1
|
Xianguan Z, Yun L, Wei L, Linying C, Haoran C, Xiaoyu H, Heng W, Ying W, Xiaobo W, Jiajia L. Soybean gene GmMLP34 regulates Arabidopsis negative response to high temperature stress. Gene 2025; 933:148983. [PMID: 39368788 DOI: 10.1016/j.gene.2024.148983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
The functions of major latex proteins (MLPs) in plant defense and stress responses have been widely documented; however, their roles in HT stress response in soybeans have not been elucidated. This study investigated the role of GmMLP34, a member of the major latex protein (MLP) family, in the response of soybeans to HT stress. Transcriptome analysis of HT-resistant (JD21) and HT-sensitive (HD14) soybean leaves under HT stress (43.40 ± 1.70 °C) and field conditions revealed differential expression of GmMLP34. Further examination across different HT-resistant varieties showed that GmMLP34 was down-regulated in the leaves of 6 HT-resistant varieties (85.7 %) and up-regulated in the leaves of 6 HT-sensitive varieties (85.7 %) under the HT treatment (45 °C for 3 h). The results of this study indicate that ectopic expression of the GmMLP34 gene in Arabidopsis led to a significant decrease in the survival rate of seedling when compared to the wild type (WT) under HT stress conditions of 37/28 °C (day/night) for 5 d, Moreover, the results indicated a significant decrease in primary root length and lateral root number under 45 °C/3 h HT stress followed by 12 h room temperature recovery. Additionally, the levels of abscisic acid (ABA), and flavonoids, and the activity of the peroxidase (POD) enzyme in the antioxidant system was decreased, while the activity of the superoxide dismutase (SOD) enzyme increased in GmMLP34-overexpressing transgenic Arabidopsis thaliana. The expression levels of the HT-response genes AtCHS1 and AtCHI2-A, were significantly down-regulated, whereas that of AtGBP1 was significantly up-regulated. These results suggest that GmMLP34 negatively regulates the response of Arabidopsis thaliana to HT stress by modulating flavonoid synthesis, hormone synthesis, and the antioxidant enzyme system. These findings provide theoretical information for the genetic improvement of HT tolerance in soybean and contribute to the understanding of the molecular mechanisms underlying plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zhi Xianguan
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lu Yun
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Liao Wei
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chen Linying
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chen Haoran
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Hu Xiaoyu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wang Heng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wei Ying
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wang Xiaobo
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Li Jiajia
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Franzoni G, Muto A, Bruno L, Madeo ML, Sirangelo TM, Ceverista Chiappetta AA, Bitonti MB, Müller CT, Ferrante A, Rogers HJ, Spadafora ND. Identification of potential molecular markers for detection of lengthy chilled storage of Prunus persica L. fruit. Heliyon 2024; 10:e40992. [PMID: 39720059 PMCID: PMC11667614 DOI: 10.1016/j.heliyon.2024.e40992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Low temperature is the main strategy to preserve fruit quality post-harvest, in the supply chain. Low temperatures reduce the respiration, ethylene emission, and enzymatic activities associated with senescence. Unfortunately, peaches are sensitive to low temperatures if exposed for long periods, resulting in physiological disorders that can compromise commercial quality. Maximum damage occurs at 5 °C while at 1 °C damage is reduced. Therefore, rapid early detection methods for the distribution chain to monitor length and temperature of fruit storage are needed. The aim of this work was to identify candidate genes to develop an antibody-based marker system in peach fruit to monitor chilled storage. Two cultivars were tested: 'Sagittaria', an early ripening peach, and 'Big Top' a mid-season ripening nectarine, with delayed softening and resistance to supply-chain conditions. Both cultivars were subjected to 1 or 5 °C chilled storage for different times to simulate typical supply-chain conditions. Identification and expression of potential marker genes was assessed using a previous transcriptomic study following storage at 1 °C. Fifteen candidate genes were selected, however only seven proteins encoded were suitable as protein markers as they lack a transmembrane domain. Real-time qPCR using fruit from the subsequent year to the transcriptome was used to assess expression at both 1 and 5 °C chilled storage of five candidate genes. Four genes and the related proteins were identified that would be suitable for the development of molecular markers: a Pathogenesis-Related Bet v I family protein, a dehydrin, a Glycosyl hydrase family 18 protein and a Late Embryogenesis abundant protein.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| | | | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Cao J, Maitirouzi A, Feng Y, Zhang H, Heng Y, Zhang J, Wang Y. Heterologous expression of Halostachys caspica pathogenesis-related protein 10 increases salt and drought resistance in transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 115:5. [PMID: 39671054 DOI: 10.1007/s11103-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Pathogenesis-related proteins (PR), whose expressions are induced by biotic and abiotic stress, play important roles in plant defense. Previous research identified the salt-induced HcPR10 gene in the halophyte Halostachys caspica as a regulator of plant growth and development through interactions with cytokinin. However, the mechanisms by which HcPR10 mediates resistance to abiotic stress remain poorly understood. In this study, we found that the heterologous expression of HcPR10 significantly enhanced salt and drought tolerance in Arabidopsis, likely by increasing the activity of antioxidant enzyme systems, allowing for effective scavenging of reactive oxygen species (ROS) and thus protecting plant cells from oxidative damage. Additionally, the overexpression of HcPR10 also activated the expression of stress-related genes in Arabidopsis. Furthermore, using yeast two-hybrid technology, five proteins (HcLTPG6, HcGPX6, HcUGT73B3, HcLHCB2.2, and HcMSA1) were identified as potential interacting partners for HcPR10, which could positively regulate the salt stress response mediated by HcPR10. Our findings lay the foundation for a better understanding of the molecular mechanisms of HcPR10 in response to abiotic stress and reveal additional candidate genes for improving crop salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Ayixianmuguli Maitirouzi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yudan Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Hua Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Youqiang Heng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinbo Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
4
|
Chen H, Li Q, Cheng P, Yan T, Dong C, Hou Z, Zhu P, Huang C. Identification and analysis of major latex protein ( MLP) family genes in Rosa chinensis responsive to Botrytis cinerea infection by RNA-seq approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1511597. [PMID: 39735770 PMCID: PMC11671256 DOI: 10.3389/fpls.2024.1511597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024]
Abstract
Roses (Rosa chinensis) are among the most cherished ornamental plants globally, yet they are highly susceptible to infections by Botrytis cinerea, the causative agent of gray mold disease. Here we inoculated the resistant rose variety 'Yellow Leisure Liness' with B. cinerea to investigate its resistance mechanisms against gray mold disease. Through transcriptome sequencing, we identified 578 differentially expressed genes (DEGs) that were significantly upregulated at 24, 48, and 72 hours post-inoculation, with these genes significantly enriched for three defense response-related GO terms. Further domain analysis of the genes in these GO terms reveal that 21 DEGs contain the Bet v 1 family domain, belonging to the major latex protein (MLP) gene family, suggesting their potential key role in rose disease resistance. Furthermore, we systematically identified 46 RcMLP genes in roses and phylogenetically categorized them into two distinct subfamilies: group I and II. Genomic duplication analysis indicates that tandem duplication is the main driver for the expansion of the RcMLP family, and these genes have undergone by purifying selection. Additionally, detailed analyses of gene structure, motif composition, and promoter regions reveal that RcMLP genes contain numerous stress-responsive elements, with 32 RcMLP genes harboring fungal elicitor/wound-responsive elements. The constructed potential transcription factor regulatory network showed significant enrichment of the ERF transcription factor family in the regulation of RcMLP genes. Gene expression analysis reveal that DEGs are mainly distributed in subfamily II, where four highly expressed genes (RcMLP13, RcMLP28, RcMLP14, and RcMLP27) are identified in a small branch, with their fold change exceeding ten folds and verified by qRT-PCR. In summary, our research results underscore the potential importance of the RcMLP gene family in response to B. cinerea infection and provide comprehensive basis for further function exploration of the MLP gene family in rose resistance to fungal infections.
Collapse
Affiliation(s)
- Haoyuan Chen
- College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Qingkui Li
- College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Peilei Cheng
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Taotao Yan
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Chunlan Dong
- College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Zhe Hou
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Peihuang Zhu
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Changbing Huang
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| |
Collapse
|
5
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
6
|
Zaman QU, Garg V, Raza A, Nazir MF, Hui L, Khan D, Khokhar AA, Hussain MA, Wang HF, Varshney RK. Unique regulatory network of dragon fruit simultaneously mitigates the effect of vanadium pollutant and environmental factors. PHYSIOLOGIA PLANTARUM 2024; 176:e14416. [PMID: 38952344 DOI: 10.1111/ppl.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.
Collapse
Affiliation(s)
- Qamar U Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Vanika Garg
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mian Faisal Nazir
- Jiangxi Provincial Key Laboratory of ex-situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, JiuJiang, Jiangxi, China
| | - Liu Hui
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Darya Khan
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Aamir Ali Khokhar
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
7
|
Ma X, Gong C, An R, Li Y, Cheng N, Chen S, Liu H, Wang S. Characterisation of the MLP genes in peach postharvest cold storage and the regulatory role of PpMLP10 in the chilling stress response. Int J Biol Macromol 2024; 266:131293. [PMID: 38565368 DOI: 10.1016/j.ijbiomac.2024.131293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The major latex proteins/ripening-related proteins are a subfamily of the Bet v 1 protein superfamily and are commonly involved in plant development and responses to various stresses. However, the functions of MLPs in the postharvest cold storage of fruits remain uninvestigated. Herein, we identified 30 MLP genes in the peach (Prunus persica) genome that were clustered into three subgroups. Chromosomal location analysis revealed that the PpMLP genes were unevenly distributed on five of the eight peach chromosomes. Synteny analysis of the MLP genes between peach and seven other plant species (five dicotyledons and two monocotyledons) explored their evolutionary characteristics. Furthermore, the PpMLP promoters contained cis-elements for multiple hormones and stress responses. Gene expression analysis revealed that PpMLPs participated in chilling stress responses. Ectopic expression of PpMLP10 in Arabidopsis improved chilling stress tolerance by decreasing membrane damage and maintaining membrane stability. Additional research confirmed that PpWRKY2 participates in PpMLP10-mediated chilling stress by binding to its promoter. Collectively, these results suggest the role of PpMLP10 in enhancing chilling stress tolerance, which is significant for decreasing chilling injury during the postharvest cold storage of peaches.
Collapse
Affiliation(s)
- Xiaocen Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Gong
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Ruimin An
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yang Li
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Nini Cheng
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Siyu Chen
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Heng Liu
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
8
|
Gajjar P, Ismail A, Islam T, Moniruzzaman M, Darwish AG, Dawood AS, Mohamed AG, Haikal AM, El-Saady AM, El-Kereamy A, Sherif SM, Abazinge MD, Kambiranda D, El-Sharkawy I. Transcriptome Profiling of a Salt Excluder Hybrid Grapevine Rootstock 'Ruggeri' throughout Salinity. PLANTS (BASEL, SWITZERLAND) 2024; 13:837. [PMID: 38592889 PMCID: PMC10974295 DOI: 10.3390/plants13060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Salinity is one of the substantial threats to plant productivity and could be escorted by other stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis, energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances. Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and preferentially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The current study utilized the transcriptome profiling approach to identify the molecular events of RUG throughout a regime of salt stress followed by a recovery procedure. The data showed progressive changes in the transcriptome profiling throughout salinity, underpinning the involvement of a large number of genes in transcriptional reprogramming during stress. Our results established a considerable enrichment of the biological process GO-terms related to salinity adaptation, such as signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt adaptation.
Collapse
Affiliation(s)
- Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Tabibul Islam
- Plant Sciences Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Md Moniruzzaman
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Ahmed S Dawood
- Horticulture Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed G Mohamed
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Amr M Haikal
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | | | - Ashraf El-Kereamy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Sherif M Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Michael D Abazinge
- School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA
| | - Devaiah Kambiranda
- Department of Plant and Soil Sciences, Southern University Agricultural Research and Extension Center, Baton Rouge, LA 70813, USA
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| |
Collapse
|
9
|
Sun X, Li Y, Sun Y, Wu Q, Wang L. Genome-Wide Characterization and Expression Analyses of Major Latex Protein Gene Family in Populus simonii × P. nigra. Int J Mol Sci 2024; 25:2748. [PMID: 38473994 DOI: 10.3390/ijms25052748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Major latex proteins, or MLPs, are crucial to plants' capacity to grow, develop, and endure biotic and abiotic stresses. The MLP gene family has been found in numerous plants, but little is known about its role in Populus simonii × P. nigra. This study discovered and assessed 43 PtMLP genes that were unevenly dispersed throughout 12 chromosomes in terms of their physicochemical characteristics, gene structure, conserved motifs, and protein localization. Based on their phylogeny and protein structural characteristics, three separate subclasses of PtMLP family were identified. Segmental and tandem duplication were found to be essential variables in the expansion of the PtMLP genes. The involvement of the PtMLP genes in growth and development, as well as in the responses to different hormones and stresses, was demonstrated by cis-regulatory element prediction. The PtMLP genes showed varying expression patterns in various tissues and under different conditions (cold, salt, and drought stress), as demonstrated in RNA-Seq databases, suggesting that PsnMLP may have different functions. Following the further investigation of the genes demonstrating notable variations in expression before and after the application of three stresses, PsnMLP5 was identified as a candidate gene. Subsequent studies revealed that PsnMLP5 could be induced by ABA treatment. This study paves the way for further investigations into the MLP genes' functional mechanisms in response to abiotic stressors, as well as the ways in which they can be utilized in poplar breeding for improved stress tolerance.
Collapse
Affiliation(s)
- Xin Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Yao Li
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Yao Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Qiong Wu
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | - Lei Wang
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| |
Collapse
|
10
|
Sun L, Alariqi M, Wang Y, Wang Q, Xu Z, Zafar MN, Yang G, Jia R, Hussain A, Chen Y, Ding X, Zhou J, Wang G, Wang F, Li J, Zou J, Zhu X, Yu L, Sun Y, Liang S, Hui F, Chen L, Guo W, Wang Y, Zhu H, Lindsey K, Nie X, Zhang X, Jin S. Construction of Host Plant Insect-Resistance Mutant Library by High-Throughput CRISPR/Cas9 System and Identification of A Broad-Spectrum Insect Resistance Gene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306157. [PMID: 38032126 PMCID: PMC10811493 DOI: 10.1002/advs.202306157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.
Collapse
Affiliation(s)
- Lin Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanShandong250100China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Department of Agronomy and Pastures, Faculty of AgricultureSana’a UniversitySana’aYemen
| | - Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Qiongqiong Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Zhongping Xu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muhammad Naeem Zafar
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guangqin Yang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruoyu Jia
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussain
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yilin Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiao Ding
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zhou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guanying Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fuqiu Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jianying Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiangqian Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Lu Yu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yiwen Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Sijia Liang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fengjiao Hui
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Luo Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Huaguo Zhu
- College of Biology and Agricultural ResourcesHuanggang Normal UniversityHuanggangHubei438000China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiangChina
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
11
|
Zhou J, Li M, Li Y, Xiao Y, Luo X, Gao S, Ma Z, Sadowski N, Timp W, Dardick C, Callahan A, Mount SM, Liu Z. Comparison of red raspberry and wild strawberry fruits reveals mechanisms of fruit type specification. PLANT PHYSIOLOGY 2023; 193:1016-1035. [PMID: 37440715 DOI: 10.1093/plphys/kiad409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong 2611325, China
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yongping Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuwei Xiao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Shenglan Gao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong 2611325, China
| | - Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong 2611325, China
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | - Ann Callahan
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
Liu H, Du B, Ma X, Wang Y, Cheng N, Zhang Y. Overexpression of major latex protein 423 (NtMLP423) enhances the chilling stress tolerance in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111604. [PMID: 36709884 DOI: 10.1016/j.plantsci.2023.111604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Chilling stress impedes plant growth and hinders crop development and productivity. In this study, we identified the major latex protein (MLP) in tobacco (NtMLP423) and examined its roles in chilling resistance. NtMLP423 expression was considerably upregulated in response to chilling stress. NtMLP423 function was assessed and compared in plants with overexpression and antisense characteristics. Under chilling stress, plants with overexpression characteristics grew better than wild-type and antisense plants. NtMLP423 overexpression reduced membrane lipid damage, increased antioxidant enzyme activity, and reduced reactive oxygen species (ROS) accumulation under chilling stress. Here, we screened for the first time the upstream transcription factor NtMYB108, which regulates NtMLP423 expression under chilling stress. The NtMYB108 transcription factor directly binds to the NtMLP423 promoter and improves NtMLP423 resistance to chilling stress. Subjecting NtMYB018 to virus-induced gene silencing reduced chilling stress tolerance. Overall, NtMLP423 overexpression enhances chilling stress tolerance, while its suppression has the opposite effect.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China; Linyi University, Linyi 276005, Shandong, PR China
| | - Bingyang Du
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Xiaocen Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Nini Cheng
- Linyi University, Linyi 276005, Shandong, PR China.
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
13
|
Zhang H, Yuan Y, Xing H, Xin M, Saeed M, Wu Q, Wu J, Zhuang T, Zhang X, Mao L, Sun X, Song X, Wang Z. Genome-wide identification and expression analysis of the HVA22 gene family in cotton and functional analysis of GhHVA22E1D in drought and salt tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1139526. [PMID: 36950351 PMCID: PMC10025482 DOI: 10.3389/fpls.2023.1139526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The HVA22 family of genes, induced by abscisic acid and stress, encodes a class of stress response proteins with a conserved TB2/DP1/HVA22 domain that are unique among eukaryotes. Previous studies have shown that HVA22s play an important role in plant responses to abiotic stresses. In the present study, 34, 32, 16, and 17 HVA22s were identified in G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively. These HVA22 genes were classified into nine subgroups, randomly distributed on the chromosomes. Synteny analysis showed that the amplification of the HVA22s were mainly due to segmental duplication or whole genome replication (WGD). Most HVA22s promoter sequences contain a large number of drought response elements (MYB), defense and stress response elements (TC-rich repeats), and hormone response elements (ABRE, ERE, SARE, etc.), suggesting that HVA22s may respond to adversity stresses. Expression profiling demonstrated that most GhHVA22s showed a constitutive expression pattern in G. hirsutum and could respond to abiotic stresses such as salt, drought, and low temperature. Overexpression of GhHVA22E1D (GH_D07G0564) in Arabidopsis thaliana enhances salt and drought tolerance in Arabidopsis. Virus-induced gene silencing of GhHVA22E1D reduced salt and drought tolerance in cotton. This indicates that GhHVA22E1D plays an active role in the plant response to salt stress and drought stress. GhHVA22E1D may act in plant response to adversity by altering the antioxidant capacity of plants. This study provides valuable information for the functional genomic study of the HVA22 gene family in cotton. It also provides a reference for further elucidation of the functional studies of HVA22 in plant resistance to abiotic stress response.
Collapse
Affiliation(s)
- Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Ming Xin
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Muhammad Saeed
- Department of Agricultural Sciences, College of Agriculture and Environmental Sciences, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qi Wu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Jing Wu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Tao Zhuang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Lili Mao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xuezhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Zongwen Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
14
|
Zhang J, Zhang Y, He Y, Du T, Shan D, Fan H, Wang W, Qin Z, Xin C, Pei H. Metabolome and transcriptome integration reveals insights into the process of delayed petal abscission in rose by STS. FRONTIERS IN PLANT SCIENCE 2022; 13:1045270. [PMID: 36457520 PMCID: PMC9706100 DOI: 10.3389/fpls.2022.1045270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The abscission of plant organs plays an important role in ensuring the normal life activities. Rose is one of the most important ornamental plants, and its premature abscission of petal has seriously affected the quality and commercial value. Silver Thiosulfate (STS) is an ethylene inhibitor, which is often used preservative to delay the senescence of fresh cut flowers. To understand the regulatory mechanism of petal abscission in rose by STS, integrative analysis of the metabolome and transcriptome profiles was performed in abscission zone (AZ) tissues of rose under different treatments (MOCK, STS, ETH, STS+ETH). The results showed that STS significantly delayed the petal abscission in phenotype and reduced the activity of two enzymes (pectinase and cellulase) associated with cell wall degradation in physiological level. STS affected the contents of five metabolites (shikonin, jasmonic acid, gluconolactone, stachyose and D-Erythrose 4-phosphate), and involved changes in the expression of 39 differentially expressed genes (DEGs) associated with these five metabolites. Five DEGs (LOC112192149, LOC112196726, LOC112189737, LOC112188495, and LOC112188936) were probably directly associated with the biosynthesis of shikonin, jasmonic acid, and D-Erythrose 4-phosphate. Meanwhile, the effect of STS on the abscission process significantly involved in the pentose phosphate pathway and amino acid biosynthesis pathway. In addition, STS had a greater effect on the transcription factors, phytohormone related DEGs represented by auxin and ethylene, DEGs related to disease resistance and amino acid, etc. Above all, STS negatively influences petal abscission of rose, these results maybe provide a reference for subsequent studies on petal abscission of rose by STS.
Collapse
|
15
|
Zhou Z, Fan J, Zhang J, Yang Y, Zhang Y, Zan X, Li X, Wan J, Gao X, Chen R, Huang Z, Xu Z, Li L. OsMLP423 Is a Positive Regulator of Tolerance to Drought and Salt Stresses in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:1653. [PMID: 35807608 PMCID: PMC9269302 DOI: 10.3390/plants11131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Rice (Oryza sativa L.) is one of the main food crops for human survival, and its yield is often restricted by abiotic stresses. Drought and soil salinity are among the most damaging abiotic stresses affecting today's agriculture. Given the importance of abscisic acid (ABA) in plant growth and abiotic stress responses, it is very important to identify new genes involved in ABA signal transduction. We screened a drought-inducing gene containing about 158 amino acid residues from the transcriptome library of rice exposed to drought treatment, and we found ABA-related cis-acting elements and multiple drought-stress-related cis-acting elements in its promoter sequence. The results of real-time PCR showed that OsMLP423 was strongly induced by drought and salt stresses. The physiological and biochemical phenotype analysis of transgenic plants confirmed that overexpression of OsMLP423 enhanced the tolerance to drought and salt stresses in rice. The expression of OsMLP423-GFP fusion protein indicated that OsMLP423 was located in both the cell membrane system and nucleus. Compared with the wild type, the overexpressed OsMLP423 showed enhanced sensitivity to ABA. Physiological analyses showed that the overexpression of OsMLP423 may regulate the water loss efficiency and ABA-responsive gene expression of rice plants under drought and salt stresses, and it reduces membrane damage and the accumulation of reactive oxygen species. These results indicate that OsMLP423 is a positive regulator of drought and salinity tolerance in rice, governing the tolerance of rice to abiotic stresses through an ABA-dependent pathway. Therefore, this study provides a new insight into the physiological and molecular mechanisms of OsMLP423-mediated ABA signal transduction participating in drought and salt stresses.
Collapse
Affiliation(s)
- Zhanmei Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Jiangbo Fan
- Chongqing Army Characteristic Medical Center, Chongqing 400000, China;
| | - Jia Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Yanmei Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Yifan Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Xiaofei Zan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Xiaohong Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Jiale Wan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Zhengjian Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (J.Z.); (Y.Y.); (Y.Z.); (X.Z.); (X.L.); (J.W.); (X.G.); (R.C.); (Z.H.)
| |
Collapse
|
16
|
Physcomitrium patens Infection by Colletotrichum gloeosporioides: Understanding the Fungal-Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing. J Fungi (Basel) 2021; 7:jof7080677. [PMID: 34436216 PMCID: PMC8401727 DOI: 10.3390/jof7080677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.
Collapse
|
17
|
Fujita K, Inui H. Review: Biological functions of major latex-like proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110856. [PMID: 33775363 DOI: 10.1016/j.plantsci.2021.110856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/23/2023]
Abstract
Major latex-like proteins (MLPs) have been identified in dicots and monocots. They are members of the birch pollen allergen Bet v 1 family as well as pathogenesis-related proteins class 10. MLPs have two main features. One is binding affinity toward various hydrophobic compounds, such as long-chain fatty acids, steroids, and systemic acquired resistance signals, via its internal hydrophobic cavity or hydrophobic residues on its surface. MLPs transport such compounds to other organs via phloem and xylem vessels and contribute to the expression of physiologically important ligands' activity in the particular organs. The second feature is responses to abiotic and biotic stresses. MLPs are involved in drought and salt tolerance through the mediation of plant hormone signaling pathways. MLPs generate resistance against pathogens by the induction of pathogenesis-related protein genes. Therefore, MLPs play crucial roles in drought and salt tolerance and resistance against pathogens. However, knowledge of MLPs is fragmented, and an overview of them is needed. Herein, we summarize the current knowledge of the biological functions of MLPs, which to our knowledge, is the first review about MLPs that has been reported.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|