1
|
Buchmueller LC, Wunderle C, Laager R, Bernasconi L, Neyer PJ, Tribolet P, Stanga Z, Mueller B, Schuetz P. Association of phenylalanine and tyrosine metabolism with mortality and response to nutritional support among patients at nutritional risk: a secondary analysis of the randomized clinical trial EFFORT. Front Nutr 2024; 11:1451081. [PMID: 39600719 PMCID: PMC11588475 DOI: 10.3389/fnut.2024.1451081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background Elevated phenylalanine serum level is a surrogate marker of whole-body proteolysis and has been associated with increased mortality in critically ill patients. Tyrosine is a metabolite of phenylalanine and serves as a precursor of thyroid hormones and catecholamines with important functions in the oxidative stress response among others. Herein, we examined the prognostic significance of phenylalanine, tyrosine, as well as its metabolites nitrotyrosine, L-3,4-dihydroxyphenylalanine (DOPA), and dopamine regarding clinical outcomes and response to nutritional therapy in patients at nutritional risk. Methods This is a secondary analysis of the Effect of Early Nutritional Support on Frailty, Functional Outcomes, and Recovery of Malnourished Medical Inpatients Trial (EFFORT), a randomized controlled trial investigating individualized nutritional support compared to standard care in patients at risk of malnutrition. The primary outcome was 30-day all-cause mortality. Results We analyzed data of 238 patients and found a significant association between low plasma levels of phenylalanine [adjusted HR 2.27 (95% CI 1.29 to 3.00)] and tyrosine [adjusted HR 1.91 (95% CI 1.11 to 3.28)] with increased 30-day mortality. This association persisted over a longer period, extending to 5 years. Additionally, trends indicated elevated mortality rates among patients with low nitrotyrosine and high DOPA and dopamine levels. Patients with high tyrosine levels showed a more pronounced response to nutritional support compared to patients with low tyrosine levels (HR 0.45 versus 1.46, p for interaction = 0.02). Conclusion In medical inpatients at nutritional risk, low phenylalanine and tyrosine levels were associated with increased short-and long-term mortality and patients with high tyrosine levels showed a more pronounced response to nutritional support. Further research is warranted to gain a deeper understanding of phenylalanine and tyrosine pathways, their association with clinical outcomes in patients at nutritional risk, as well as their response to nutritional therapy. Clinical trial registration www.clinicaltrials.gov, identifier NCT02517476.
Collapse
Affiliation(s)
- Lena C. Buchmueller
- Medical University Department, Division of General Internal and Emergency Medicine, Division of Endocrinology, Diabetes, and Metabolism, Kantonsspital Aarau, Aarau, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| | - Carla Wunderle
- Medical University Department, Division of General Internal and Emergency Medicine, Division of Endocrinology, Diabetes, and Metabolism, Kantonsspital Aarau, Aarau, Switzerland
| | - Rahel Laager
- Medical University Department, Division of General Internal and Emergency Medicine, Division of Endocrinology, Diabetes, and Metabolism, Kantonsspital Aarau, Aarau, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Peter J. Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Pascal Tribolet
- Medical University Department, Division of General Internal and Emergency Medicine, Division of Endocrinology, Diabetes, and Metabolism, Kantonsspital Aarau, Aarau, Switzerland
- Department of Health Professions, Bern University of Applied Sciences, Bern, Switzerland
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Zeno Stanga
- Division of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beat Mueller
- Medical University Department, Division of General Internal and Emergency Medicine, Division of Endocrinology, Diabetes, and Metabolism, Kantonsspital Aarau, Aarau, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Philipp Schuetz
- Medical University Department, Division of General Internal and Emergency Medicine, Division of Endocrinology, Diabetes, and Metabolism, Kantonsspital Aarau, Aarau, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Bhat FA, Mangalaparthi KK, Ding H, Jain A, Hsu JS, Peterson JA, Zenka RM, Mun DG, Kandasamy RK, Pandey A. Exploration of Nitrotyrosine-Containing Proteins and Peptides by Antibody-Based Enrichment Strategies. Mol Cell Proteomics 2024; 23:100733. [PMID: 38342410 PMCID: PMC10950883 DOI: 10.1016/j.mcpro.2024.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model. The identification of proteins and peptides containing nitrotyrosine residues was carried out after peroxynitrite treatment of cell lysates, which generated modified nitrotyrosine residues on susceptible sites on proteins. We evaluated the efficacy of enriching nitrotyrosine-modified proteins and peptides by employing four different commercially available monoclonal antibodies directed against nitrotyrosine. LC-MS/MS analysis resulted in the identification of 1377 and 1624 nitrotyrosine-containing peptides from protein- and peptide-based enrichment experiments, respectively. Although the yield of nitrotyrosine-containing peptides was higher in experiments where peptides rather than proteins were enriched, we found a substantial proportion (37-65%) of identified nitrotyrosine-containing peptides contained nitrotyrosine at the N-terminus. However, in protein-based immunoprecipitation <9% of nitrotyrosine-containing peptides had nitrotyrosine modification at the N-terminus of the peptide. Overall, our study resulted in the identification of 2603 nitrotyrosine-containing peptides of which >2000 have not previously been reported. We synthesized 101 novel nitrotyrosine-containing peptides identified in our analysis and analyzed them by LC-MS/MS to validate our findings. We have confirmed the validity of 70% of these peptides, as they demonstrated a similarity score exceeding 0.7 when compared to peptides identified through experimental methods. Finally, we also validated the presence of nitrotyrosine modification on PKM and EF2 proteins in peroxynitrite-treated samples by immunoblot analysis. The large catalog presented in this study along with the workflow should facilitate the investigation of nitrotyrosine as an oxidative modification in a variety of settings in greater detail.
Collapse
Affiliation(s)
- Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel-Sean Hsu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Roman M Zenka
- Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Manipal Academy of Higher Education, Manipal, Karnataka, India; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
3
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 428] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
4
|
Jiang YL, Liu HY, Tang MM, Cheng JY, Zhao H, Fu L. Serum Level of 4-Hydroxynonenal in Community-Acquired Pneumonia: A Potential Biomarker for Severity and Prognosis. Front Med (Lausanne) 2022; 9:798343. [PMID: 35783645 PMCID: PMC9247254 DOI: 10.3389/fmed.2022.798343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFour-hydroxynonenal (4-HNE) exerts a central role in the pathophysiological process of pulmonary diseases. The aim of this project was to evaluate the correlations between serum 4-HNE with severity and prognosis in patients with community-acquired pneumonia (CAP) by a prospective cohort study.Materials and MethodsA total of 239 patients with CAP and healthy volunteers were recruited. Fasting blood was collected. Serum 4-HNE was measured with ELISA. Clinical characteristics and demographic information were obtained. The relationships between serum 4-HNE and clinical characteristics were evaluated through the Spearman or Pearson correlation coefficient. The associations of serum 4-HNE with severity and prognosis were estimated through logistic regression analysis.ResultsOn admission, serum 4-HNE was upregulated in patients with CAP compared with healthy volunteers. Serum 4-HNE was gradually increased in line with CAP scores. Additionally, elderly patients with CAP were more prone to suffer from 4-HNE elevation. Moreover, serum 4-HNE was positively correlated with CAP severity scores. Meanwhile, the poor prognostic outcomes were tracked among patients with CAP. Higher serum 4-HNE on admission increased the risks of mechanical ventilation, vasoactive agent usage, and death in patients with CAP during hospitalization. The predictive powers for severity and death were increased in serum 4-HNE compared with CAP severity scores and inflammatory cytokines.ConclusionSerum 4-HNE on admission is positively correlated with the severity and poor prognosis among patients with CAP, indicating that 4-HNE participates in the pathophysiology of CAP. Serum 4-HNE may be used as an earlier biomarker for diagnosis and prognosis in patients with CAP.
Collapse
Affiliation(s)
- Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People’s Hospital of Anhui Medical University, Bozhou, China
| | - Hong-Yan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Yi Cheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Hui Zhao,
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Lin Fu, ,
| |
Collapse
|
5
|
Yu F, Zhu J, Lei M, Wang C, Xie K, Xu F, Lin S. Exploring the metabolic phenotypes associated with different host inflammation of acute respiratory distress syndrome (ARDS) from lung metabolomics in mice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8971. [PMID: 33049802 PMCID: PMC7646044 DOI: 10.1002/rcm.8971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The aim of this study was to analyze the metabolomics of lung with different host inflammation of acute respiratory distress syndrome (ARDS) for the identification of biomarkers for predicting severity under different inflammatory conditions. METHODS Cecal ligation and puncture (CLP) and lipopolysaccharide (LPS)-intratracheal injection induced acute lung injury (ALI) were used. A mouse model was used to explore lung metabolomic biomarkers in ALI/ARDS. The splenectomy model was used as an auxiliary method to distinguish between hyper- and hypo-inflammatory subtypes. Plasma, lung tissue and bronchoalveolar lavage fluid (BALF) samples were collected from mice after CLP/LPS. The severity of lung injury was evaluated. Expression of tumor necrosis factor-α (TNF-α) in mice serum and lung was tested by enzyme-linked immunosorbent assay (ELISA) and polymer chain reaction (PCR). Polymorphonuclear cells in BALF were counted. The lung metabolites were detected by gas chromatography/mass spectrometry (GC/MS), and the metabolic pathways predicted using the KEGG database. RESULTS The LPS/CLP-Splen group had more severe lung injury than the corresponding ALI group; that in the CLP-Splen group was more serious than in the LPS-Splen group. TNF-α expression was significantly elevated in the serum and lung tissue after LPS or CLP, and higher in the LPS/CLP-Splen group than in the corresponding ALI group. The level of TNF-α in the CLP-Splen group was elevated significantly over that in the LPS-Splen group. Both these groups also showed significant neutrophil exudation within the lungs. During differential inflammation, more differential metabolites were detected in the lungs of the CLP group ALI mice than in the LPS group. A total of 41 compounds were detected in the lungs of the CLP and CLP-Splen groups. Contrastingly, eight compounds were detected in the lungs of the LPS and LPS-Splen groups. The LPS-Splen and CLP-Splen groups had significant neutrophil exudation in the lung. Random forest analysis of lung-targeted metabolomics data indicated 4-hydroxyphenylacetic acid, 1-aminocyclopentanecarboxylic acid (ACPC), cis-aconitic acid, and hydroxybenzoic acid as strong predictors of the hyper-inflammatory subgroup in the CLP group. Furthermore, with splenectomy, 13 differential metabolic pathways between the CLP and LPS groups were revealed. CONCLUSIONS Hyper-inflammatory subgroups of ARDS have a greater inflammatory response and a more active lung metabolism. Combined with the host inflammation background, biomarkers from metabolomics could help evaluate the response severity of ARDS.
Collapse
Affiliation(s)
- Feng Yu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Critical Care MedicineChangshou People's HospitalChongqing401220China
| | - Jing Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ming Lei
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Critical Care MedicineThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen518000China
| | - Chuan‐jiang Wang
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ke Xie
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Fang Xu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shi‐hui Lin
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
6
|
Exploring the Biomarkers of Sepsis-Associated Encephalopathy (SAE): Metabolomics Evidence from Gas Chromatography-Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2612849. [PMID: 31781604 PMCID: PMC6875220 DOI: 10.1155/2019/2612849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Background Sepsis-associated encephalopathy (SAE) is a transient and reversible brain dysfunction, that occurs when the source of sepsis is located outside of the central nervous system; SAE affects nearly 30% of septic patients at admission and is a risk factor for mortality. In our study, we sought to determine whether metabolite changes in plasma could be a potential biomarker for the early diagnosis and/or the prediction of the prognosis of sepsis. Method A total of 31 SAE patients and 28 healthy controls matched by age, gender, and body mass index (BMI) participated in our study. SAE patients were divided into four groups according to the Glasgow Coma Score (GCS). Plasma samples were collected and used to detect metabolism changes by gas chromatography-mass spectrometry (GC-MS). Analysis of variance was used to determine which metabolites significantly differed between the control and SAE groups. Results We identified a total of 63 metabolites that showed significant differences among the SAE and control groups. In particular, the 4 common metabolites in the four groups were 4-hydroxyphenylacetic acid; carbostyril, 3-ethyl-4,7-dimethoxy (35.8%); malic acid peak 1; and oxalic acid. The concentration of 4-hydroxyphenylacetic acid in sepsis patients decreased with a decrease of the GCS. Conclusions According to recent research on SAE, metabolic disturbances in tissue and cells may be the main pathophysiology of this condition. In our study, we found a correlation between the concentration of 4-hydroxyphenylacetic acid and the severity of consciousness disorders. We suggest that 4-hydroxyphenylacetic acid may be a potential biomarker for SAE and useful in predicting patient prognosis.
Collapse
|