1
|
Nightingale ES, Subramanian S, Schwarzer AR, Chapman LAC, Jambulingam P, Cameron MM, Brady OJ, Medley GF, Lucas TCD. Inferring the regional distribution of Visceral Leishmaniasis incidence from data at different spatial scales. COMMUNICATIONS MEDICINE 2024; 4:240. [PMID: 39567715 PMCID: PMC11579291 DOI: 10.1038/s43856-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND As cases of visceral leishmaniasis (VL) in India dwindle, there is motivation to monitor elimination progress on a finer geographic scale than sub-district (block). Low-incidence projections across geographically- and demographically- heterogeneous communities are difficult to act upon, and equitable elimination cannot be achieved if local pockets of incidence are overlooked. However, maintaining consistent surveillance at this scale is resource-intensive and not sustainable in the long-term. METHODS We analysed VL incidence across 45,000 villages in Bihar state, exploring spatial autocorrelation and associations with local environmental conditions in order to assess the feasibility of inference at this scale. We evaluated a statistical disaggregation approach to infer finer spatial variation from routinely-collected, block-level data, validating against observed village-level incidence. RESULTS This disaggregation approach does not estimate village-level incidence more accurately than a baseline assumption of block-homogeneity. Spatial auto-correlation is evident on a block-level but weak between neighbouring villages within the same block, possibly suggesting that longer-range transmission (e.g., due to population movement) may be an important contributor to village-level heterogeneity. CONCLUSIONS Increasing the range of reactive interventions to neighbouring villages may not improve their efficacy in suppressing transmission, but maintaining surveillance and diagnostic capacity in areas distant from recently observed cases - particularly along routes of population movement from endemic regions - could reduce reintroduction risk in currently unaffected villages. The reactive, spatially-targeted approach to VL surveillance limits interpretability of data observed at the village level, and hence the feasibility of routinely drawing and validating inference at this scale.
Collapse
Affiliation(s)
- Emily S Nightingale
- Department of Infectious Disease Epidemiology and Dynamics, London School of Hygiene and Tropical Medicine, London, UK.
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | - Lloyd A C Chapman
- School of Mathematical Sciences, Lancaster University, Lancaster, UK
| | | | - Mary M Cameron
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology and Dynamics, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Graham F Medley
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Tim C D Lucas
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Coffeng LE, de Vlas SJ, Singh RP, James A, Bindroo J, Sharma NK, Ali A, Singh C, Sharma S, Coleman M. Effect of indoor residual spraying on sandfly abundance and incidence of visceral leishmaniasis in India, 2016-22: an interrupted time-series analysis and modelling study. THE LANCET. INFECTIOUS DISEASES 2024; 24:1266-1274. [PMID: 39134082 PMCID: PMC11511677 DOI: 10.1016/s1473-3099(24)00420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 10/27/2024]
Abstract
BACKGROUND Efforts to eliminate visceral leishmaniasis in India mainly consist of early detection and treatment of cases and indoor residual spraying with insecticides to kill the phlebotomine sandfly Phlebotomus argentipes that transmits the causative Leishmania protozoa. In this modelling study, we aimed to estimate the effect of indoor residual spraying (IRS) on vector abundance and transmission of visceral leishmaniasis in India. METHODS In this time-series analysis and modelling study, we assessed the effect of IRS on vector abundance by using indoor vector-abundance data (from 2016 to 2022) and IRS quality-assurance data (from 2017-20) from 50 villages in eight endemic blocks in India where IRS was implemented programmatically. To assess a potential dose-response relation between insecticide concentrations and changes in sandfly abundance, we examined the correlation between site-level insecticide concentrations and the site-level data for monthly sandfly abundances. We used mathematical modelling to link vector data to visceral leishmaniasis case numbers from the national Kala-Azar Management Information System registry (2013-21), and to predict the effect of IRS on numbers of averted cases and deaths. FINDINGS IRS was estimated to reduce indoor sandfly abundance by 27% (95% CI 20-34). Concentrations of insecticides on walls were significantly-but weakly-associated with the degree of reduction in vector abundance, with a reduction of -0·0023 (95% CI -0·0040 to -0·0007) sandflies per mg/m2 insecticide (p=0·0057). Reported case numbers of visceral leishmaniasis were well explained by trends in vector abundance. Village-wide IRS in response to a newly detected case of visceral leishmaniasis was predicted to reduce disease incidence by 6-40% depending on the presumed reduction in vector abundance modelled. INTERPRETATION Indoor residual spraying has substantially reduced sandfly abundance in India, which has contributed to reductions in visceral leishmaniasis and related deaths. To prevent the re-emergence of visceral leishmaniasis as a public health problem, surveillance of transmission and sandfly abundance is warranted. FUNDING Bill & Melinda Gates Foundation. TRANSLATION For the Hindi translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudra Pratap Singh
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ananthu James
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Niteen K Sharma
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Asgar Ali
- All India Institute of Medical Science, Patna, India
| | | | | | - Michael Coleman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
3
|
Davis C, Javor ER, Rebarber SI, Rychtář J, Taylor D. A mathematical model of visceral leishmaniasis transmission and control: Impact of ITNs on VL prevention and elimination in the Indian subcontinent. PLoS One 2024; 19:e0311314. [PMID: 39365771 PMCID: PMC11452004 DOI: 10.1371/journal.pone.0311314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a deadly, vector-borne, parasitic, neglected tropical disease, particularly prevalent on the Indian subcontinent. Sleeping under the long-lasting insecticide-treated nets (ITNs) was considered an effective VL prevention and control measures, until KalaNet, a large trial in Nepal and India, did not show enough supporting evidence. In this paper, we adapt a biologically accurate, yet relatively simple compartmental ordinary differential equations (ODE) model of VL transmission and explicitly model the use of ITNs and their role in VL prevention and elimination. We also include a game-theoretic analysis in order to determine an optimal use of ITNs from the individuals' perspective. In agreement with the previous more detailed and complex model, we show that the ITNs coverage amongst the susceptible population has to be unrealistically high (over 96%) in order for VL to be eliminated. However, we also show that if the whole population, including symptomatic and asymptomatic VL cases adopt about 90% ITN usage, then VL can be eliminated. Our model also suggests that ITN usage should be accompanied with other interventions such as vector control.
Collapse
Affiliation(s)
- Cameron Davis
- Department of Mathematics, Fitchburg State University, Fitchburg, MA, United States of America
| | - Elizabeth R. Javor
- Department of Mathematics, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sonja I. Rebarber
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA, United States of America
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Dewey Taylor
- Department of Mathematics, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
4
|
Zahri A, Ahlamine M, Abou-Elaaz FZ, Talimi H, El Berbri I, Balenghien T, Bourquia M. Diversity of biting midges, mosquitoes and sand flies at four dog shelters in rural and peri-urban areas of Central Morocco. Parasite 2024; 31:57. [PMID: 39331804 PMCID: PMC11433837 DOI: 10.1051/parasite/2024057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024] Open
Abstract
Blood-feeding arthropods are involved in the transmission of several pathogens that have a major impact on public health. Entomological investigations highlighted the composition, abundance, and diversity of flying hematophagous arthropods at four dog shelters located in central Morocco during an eight-month study, with the aim of discussing their vectorial roles and assessing the risk of these shelters as foci for zoonotic diseases. Monitoring of the arthropod fauna for 64 catch nights resulted in the collection of 2,321 biting midges (Ceratopogonidae), 570 mosquitoes (Culicidae), and 475 sand flies (Psychodidae). Fourteen Culicoides species were recorded and dominant species were Culicoides imicola (55.96%), C. paolae (16.07%), C. circumscriptus (10.29%), and C. newsteadi (5.77%). Three mosquito species were collected, including Culex pipiens s.l. (96.84%), Culiseta longiareolata (2.80%), and Cx. perexiguus (0.36%). Ten sand fly species were collected, including seven Phlebotomus species (62.70%) and three Sergentomyia species (37.30%); Sergentomyia minuta was the most dominant species (34.31%), followed by Phlebotomus sergenti (32.42%), typical Ph. perniciosus (8.63%), Ph. alexandri (6.94%), and Ph. riouxi (6.52%). The coexistence of several vectors in these study areas indicates the potential circulation of a wide range of pathogens, including zoonotic ones, thus requiring the implementation of surveillance and control programs to prevent the emergence and spread of disease outbreaks.
Collapse
Affiliation(s)
- Abderrahmane Zahri
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Mehdi Ahlamine
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Fatima-Zahra Abou-Elaaz
- Geophysics, Natural Patrimony and Green Chemistry Research Centre (GEOPAC), Geo-Biodiversity and Natural Patrimony Laboratory (GEOBIOL), Scientific Institute, Mohammed V University Rabat Morocco
| | - Hasnaa Talimi
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc Casablanca Morocco
- Systems and Data Engineering Team, National School of Applied Sciences, Abdelmalek Essaâdi University Tangier Morocco
| | - Ikhlass El Berbri
- Microbiology, Immunology and Contagious Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Thomas Balenghien
- CIRAD, UMR ASTRE 34398 Montpellier France
- ASTRE, Université de Montpellier, CIRAD, INRAE Montpellier France
| | - Maria Bourquia
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| |
Collapse
|
5
|
Dutra-Rêgo F, da Silva MS, Isnard AP, Medeiros JF, Andrade JD, Freire ML. You are what you eat: a systematic review exploring the interaction between Brazilian sand flies and their vertebrate food sources. Mem Inst Oswaldo Cruz 2024; 119:e240055. [PMID: 39230128 PMCID: PMC11368077 DOI: 10.1590/0074-02760240055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/12/2024] [Indexed: 09/05/2024] Open
Abstract
Sand flies play a crucial role as vectors of bacteria, viruses, and protists, with Leishmania being the most notable among them, transmitted to vertebrate hosts during blood feeding. Understanding the feeding behaviours of sand flies is imperative for gaining insights into their eco-epidemiological roles in the transmission of these infectious agents. This systematic review aimed to answer the question 'What are the blood-feeding sources identified in Brazilian sand flies?' to provide an analysis of their blood-feeding habits. The diverse range of at least 16 vertebrate orders identified as blood sources for 54 sand fly species across different geographic regions was summarised, and the factors potentially associated with the risk of bias in the included studies were analysed. The findings broaden the discussion concerning methods used to identify blood meal sources and shed light on the implications of sand fly feeding behaviours for the transmission dynamics of Leishmania.
Collapse
Affiliation(s)
- Felipe Dutra-Rêgo
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Estudos em Leishmanioses, Belo Horizonte, MG, Brasil
| | - Michelli Santos da Silva
- Universidade Federal de Rondônia/Fundação Oswaldo Cruz-Fiocruz, Programa de Pós-Graduação em Biologia Experimental, Porto Velho, RO, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Entomologia, Porto Velho, RO, Brasil
| | - Ana Paula Isnard
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Estudos em Leishmanioses, Belo Horizonte, MG, Brasil
| | - Jansen Fernandes Medeiros
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Entomologia, Porto Velho, RO, Brasil
- Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brasil
| | - José Dilermando Andrade
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Estudos em Leishmanioses, Belo Horizonte, MG, Brasil
| | - Mariana Lourenço Freire
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Pesquisa Clínica e Políticas Públicas em Doenças Infecto-Parasitárias, Belo Horizonte, MG, Brasil
| |
Collapse
|
6
|
Kumar G, Baharia R, Singh K, Gupta SK, Joy S, Sharma A, Rahi M. Addressing challenges in vector control: a review of current strategies and the imperative for novel tools in India's combat against vector-borne diseases. BMJ PUBLIC HEALTH 2024; 2:e000342. [PMID: 40018116 PMCID: PMC11816101 DOI: 10.1136/bmjph-2023-000342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2025]
Abstract
Vector-borne diseases (VBDs) exert a substantial burden across the world, especially in tropical countries. Malaria, chikungunya, dengue, visceral leishmaniasis, lymphatic filariasis and Japanese encephalitis are among the public health concerns for India. One of the major pillars for the containment of VBDs is vector control and different tools have been employed for several decades. These range from chemical insecticides used in indoor residual sprays, space sprays, fogging, treated bednets and larvicides to biological control methods such as larvivorus fishes and environmental control and modification measures such as source reduction. However, these methods are increasingly becoming less effective due to several reasons such as insecticide resistance, outdoor biting, behavioural changes in vectors for biting and resting, climate change, movement of population, vector incursion to newer areas and others. It is essential to develop and test new tools for vector control to surmount these challenges. Though focusing on India's public health concerns, the new tools enumerated here can be tested by any country with similar epidemiological and environmental conditions. The promising new vector control tools are insecticide-treated nets with synergist and/or pyrrole chlorfenapyr, alternatives/additions to synthetic pyrethroids like neonicotinoids, clothianidin for indoor residual spray, newer formulations such as Bacillus sphaericus for use in larvicides, attractive toxic sugar baits, especially to curtail outdoor transmission, endectocides like ivermectin for use in animals/humans, insecticidal paints, spatial repellents, insecticide-treated wearables and others. Genetic modification technologies (Sterile Insect Technique/Incompatible Insect Technique/Wolbachia transfection) are also upcoming strategies. Among the six VBDs, India is committed to the elimination of three (malaria, visceral leishmaniasis and lymphatic filariasis) and it will require additional and/or novel tools to overcome the roadblocks in our current journey to the goal of control/elimination of these VBDs.
Collapse
Affiliation(s)
- Gaurav Kumar
- ICMR-National Institute of Malaria Research, New Delhi, Delhi, India
| | - Rajendra Baharia
- ICMR-National Institute of Malaria Research Field Unit, Nadiad, Gujarat, India
| | - Kuldeep Singh
- ICMR-National Institute of Malaria Research, New Delhi, Delhi, India
| | | | - Sam Joy
- Indian Council of Medical Reseach, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, Delhi, India
- Molecular Medicine, International Centre For Genetic Engineering and Biotechnology New Delhi, New Delhi, India
| | - Manju Rahi
- ICMR-National Institute of Malaria Research, New Delhi, Delhi, India
- Indian Council of Medical Reseach, New Delhi, India
- Indian Council of Medical Research -Vector Control Research Centre, Puducherry, India
| |
Collapse
|
7
|
Paul A, Roy PK, Babu NK, Singh S. Clotrimazole causes membrane depolarization and induces sub G 0 cell cycle arrest in Leishmania donovani. Acta Trop 2024; 252:107139. [PMID: 38307362 DOI: 10.1016/j.actatropica.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 μM, 12.75 ± 0.35 μM and 73 ± 1.41 μM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
8
|
Montaner-Angoiti E, Llobat L. Is leishmaniasis the new emerging zoonosis in the world? Vet Res Commun 2023; 47:1777-1799. [PMID: 37438495 DOI: 10.1007/s11259-023-10171-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Leishmania is a genus of parasitic protozoa that causes a disease called leishmaniasis. Leishmaniasis is transmitted to humans through the bites of infected female sandflies. There are several different species of Leishmania that can cause various forms of the disease, and the symptoms can range from mild to severe, depending on species of Leishmania involved and the immune response of the host. Leishmania parasites have a variety of reservoirs, including humans, domestic animals, horses, rodents, wild animals, birds, and reptiles. Leishmaniasis is endemic of 90 countries, mainly in South American, East and West Africa, Mediterranean region, Indian subcontinent, and Central Asia. In recent years, cases have been detected in other countries, and it is already an infection present throughout the world. The increase in temperatures due to climate change makes it possible for sandflies to appear in countries with traditionally colder regions, and the easy movement of people and animals today, facilitate the appearance of Leishmania species in new countries. These data mean that leishmaniasis will probably become an emerging zoonosis and a public health problem in the coming years, which we must consider controlling it from a One Health point of view. This review summarizes the prevalence of Leishmania spp. around the world and the current knowledge regarding the animals that could be reservoirs of the parasite.
Collapse
Affiliation(s)
- Esperanza Montaner-Angoiti
- Molecular Mechanisms of Zoonotic Disease (MMOPS) Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities Valencia, Valencia, Spain
| | - Lola Llobat
- Molecular Mechanisms of Zoonotic Disease (MMOPS) Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities Valencia, Valencia, Spain.
| |
Collapse
|
9
|
Wang P, Liu H, Zheng X, Ma R. A new method for spatio-temporal transmission prediction of COVID-19. CHAOS, SOLITONS, AND FRACTALS 2023; 167:112996. [PMID: 36589549 PMCID: PMC9792945 DOI: 10.1016/j.chaos.2022.112996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 is the most serious public health event of the 21st century and has had a huge impact across the world. The spatio-temporal pattern analysis and simulation of epidemic spread have become the focus of current research. LSTM model has made a lot of achievements in the prediction of infectious diseases by virtue of its advantages in time prediction, but lacks the spatial expression. CA model plays an important role in epidemic spatial propagation modeling due to its unique evolution characteristics from local to global. However, no existing studies of CA have considered long-term dependence due to the impact of time changes on the evolution of the epidemic, and few have modeled using location data from actual diagnosed patients. Therefore, we proposed a LSTM-CA model to solve above mentioned problems. Base on the advantages of LSTM in temporal level and CA in spatial level, LSTM and CA are integrated from the spatio-temporal perspective of geography based on the fine-grained characteristics of epidemic data. The method divides the study area into regular grids, simulates the spatial interactions between neighborhood cells with the help of CA model, and extracts the parameters affecting the transition probability in CA with the help of LSTM model to assist evolution. Simulations are conducted in Python 3.4 to model the propagation of COVID-19 between Feb, 6 to Mar 20, 2020 in China. Experimental results show that, LSTM-CA performs a higher statistical accuracy than LSTM and spatial accuracy than CA, which could demonstrate the effectiveness of the proposed model. This method could be universal for the temporal and spatial transmission of major public health events. Especially in the early stage of the epidemic, we can quickly understand its development trend and cycle, so as to provide an important reference for epidemic prevention and control and public sentiment counseling.
Collapse
Affiliation(s)
- Peipei Wang
- School of Information Engineering, China University of Geosciences, Beijing, China
| | - Haiyan Liu
- School of Economic and Management, China University of Geosciences, Beijing, China
| | - Xinqi Zheng
- School of Information Engineering, China University of Geosciences, Beijing, China
- Technology Innovation Center for Territory Spatial Big-data, MNR of China, Beijing, China
| | - Ruifang Ma
- School of Information Engineering, China University of Geosciences, Beijing, China
| |
Collapse
|
10
|
Paul A, Singh S. Visceral leishmaniasis in the COVID-19 pandemic era. Trans R Soc Trop Med Hyg 2023; 117:67-71. [PMID: 36283121 PMCID: PMC9620367 DOI: 10.1093/trstmh/trac100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Visceral l eishmaniasis (VL), also known as kala-azar, had once been targeted for elimination in 2020, which now has been shifted to 2030. The year 2020 was also the year in which the world was gripped by the coronavirus disease 2019 (COVID-19) pandemic. This review sheds light on the impact of COVID-19 on VL elimination programmes and the increasing incidences of COVID-19/VL cases. Lockdowns were imposed worldwide that led to the suspension of surveys, active case finding and mass drug administration, which are important activities to manage neglected tropical diseases. Healthcare machinery was redirected to control the pandemic and acute resource shortages were seen. Budget cuts from funding agencies and donors also came as a severe blow. Priority changes for manufacturers of drugs and diagnostic kits have also exacerbated the situation. Cases where patients were co-infected with VL and COVID-19 were reported across various settings and in people of various age groups, posing unprecedented challenges in diagnosis and treatment. Concerted efforts from all stakeholders are required to understand and deal with the impact that this pandemic has had on VL.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab-160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab-160062, India
| |
Collapse
|
11
|
Iniguez E, Saha S, Petrellis G, Menenses C, Herbert S, Gonzalez-Rangel Y, Rowland T, Aronson NE, Rose C, Rafuse Haines L, Acosta-Serrano A, Serafim TD, Oliveira F, Srikantiah S, Bern C, Valenzuela JG, Kamhawi S. A Composite Recombinant Salivary Proteins Biomarker for Phlebotomus argentipes Provides a Surveillance Tool Postelimination of Visceral Leishmaniasis in India. J Infect Dis 2022; 226:1842-1851. [PMID: 36052609 PMCID: PMC10205619 DOI: 10.1093/infdis/jiac354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Incidence of visceral leishmaniasis (VL) in the Indian subcontinent (ISC) has declined by more than 95% since initiation of the elimination program in 2005. As the ISC transitions to the postelimination surveillance phase, an accurate measurement of human-vector contact is needed to assure long-term success. To develop this tool, we identified PagSP02 and PagSP06 from saliva of Phlebotomus argentipes, the vector of Leishmania donovani in the ISC, as immunodominant proteins in humans. We also established the absence of cross-reactivity with Phlebotomus papatasi saliva, the only other human-biting sand fly in the ISC. Importantly, by combining recombinant rPagSP02 and rPagSP06 we achieved greater antibody recognition and specificity than single salivary proteins. The receiver operating characteristics curve for rPagSP02 + rPagSP06 predicts exposure to Ph. argentipes bites with 90% specificity and 87% sensitivity compared to negative control sera (P >.0001). Overall, rPagSP02 + rPagSP06 provides an effective surveillance tool for monitoring vector control efforts after VL elimination.
Collapse
Affiliation(s)
- Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Samiran Saha
- Department of Biotechnology, Institute of Science, Visva Bharati University, Bolpur, West Bengal, India
| | - Georgios Petrellis
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Laboratory of Microbiology, Parasitology, and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Claudio Menenses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Samantha Herbert
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yvonne Gonzalez-Rangel
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tobin Rowland
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Naomi E Aronson
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Clair Rose
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee Rafuse Haines
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Sridhar Srikantiah
- Bihar Technical Support Program, CARE India Solutions for Sustainable Development, Patna, India
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
12
|
Dhumal TT, Kumar R, Paul A, Roy PK, Garg P, Singh S. Molecular explorations of the Leishmania donovani 6-phosphogluconolactonase enzyme, a key player in the pentose phosphate pathway. Biochimie 2022; 202:212-225. [PMID: 36037881 DOI: 10.1016/j.biochi.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
The enzymes of the pentose phosphate pathway are vital to survival in kinetoplastids. The second step of the pentose phosphate pathway involves hydrolytic cleavage of 6-phosphogluconolactone to 6-phosphogluconic acid by 6- phosphogluconolactonase (6PGL). In the present study, Leishmania donovani 6PGL (Ld6PGL) was cloned and overexpressed in bacterial expression system. Comparative sequence analysis revealed the conserved sequence motifs, functionally and structurally important residues in 6PGL family. In silico amino acid substitution study and interacting partners of 6PGL were predicted. The Ld6PGL enzyme was found to be active in the assay and in the parasites. Specificity was confirmed by western blot analysis. The ∼30 kDa protein was found to be a dimer in MALDI, glutaraldehyde crosslinking and size exclusion chromatography studies. Kinetic analysis and structural stability studies of Ld6PGL were performed with denaturants and at varied temperature. Computational 3D Structural modelling of Ld6PGL elucidates that it has a similar α/β hydrolase fold structural topology as in other members of 6PGL family. The three loops are found in extended form when the structure is compared with the human 6PGL (Hs6PGL). Further, enzyme substrate binding mode and its mechanism were investigated using the molecular docking and molecular simulation studies. Interesting dynamics action of substrate 6-phosphogluconolactone was observed into active site during MD simulation. Interesting differences were observed between host and parasite enzyme which pointed towards its potential to be explored as an antileishmanial drug target. This study forms the basis for further analysis of the role of Ld6PGL in combating oxidative stress in Leishmania.
Collapse
Affiliation(s)
- Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
13
|
Carvalho GMDL, Silva DF, Xavier LDA, Soares JVR, Ramos VDV, Madureira AP, Lima MA, Tonelli GB, Paz GF, Rêgo FD, Andrade-Filho JD, Margonari C. Sand fly bioecological aspects and risk mapping of leishmaniasis by geographical information systems approach in a mineral exploration area of Brazil. Acta Trop 2022; 232:106491. [PMID: 35504313 DOI: 10.1016/j.actatropica.2022.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Epidemiological studies of leishmaniasis in areas of great human influence and environmental change serve as important tools for the implementation of effective control plans. Mining is currently a major economic activity in Brazil with the municipality of Pains, in the state of Minas Gerais, being one of the main lime producing municipalities in the country. This study aimed to map areas of potential transmission risks within the municipality of Pains using an epidemiological approach in association with the ecological study of sand flies. Twelve samplings carried out between May 2015 and April 2016 collected a total of 12,728 sandflies, comprising 2,854 females (22.42%) and 9,874 males (77.58%), of 20 species belonging to ten genera. The most abundant species was Lutzomyia longipalpis (80%). Leishmania DNA was detected in seven pools of female sand flies with an infection rate of 0.37%. Geoprocessing and the use of maps revealed that vector sand flies are distributed throughout the urban area, as are cases of canine and human leishmaniasis. However, the greatest abundances of sand flies were at sampling points at the border of the urban area. Higher densities of sand flies and the presence of Leishmania DNA may be correlated with extensive degradation by limestone mining. Integrated and multidisciplinary research approaches are necessary to better understand how the impacts of environmental change influence these insect vectors of leishmaniasis.
Collapse
Affiliation(s)
| | - Danyele Franca Silva
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | - Laura do Amaral Xavier
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | - Joao Vítor Reis Soares
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | | | - Ana Paula Madureira
- DBTEC - Departamento de Biotecnologia, Universidade Federal de São João del-Rei, São João del-Rei 36307-352, Brazil
| | - Mariana Alves Lima
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | - Gabriel Barbosa Tonelli
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | - Gustavo Fontes Paz
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | - Felipe Dutra Rêgo
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| | | | - Carina Margonari
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz Minas), 30190-002, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Serra E Meira PCL, Abreu BL, de Almeida Zenóbio APL, de Castilho Sanguinette C, Rêgo FD, de Lima Carvalho GM, Saraiva L, Andrade Filho JD. Phlebotominae Fauna (Diptera: Psychodidae) and Molecular Detection of Leishmania (Kinetoplastida: Trypanosomatidae) in Urban Caves of Belo Horizonte, Minas Gerais, Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:257-266. [PMID: 34532734 DOI: 10.1093/jme/tjab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sand flies are often collected in urban areas, which has several implications for the risk of transmission of Leishmania Ross, 1903, to humans and other mammals. Given this scenario, we describe the sand fly fauna of caves and their surroundings in Mangabeiras Municipal Park (MMP) and Paredão Serra do Curral Park (PSCP), both located in the urban area of Belo Horizonte, Minas Gerais, Brazil, an endemic focus of visceral and cutaneous leishmaniasis. Collections were conducted monthly from November 2011 to October 2012, using CDC light traps exposed for two consecutive nights in four caves and their surroundings. Nonsystematized collections using Shannon traps and active searches were also performed around the caves. The presence of Leishmania DNA in collected female sand flies was evaluated by ITS1-PCR. A total of 857 sand flies representing fourteen species were collected in MMP, of which Evandromyia edwardsi (Mangabeira, 1941) was the most abundant. Leishmania amazonensis was detected in Brumptomyia nitzulescui (Costa Lima, 1932) and Ev. edwardsi, with the latter also having Leishmania braziliensis, Leishmania infantum, and Leishmania sp. A total of 228 sand flies representing four species were collected in PSCP, of which Sciopemyia microps (Mangabeira, 1942) was the most abundant. No females from PSCP were positive for Leishmania-DNA. Studies aimed at describing sand fly faunas of cave environments and detecting Leishmania are essential to understanding the relationship between these insects and this ecotope and assessing and monitoring areas that may pose risks to the health of visitors and employees.
Collapse
Affiliation(s)
- Paula Cavalcante Lamy Serra E Meira
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Lacerda Abreu
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Lusardo de Almeida Zenóbio
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiani de Castilho Sanguinette
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Dutra Rêgo
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Mayr de Lima Carvalho
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Lara Saraiva
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - José Dilermando Andrade Filho
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Want MY, Yadav P, Khan R, Chouhan G, Islamuddin M, Aloyouni SY, Chattopadhyay AP, AlOmar SY, Afrin F. Critical Antileishmanial in vitro Effects of Highly Examined Gold Nanoparticles. Int J Nanomedicine 2021; 16:7285-7295. [PMID: 34737566 PMCID: PMC8560327 DOI: 10.2147/ijn.s268548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The current therapeutic armory for visceral leishmaniasis (VL) caused by Leishmania donovani complex is inadequate, coupled with serious limitations. Combination therapy has proved ineffective due to mounting resistance; however, the search for safe and effective drugs is desirable, in the absence of any vaccine. There is a growing interest in the application of nanoparticles for the therapeutic effectiveness of leishmaniasis. Aimed in this direction, we assessed the antileishmanial effect of gold nanoparticles (GNP) against L. donovani in vitro. Methods GNP were synthesized and characterized for particle size by dynamic light scattering (DLS) and atomic force microscopy (AFM) and for optical properties by UV-visible spectroscopy. Cytotoxicity of GNP was measured by the MTT proliferation assay. The antileishmanial activity of the nanoparticles was evaluated against L. donovani promastigotes and macrophage-infected amastigotes in vitro. Results GNP showed a strong SPR peak at 520 nm and mean particle size, polydispersity index (PDI), and zeta potential of 56.0 ± 10 nm, 0.3 ± 0.1 and −27.0 ± 3 mV, respectively. The GNPs were smooth and spherical with a mean particle diameter of 20 ± 5 nm. Nanoparticles [1.2–100 µM] did not reveal any cytotoxicity on RAW 264.7 murine macrophage cell line, but exerted significant activity against both promastigotes and amastigote stages of L. donovani with 50% inhibitory concentrations (IC50) of 18.4 ± 0.4 µM and 5.0 ± 0.3 µM, respectively. GNP showed significant antileishmanial activity with deformed morphology of parasites and the least number of surviving promastigotes after growth reversibility analysis. Conclusion GNP may provide a platform to conjugate antileishmanial drugs onto the surface of nanoparticles to enhance their therapeutic effectiveness against VL. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.
Collapse
Affiliation(s)
- Muzamil Yaqub Want
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Priya Yadav
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rakin Khan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Molecular Virology and Vaccinology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | | | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Farhat Afrin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, 41477, Saudi Arabia
| |
Collapse
|
16
|
Saurabh S, Verma MK, Gautam V, Kumar N, Jain V, Goel AD, Gupta MK, Sharma PP, Bhardwaj P, Singh K, Nag VL, Garg MK, Misra S. Tobacco, alcohol use and other risk factors for developing symptomatic COVID-19 vs asymptomatic SARS-CoV-2 infection: a case-control study from western Rajasthan, India. Trans R Soc Trop Med Hyg 2021; 115:820-831. [PMID: 33444432 PMCID: PMC7928693 DOI: 10.1093/trstmh/traa172] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding risk factors of symptomatic coronavirus disease 2019 (COVID-19) vis-à-vis asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, severe disease and death is important. METHODS An unmatched case-control study was conducted through telephonic interviews among individuals who tested positive for SARS-CoV-2 in Jodhpur, India from 23 March to 20 July 2020. Contact history, comorbidities and tobacco and alcohol use were elicited using standard tools. RESULTS Among 911 SARS-CoV-2-infected individuals, 47.5% were symptomatic, 14.1% had severe COVID-19 and 41 (4.5%) died. Older age, working outside the home, cardiac and respiratory comorbidity and alcohol use were found to increase the risk of symptomatic disease as compared with asymptomatic infection. Current tobacco smoking (odds ratio [OR] 0.46 [95% confidence interval {CI} 0.26 to 0.78]) but not smokeless tobacco use (OR 0.81 [95% CI 0.55 to 1.19]) appeared to reduce the risk of symptomatic disease. Age ≥60 y and renal comorbidity were significantly associated with severe COVID-19. Age ≥60 y and respiratory and cardiac comorbidity were found to predispose to mortality. CONCLUSIONS The apparent reduced risk of symptomatic COVID-19 among tobacco smokers could be due to residual confounding owing to unknown factors, while acknowledging the limitation of recall bias. Cross-protection afforded by frequent upper respiratory tract infection among tobacco smokers could explain why a similar association was not found for smokeless tobacco use, thereby being more plausible than the 'nicotinic hypothesis'. Those with comorbidities and age ≥60 y should be prioritized for hospital admission.
Collapse
Affiliation(s)
- Suman Saurabh
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Mahendra Kumar Verma
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Vaishali Gautam
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Nitesh Kumar
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Vidhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Akhil Dhanesh Goel
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Manoj Kumar Gupta
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Prem Prakash Sharma
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Pankaj Bhardwaj
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Mahendra Kumar Garg
- Department of Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Sanjeev Misra
- Director, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| |
Collapse
|
17
|
Affiliation(s)
- C P Thakur
- Former Professor, Department of Medicine, Patna Medical College & Former Health Minister, Govt. of India, Chairman Balaji Utthan Sansthan, Uma Complex, Fraser Road, Patna, Bihar, India
| | - M Thakur
- Assistant Professor, Department of Zoology, Daulat Ram, College, University of Delhi, Delhi, India
| |
Collapse
|
18
|
Fortunato AK, Glasser CP, Watson JA, Lu Y, Rychtář J, Taylor D. Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201960. [PMID: 34234949 PMCID: PMC8242840 DOI: 10.1098/rsos.201960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Visceral leishmaniasis (VL) is a deadly neglected tropical disease caused by a parasite Leishmania donovani and spread by female sand flies Phlebotomus argentipes. There is conflicting evidence regarding the role of insecticide-treated nets (ITNs) on the prevention of VL. Numerous studies demonstrated the effectiveness of ITNs. However, KalaNet, a large trial in Nepal and India did not support those findings. The purpose of this paper is to gain insight into the situation by mathematical modelling. We expand a mathematical model of VL transmission based on the KalaNet trial and incorporate the use of ITNs explicitly into the model. One of the major contributions of this work is that we calibrate the model based on the available epidemiological data, generally independent of the KalaNet trial. We validate the model on data collected during the KalaNet trial. We conclude that in order to eliminate VL, the ITN usage would have to stay above 96%. This is higher than the 91% ITNs use at the end of the trial which may explain why the trial did not show a positive effect from ITNs. At the same time, our model indicates that asymptomatic individuals play a crucial role in VL transmission.
Collapse
Affiliation(s)
- Anna K. Fortunato
- Department of Mathematics, University of Richmond, Richmond, VA 23173, USA
| | - Casey P. Glasser
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-1026, USA
| | - Joy A. Watson
- Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA
| | - Yongjin Lu
- Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
| |
Collapse
|
19
|
Kumar V, Chugh A. Peptide-mediated leishmaniasis management strategy: Tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183629. [PMID: 33933430 DOI: 10.1016/j.bbamem.2021.183629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/23/2023]
Abstract
Visceral leishmaniasis is one of the neglected tropical diseases caused by an intracellular parasite, Leishmania donovani. Drug resistance, adverse side effects and long treatment regimes are important limitations in achieving the effective elimination of visceral leishmaniasis. In the absence of any vaccine, chemotherapy remains a viable treatment for leishmaniasis. For effective killing of leishmania parasite, the drug molecule needs to cross the cell membrane. In the present study, marine membrane-active peptide Tachyplesin has been used against Leishmania donovani. Further, the mechanism of action and importance of cysteine amino acids of Tachyplesin in anti-leishmanial activity has been assessed. The cargo-carrying ability of Tachyplesin in L. donovani has been established. Thus, dual-use of Tachyplesin as an anti-leishmanial peptide as well as a cargo delivery vehicle makes the marine peptide an attractive therapeutic target against visceral leishmaniasis.
Collapse
Affiliation(s)
- Vivek Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
20
|
Dixit KK, Ramesh V, Gupta R, Negi NS, Singh R, Salotra P. Real-Time Fluorimetry Loop-Mediated Isothermal Amplification for Diagnosis of Leishmaniasis and as a Tool for Assessment of Cure for Post-Kala-Azar Dermal Leishmaniasis. Am J Trop Med Hyg 2021; 104:2097-2107. [PMID: 33872204 DOI: 10.4269/ajtmh.20-1057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the dwindling number of visceral leishmaniasis (VL) cases in India, there is an urgent need for early and unequivocal diagnostics for controlling and preventing the reemergence of VL. Post-kala-azar dermal leishmaniasis (PKDL), a dermal sequela of VL, serves as a reservoir of the parasite. Diagnosis of PKDL, especially the macular variant, is challenging and poses impediment toward attainment of VL elimination. In this study, a real-time fluorimetry loop-mediated isothermal amplification (RealAmp) assay has been established for the detection of different clinical manifestations of leishmaniasis. The study included 150 leishmaniasis patients (25 VL, 25 cutaneous leishmaniasis [CL], and 100-PKDL) along with 120 controls. The assay demonstrated sensitivity of 100% (95% CI: 86.68-100) for diagnosis of VL and PKDL (95% CI: 79.61-100) and 96% (95% CI: 86.68-100) for CL with 100% specificity. Moreover, considering the cardinal role of PKDL, diagnosis using minimally invasive slit aspirate was explored, which demonstrated remarkable sensitivity of 96% (95% CI: 87.64-98.47). As a test of cure for PKDL, RealAmp successfully detected parasite in two of posttreatment cases who later reported relapse on follow-up. Also, direct sample lysis using slit aspirate was attempted in a small group that yielded sensitivity of 89% (95% CI: 67.20-96.90). RealAmp depicted excellent diagnostic accuracy in the diagnosis of leishmaniasis in concordance with the established SYBR Green I-based visual loop-mediated isothermal amplification (LAMP) and the reference comparator real-time PCR. The study endorsed the employment of LAMP either as visual-LAMP or RealAmp for an accurate and expeditious diagnosis of PKDL and as a tool for assessment of cure.
Collapse
Affiliation(s)
- Keerti Kaumudee Dixit
- 1ICMR-National Institute of Pathology (NIOP), Safdarjung Hospital Campus, New Delhi, India.,2Faculty of Health and Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - V Ramesh
- 3Department of Dermatology and STD, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Ratan Gupta
- 4Department of Paediatrics, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Narendra Singh Negi
- 5Department of Medicine, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Ruchi Singh
- 1ICMR-National Institute of Pathology (NIOP), Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- 1ICMR-National Institute of Pathology (NIOP), Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
21
|
Le Rutte EA, Coffeng LE, Muñoz J, de Vlas SJ. Modelling the impact of COVID-19-related programme interruptions on visceral leishmaniasis in India. Trans R Soc Trop Med Hyg 2021; 115:229-235. [PMID: 33580952 PMCID: PMC7928630 DOI: 10.1093/trstmh/trab012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background In March 2020, India declared a nationwide lockdown to control the spread of coronavirus disease 2019. As a result, control efforts against visceral leishmaniasis (VL) were interrupted. Methods Using an established age-structured deterministic VL transmission model, we predicted the impact of a 6- to 24-month programme interruption on the timeline towards achieving the VL elimination target as well as on the increase of VL cases. We also explored the potential impact of a mitigation strategy after the interruption. Results Delays towards the elimination target are estimated to range between 0 and 9 y. Highly endemic settings where control efforts have been ongoing for 5–8 y are most affected by an interruption, for which we identified a mitigation strategy to be most relevant. However, more importantly, all settings can expect an increase in the number of VL cases. This increase is substantial even for settings with a limited expected delay in achieving the elimination target. Conclusions Besides implementing mitigation strategies, it is of great importance to try and keep the duration of the interruption as short as possible to prevent new individuals from becoming infected with VL and continue the efforts towards VL elimination as a public health problem in India.
Collapse
Affiliation(s)
- Epke A Le Rutte
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Johanna Muñoz
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
22
|
Dial NJ, Medley GF, Croft SL, Mahapatra T, Priyamvada K, Sinha B, Palmer L, Terris-Prestholt F. Costs and outcomes of active and passive case detection for visceral leishmaniasis (Kala-Azar) to inform elimination strategies in Bihar, India. PLoS Negl Trop Dis 2021; 15:e0009129. [PMID: 33534836 PMCID: PMC7886142 DOI: 10.1371/journal.pntd.0009129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/16/2021] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Effective case identification strategies are fundamental to capturing the remaining visceral leishmaniasis (VL) cases in India. To inform government strategies to reach and sustain elimination benchmarks, this study presents costs of active- and passive- case detection (ACD and PCD) strategies used in India's most VL-endemic state, Bihar, with a focus on programme outcomes stratified by district-level incidence. METHODS Expenditure analysis was complemented by onsite micro-costing to compare the cost of PCD in hospitals alongside index case-based ACD and a combination of blanket (house-to-house) and camp ACD from January to December 2018. From the provider's perspective, a cost analysis evaluated the overall programme cost of each activity, the cost per case detected, and the cost of scaling up ACD. RESULTS During 2018, index case-based ACD, blanket and camp ACD, and PCD reported 1,497, 131, and 1,983 VL-positive cases at a unit cost of $522.81, $4,186.81, and $246.79, respectively. In high endemic districts, more VL cases were identified through PCD while in meso- and low-endemic districts more cases were identified through ACD. The cost of scaling up ACD to identify 3,000 additional cases ranged from $1.6-4 million, depending on the extent to which blanket and camp ACD was relied upon. CONCLUSION Cost per VL test conducted (rather than VL-positive case identified) may be a better metric estimating unit costs to scale up ACD in Bihar. As more VL cases were identified in meso-and low-endemic districts through ACD than PCD, health authorities in India should consider bolstering ACD in these areas. Blanket and camp ACD identified fewer cases at a higher unit cost than index case-based ACD. However, the value of detecting additional VL cases early outweighs long-term costs for reaching and sustaining VL elimination benchmarks in India.
Collapse
Affiliation(s)
- Natalie J. Dial
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Graham F. Medley
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tanmay Mahapatra
- CARE India Solutions for Sustainable Development, Patna, Bihar, India
| | | | - Bikas Sinha
- CARE India Solutions for Sustainable Development, Patna, Bihar, India
| | | | - Fern Terris-Prestholt
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Priyamvada K, Bindroo J, Sharma MP, Chapman LAC, Dubey P, Mahapatra T, Hightower AW, Bern C, Srikantiah S. Visceral leishmaniasis outbreaks in Bihar: community-level investigations in the context of elimination of kala-azar as a public health problem. Parasit Vectors 2021; 14:52. [PMID: 33451361 PMCID: PMC7810196 DOI: 10.1186/s13071-020-04551-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND With visceral leishmaniasis (VL) incidence at its lowest level since the 1960s, increasing attention has turned to early detection and investigation of outbreaks. METHODS Outbreak investigations were triggered by recognition of case clusters in the VL surveillance system established for the elimination program. Investigations included ascertainment of all VL cases by date of fever onset, household mapping and structured collection of risk factor data. RESULTS VL outbreaks were investigated in 13 villages in 10 blocks of 7 districts. Data were collected for 20,670 individuals, of whom 272 were diagnosed with VL between 2012 and 2019. Risk was significantly higher among 10-19 year-olds and adults 35 or older compared to children younger than 10 years. Outbreak confirmation triggered vector control activities and heightened surveillance. VL cases strongly clustered in tolas (hamlets within villages) in which > 66% of residents self-identified as scheduled caste or scheduled tribe (SC/ST); 79.8% of VL cases occurred in SC/ST tolas whereas only 24.2% of the population resided in them. Other significant risk factors included being an unskilled non-agricultural laborer, migration for work in a brick kiln, living in a kuccha (mud brick) house, household crowding, habitually sleeping outside or on the ground, and open defecation. CONCLUSIONS Our data highlight the importance of sensitive surveillance with triggers for case cluster detection and rapid, careful outbreak investigations to better respond to ongoing and new transmission. The strong association with SC/ST tolas suggests that efforts should focus on enhanced surveillance in these disadvantaged communities.
Collapse
Affiliation(s)
| | - Joy Bindroo
- CARE-India Solutions for Sustainable Development, Patna, India
| | | | - Lloyd A C Chapman
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Pushkar Dubey
- CARE-India Solutions for Sustainable Development, Patna, India
| | | | | | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
24
|
Toor J, Adams ER, Aliee M, Amoah B, Anderson RM, Ayabina D, Bailey R, Basáñez MG, Blok DJ, Blumberg S, Borlase A, Rivera RC, Castaño MS, Chitnis N, Coffeng LE, Crump RE, Das A, Davis CN, Davis EL, Deiner MS, Diggle PJ, Fronterre C, Giardina F, Giorgi E, Graham M, Hamley JID, Huang CI, Kura K, Lietman TM, Lucas TCD, Malizia V, Medley GF, Meeyai A, Michael E, Porco TC, Prada JM, Rock KS, Le Rutte EA, Smith ME, Spencer SEF, Stolk WA, Touloupou P, Vasconcelos A, Vegvari C, de Vlas SJ, Walker M, Hollingsworth TD. Predicted Impact of COVID-19 on Neglected Tropical Disease Programs and the Opportunity for Innovation. Clin Infect Dis 2020; 72:1463-1466. [PMID: 32984870 PMCID: PMC7543306 DOI: 10.1093/cid/ciaa933] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022] Open
Abstract
Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.
Collapse
Affiliation(s)
- Jaspreet Toor
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Emily R Adams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry, United Kingdom,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Benjamin Amoah
- Centre for Health Informatics, Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Roy M Anderson
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom,The DeWorm3 Project, Natural History Museum, London, United Kingdom
| | - Diepreye Ayabina
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Robin Bailey
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - David J Blok
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Seth Blumberg
- Francis I Proctor Foundation, University of California, San Francisco, California, United States of America
| | - Anna Borlase
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Rocio Caja Rivera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - María Soledad Castaño
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Luc E Coffeng
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ronald E Crump
- Mathematics Institute, University of Warwick, Coventry, United Kingdom,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom,The School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Aatreyee Das
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Christopher N Davis
- Mathematics Institute, University of Warwick, Coventry, United Kingdom,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Emma L Davis
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Michael S Deiner
- Francis I Proctor Foundation, University of California, San Francisco, California, United States of America,Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Peter J Diggle
- Centre for Health Informatics, Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Claudio Fronterre
- Centre for Health Informatics, Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Federica Giardina
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuele Giorgi
- Centre for Health Informatics, Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Matthew Graham
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom,Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan I D Hamley
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Ching-I Huang
- Mathematics Institute, University of Warwick, Coventry, United Kingdom,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Klodeta Kura
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Thomas M Lietman
- Francis I Proctor Foundation, University of California, San Francisco, California, United States of America,Department of Ophthalmology, University of California, San Francisco, California, United States of America,Department of Epidemiology & Biostatistics, University of California, San Francisco, California, United States of America
| | - Tim C D Lucas
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Veronica Malizia
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Graham F Medley
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Aronrag Meeyai
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Travis C Porco
- Francis I Proctor Foundation, University of California, San Francisco, California, United States of America,Department of Ophthalmology, University of California, San Francisco, California, United States of America,Department of Epidemiology & Biostatistics, University of California, San Francisco, California, United States of America
| | - Joaquin M Prada
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Epke A Le Rutte
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Morgan E Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Simon E F Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom,Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Wilma A Stolk
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Andreia Vasconcelos
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Carolin Vegvari
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Sake J de Vlas
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom,London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire, United Kingdom
| | - T Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom,Correspondence: T. D. Hollingsworth, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, UK ()
| |
Collapse
|
25
|
Saurabh S. Time for a village-level strategy for the elimination of kala-azar (visceral leishmaniasis) in India: analysis of potential kala-azar outbreak situation in 2018. Trop Doct 2020; 51:84-91. [PMID: 32903147 DOI: 10.1177/0049475520953647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cases of kala-azar reported during 2013-2018 in Bihar, India were retrospectively analysed. Of 2187 villages reporting cases of kala-azar in 2018, 573 (26.2%) had reported no case in the previous five years but contributed to 20% of disease burden in 2018. On applying potential thresholds of kala-azar outbreaks, 805, 519 and 103 villages reported more than twice, thrice and five times their previous five-year annual average in 2018, respectively. Indoor residual spraying (IRS) in villages reporting any case of kala-azar in the past three years as per current guidelines could cover 72% of incident cases in 2018 vis-a-vis 80% if villages reporting cases in the past five years were considered. Therefore, IRS may be expanded to villages reporting cases in the past five years. Village case trends can be utilised to configure potential outbreak alarms (early warning and response system) on a pre-organised dashboard. A data-driven strategy for villages newly reporting cases and those in potential outbreak situations could prove effective in achieving and sustaining the elimination of kala-azar.
Collapse
Affiliation(s)
- Suman Saurabh
- Assistant Professor, Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| |
Collapse
|