1
|
Badreldin H, Elshal M, El-Karef A, Ibrahim T. Empagliflozin protects the heart from atrial fibrillation in rats through inhibiting the NF-κB/HIF-1α regulatory axis and atrial remodeling. Int Immunopharmacol 2024; 143:113403. [PMID: 39437485 DOI: 10.1016/j.intimp.2024.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia. The current study aimed to investigate the potential of empagliflozin (EMPA) to protect against acetylcholine (ACh)/calcium chloride (CaCl2)-induced AF in rats and elucidate the possible underlying mechanism of action. Rats were randomly assigned to five groups, as follows: CTRL group: received 1 ml/kg isotonic saline; AF group: received 1 ml/kg induction mixture of ACh/CaCl2 (60 µg ACh and 10 mg CaCl2 per ml); EMPA group: received 30 mg/kg EMPA; AF + EMPA10 group: received the induction mixture concurrent with 10 mg/kg EMPA; AF + EMPA30 group: received the induction mixture concurrent with 30 mg/kg EMPA. Our results showed that EMPA administration inhibited the AF-related electrocardiographic abnormalities and decreased the serum brain natriuretic peptide levels. EMPA treatment maintained the cardiac redox balance, as indicated by reduced levels of the lipid peroxidation biomarker malonaldehyde while enhancing the antioxidant glutathione levels. Moreover, EMPA markedly repressed ACh/CaCl2-induced C-reactive protein, tumor necrosis factor, and interleukin-6 production. Interestingly, EMPA administration strongly suppressed cardiac transforming growth factor beta1, collagen type I, and alpha-smooth muscle actin expression levels in the AF rats. These results were consistent with our histopathological findings, which revealed the ameliorative effect of EMPA on AF-induced inflammatory and fibrotic lesions. Mechanistically, EMPA dose-dependently downregulated nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor (HIF)-1α expressions. Besides, it attenuated the pro-apoptotic active caspase-3 while augmenting the anti-apoptotic B-cell lymphoma 2 expressions. Furthermore, EMPA dose-dependently suppressed cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, this study demonstrates that EMPA intervention, within AF induction, protects against ACh/CaCl2-induced AF in rats, exerting powerful antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects. These effects are mainly mediated through the targeting of the NF-κB/HIF-1α regulatory axis in a dose-dependent manner.
Collapse
Affiliation(s)
- Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, Faculty of Medicine, Horus University, Egypt
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
2
|
Sommerfeld LC, Holmes AP, Yu TY, O'Shea C, Kavanagh DM, Pike JM, Wright T, Syeda F, Aljehani A, Kew T, Cardoso VR, Kabir SN, Hepburn C, Menon PR, Broadway-Stringer S, O'Reilly M, Witten A, Fortmueller L, Lutz S, Kulle A, Gkoutos GV, Pavlovic D, Arlt W, Lavery GG, Steeds R, Gehmlich K, Stoll M, Kirchhof P, Fabritz L. Reduced plakoglobin increases the risk of sodium current defects and atrial conduction abnormalities in response to androgenic anabolic steroid abuse. J Physiol 2024; 602:4409-4436. [PMID: 38345865 DOI: 10.1113/jp284597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.
Collapse
Affiliation(s)
- Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ting Y Yu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Deirdre M Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Jeremy M Pike
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Thomas Wright
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Areej Aljehani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Tania Kew
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Victor R Cardoso
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claire Hepburn
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Priyanka R Menon
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Anika Witten
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
| | - Lisa Fortmueller
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Kulle
- Division of Paediatric Endocrinology and Diabetes, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Georgios V Gkoutos
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR), Midlands Site, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Medical Research Council London Institute of Medical Sciences, London UK & Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Richard Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Monika Stoll
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Mundisugih J, Kumar S, Kizana E. Adeno-associated virus-mediated gene therapy for cardiac tachyarrhythmia: A systematic review and meta-analysis. Heart Rhythm 2024; 21:939-949. [PMID: 38336191 DOI: 10.1016/j.hrthm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Cardiac tachyarrhythmia presents a significant health care challenge, causing notable morbidity and mortality. Conventional treatments have limitations and potential risks, resulting in an elevated disease burden. Adeno-associated virus (AAV)-mediated gene therapy holds promise as a potential future treatment option. Therefore, we aimed to provide a measured overview of the latest developments in this rapidly growing field. PubMed and Embase databases were searched up to January 2024. Studies that employed AAV as a vector for delivery of therapeutic agents to treat cardiac tachyarrhythmia were included. Of the 26 studies included, 20 published in the last 5 years. There were 22 novel molecular targets identified. More than 80% of the included studies employed small-animal models or used AAV9. In atrial fibrillation preclinical studies, AAV-mediated gene therapy reduced atrial fibrillation inducibility by 81% (odds ratio, 0.19 [0.08-0.45]; P < .01). Similarly, for acquired and inherited ventricular arrhythmia, animal models receiving gene therapy had less inducible ventricular arrhythmia (odds ratio, 0.06 [0.03-0.11]; P < .01). This review highlights the rapid progress of AAV-mediated gene therapy for cardiac tachyarrhythmia. Although these investigations are currently in the early stages of clinical application, they present promising prospects for gene therapy. (PROSPERO registry: CRD42023479448).
Collapse
Affiliation(s)
- Juan Mundisugih
- Centre for Heart Research, Westmead Institute for Medical Research, New South Wales, Australia; Department of Cardiology, Westmead Hospital, New South Wales, Australia; Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, New South Wales, Australia; Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, New South Wales, Australia; Department of Cardiology, Westmead Hospital, New South Wales, Australia; Sydney Medical School, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Zhang P, Li H, Zhang A, Wang X, Song Q, Li Z, Wang W, Xu J, Hou Y, Zhang Y. Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway. Biochem Cell Biol 2023; 101:432-442. [PMID: 37018819 DOI: 10.1139/bcb-2022-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Huilin Li
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - An Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - Xiao Wang
- Department of Health Management Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Qiyuan Song
- Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University. Ji'nan City, Shandong Province, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| |
Collapse
|
5
|
Sinus node dysfunction and atrial fibrillation-Relationships, clinical phenotypes, new mechanisms, and treatment approaches. Ageing Res Rev 2023; 86:101890. [PMID: 36813137 DOI: 10.1016/j.arr.2023.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Although the anatomical basis of the pathogenesis of sinus node dysfunction (SND) and atrial fibrillation (AF) is located primarily in the left and right atria, increasing evidence suggests a strong correlation between SND and AF, in terms of both clinical presentation and formation mechanisms. However, the exact mechanisms underlying this association are unclear. The relationship between SND and AF may not be causal, but is likely to involve common factors and mechanisms, including ion channel remodeling, gap junction abnormalities, structural remodeling, genetic mutations, neuromodulation abnormalities, the effects of adenosine on cardiomyocytes, oxidative stress, and viral infections. Ion channel remodeling manifests primarily as alterations in the "funny" current (If) and Ca2+ clock associated with cardiomyocyte autoregulation, and gap junction abnormalities are manifested primarily as decreased expression of connexins (Cxs) mediating electrical impulse propagation in cardiomyocytes. Structural remodeling refers primarily to fibrosis and cardiac amyloidosis (CA). Some genetic mutations can also cause arrhythmias, such as SCN5A, HCN4, EMD, and PITX2. The intrinsic cardiac autonomic nervous system (ICANS), a regulator of the heart's physiological functions, triggers arrhythmias.In addition, we discuss arrhythmias caused by viral infections, notably Coronavirus Disease 2019 (COVID-19). Similarly to upstream treatments for atrial cardiomyopathy such as alleviating CA, ganglionated plexus (GP) ablation acts on the common mechanisms between SND and AF, thus achieving a dual therapeutic effect.
Collapse
|
6
|
Zhu M, Yan T, Zhu S, Weng F, Zhu K, Wang C, Guo C. Identification and verification of FN1, P4HA1 and CREBBP as potential biomarkers in human atrial fibrillation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:6947-6965. [PMID: 37161136 DOI: 10.3934/mbe.2023300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common arrhythmia that can lead to cardiac complications. The mechanisms involved in AF remain elusive. We aimed to explore the potential biomarkers and mechanisms underpinning AF. METHODS An independent dataset, GSE2240, was obtained from the Gene Expression Omnibus database. The R package, "limma", was used to screen for differentially expressed genes (DEGs) in individuals with AF and normal sinus rhythm (SR). Weighted gene co-expression network analysis (WGCNA) was applied to cluster DEGs into different modules based on functional disparities. Enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction network was constructed, and hub genes were identified using cytoHubba. Quantitative reverse-transcription PCR was used to validate mRNA expression in individuals with AF and SR. RESULTS We identified 2, 589 DEGs clustered into 10 modules using WGCNA. Gene Ontology analysis showed specific clustered genes significantly enriched in pathways associated with the extracellular matrix and collagen organization. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes were mainly enriched for proteoglycans in cancer, extracellular matrix-receptor interaction, focal adhesion, and the PI3K-Akt signaling pathway. Three hub genes, FN1, P4HA1 and CREBBP, were identified, which were highly correlated with AF endogenesis. mRNA expression of hub genes in patients with AF were higher than in individuals with normal SR, consistent with the results of bioinformatics analysis. CONCLUSIONS FN1, P4HA1, and CREBBP may play critical roles in AF. Using bioinformatics, we found that expression of these genes was significantly elevated in patients with AF than in individuals with normal SR. Furthermore, these genes were elevated at core positions in the mRNA interaction network. These genes should be further explored as novel biomarkers and target candidates for AF therapy.
Collapse
Affiliation(s)
- Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Fan Weng
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
7
|
Yamaguchi N, Xiao J, Narke D, Shaheen D, Lin X, Offerman E, Khodadadi-Jamayran A, Shekhar A, Choy A, Wass SY, Van Wagoner DR, Chung MK, Park DS. Cardiac Pressure Overload Decreases ETV1 Expression in the Left Atrium, Contributing to Atrial Electrical and Structural Remodeling. Circulation 2021; 143:805-820. [PMID: 33225722 PMCID: PMC8449308 DOI: 10.1161/circulationaha.120.048121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elevated intracardiac pressure attributable to heart failure induces electrical and structural remodeling in the left atrium (LA) that begets atrial myopathy and arrhythmias. The underlying molecular pathways that drive atrial remodeling during cardiac pressure overload are poorly defined. The purpose of this study is to characterize the response of the ETV1 (ETS translocation variant 1) signaling axis in the LA during cardiac pressure overload in humans and mouse models and explore the role of ETV1 in atrial electrical and structural remodeling. METHODS We performed gene expression profiling in 265 left atrial samples from patients who underwent cardiac surgery. Comparative gene expression profiling was performed between 2 murine models of cardiac pressure overload, transverse aortic constriction banding and angiotensin II infusion, and a genetic model of Etv1 cardiomyocyte-selective knockout (Etv1f/fMlc2aCre/+). RESULTS Using the Cleveland Clinic biobank of human LA specimens, we found that ETV1 expression is decreased in patients with reduced ejection fraction. Consistent with its role as an important mediator of the NRG1 (Neuregulin 1) signaling pathway and activator of rapid conduction gene programming, we identified a direct correlation between ETV1 expression level and NRG1, ERBB4, SCN5A, and GJA5 levels in human LA samples. In a similar fashion to patients with heart failure, we showed that left atrial ETV1 expression is downregulated at the RNA and protein levels in murine pressure overload models. Comparative analysis of LA RNA sequencing datasets from transverse aortic constriction and angiotensin II-treated mice showed a high Pearson correlation, reflecting a highly ordered process by which the LA undergoes electrical and structural remodeling. Cardiac pressure overload produced a consistent downregulation of ErbB4, Etv1, Scn5a, and Gja5 and upregulation of profibrotic gene programming, which includes Tgfbr1/2, Igf1, and numerous collagen genes. Etv1f/fMlc2aCre/+ mice displayed atrial conduction disease and arrhythmias. Correspondingly, the LA from Etv1f/fMlc2aCre/+ mice showed downregulation of rapid conduction genes and upregulation of profibrotic gene programming, whereas analysis of a gain-of-function ETV1 RNA sequencing dataset from neonatal rat ventricular myocytes transduced with Etv1 showed reciprocal changes. CONCLUSIONS ETV1 is downregulated in the LA during cardiac pressure overload, contributing to both electrical and structural remodeling.
Collapse
Affiliation(s)
- Naoko Yamaguchi
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| | - Junhua Xiao
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| | - Deven Narke
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| | - Devin Shaheen
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| | - Xianming Lin
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| | - Erik Offerman
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| | - Alireza Khodadadi-Jamayran
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 E 30 Street, TRB-745, New York, New York 10016, USA
| | - Akshay Shekhar
- Regeneron Pharmaceuticals, Inc. Biotechnology, 777 Old Saw Mill River Road, Tarrytown, NY, 10591 USA
| | - Alex Choy
- Icahn Medical Institute at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Sojin Y. Wass
- Department of Cardiovascular & Metabolic Sciences; Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - David R. Van Wagoner
- Department of Cardiovascular & Metabolic Sciences; Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Mina K. Chung
- Department of Cardiovascular & Metabolic Sciences; Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - David S. Park
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 E 30 Street, Science Building 723, New York, New York 10016, USA
| |
Collapse
|
8
|
Babapoor-Farrokhran S, Gill D, Alzubi J, Mainigi SK. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem 2021; 476:2283-2293. [PMID: 33575876 DOI: 10.1007/s11010-021-04082-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Atrial fibrillation (AF) is a common arrhythmia that has major morbidity and mortality. Hypoxia plays an important role in AF initiation and maintenance. Hypoxia-inducible factor (HIF), the master regulator of oxygen homeostasis in cells, plays a fundamental role in the regulation of multiple chemokines and cytokines that are involved in different physiological and pathophysiological pathways. HIF is also involved in the pathophysiology of AF induction and propagation mostly through structural remodeling such as fibrosis; however, some of the cytokines discussed have even been implicated in electrical remodeling of the atria. In this article, we highlight the association between HIF and some of its related cytokines with AF. Additionally, we provide an overview of the potential diagnostic benefits of using the mentioned cytokines as AF biomarkers. Research discussed in this review suggests that the expression of these cytokines may correlate with patients who are at an increased risk of developing AF. Furthermore, cytokines that are elevated in patients with AF can assist clinicians in the diagnosis of suspect paroxysmal AF patients. Interestingly, some of the cytokines have been elevated specifically when AF is associated with a hypercoagulable state, suggesting that they could be helpful in the clinician's and patient's decision to begin anticoagulation. Finally, more recent research has demonstrated the promise of targeting these cytokines for the treatment of AF. While still in its early stages, tools such as neutralizing antibodies have proved to be efficacious in targeting the HIF pathway and treating or preventing AF.
Collapse
Affiliation(s)
- Savalan Babapoor-Farrokhran
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA.
| | - Deanna Gill
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jafar Alzubi
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA
| | - Sumeet K Mainigi
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|