1
|
Ghosh A, Hasanuzzaman M, Fujita M, Adak MK. Carbon dioxide sensitization delays the postharvest ripening and fatty acids composition of Capsicum fruit by regulating ethylene biosynthesis, malic acid and reactive oxygen species metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:985-1002. [PMID: 38974358 PMCID: PMC11222363 DOI: 10.1007/s12298-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01471-4.
Collapse
Affiliation(s)
- Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| | - M. K. Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| |
Collapse
|
2
|
Pieper JR, Anthony BM, Chaparro JM, Prenni JE, Minas IS. Rootstock vigor dictates the canopy light environment that regulates metabolite profile and internal fruit quality development in peach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108449. [PMID: 38503188 DOI: 10.1016/j.plaphy.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality. Αverage yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA). Α detailed peach fruit quality analysis on fruit of equal maturity (based on the index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.
Collapse
Affiliation(s)
- Jeff R Pieper
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brendon M Anthony
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Kaur K, Pandiselvam R, Kothakota A, Padma Ishwarya S, Zalpouri R, Mahanti NK. Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Kaur G, Sidhu GK, Kaur P, Kaur A. Influence of ozonation and roasting on functional, microstructural, textural characteristics, and aflatoxin content of groundnut kernels. J Texture Stud 2022; 53:908-922. [PMID: 36053754 DOI: 10.1111/jtxs.12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 12/30/2022]
Abstract
The present study was conducted to evaluate the influence of ozonation, roasting and their combination on the moisture content, color, functional, structural, textural components, and aflatoxins in groundnut kernels. Samples were subjected to three treatments namely, dry roasting (R): 166°C for 7 min; gaseous ozone treatment (O): 6 mg/L for 30 min; combined ozonation-roasting (OR): gaseous ozonation at 6 mg/L for 30 min followed by dry roasting at 166°C for 7 min. The ozonated-roasted samples had the lowest moisture content (3.45%), the highest total phenolic content (4.18 mg gallic acid equivalents/100 g), and antioxidants capacity (69.59%). The treatments did not induce significant changes in color of kernels (p < .05). Scanning electron microscopy indicated cracking of granules in roasted and swelling in ozonated kernels whereas more uniform orientation of granules was observed in ozonated-roasted kernels. Roasted and ozonated kernels indicated a significant reduction of fracturability force to 54.60 and 14.11%, respectively, whereas ozonated-roasted samples demonstrated a nonsignificant increase (4.37%). An increase in wave number of ozonated samples to 3,289.37 cm-1 in Fourier transform infrared (FTIR) spectrum (FTIR) indicated stretching in OH groups. FTIR spectrum of ozonated-roasted kernels suggested the formation of a new compound with CC and CC groups. The major aflatoxin B1 was reduced to maximum, that is, 100% in ozonated-roasted kernels followed by ozonated (80.95%) and roasted (57.14%) samples. The findings indicate that the ozonation-roasting treatment had a prominent role in the enhancement of functional compounds, structural and textural attributes along with the considerable reduction in aflatoxin content.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gagandeep Kaur Sidhu
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Preetinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amarjit Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Polychroniadou C, Karagiannis E, Michailidis M, Adamakis IDS, Ganopoulos I, Tanou G, Bazakos C, Molassiotis A. Identification of genes and metabolic pathways involved in wounding-induced kiwifruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:179-190. [PMID: 35358868 DOI: 10.1016/j.plaphy.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Fruit is constantly challenged by wounding events, inducing accelerated ripening and irreversible metabolic changes. However, cognate mechanisms that regulate this process are little known. To expand our knowledge of ripening metabolism induced by wounding, an artificial-wound global transcriptome investigation combined with metabolite profiling study was conducted in postharvest kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev. 'Hayward'). Wounding treatment promoted fruit ripening, as demonstrated by changes in fruit firmness, ethylene production and respiration activity determined periodically during a ripening period of 8 d at room temperature. Calcium imaging using fluorescent probe Fluo-3 AM revealed spatial dynamics of Ca2+ signaling in the wounding area following 8d ripening. Several sugars including fructose, glucose, and sucrose as well as organic acids such as citric, succinic and galacturonic acid were increased by wounding. Changes of various amino acids in wounded-treated fruit, especially 5-oxoproline and valine along with alternations of soluble alcohols, like myo-inositol were detected. Gene expression analysis of the wounded fruit showed increased expression of genes that are mainly involved in defense response (e.g., AdTLP.1-3, AdPP2C.1-2, AdMALD1), calcium ion binding (e.g., AdCbEFh, AdCLR, AdANX), TCA cycle (e.g., AdMDH.1, AdMDH.2, AdCS), sugars (e.g., AdSUSA.1, AdSPS4, AdABFr), secondary metabolism (e.g., AdPAL.1-3, AdCCR, AdHCT.1-2), lipid processing (e.g., AdGELP.1-4, AdGELP) and pectin degradation (e.g., AdPE.1-2, AdPAE.1-2, AdPG.1-2) as well as in ethylene (AdERF7, AdERF1B, AdACO.1-4) and auxin (AdICE, AdAEFc, AdASII) synthesis and perception. Moreover, genes related to aquaporins, such as AdAQP2, AdAQP4 and AdAQP7 were down-regulated in fruit exposed to wounding. These results demonstrate multiple metabolic points of wounding regulatory control during kiwifruit ripening and provide insights into the molecular basis of wounding-mediated ripening.
Collapse
Affiliation(s)
- Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | | | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece.
| |
Collapse
|
6
|
Farneti B, Khomenko I, Ajelli M, Emanuelli F, Biasioli F, Giongo L. Ethylene Production Affects Blueberry Fruit Texture and Storability. FRONTIERS IN PLANT SCIENCE 2022; 13:813863. [PMID: 35401635 PMCID: PMC8990881 DOI: 10.3389/fpls.2022.813863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Ethylene, produced endogenously by plants and their organs, can induce a wide array of physiological responses even at very low concentrations. Nevertheless, the role of ethylene in regulating blueberry (Vaccinium spp.) ripening and storability is still unclear although an increase in ethylene production has been observed in several studies during blueberry ripening. To overcome this issue, we evaluated the endogenous ethylene production of a Vaccinium germplasm selection at different fruit ripening stages and after cold storage, considering also textural modifications. Ethylene and texture were further assessed also on a bi-parental full-sib population of 124 accessions obtained by the crossing between "Draper" and "Biloxi", two cultivars characterized by a different chilling requirement and storability performances. Our results were compared with an extensive literature research, carried out to collect all accessible information on published works related to Vaccinium ethylene production and sensitivity. Results of this study illustrate a likely role of ethylene in regulating blueberry shelf life. However, a generalisation valid for all Vaccinium species is not attainable because of the high variability in ethylene production between genotypes, which is strictly genotype-specific. These differences in ethylene production are related with blueberry fruit storage performances based on textural alterations. Specifically, blueberry accessions characterized by the highest ethylene production had a more severe texture decay during storage. Our results support the possibility of tailoring ad hoc preharvest and postharvest strategies to extend blueberry shelf life and quality according with the endogenous ethylene production level of each cultivar.
Collapse
Affiliation(s)
- Brian Farneti
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Iuliia Khomenko
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Matteo Ajelli
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Francesco Emanuelli
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Franco Biasioli
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Lara Giongo
- Berries Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| |
Collapse
|
7
|
Xanthopoulou A, Moysiadis T, Bazakos C, Karagiannis E, Karamichali I, Stamatakis G, Samiotaki M, Manioudaki M, Michailidis M, Madesis P, Ganopoulos I, Molassiotis A, Tanou G. The perennial fruit tree proteogenomics atlas: a spatial map of the sweet cherry proteome and transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1319-1336. [PMID: 34842310 DOI: 10.1111/tpj.15612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide transcriptome analysis provides systems-level insights into plant biology. Due to the limited depth of quantitative proteomics our understanding of gene-protein-complex stoichiometry is largely unknown in plants. Recently, the complexity of the proteome and its cell-/tissue-specific distribution have boosted the research community to the integration of transcriptomics and proteomics landscapes in a proteogenomic approach. Herein, we generated a quantitative proteome and transcriptome abundance atlas of 15 major sweet cherry (Prunus avium L., cv 'Tragana Edessis') tissues represented by 29 247 genes and 7584 proteins. Additionally, 199 984 alternative splicing events, particularly exon skipping and alternative 3' splicing, were identified in 23 383 transcribed regions of the analyzed tissues. Common signatures as well as differences between mRNA and protein quantities, including genes encoding transcription factors and allergens, within and across the different tissues are reported. Using our integrated dataset, we identified key putative regulators of fruit development, notably genes involved in the biosynthesis of anthocyanins and flavonoids. We also provide proteogenomic-based evidence for the involvement of ethylene signaling and pectin degradation in cherry fruit ripening. Moreover, clusters of genes and proteins with similar and different expression and suppression trends across diverse tissues and developmental stages revealed a relatively low RNA abundance-to-protein correlation. The present proteogenomic analysis allows us to identify 17 novel sweet cherry proteins without prior protein-level annotation evidenced in the currently available databases. To facilitate use by the community, we also developed the Sweet Cherry Atlas Database (https://grcherrydb.com/) for viewing and data mining these resources. This work provides new insights into the proteogenomics workflow in plants and a rich knowledge resource for future investigation of gene and protein functions in Prunus species.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Theodoros Moysiadis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia, 2417, Cyprus
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Ioanna Karamichali
- Institute of Applied Biosciences, CERTH, Thessaloniki-Thermi, 57001, Greece
| | - George Stamatakis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thessaloniki-Thermi, 57001, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| |
Collapse
|
8
|
Sheng L, Shen X, Su Y, Xue Y, Gao H, Mendoza M, Green T, Hanrahan I, Zhu MJ. Effects of 1-methylcyclopropene and gaseous ozone on Listeria innocua survival and fruit quality of Granny Smith apples during long-term commercial cold storage. Food Microbiol 2021; 102:103922. [PMID: 34809948 DOI: 10.1016/j.fm.2021.103922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
This study evaluated the impact of 1-methylcyclopropene (1-MCP), an ethylene synthesis inhibitor, followed by long-term commercial cold storage with low-dose gaseous ozone on the microbiological safety and quality of fresh apples. Granny Smith apples were inoculated with or without Listeria innocua, treated with or without 1.0 mg/L 1-MCP for 24 h, then subjected to commercial cold storage conditions including refrigerated air (RA, 0.6 °C, control), controlled atmosphere (CA, 2% O2, 1% CO2, 0.6 °C), and CA with 51-87 μg/L ozone gas for up to 36 weeks. RA storage reduced L. innocua on apples by up to 3.6 log10 CFU/apple. CA had no advantage over RA in controlling Listeria. Continuous ozone gas application resulted in an additional ∼2.0 log10 CFU/apple reduction of L. innocua (total reduction up to 5.7 log10 CFU/apple) and suppressed native bacteria and fungi. Treatment with 1-MCP had a minor impact on survival of L. innocua or background microbiota on apples, while it significantly delayed fruit ripening and reduced the incidence of superficial scald and internal browning. In summary, 1-MCP treatment followed by CA storage with low-dose continuous ozone gas can effectively control Listeria on fresh apples and delay fruit ripening.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yansong Xue
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Hui Gao
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Soares CG, do Prado SBR, Andrade SCS, Fabi JP. Systems Biology Applied to the Study of Papaya Fruit Ripening: The Influence of Ethylene on Pulp Softening. Cells 2021; 10:2339. [PMID: 34571988 PMCID: PMC8467500 DOI: 10.3390/cells10092339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Papaya is a fleshy fruit that undergoes fast ethylene-induced modifications. The fruit becomes edible, but the fast pulp softening is the main factor that limits the post-harvest period. Papaya fast pulp softening occurs due to cell wall disassembling coordinated by ethylene triggering that massively expresses pectinases. In this work, RNA-seq analysis of ethylene-treated and non-treated papayas enabled a wide transcriptome overview that indicated the role of ethylene during ripening at the gene expression level. Several families of transcription factors (AP2/ERF, NAC, and MADS-box) were differentially expressed. ACO, ACS, and SAM-Mtase genes were upregulated, indicating a high rate of ethylene biosynthesis after ethylene treatment. The correlation among gene expression and physiological data demonstrated ethylene treatment can indeed simulate ripening, and regulation of changes in fruit color, aroma, and flavor could be attributed to the coordinated expression of several related genes. Especially about pulp firmness, the identification of 157 expressed genes related to cell wall metabolism demonstrated that pulp softening is accomplished by a coordinated action of several different cell wall-related enzymes. The mechanism is different from other commercially important fruits, such as strawberry, tomato, kiwifruit, and apple. The observed behavior of this new transcriptomic data confirms ethylene triggering is the main event that elicits fast pulp softening in papayas.
Collapse
Affiliation(s)
- Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.G.S.); (S.B.R.d.P.)
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, Brazil
| | - Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.G.S.); (S.B.R.d.P.)
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, Brazil
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, São Paulo 05508-060, Brazil;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.G.S.); (S.B.R.d.P.)
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-060, Brazil
| |
Collapse
|
10
|
Fan X. Gaseous ozone to preserve quality and enhance microbial safety of fresh produce: Recent developments and research needs. Compr Rev Food Sci Food Saf 2021; 20:4993-5014. [PMID: 34323365 DOI: 10.1111/1541-4337.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Fresh fruits and vegetables are highly perishable and are subject to large postharvest losses due to physiological (senescence), pathologic (decay), and physical (mechanical damage) factors. In addition, contamination of fresh produce with foodborne human pathogens has become a concern. Gaseous ozone has multiple benefits including destruction of ethylene, inactivation of foodborne and spoilage microorganisms, and degradation of chemical residues. This article reviews the beneficial effects of gaseous ozone, its influence on quality and biochemical changes, foodborne human pathogens, and spoilage microorganisms, and discusses research needs with an emphasis on fruits. Ozone may induce synthesis of a number of antioxidants and bioactive compounds by activating secondary metabolisms involving a wide range of enzymes. Disparities exist in the literature regarding the impact of gaseous ozone on quality and physiological processes of fresh produce, such as weight loss, ascorbic acid, and fruit ripening. The disparities are complicated by incomplete reporting of the necessary information, such as relative humidity and temperatures at which ozone measurement and treatment were performed, which is needed for accurate comparison of results among studies. In order to fully realize the benefits of gaseous ozone, research is needed to evaluate the molecular mechanisms of gaseous ozone in inhibiting ripening, influence of relative humidity on the antimicrobial efficacy, interaction between ozone and the cuticle of fresh produce, ozone signaling pathways in the cells and tissues, and so forth. Possible adverse effects of gaseous ozone on quality of fresh produce also need to be carefully evaluated for the purpose of enhancing microbial and chemical safety of fresh produce.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
11
|
Liu N, Chen Y, Yang C, Zhang P, Xie G. Ripening and ethylene production affected by 1-MCP in different parts of kiwifruit during postharvest storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Na Liu
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Yao Chen
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Chen Yang
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Ping Zhang
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Guofang Xie
- Food and Pharmaceutical Engineering Institute, Guizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Dias C, Ribeiro T, Rodrigues AC, Ferrante A, Vasconcelos MW, Pintado M. Improving the ripening process after 1-MCP application: Implications and strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Testempasis S, Tanou G, Minas I, Samiotaki M, Molassiotis A, Karaoglanidis G. Unraveling Interactions of the Necrotrophic Fungal Species Botrytis cinerea With 1-Methylcyclopropene or Ozone-Treated Apple Fruit Using Proteomic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:644255. [PMID: 33777080 PMCID: PMC7988217 DOI: 10.3389/fpls.2021.644255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 05/17/2023]
Abstract
Gray mold caused by the necrotrophic fungus Botrytis cinerea is one of the major postharvest diseases of apple fruit. The exogenous application of 1-methylcyclopropene (1-MCP) and gaseous ozone (O 3) is commonly used to ensure postharvest fruit quality. However, the effect of these treatments on the susceptibility of apple fruit to postharvest pathogens remains largely unknown. Herein, the effect of O 3 and 1-MCP treatments on the development of gray mold on apple fruit (cv. "Granny Smith") was investigated. Artificially inoculated apple fruits, treated or not with 1-MCP, were subjected for 2 months to cold storage [0°C, relative humidity (RH) 95%] either in an O3-enriched atmosphere or in a conventional cold chamber. Minor differences between 1-MCP-treated and control fruits were found in terms of disease expression; however, exposure to ozone resulted in a decrease of disease severity by more than 50% compared with 1-MCP-treated and untreated fruits. Proteomic analysis was conducted to determine proteome changes in the mesocarp tissue of control and 1-MCP- or O3-treated fruits in the absence or in the presence of inoculation with B. cinerea. In the non-inoculated fruits, 26 proteins were affected by 1-MCP, while 51 proteins were altered by ozone. Dynamic changes in fruit proteome were also observed in response to B. cinerea. In O3-treated fruits, a significant number of disease/defense-related proteins were increased in comparison with control fruit. Among these proteins, higher accumulation levels were observed for allergen, major allergen, ACC oxidase, putative NBS-LRR disease resistance protein, major latex protein (MLP)-like protein, or 2-Cys peroxiredoxin. In contrast, most of these proteins were down-accumulated in 1-MCP-treated fruits that were challenged with B. cinerea. These results suggest that ozone exposure may contribute to the reduction of gray mold in apple fruits, while 1-MCP was not effective in affecting this disease. This is the first study deciphering differential regulations of apple fruit proteome upon B. cinerea infection and postharvest storage treatments, underlying aspects of host response related to the gray mold disease.
Collapse
Affiliation(s)
- Stefanos Testempasis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil Science and Water Resources, ELGO-Demeter, Thessaloniki, Greece
| | - Ioannis Minas
- Laboratory of Pomology, Department of Horticulture and Landscape Architecture, Colorado State University, Colorado, CO, United States
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece
| | - Georgios Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
14
|
Zhang H, Li K, Zhang X, Dong C, Ji H, Ke R, Ban Z, Hu Y, Lin S, Chen C. Effects of ozone treatment on the antioxidant capacity of postharvest strawberry. RSC Adv 2020; 10:38142-38157. [PMID: 35517535 PMCID: PMC9057219 DOI: 10.1039/d0ra06448c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Strawberries are highly popular around the world because of their juicy flesh and unique taste. However, they are delicate and extremely susceptible to peroxidation of their membrane lipids during storage, which induces water loss and rotting of the fruit. This study investigated the effects of ozone treatment on the physiological traits, active oxygen metabolism, and the antioxidant properties of postharvest strawberry. The results revealed that the weight loss (WL) and respiration rate (RR) of strawberry were inhibited by ozone treatment (OT), while the decline of firmness (FIR) and total soluble solids (TSS) were delayed. Ozone also reduced the generation rate of superoxide radical anions , and the content of hydrogen peroxide (H2O2) enhanced the activity of superoxidase (SOD), catalase (CAT), ascorbate peroxidase (APX), and monodehydroascorbate reductase (MDHAR), as well as promoted the accumulation of ascorbic acid (ASA), glutathione (GSH), and ferric reducing/antioxidant power (FRAP). In addition, a total of 29 antioxidant-related proteins were changed between the OT group and control (CK) group as detected by label-free proteomics during the storage time, and the abundance associated with ASA–GSH cycle was higher in the OT group at the later stage of storage, and the qRT-PCR results were consistent with those of proteomics. The improvement of the antioxidant capacity of postharvest strawberry treated with ozone may be achieved by enhancing the activity of the antioxidant enzymes and increasing the expression of the antioxidant proteins related to the ascorbic acid–glutathione (ASA–GSH) cycle. Strawberries are highly popular around the world because of their juicy flesh and unique taste.![]()
Collapse
Affiliation(s)
- Huijie Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Kunlun Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences Tianjin China
| | - Xiaojun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
| | - Chenghu Dong
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China Tianjin China
| | - Haipeng Ji
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China Tianjin China
| | - Runhui Ke
- China National Research Institute of Food & Fermentation Industries Co., Ltd Beijing China
| | - Zhaojun Ban
- Zhejiang University of Science and Technology Hangzhou China
| | - Yunfeng Hu
- College of Food Science and Engineering, Tianjin University of Science and Technology Tianjin China
| | - Shaohua Lin
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture Beijing China
| | - Cunkun Chen
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China Tianjin China
| |
Collapse
|
15
|
Wei H, Seidi F, Zhang T, Jin Y, Xiao H. Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chem 2020; 337:127750. [PMID: 32861166 DOI: 10.1016/j.foodchem.2020.127750] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
The phytohormone ethylene is the main cause of postharvest spoilage of fruit and vegetables (F&V). To address the global challenge of reducing postharvest losses of F&V, effective management of ethylene is of great importance. This review summarizes the various ethylene scavengers/inhibitors and emerging technologies recently developed for the effective removal of ethylene released, paying particular attention to the ethylene scavenger/inhibitors containing catalysts to promote the in-situ oxidation of ethylene without inducing further pollution. Packing ethylene scavengers, such as zeolite, titanium dioxide and transition metals, in a small sachet has been practically used and widely reported. However, incorporating ethylene scavenger into food packaging materials or films along with the in-situ oxidation of ethylene has been rarely reviewed. The current review fills up this gap, covering the latest research progress on ethylene scavengers/inhibitors and discussion on the mechanisms of ethylene elimination and oxidation associated with F&V packaging.
Collapse
Affiliation(s)
- Haiying Wei
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Tingwei Zhang
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yongcan Jin
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
16
|
Minas IS, Blanco-Cipollone F, Sterle D. Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy. Food Chem 2020; 335:127626. [PMID: 32739812 DOI: 10.1016/j.foodchem.2020.127626] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/05/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
The development of precise and reliable near infrared spectroscopy (NIRS)-based non-destructive tools to assess physicochemical properties of fleshy fruit has been challenging. A novel crop load × fruit developmental stage protocol for multivariate NIRS-based prediction models calibration to non-destructively assess peach internal quality and maturity was followed. Regression statistics of the prediction models highlighted that dry matter content (DMC, R2 = 0.98, RMSEP = 0.41%), soluble solids concentration (SSC, R2 = 0.96, RMSEP = 0.58%) and index of absorbance difference (IAD, R2 = 0.96, RMSEP = 0.08) could be estimated accurately with a single scan during fruit growth and development. Thus, the impact of preharvest factors such as crop load and canopy position on peach quality and maturity was evaluated. Large-scale field validation showed that heavier crop loads reduced peach quality (DMC, SSC) and delayed maturity (IAD) and upper canopy position advanced both mainly in the moderate crop loads. This calibration protocol can enhance NIRS adaptation across tree fruit supply chain.
Collapse
Affiliation(s)
- Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA.
| | - Fernando Blanco-Cipollone
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA; Western Colorado Research Center at Orchard Mesa, Colorado State University, Grand Junction, CO, USA; Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Badajoz, Spain
| | - David Sterle
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA; Western Colorado Research Center at Orchard Mesa, Colorado State University, Grand Junction, CO, USA
| |
Collapse
|
17
|
Sachadyn-Król M, Agriopoulou S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products-A Review. Molecules 2020; 25:E2416. [PMID: 32455899 PMCID: PMC7288181 DOI: 10.3390/molecules25102416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
In this review, the primary objective was to systematize knowledge about the possibility of improving the health-promoting properties of raw plant products, defined as an increase in the content of bioactive compounds, by using ozone. The greatest attention has been paid to the postharvest treatment of plant raw materials with ozone because of its widespread use. The effect of this treatment on the health-promoting properties depends on the following different factors: type and variety of the fruit or vegetable, form and method of ozone treatment, and dosage of ozone. It seems that ozone applied in the form of ozonated water works more gently than in gaseous form. Relatively high concentration and long contact time used simultaneously might result in increased oxidative stress which leads to the degradation of quality. The majority of the literature demonstrates the degradation of vitamin C and deterioration of color after treatment with ozone. Unfortunately, it is not clear if ozone can be used as an elicitor to improve the quality of the raw material. Most sources prove that the best results in increasing the content of bioactive components can be obtained by applying ozone at a relatively low concentration for a short time immediately after harvest.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Antikalamos, Kalamata, Greece;
| |
Collapse
|
18
|
Papavasileiou A, Tanou G, Samaras A, Samiotaki M, Molassiotis A, Karaoglanidis G. Proteomic analysis upon peach fruit infection with Monilinia fructicola and M. laxa identify responses contributing to brown rot resistance. Sci Rep 2020; 10:7807. [PMID: 32385387 PMCID: PMC7210933 DOI: 10.1038/s41598-020-64864-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
Brown rot, caused by Monilinia spp., is a major peach disease worldwide. In this study, the response of peach cultivars Royal Glory (RG) and Rich Lady (RL) to infection by Monilinia fructicola or Monilinia laxa, was characterized. Phenotypic data, after artificial inoculations, revealed that ‘RL’ was relatively susceptible whereas ‘RG’ was moderately resistant to Monilinia spp. Comparative proteomic analysis identified mesocarp proteins of the 2 cultivars whose accumulation were altered by the 2 Monilinia species. Functional analysis indicated that pathogen-affected proteins in ‘RG’ were mainly involved in energy and metabolism, while, differentially accumulated proteins by the pathogen presence in ‘RL’ were involved in disease/defense and metabolism. A higher number of proteins was differentiated in ‘RG’ fruit compared to ‘RL’. Upon Monilinia spp. infection, various proteins were-down accumulated in ‘RL’ fruit. Protein identification by mass spectrometric analysis revealed that several defense-related proteins including thaumatin, formate dehydrogenase, S-formylglutathione hydrolase, CBS domain-containing protein, HSP70, and glutathione S-transferase were up-accumulated in ‘RG’ fruit following inoculation. The expression profile of selected defense-related genes, such as major latex allergen, 1-aminocyclopropane-1-carboxylate deaminase and UDP-glycoltransferase was assessed by RT-PCR. This is the first study deciphering differential regulations of peach fruit proteome upon Monilinia infection elucidating resistance responses.
Collapse
Affiliation(s)
- Antonios Papavasileiou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, POB 269, 54124, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-Demeter Thermi, Thessaloniki, Greece
| | - Anastasios Samaras
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, POB 269, 54124, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, 570 01, Thessaloniki-Thermi, Greece.
| | - George Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, POB 269, 54124, Thessaloniki, Greece.
| |
Collapse
|
19
|
Wu YY, Liu XF, Fu BL, Zhang QY, Tong Y, Wang J, Wang WQ, Grierson D, Yin XR. Methyl Jasmonate Enhances Ethylene Synthesis in Kiwifruit by Inducing NAC Genes That Activate ACS1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3267-3276. [PMID: 32101430 DOI: 10.1021/acs.jafc.9b07379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cross-talk between various hormones is important in regulating many aspects of plant growth, development, and senescence, including fruit ripening. Here, exogenous ethylene (ETH, 100 μL/L, 12 h) rapidly accelerated 'Hayward' kiwifruit (Actinidia deliciosa) softening and ethylene production and was enhanced by supplementing with continuous treatment with methyl jasmonate (MeJA, 100 μM/L, 12 h) (ETH+MeJA). ETH+MeJA enhanced ACC synthase (ACS) activities and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation but not ACC oxidase (ACO) activity. Increased transcripts of ACS genes AdACS1 and AdACS2, ACS activity, and ethylene production were positively correlated. The abundance of AdACS1 was about 6-fold higher than AdACS2. RNA-seq identified 6 transcription factors among the 87 differentially expressed unigenes induced by ETH+MeJA. Dual-luciferase and electrophoretic mobility shift assays (EMSA) indicated that AdNAC2/3 physically interacted with and trans-activated the AdACS1 promoter 2.2- and 3.5-fold, respectively. Collectively, our results indicate that MeJA accelerates ethylene production in kiwifruit induced by exogenous ethylene, via a preferential activation of AdACS1 and AdACS2.
Collapse
Affiliation(s)
- Ying-Ying Wu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiao-Fen Liu
- National Engineering Laboratory of Cold Chain Logistics Technology and Facility for Horticultural Produce, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Qiu-Yun Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yang Tong
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- National Engineering Laboratory of Cold Chain Logistics Technology and Facility for Horticultural Produce, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
20
|
Karagiannis E, Tanou G, Scossa F, Samiotaki M, Michailidis M, Manioudaki M, Laurens F, Job D, Fernie AR, Orsel M, Molassiotis A. Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. FRONTIERS IN PLANT SCIENCE 2020; 11:8. [PMID: 32117359 PMCID: PMC7031346 DOI: 10.3389/fpls.2020.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
Superficial scald is a major physiological disorder in apple fruit that is induced by cold storage and is mainly expressed as brown necrotic patches on peel tissue. However, a global view of the gene-protein-metabolite interactome underlying scald prevention/sensitivity is currently missing. Herein, we have found for the first time that cold storage in an atmosphere enriched with ozone (O3) induced scald symptoms in 'Granny Smith' apple fruits during subsequent ripening at room temperature. In contrast, treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) reversed this O3-induced scald effect. Amino acids, including branched-chain amino acids, were the most strongly induced metabolites in peel tissue of 1-MCP treated fruits. Proteins involved in oxidative stress and protein trafficking were differentially accumulated prior to and during scald development. Genes involved in photosynthesis, flavonoid biosynthesis and ethylene signaling displayed significant alterations in response to 1-MCP and O3. Analysis of regulatory module networks identified putative transcription factors (TFs) that could be involved in scald. Subsequently, a transcriptional network of the genes-proteins-metabolites and the connected TFs was constructed. This approach enabled identification of several genes coregulated by TFs, notably encoding glutathione S-transferase (GST) protein(s) with distinct signatures following 1-MCP and O3 treatments. Overall, this study is an important contribution to future functional studies and breeding programs for this fruit, aiding to the development of improved apple cultivars to superficial scald.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Greece
| | - Federico Scossa
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - François Laurens
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Dominique Job
- Centre National de la Recherche Scientifique - Université Claude Bernard Lyon 1 - Institut National des Sciences Appliquées-Bayer CropScience, Lyon, France
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathilde Orsel
- Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers, Beaucouzé, France
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Wang C, Fang H, Gong T, Zhang J, Niu L, Huang D, Huo J, Liao W. Hydrogen gas alleviates postharvest senescence of cut rose 'Movie star' by antagonizing ethylene. PLANT MOLECULAR BIOLOGY 2020; 102:271-285. [PMID: 31838617 DOI: 10.1007/s11103-019-00946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
H2 prolonged the vase life and improved the vase quality of cut roses through repressing endogenous ethylene production and alleviating ethylene signal transduction during the entire senescing period. Recently, the application of hydrogen gas (H2) was shown to improve postharvest quality and longevity in perishable horticultural products, but the specific regulation mechanism remains obscure. Here, endogenous ethylene production and the expression of genes in ethylene biosynthesis and signalling pathway were investigated to explore the crosstalk between H2 and ethylene during the senescence of cut roses. Our results revealed that addition of exogenous ethylene by ethephon accelerated the senescence of cut roses, in which 100 mg L-1 ethephon displayed the most obvious senescent phenotype. While the applied different concentrations (1%, 10%, 50% and 100%) of hydrogen-rich water (HRW) conducted different affects in alleviating the senescence of cut roses, and 1% HRW displayed the best ornamental quality and the longest vase life by reducing ethylene production, supported by the decrease of 1-aminocyclopropene-1-carboxylate (ACC) accumulation, ACC synthase (ACS) and ACC oxidase (ACO) activities, and Rh-ACS3 and Rh-ACO1 expressions in ethylene biosynthesis. In addition, HRW increased the transcripts of ethylene receptor genes Rh-ETR1 at blooming period from day 4 to day 6 and suppressed Rh-ETR3 at senescence phase at day 8 after harvest. Furthermore, the relevant affection of HRW on Rh-ETR1 and Rh-ETR3 expressions still existed when the ethylene production was compromised by adequate addition of exogenous ethylene in HRW-treated cut rose petals, and HRW directly repressed the protein level of Rh-ETR3 in a transient expression assay. Overall, the results suggested that H2 is involved in neutralizing ethylene-mediated postharvest in cut flowers.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Tingyu Gong
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
22
|
Zhu X, Jiang J, Yin C, Li G, Jiang Y, Shan Y. Effect of Ozone Treatment on Flavonoid Accumulation of Satsuma Mandarin ( Citrus unshiu Marc.) during Ambient Storage. Biomolecules 2019; 9:E821. [PMID: 31816983 PMCID: PMC6995626 DOI: 10.3390/biom9120821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
This study aimed to compare the flavonoid accumulation between ozone-treated and untreated Satsuma mandarin (Citrusunshiu Marc.) fruits. The fruits exposed to gaseous ozone were found to have higher antioxidant activities and content of flavonoid during the storage period by ultra-high performance liquid chromatography (UPLC). To reveal the molecular regulation of flavonoid accumulation by ozone, chalcone synthase (CHS), chalcone isomerase (CHI), β-1,3-glucanase (GLU), chitinase (CHT), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) were identified and their expression was examined by quantitative real-time polymerase chain reaction (q-PCR). These results support the promising application of ozone treatment as a safe food preservation technique for controlling postharvest disease and extending shelf-life of harvested Satsuma mandarin.
Collapse
Affiliation(s)
- Xiangrong Zhu
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.Z.); (G.L.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Jing Jiang
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Chunxiao Yin
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Gaoyang Li
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.Z.); (G.L.)
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yang Shan
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.Z.); (G.L.)
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| |
Collapse
|
23
|
Nayak SL, Sethi S, Sharma RR, Sharma RM, Singh S, Singh D. Aqueous ozone controls decay and maintains quality attributes of strawberry ( Fragaria × ananassa Duch.). Journal of Food Science and Technology 2019; 57:319-326. [PMID: 31975735 DOI: 10.1007/s13197-019-04063-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/29/2022]
Abstract
Investigations were made on the changes in physical and biochemical attributes, fruit decay and storage life of 'Winter Dawn' strawberry fruits in response to aqueous ozone dip treatment for different exposure times. Fruits were subjected to 0.1 ppm aqueous ozone for different time intervals (1-4 min). The treated strawberries were air dried and stored under ambient (25 ± 2 °C and 45-50% RH) and low temperature (2 ± 1 °C and 90% RH) conditions. Results revealed that treatment of strawberry fruits with aqueous ozone @ 0.1 ppm for 2 min resulted in 21% lower weight loss, 16% higher firmness and 15% lesser change in fruit colour during 2 days in ambient storage. Under low temperature storage, 2 min ozone treated fruits exhibited ~ 21% lower PLW, 19% higher firmness and 46% lesser colour change as compared to control fruits during 14 days of storage. Fruit decay reduced significantly under both low and cold storage conditions. Thus, it can be concluded that application of aqueous ozone for 2 min was able to retain the strawberry fruit quality and extend its storage life till 14 days under low temperature storage and 2 days under ambient storage conditions.
Collapse
Affiliation(s)
- Swarajya Laxmi Nayak
- 1Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Shruti Sethi
- 1Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - R R Sharma
- 1Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - R M Sharma
- 2Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Surender Singh
- 3Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Dinesh Singh
- 4Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|