in bioactive components such as fatty acids (FAs) and flavonoids and is an important nut type worldwide. Therefore, the molecular mechanisms of phytochemical biosynthesis in pecan are a focus of research. Recently, a draft genome and several transcriptomes have been published. However, the full-length mRNA transcripts remain unclear, and the regulatory mechanisms behind the quality components biosynthesis and accumulation have not been fully investigated. In this study, single-molecule long-read sequencing technology was used to obtain full-length transcripts of pecan kernels. In total, 37,504 isoforms of 16,702 genes were mapped to the reference genome. The numbers of known isoforms, new isoforms, and novel isoforms were 9013 (24.03%), 26,080 (69.54%), and 2411 (6.51%), respectively. Over 80% of the transcripts (30,751, 81.99%) had functional annotations. A total of 15,465 alternative splicing (AS) events and 65,761 alternative polyadenylation events were detected; wherein, the retained intron was the predominant type (5652, 36.55%) of AS. Furthermore, 1894 long noncoding RNAs and 1643 transcription factors were predicted using bioinformatics methods. Finally, the structural genes associated with FA and flavonoid biosynthesis were characterized. A high frequency of AS accuracy (70.31%) was observed in FA synthesis-associated genes. This study provides a full-length transcriptome data set of pecan kernels, which will significantly enhance the understanding of the regulatory basis of phytochemical biosynthesis during pecan kernel maturation.
Collapse
Affiliation(s)
- Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
32
|
Zheng Q, Chen W, Luo M, Xu L, Zhang Q, Luo Z. Comparative transcriptome analysis reveals regulatory network and regulators associated with proanthocyanidin accumulation in persimmon. BMC PLANT BIOLOGY 2021; 21:356. [PMID: 34325657 PMCID: PMC8323215 DOI: 10.1186/s12870-021-03133-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) are important plant secondary metabolites that confer flavor, nutritional value, and resistance to pathogens. Persimmon is one of the PA richest crops. Mature fruits can be inedible because of the astringency caused by high PA levels and need to go through a de-astringency treatment before consumption. The molecular basis for PA accumulation is poorly known, particularly transcriptional regulators. We characterised three genotypes ('Luotiantianshi' (LT), 'Mopanshi' (MP), and 'Youhou' (YH)) with different PA accumulation patterns using an approach that combined PacBio full-length sequencing and Illumina-based RNA sequencing to build high-quality full-length transcriptomes. Additionally, we analysed transcriptome dynamics of the three genotypes (LT, MP, and YH) at four key fruit developmental stages. RESULTS A total of 96,463 transcripts were obtained. We identified 80,075 protein-coding sequences (CDSs), 71,137 simple sequence repeats (SSRs), and 27,845 long noncoding RNAs (lncRNAs). Pearson correlation coefficient (PCC), principal component analysis (PCA), and differentially expressed transcripts (DETs) analyses indicated that the four different developmental stages within a genotype exhibited similar transcriptome activities. A total of 2,164 transcripts specific to each fruit developmental stage were detected. The transcripts specific to early stages were attributed to phenylpropanoid and flavonoid biosynthesis. Co-expression network analyses revealed MEbrown and MEblue modules were strongly associated to PA accumulation. From these two modules, 20 hub TFs are potential regulators for PA accumulation. Among them, Cluster_78388 (SBP protein), Cluster_63454 (bZIP protein), and Cluster_66595 (MYB protein) appear to involve in the PA biosynthesis in Chinese genotypes. CONCLUSIONS This is the first high-quality reference transcriptome for commercial persimmon. Our work provides insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout fruit development.
Collapse
Affiliation(s)
- Qingyou Zheng
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenxing Chen
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Man Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liqing Xu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
33
|
Sun J, Chen T, Tao J. Single molecule, full-length transcript sequencing provides insight into the TPS gene family in Paeonia ostii. PeerJ 2021; 9:e11808. [PMID: 34316413 PMCID: PMC8286706 DOI: 10.7717/peerj.11808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tree peony (Paeonia section Moutan DC), one of the traditional famous flowers with both ornamental and medicinal value, was widely used in China. Surprisingly little is known about the full-length transcriptome sequencing in tree peony, limiting the research on its gene function and molecular mechanism. The trehalose phosphate phosphatase (TPS) family genes has been found to affect plant growth and development and the function of TPS genes in Paeonia ostii is unknown. METHODS In our study, we performed single molecule, full-length transcript sequencing in P. ostii. 10 TPS family members were identified from PacBio sequencing for bioinformatics analysis and transcriptional expression analysis. RESULTS A total of 230,736 reads of insert (ROI) sequences and 114,215 full-Length non-chimeric reads (FLNC) were obtained for further ORFs and transcription factors prediction, SSR analysis and lncRNA identification. NR, Swissprot, GO, COG, KOG, Pfam and KEGG databases were used to obtain annotation information of transcripts. 10 TPS family members were identified with molecular weights between 48.0 to 108.5 kD and isoelectric point between 5.61 to 6.37. Furthermore, we found that TPS family members contain conserved TPP or TPS domain. Based on phylogenetic tree analysis, PoTPS1 protein was highly similar to AtTPS1 protein in Arabidopsis. Finally, we analyzed the expression levels of all TPS genes in P. ostii and found PoTPS5 expressed at the highest level. In conclusion, this study combined the results of the transcriptome to systematically analyze the 10 TPS family members, and sets a framework for further research of this important gene family in development of tree peony.
Collapse
Affiliation(s)
- Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tian Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Full-length SMRT transcriptome sequencing and microsatellite characterization in Paulownia catalpifolia. Sci Rep 2021; 11:8734. [PMID: 33888729 PMCID: PMC8062547 DOI: 10.1038/s41598-021-87538-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
Paulownia catalpifolia is an important, fast-growing timber species known for its high density, color and texture. However, few transcriptomic and genetic studies have been conducted in P. catalpifolia. In this study, single-molecule real-time sequencing technology was applied to obtain the full-length transcriptome of P. catalpifolia leaves treated with varying degrees of drought stress. The sequencing data were then used to search for microsatellites, or simple sequence repeats (SSRs). A total of 28.83 Gb data were generated, 25,969 high-quality (HQ) transcripts with an average length of 1624 bp were acquired after removing the redundant reads, and 25,602 HQ transcripts (98.59%) were annotated using public databases. Among the HQ transcripts, 16,722 intact coding sequences, 149 long non-coding RNAs and 179 alternative splicing events were predicted, respectively. A total of 7367 SSR loci were distributed throughout 6293 HQ transcripts, of which 763 complex SSRs and 6604 complete SSRs. The SSR appearance frequency was 28.37%, and the average distribution distance was 5.59 kb. Among the 6604 complete SSR loci, 1-3 nucleotide repeats were dominant, occupying 97.85% of the total SSR loci, of which mono-, di- and tri-nucleotide repeats were 44.68%, 33.86% and 19.31%, respectively. We detected 112 repeat motifs, of which A/T (42.64%), AG/CT (12.22%), GA/TC (9.63%), GAA/TTC (1.57%) and CCA/TGG (1.54%) were most common in mono-, di- and tri-nucleotide repeats, respectively. The length of the repeat SSR motifs was 10-88 bp, and 4997 (75.67%) were ≤ 20 bp. This study provides a novel full-length transcriptome reference for P. catalpifolia and will facilitate the identification of germplasm resources and breeding of new drought-resistant P. catalpifolia varieties.
Collapse
|
35
|
Liaquat F, Munis MFH, Arif S, Haroon U, Shi J, Saqib S, Zaman W, Che S, Liu Q. PacBio Single-Molecule Long-Read Sequencing Reveals Genes Tolerating Manganese Stress in Schima superba Saplings. Front Genet 2021; 12:635043. [PMID: 33889177 PMCID: PMC8057201 DOI: 10.3389/fgene.2021.635043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Schima superba (Theaceae) is a subtropical evergreen tree and is used widely for forest firebreaks and gardening. It is a plant that tolerates salt and typically accumulates elevated amounts of manganese in the leaves. With large ecological amplitude, this tree species grows quickly. Due to its substantial biomass, it has a great potential for soil remediation. To evaluate the thorough framework of the mRNA, we employed PacBio sequencing technology for the first time to generate S. Superba transcriptome. In this analysis, overall, 511,759 full length non-chimeric reads were acquired, and 163,834 high-quality full-length reads were obtained. Overall, 93,362 open reading frames were obtained, of which 78,255 were complete. In gene annotation analyses, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Genes (COG), Gene Ontology (GO), and Non-Redundant (Nr) databases were allocated 91,082, 71,839, 38,914, and 38,376 transcripts, respectively. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT), and Coding Non-Coding Index (CNCI) databases and observed 8,551, 9,174, 20,720, and 18,669 lncRNAs, respectively. Moreover, nine genes were randomly selected for the expression analysis, which showed the highest expression of Gene 6 (Na_Ca_ex gene), and CAX (CAX-interacting protein 4) was higher in manganese (Mn)-treated group. This work provided significant number of full-length transcripts and refined the annotation of the reference genome, which will ease advanced genetic analyses of S. superba.
Collapse
Affiliation(s)
- Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wajid Zaman
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shengquan Che
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Qunlu Liu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Single-Molecule Long-Read Sequencing of Purslane (Portulaca oleracea) and Differential Gene Expression Related with Biosynthesis of Unsaturated Fatty Acids. PLANTS 2021; 10:plants10040655. [PMID: 33808162 PMCID: PMC8066459 DOI: 10.3390/plants10040655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to obtain the full-length transcriptome of purslane (Portulaca oleracea); assorted plant samples were used for single-molecule real-time (SMRT) sequencing. Based on SMRT, functional annotation of transcripts, transcript factors (TFs) analysis, simple sequence repeat analysis and long non-coding RNAs (LncRNAs) prediction were accomplished. Total 15.33-GB reads were produced; with 9,350,222 subreads and the average length of subreads, 1640 bp was counted. With 99.99% accuracy, after clustering, 132,536 transcripts and 78,559 genes were detected. All unique SMART transcripts were annotated in seven functional databases. 4180 TFs (including transcript regulators) and 7289 LncRNAs were predicted. The results of RNA-seq were confirmed with qRT–PCR analysis. Illumina sequencing of leaves and roots of two purslane genotypes was carried out. Amounts of differential expression genes and related KEGG pathways were found. The expression profiles of related genes in the biosynthesis of unsaturated fatty acids pathway in leaves and roots of two genotypes of purslane were analyzed. Differential expression of genes in this pathway built the foundation of ω-3 fatty acid accumulation in different organs and genotypes of purslane. The aforementioned results provide sequence information and may be a valuable resource for whole-genome sequencing of purslane in the future.
Collapse
|
37
|
Hou C, Lian H, Cai Y, Wang Y, Liang D, He B. Comparative Analyses of Full-Length Transcriptomes Reveal Gnetum luofuense Stem Developmental Dynamics. Front Genet 2021; 12:615284. [PMID: 33841494 PMCID: PMC8027257 DOI: 10.3389/fgene.2021.615284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Genus Gnetum, of which the majority species are pantropical liana, have broad industrial uses including for string, nets, and paper production. Although numerous studies have investigated anatomical structures during stem development, the underlying molecular mechanisms that regulate this developmental trajectory in Gnetum species remain poorly understood. A total of 12 full-length transcriptomes were generated from four stem developmental stages of an arborescent representative of this genus, Gnetum luofuense, using Oxford Nanopore Technologies. The results of this analysis reveal a total of 24,151 alternative splicing (AS) and 134,391 alternative polyadenylation events. A remarkably dynamic pattern of AS events, especially in the case of intron retentions, was found across the four developmental stages while no dynamic pattern was found among transcript numbers with varied poly(A) sites. A total of 728 long non-coding RNAs were also detected; the number of cis-regulated target genes dramatically increased while no changes were found among trans-regulated target genes. In addition, a K-means clustering analysis of all full-length transcripts revealed that primary growth is associated with carbohydrate metabolism and fungi defense, while secondary growth is closely linked with photosynthesis, nitrogen transportation, and leaf ontogenesis. The use of weighted gene co-expression network analysis as well as differentially expressed transcripts reveals that bHLH, GRF, and MYB-related transcription factors are involved in primary growth, while AP2/ERF, MYB, NAC, PLAZ, and bZIP participate in G. luofuense stem secondary growth. The results of this study provide further evidence that Nanopore sequencing technology provides a cost-effective method for generating full-length transcriptome data as well as for investigating seed plant organ development.
Collapse
Affiliation(s)
- Chen Hou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Academy of Forestry, Guangzhou, China
| | - Huiming Lian
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Academy of Forestry, Guangzhou, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Academy of Forestry, Guangzhou, China
| | - Yingli Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Academy of Forestry, Guangzhou, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Academy of Forestry, Guangzhou, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
38
|
Dinkins RD, Hancock J, Coe BL, May JB, Goodman JP, Bass WT, Liu J, Fan Y, Zheng Q, Zhu H. Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover. PLANT CELL REPORTS 2021; 40:517-528. [PMID: 33389047 DOI: 10.1007/s00299-020-02647-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Isoflavones are not involved in rhizobial signaling in red clover, but likely play a role in defense in the rhizosphere. Red clover (Trifolium pratense) is a high-quality forage legume, well suited for grazing and hay production in the temperate regions of the world. Like many legumes, red clover produces a number of phenylpropanoid compounds including anthocyanidins, flavan-3-ols, flavanols, flavanones, flavones, and isoflavones. The study of isoflavone biosynthesis and accumulation in legumes has come into the forefront of biomedical and agricultural research due to potential for medicinal, antimicrobial, and environmental implications. CRISPR/Cas9 was used to knock out the function of a key enzyme in the biosynthesis of isoflavones, isoflavone synthase (IFS1). A hemizygous plant carrying a 9-bp deletion in the IFS1 gene was recovered and was intercrossed to obtain homozygous mutant plants. Levels of the isoflavones formononetin, biochanin A and genistein were significantly reduced in the mutant plants. Wild-type and mutant plants were inoculated with rhizobia to test the effect of the mutation on nodulation, but no significant differences were observed, suggesting that these isoflavones do not play important roles in nodulation. Gene expression profiling revealed an increase in expression of the upstream genes producing the precursors for IFS1, namely, phenylalanine ammonium lyase and chalcone synthase, but there were no significant differences in IFS1 gene expression or in the downstream genes in the production of specific isoflavones. Higher expression in genes involved in ethylene response was observed in the mutant plants. This response is normally associated with biotic stress, suggesting that the plants may have been responding to cues in the surrounding rhizosphere due to lower levels of isoflavones.
Collapse
Affiliation(s)
- Randy D Dinkins
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, USA.
| | - Julie Hancock
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Brenda L Coe
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - John B May
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Jack P Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - William T Bass
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Yinglun Fan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- Department of Plant Pathology, University of Florida, IFAS, Fort Pierce, FL, USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
39
|
Liu X, Li X, Wen X, Zhang Y, Ding Y, Zhang Y, Gao B, Zhang D. PacBio full-length transcriptome of wild apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genomics 2021; 22:52. [PMID: 33446096 PMCID: PMC7809858 DOI: 10.1186/s12864-021-07366-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/01/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Valsa canker is a serious disease in the stem of Malus sieversii, caused by Valsa mali. However, little is known about the global response mechanism in M. sieversii to V. mali infection. RESULTS Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen V. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8139 were DETs. Total 1336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of V. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. CONCLUSIONS The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to V. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen V. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.
Collapse
Affiliation(s)
- Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China.
| |
Collapse
|
40
|
Tu Z, Shen Y, Wen S, Liu H, Wei L, Li H. A Tissue-Specific Landscape of Alternative Polyadenylation, lncRNAs, TFs, and Gene Co-expression Networks in Liriodendron chinense. FRONTIERS IN PLANT SCIENCE 2021; 12:705321. [PMID: 34367224 PMCID: PMC8343429 DOI: 10.3389/fpls.2021.705321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 05/08/2023]
Abstract
Liriodendron chinense is an economically and ecologically important deciduous tree species. Although the reference genome has been revealed, alternative polyadenylation (APA), transcription factors (TFs), long non-coding RNAs (lncRNAs), and co-expression networks of tissue-specific genes remain incompletely annotated. In this study, we used the bracts, petals, sepals, stamens, pistils, leaves, and shoot apex of L. chinense as materials for hybrid sequencing. On the one hand, we improved the annotation of the genome. We detected 13,139 novel genes, 7,527 lncRNAs, 1,791 TFs, and 6,721 genes with APA sites. On the other hand, we found that tissue-specific genes play a significant role in maintaining tissue characteristics. In total, 2,040 tissue-specific genes were identified, among which 9.2% of tissue-specific genes were affected by APA, and 1,809 tissue-specific genes were represented in seven specific co-expression modules. We also found that bract-specific hub genes were associated plant defense, leaf-specific hub genes were involved in energy metabolism. Moreover, we also found that a stamen-specific hub TF Lchi25777 may be involved in the determination of stamen identity, and a shoot-apex-specific hub TF Lchi05072 may participate in maintaining meristem characteristic. Our study provides a landscape of APA, lncRNAs, TFs, and tissue-specific gene co-expression networks in L. chinense that will improve genome annotation, strengthen our understanding of transcriptome complexity, and drive further research into the regulatory mechanisms of tissue-specific genes.
Collapse
Affiliation(s)
- Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yufang Shen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huanhuan Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lingmin Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Huogen Li,
| |
Collapse
|
41
|
Kirov I, Dudnikov M, Merkulov P, Shingaliev A, Omarov M, Kolganova E, Sigaeva A, Karlov G, Soloviev A. Nanopore RNA Sequencing Revealed Long Non-Coding and LTR Retrotransposon-Related RNAs Expressed at Early Stages of Triticale SEED Development. PLANTS 2020; 9:plants9121794. [PMID: 33348863 PMCID: PMC7765848 DOI: 10.3390/plants9121794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
The intergenic space of plant genomes encodes many functionally important yet unexplored RNAs. The genomic loci encoding these RNAs are often considered “junk”, DNA as they are frequently associated with repeat-rich regions of the genome. The latter makes the annotations of these loci and the assembly of the corresponding transcripts using short RNAseq reads particularly challenging. Here, using long-read Nanopore direct RNA sequencing, we aimed to identify these “junk” RNA molecules, including long non-coding RNAs (lncRNAs) and transposon-derived transcripts expressed during early stages (10 days post anthesis) of seed development of triticale (AABBRR, 2n = 6x = 42), an interspecific hybrid between wheat and rye. Altogether, we found 796 lncRNAs and 20 LTR retrotransposon-related transcripts (RTE-RNAs) expressed at this stage, with most of them being previously unannotated and located in the intergenic as well as intronic regions. Sequence analysis of the lncRNAs provide evidence for the frequent exonization of Class I (retrotransposons) and class II (DNA transposons) transposon sequences and suggest direct influence of “junk” DNA on the structure and origin of lncRNAs. We show that the expression patterns of lncRNAs and RTE-related transcripts have high stage specificity. In turn, almost half of the lncRNAs located in Genomes A and B have the highest expression levels at 10–30 days post anthesis in wheat. Detailed analysis of the protein-coding potential of the RTE-RNAs showed that 75% of them carry open reading frames (ORFs) for a diverse set of GAG proteins, the main component of virus-like particles of LTR retrotransposons. We further experimentally demonstrated that some RTE-RNAs originate from autonomous LTR retrotransposons with ongoing transposition activity during early stages of triticale seed development. Overall, our results provide a framework for further exploration of the newly discovered lncRNAs and RTE-RNAs in functional and genome-wide association studies in triticale and wheat. Our study also demonstrates that Nanopore direct RNA sequencing is an indispensable tool for the elucidation of lncRNA and retrotransposon transcripts.
Collapse
Affiliation(s)
- Ilya Kirov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
- Correspondence:
| | - Maxim Dudnikov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| | - Pavel Merkulov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Andrey Shingaliev
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Murad Omarov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
- Faculty of Computer Science, National Research University Higher School of Economics, Pokrovsky Boulvar, 11, 109028 Moscow, Russia
| | - Elizaveta Kolganova
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Alexandra Sigaeva
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Gennady Karlov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Alexander Soloviev
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| |
Collapse
|
42
|
Deng N, Hou C, He B, Ma F, Song Q, Shi S, Liu C, Tian Y. A full-length transcriptome and gene expression analysis reveal genes and molecular elements expressed during seed development in Gnetum luofuense. BMC PLANT BIOLOGY 2020; 20:531. [PMID: 33228526 PMCID: PMC7685604 DOI: 10.1186/s12870-020-02729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/31/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Gnetum is an economically important tropical and subtropical gymnosperm genus with various dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of Gnetum seeds. However, the molecular mechanisms related to this process remain unknown. RESULTS We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs, 2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G. luofuense. CONCLUSIONS These findings provide a valuable molecular resource for understanding seed development of gymnosperms.
Collapse
Affiliation(s)
- Nan Deng
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Chen Hou
- Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Boxiang He
- Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fengfeng Ma
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Qingan Song
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China.
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China.
| |
Collapse
|
43
|
Schaarschmidt S, Fischer A, Lawas LMF, Alam R, Septiningsih EM, Bailey-Serres J, Jagadish SVK, Huettel B, Hincha DK, Zuther E. Utilizing PacBio Iso-Seq for Novel Transcript and Gene Discovery of Abiotic Stress Responses in Oryza sativa L. Int J Mol Sci 2020; 21:ijms21218148. [PMID: 33142722 PMCID: PMC7663775 DOI: 10.3390/ijms21218148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
The wide natural variation present in rice is an important source of genes to facilitate stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads. Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel platform. RNA was isolated from different organs of plants grown under control and abiotic stress conditions in different environments. Reconstructed de novo reference transcriptomes resulted in 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome. For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds were identified at combined heat and drought in the field. The newly generated rice transcriptomes are useful to identify candidate genes for stress tolerance breeding not present in the reference transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome sequencing for identification of candidate genes in highly stress tolerant genotypes.
Collapse
Affiliation(s)
- Stephanie Schaarschmidt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
- Correspondence: (S.S.); (E.Z.)
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
| | - Lovely Mae F. Lawas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rejbana Alam
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (R.A.); (J.B.-S.)
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (R.A.); (J.B.-S.)
| | - S. V. Krishna Jagadish
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Dirk K. Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
- Correspondence: (S.S.); (E.Z.)
| |
Collapse
|
44
|
Chen D, Du Y, Fan X, Zhu Z, Jiang H, Wang J, Fan Y, Chen H, Zhou D, Xiong C, Zheng Y, Xu X, Luo Q, Guo R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. J Invertebr Pathol 2020; 176:107475. [PMID: 32976816 DOI: 10.1016/j.jip.2020.107475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023]
Abstract
Ascosphaera apis is a widespread fungal pathogen of honeybee larvae that results in chalkbrood disease, leading to heavy losses for the beekeeping industry in China and many other countries. This work was aimed at generating a full-length transcriptome of A. apis using PacBio single-molecule real-time (SMRT) sequencing. Here, more than 23.97 Gb of clean reads was generated from long-read sequencing of A. apis mycelia, including 464,043 circular consensus sequences (CCS) and 394,142 full-length non-chimeric (FLNC) reads. In total, we identified 174,095 high-confidence transcripts covering 5141 known genes with an average length of 2728 bp. We also discovered 2405 genic loci and 11,623 isoforms that have not been annotated yet within the current reference genome. Additionally, 16,049, 10,682, 4520 and 7253 of the discovered transcripts have annotations in the Non-redundant protein (Nr), Clusters of Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, 1205 long non-coding RNAs (lncRNAs) were identified, which have less exons, shorter exon and intron lengths, shorter transcript lengths, lower GC percent, lower expression levels, and fewer alternative splicing (AS) evens, compared with protein-coding transcripts. A total of 253 members from 17 transcription factor (TF) families were identified from our transcript datasets. Finally, the expression of A. apis isoforms was validated using a molecular approach. Overall, this is the first report of a full-length transcriptome of entomogenous fungi including A. apis. Our data offer a comprehensive set of reference transcripts and hence contributes to improving the genome annotation and transcriptomic study of A. apis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yu Du
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Zhiwei Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Haibin Jiang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yuanchan Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Huazhi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Cuiling Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yanzhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Xijian Xu
- Jiangxi Province Institute of Apiculture, 330201 Nanchang, Jiangxi, China
| | - Qun Luo
- Jiangxi Province Institute of Apiculture, 330201 Nanchang, Jiangxi, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China; Engineering Research Center of Processing and Application of Bee Products of Ministry of Education, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
45
|
Yin X, Yi K, Zhao Y, Hu Y, Li X, He T, Liu J, Cui G. Revealing the full-length transcriptome of caucasian clover rhizome development. BMC PLANT BIOLOGY 2020; 20:429. [PMID: 32938399 PMCID: PMC7493993 DOI: 10.1186/s12870-020-02637-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Caucasian clover (Trifolium ambiguum M. Bieb.) is a strongly rhizomatous, low-crowned perennial leguminous and ground-covering grass. The species may be used as an ornamental plant and is resistant to cold, arid temperatures and grazing due to a well-developed underground rhizome system and a strong clonal reproduction capacity. However, the posttranscriptional mechanism of the development of the rhizome system in caucasian clover has not been comprehensively studied. Additionally, a reference genome for this species has not yet been published, which limits further exploration of many important biological processes in this plant. RESULT We adopted PacBio sequencing and Illumina sequencing to identify differentially expressed genes (DEGs) in five tissues, including taproot (T1), horizontal rhizome (T2), swelling of taproot (T3), rhizome bud (T4) and rhizome bud tip (T5) tissues, in the caucasian clover rhizome. In total, we obtained 19.82 GB clean data and 80,654 nonredundant transcripts were analysed. Additionally, we identified 78,209 open reading frames (ORFs), 65,227 coding sequences (CDSs), 58,276 simple sequence repeats (SSRs), 6821 alternative splicing (AS) events, 2429 long noncoding RNAs (lncRNAs) and 4501 putative transcription factors (TFs) from 64 different families. Compared with other tissues, T5 exhibited more DEGs, and co-upregulated genes in T5 are mainly annotated as involved in phenylpropanoid biosynthesis. We also identified betaine aldehyde dehydrogenase (BADH) as a highly expressed gene-specific to T5. A weighted gene co-expression network analysis (WGCNA) of transcription factors and physiological indicators were combined to reveal 11 hub genes (MEgreen-GA3), three of which belong to the HB-KNOX family, that are up-regulated in T3. We analysed 276 DEGs involved in hormone signalling and transduction, and the largest number of genes are associated with the auxin (IAA) signalling pathway, with significant up-regulation in T2 and T5. CONCLUSIONS This study contributes to our understanding of gene expression across five different tissues and provides preliminary insight into rhizome growth and development in caucasian clover.
Collapse
Affiliation(s)
- Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yao Hu
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Xu Li
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Taotao He
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Jiaxue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
46
|
Alternative Splicing Regulation of Anthocyanin Biosynthesis in Camellia sinensis var. assamica Unveiled by PacBio Iso-Seq. G3-GENES GENOMES GENETICS 2020; 10:2713-2723. [PMID: 32518082 PMCID: PMC7407465 DOI: 10.1534/g3.120.401451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the pathway and transcription factor regulation of anthocyanin biosynthesis in tea plants [Camellia sinensis (L.) O. Ktze] are known, post-transcriptional regulation mechanisms involved in anthocyanin accumulation have not been comprehensively studied. We obtained the full-length transcriptome of a purple cultivar (‘Zijuan’) and a normal green cultivar (‘Yunkang 10#) of C. sinensis var. asssamica (Masters) showing different accumulation of anthocyanins and catechins through PacBio isoform sequencing (Iso-Seq). In total, 577,557 mapped full-length cDNAs were obtained, and 2,600 average-length gene isoforms were identified in both cultivars. After gene annotations and pathway predictions, we found that 98 key genes in anthocyanin biosynthesis pathways could have undergone alternative splicing (AS) events, and identified a total of 238 isoforms involved in anthocyanin biosynthesis. We verified expression of the C4H, CHS, FLS, CCOM, F3′5’H, LAR, PAL, CCR, CYP73A13, UDP75L12, UDP78A15/UFGT, UDP94P1, GL3, MYB113, ANR, ANS, F3H, 4CL1, CYP98A3/C3H, CHI, DFR genes and their AS transcripts using qRT-PCR. Correlation analysis of anthocyanin biosynthesis and gene expression results revealed that C4H1, FLS1, PAL2, CCR2, UDP75L122 and MYB113-1 are crucial AS transcripts for regulating anthocyanin biosynthesis in C. sinensis var. assamica. Our results reveal post-transcriptional regulation of anthocyanin biosynthesis in tea plants, and provide more new insights into the regulation of secondary metabolism.
Collapse
|
47
|
Hu Z, Lyu T, Yan C, Wang Y, Ye N, Fan Z, Li X, Li J, Yin H. Identification of alternatively spliced gene isoforms and novel noncoding RNAs by single-molecule long-read sequencing in Camellia. RNA Biol 2020; 17:966-976. [PMID: 32160106 PMCID: PMC7549672 DOI: 10.1080/15476286.2020.1738703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/23/2019] [Accepted: 02/13/2020] [Indexed: 02/09/2023] Open
Abstract
Direct single-molecule sequencing of full-length transcripts allows efficient identification of gene isoforms, which is apt to alternative splicing (AS), polyadenylation, and long non-coding RNA analyses. However, the identification of gene isoforms and long non-coding RNAs with novel regulatory functions remains challenging, especially for species without a reference genome. Here, we present a comprehensive analysis of a combined long-read and short-read transcriptome sequencing in Camellia japonica. Through a novel bioinformatic pipeline of reverse-tracing the split-sites, we have uncovered 257,692 AS sites from 61,838 transcripts; and 13,068 AS isoforms have been validated by aligning the short reads. We have identified the tissue-specific AS isoforms along with 6,373 AS events that were found in all tissues. Furthermore, we have analysed the polyadenylation (polyA) patterns of transcripts, and found that the preference for polyA signals was different between the AS and non-AS transcripts. Moreover, we have predicted the phased small interfering RNA (phasiRNA) loci through integrative analyses of transcriptome and small RNA sequencing. We have shown that a newly evolved phasiRNA locus from lipoxygenases generated 12 consecutive 21 bp secondary RNAs, which were responsive to cold and heat stress in Camellia. Our studies of the isoform transcriptome provide insights into gene splicing and functions that may facilitate the mechanistic understanding of plants.
Collapse
Affiliation(s)
- Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Tao Lyu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Chao Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi, Jiangxi, China
| | - Yupeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Zhengqi Fan
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xinlei Li
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jiyuan Li
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Chen J, Yu Y, Kang K, Zhang D. SMRT sequencing of the full-length transcriptome of the white-backed planthopper Sogatella furcifera. PeerJ 2020; 8:e9320. [PMID: 32551204 PMCID: PMC7292024 DOI: 10.7717/peerj.9320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
The white-backed planthopper Sogatella furcifera is an economically important rice pest distributed throughout Asia. It damages rice crops by sucking phloem sap, resulting in stunted growth and plant virus transmission. We aimed to obtain the full-length transcriptome data of S. furcifera using PacBio single-molecule real-time (SMRT) sequencing. Total RNA extracted from S. furcifera at various developmental stages (egg, larval, and adult stages) was mixed and used to generate a full-length transcriptome for SMRT sequencing. Long non-coding RNA (lncRNA) identification, full-length coding sequence prediction, full-length non-chimeric (FLNC) read detection, simple sequence repeat (SSR) analysis, transcription factor detection, and transcript functional annotation were performed. A total of 12,514,449 subreads (15.64 Gbp, clean reads) were generated, including 630,447 circular consensus sequences and 388,348 FLNC reads. Transcript cluster analysis of the FLNC reads revealed 251,109 consensus reads including 29,700 high-quality reads. Additionally, 100,360 SSRs and 121,395 coding sequences were identified using SSR analysis and ANGEL software, respectively. Furthermore, 44,324 lncRNAs were annotated using four tools and 1,288 transcription factors were identified. In total, 95,495 transcripts were functionally annotated based on searches of seven different databases. To the best of our knowledge, this is the first study of the full-length transcriptome of the white-backed planthopper obtained using SMRT sequencing. The acquired transcriptome data can facilitate further studies on the ecological and viral-host interactions of this agricultural pest.
Collapse
Affiliation(s)
- Jing Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Yaya Yu
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Kui Kang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| |
Collapse
|
49
|
Liu L, Wang Z, Su Y, Wang T. Characterization and Analysis of the Full-Length Transcriptomes of Multiple Organs in Pseudotaxus chienii (W.C.Cheng) W.C.Cheng. Int J Mol Sci 2020; 21:ijms21124305. [PMID: 32560294 PMCID: PMC7352595 DOI: 10.3390/ijms21124305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Pseudotaxus chienii, a rare tertiary relict species with economic and ecological value, is a representative of the monotypic genus Pseudotaxus that is endemic to China. P. chienii can adapt well to habitat isolation and ecological heterogeneity under a variety of climate and soil conditions, and is able to survive in harsh environments. However, little is known about the molecular and genetic resources of this long-lived conifer. Herein, we sequenced the transcriptomes of four organs of P. chienii using the PacBio Isoform Sequencing and Illumina RNA Sequencing platforms. Based on the PacBio Iso-Seq data, we obtained 44,896, 58,082, 50,485, and 67,638 full-length unigenes from the root, stem, leaf, and strobilus, respectively, with a mean length of 2692 bp, and a mean N50 length of 3010.75 bp. We then comprehensively annotated these unigenes. The number of organ-specific expressed unigenes ranged from 4393 in leaf to 9124 in strobilus, suggesting their special roles in physiological processes, organ development, and adaptability in the different four organs. A total of 16,562 differentially expressed genes (DEGs) were identified among the four organs and clustered into six subclusters. The gene families related to biotic/abiotic factors, including the TPS, CYP450, and HSP families, were characterized. The expression levels of most DEGs in the phenylpropanoid biosynthesis pathway and plant–pathogen interactions were higher in the root than in the three other organs, suggesting that root constitutes the main organ of defensive compound synthesis and accumulation and has a stronger ability to respond to stress. The sequences were analyzed to predict transcription factors, long non-coding RNAs, and alternative splicing events. The expression levels of most DEGs of C2H2, C3H, bHLH, and bZIP families in the root and stem were higher than those in the leaf and strobilus, indicating that these TFs may play a crucial role in the survival of the root and stem. These results comprise the first comprehensive gene expression profiles obtained for different organs of P. chienii. Our findings will facilitate further studies on the functional genomics, adaptive evolution, and phylogeny of P. chienii, and lay the foundation for the development of conservation strategies for this endangered conifer.
Collapse
Affiliation(s)
- Li Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.L.); (Z.W.)
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.L.); (Z.W.)
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.L.); (Z.W.)
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
- Correspondence: (Y.S.); (T.W.); Tel.: +86-020-84111939 (Y.S.); +86-020-85280185 (T.W.)
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.S.); (T.W.); Tel.: +86-020-84111939 (Y.S.); +86-020-85280185 (T.W.)
| |
Collapse
|
50
|
Cui J, shen N, Lu Z, Xu G, Wang Y, Jin B. Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome. PLANT METHODS 2020; 16:85. [PMID: 32536962 PMCID: PMC7291481 DOI: 10.1186/s13007-020-00629-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/06/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND The number of studies using third-generation sequencing utilising Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) is rapidly increasing in many different research areas. Among them, plant full-length single-molecule transcriptome studies have mostly used PacBio sequencing, whereas ONT is rarely used. Therefore, in this study, we examined ONT RNA sequencing methods in plants. We performed a detailed evaluation of reads from PacBio, Nanopore direct cDNA (ONT Dc), and Nanopore PCR cDNA (ONT Pc) sequencing including characteristics of raw data and identification of transcripts. In addition, matched Illumina data were generated for comparison. RESULTS ONT Pc showed overall better raw data quality, whereas PacBio generated longer read lengths. In the transcriptome analysis, PacBio and ONT Pc performed similarly in transcript identification, simple sequence repeat analysis, and long non-coding RNA prediction. PacBio was superior in identifying alternative splicing events, whereas ONT Pc could estimate transcript expression levels. CONCLUSIONS This paper made a comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome, the results indicate that ONT Pc is more cost-effective for generating extremely long reads and can characterise the transcriptome as well as quantify transcript expression. Therefore, ONT Pc is a new cost-effective and worthwhile method for full-length single-molecule transcriptome analysis in plants.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Nan shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Guolu Xu
- Biomarker Technologies Corporation, Beijing, 101300 China
| | - Yuyao Wang
- Biomarker Technologies Corporation, Beijing, 101300 China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|