1
|
Aguilar D, Garza-Rodríguez ML, Pérez-Ibave DC, Muñiz-Garza CE, Treviño V, Villarreal-Garza CM, Vidal-Gutiérrez O, Burciaga-Flores CH. Landscape of Multilocus Inherited Neoplasia Allele Syndrome in Mexican Population. JCO Glob Oncol 2025; 11:e2400065. [PMID: 39778127 DOI: 10.1200/go.24.00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Hereditary cancer syndromes (HCS) explain 5%-10% of all cancer cases. Patients with more than one germline pathogenic variant (GPV) result in a clinical syndrome known as multilocus inherited neoplasia allele syndrome (MINAS). In recent years, an increasing number of MINAS cases have been reported. This study aims to identify the prevalence of MINAS and determine the effect of two GPVs in HCS on patients from Northern Mexico. METHODS Patients (N = 2,282) were recruited from four public oncology centers and two private institutions with hereditary cancer detection programs in Nuevo León, México. A medical geneticist collected all the patient's clinical data and gave genetic counseling. Patients with MINAS were detected using multigene panels to detect GPVs; findings were classified according to American College of Medical Genetics and Genomics guidelines. The genetic data of patients with MINAS were evaluated by their frequency and combination. RESULTS We found 386 (16.9%) patients with one or more variants and 23 (5.9%) MINAS patients (all females). The most frequent diagnosis was breast cancer (BC) in 20 (86.95%) cases, whereas 16 (69.56%) had triple-negative BC. We found 13 patients with BRCA1 GPVs (56.52%) as the most frequent, followed by MUTYH with five cases (21.73%). The combinations of BRCA1/CHEK2, BRCA1/CDKN2A, and BRCA1/BRCA2 were the most frequent. We found no atypical presentation in the cohort. CONCLUSION This is the first Mexican MINAS report and the largest Latin American cohort. We detected a higher prevalence of MINAS than other populations (5.9%). We found a tendency for additive phenotypical effect and, in some MINAS combinations, a modification in the age of diagnosis.
Collapse
Affiliation(s)
- Dione Aguilar
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, San Pedro Garza Garcia, México
| | - María L Garza-Rodríguez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Diana C Pérez-Ibave
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Carolina E Muñiz-Garza
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Victor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, México
| | | | - Oscar Vidal-Gutiérrez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Carlos H Burciaga-Flores
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
- Instituto Mexicano del Seguro Social, Hospital de Ginecología y Obstetricia No. 23, Monterrey, México
| |
Collapse
|
2
|
Ndou L, Chambuso R, Algar U, Boutall A, Goldberg P, Ramesar R. Genomic Medicine in the Developing World: Cancer Spectrum, Cumulative Risk and Survival Outcomes for Lynch Syndrome Variant Heterozygotes with Germline Pathogenic Variants in the MLH1 and MSH2 Genes. Biomedicines 2024; 12:2906. [PMID: 39767815 PMCID: PMC11672899 DOI: 10.3390/biomedicines12122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Although genetic testing has improved our ability to diagnose Lynch syndrome (LS), there is still limited information on the extent of variations in the clinical and genetic landscape among LS variant heterozygotes (LSVH) in Africa. We sought to investigate the cancer spectrum, cumulative risk, and survival outcomes of LSVH with pathogenic/likely pathogenic variants (P/LPVs) in the MLH1 and MSH2 genes using a LS registry in South Africa over the last 30 years. Methods: A retrospective study was conducted to retrieve demographic, clinical, and genetic data of all LSVH with P/LPVs in the MLH1 and MSH2 genes from our LS registry. Genetic data were analyzed according to cancer spectrum, cumulative risk, and crude survival. We used the Chi-squared and t-test to assess differences between groups, and Kaplan-Meier survival analyses were used to analyze the cumulative risk and crude survival outcomes. A p-value < 0.05 at a 95% confidence interval was considered statistically significant. Results: We analyzed a total of 577 LSVH from 109 families. About 450 (78%) and 127 (22%) LSVH harbored a disease-causing mutation in MLH1 and MSH2, respectively. A South African founder PV (MLH1:c.1528C>T) accounted for 74% (n = 426) of all LSVH. CRC was the most common diagnosed cancer in both MLH1 and MSH2 LSVH. MLH1 LSVH had a younger age at cancer diagnosis than MSH2 LSVH (43 vs. 47 years, respectively, p = 0.015). Extracolonic cancers were predominantly higher in female LSVH (n = 33, 35%) than in male LSVH (n = 8, 7%) with the MLH1:c.1528C>T founder PV. The cumulative risk of any cancer and CRC at any age was higher in MLH1 LSVH than in MSH2 LSVH (p = 0.020 and p = 0.036, respectively). LSVH with the MLH1:c.1528C>T PV had a better 10-year overall survival after the first cancer diagnosis, particularly for CRC. Conclusions: LSVH with P/LPVs in the MLH1 and MSH2 genes exhibited significant gene- and sex-specific differences in cancer spectrum, cumulative risk and survival outcomes. Cancer risk and survival estimates described in this study can be used to guide surveillance and genetic counselling for LSVH in our population.
Collapse
Affiliation(s)
- Lutricia Ndou
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| | - Ramadhani Chambuso
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| | - Ursula Algar
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Adam Boutall
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Paul Goldberg
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| |
Collapse
|
3
|
Shamim MZ, Panda J, Mohanty G, Gogoi B, Patowary K, Mishra B, Mohanta YK. The Preventative and Curative Functions of Probiotics. APPLIED BIOTECHNOLOGY AND BIOINFORMATICS 2024:181-215. [DOI: 10.1002/9781119896869.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Lider‐Burciulescu S, Gheorghiu M, Braha E, Stanescu LS, Patocs A, Badiu C. Genetic landscape of Romanian PPGLs. J Cell Mol Med 2024; 28:e70204. [PMID: 39673085 PMCID: PMC11645294 DOI: 10.1111/jcmm.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours that originate from chromaffin cells and occur in the adrenal medulla and in the sympathetic or parasympathetic ganglia. Nearly 70% of PPGLs result from germline or somatic mutations in a single driver gene. The aim of this study was to characterize the genetic background and clinical characteristics related to genetic profile of patients with PPGLs from Romania. We retrospectively retrieved data of 125 patients consecutively registered, diagnosed with PPGLs in a tertiary referral center of endocrinology from Romania, between 1976 and 2022. We identified 88 (70.4%) women, and 37 (29.6%) men, with a mean age at diagnosis of 48.5 ± 15 years. From these 125 patients, 80 (64%) were submitted to the genomic study; 35% (n = 28) had a germline mutation (20 RET, 3 VHL, 1 SDHB, 1 NF1, 1 SDHD, 1 FANCA, 1 CASR) while 65% (n = 52) presented sporadic disease. Patients with hereditary disease had significantly lower age at diagnosis comparing to sporadic cases (37 ± 15 vs. 49.9 ± 12.2 years, p = 0.001). Bilateral tumors developed in twelve patients from the hereditary group. Metastatic disease was described in 4 out of 80 patients (2 of them with hereditary disease). Patients from sporadic group tended to have a right lateralisation of the tumour compared to hereditary cases, where the tumour was more often left sided. RET pathogenic variant (p.Cys634Trp) associated with MEN2A syndrome was the most prevalent in Romanian population with PPGLs and could be considered as a founder effect. Patients with hereditary disease are diagnosed at a younger age and develop bilateral tumors more frequently compared to sporadic cases.
Collapse
Affiliation(s)
- Sofia‐Maria Lider‐Burciulescu
- “Ana Aslan”, National Institute of Geriatrics and GerontologyBucharestRomania
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Monica Gheorghiu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- “CI Parhon” National Institute of EndocrinologyBucharestRomania
| | - Elena Braha
- “CI Parhon” National Institute of EndocrinologyBucharestRomania
| | - Laura Semonia Stanescu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- “CI Parhon” National Institute of EndocrinologyBucharestRomania
| | | | - Corin Badiu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- “CI Parhon” National Institute of EndocrinologyBucharestRomania
| |
Collapse
|
5
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Shumilova S, Danishevich A, Nikolaev S, Krasnov G, Ikonnikova A, Isaeva D, Surzhikov S, Zasedatelev A, Bodunova N, Nasedkina T. High- and Moderate-Risk Variants Among Breast Cancer Patients and Healthy Donors Enrolled in Multigene Panel Testing in a Population of Central Russia. Int J Mol Sci 2024; 25:12640. [PMID: 39684352 PMCID: PMC11641773 DOI: 10.3390/ijms252312640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.3%) were aged 50 years or less at the time of diagnosis. In total, 190/860 (22%) BC patients were carriers of 198 pathogenic/likely pathogenic (P/LP) variants in 30 genes, while among controls, 32/520 (6.2%) carriers of P/LP variants in 17 genes were identified. The odds ratio [95% confidence interval] was 16.3 [4.0-66.7] for BRCA1; 12.0 [2.9-45.9] for BRCA2; and 7.3 [0.9-56.7] for ATM (p < 0.05). Previously undescribed BRCA1/2, ATM, and PALB2 variants, as well as novel recurrent mutations, were identified. The contribution to BC susceptibility of truncating variants in the genes BARD1, RAD50, RAD51C, NBEAL1 (p. E1155*), and XRCC2 (p. P32fs) was evaluated. The BLM, NBN, and MUTYH genes did not demonstrate associations with BC risk. Finding deleterious mutations in BC patients is important for diagnosis and management; in controls, it opens up the possibility of prevention and early diagnostics.
Collapse
Affiliation(s)
- Syuykum Shumilova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anastasia Danishevich
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Darya Isaeva
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergei Surzhikov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| |
Collapse
|
7
|
Kilic S, Sukruoglu Erdogan O, Tuncer SB, Celik Demirbas B, Yalniz Kayim Z, Yazici H. RNA Splicing Aberrations in Hereditary Cancer: Insights from Turkish Patients. Curr Issues Mol Biol 2024; 46:13252-13266. [PMID: 39590384 PMCID: PMC11593161 DOI: 10.3390/cimb46110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The process of RNA splicing is fundamental in contributing to proteomic diversity and regulating gene expression. Dysregulation of splicing is associated with various human disorders, including cancer. Through functional studies, this study sought to examine the potential impact of seven variants within six inherited cancer-related genes on RNA splicing patterns in Turkish cancer patients. Upon detecting variants using Next-Generation Sequencing (NGS), we used Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and Sanger sequencing to elucidate the effects of these variants on splicing. Three of the seven variants demonstrated no discernible effect on RNA, while four exhibited pathogenic characteristics. Specifically, the variants APC c.532-1G>A rs1554072547, BRCA1c.4358-3A>G rs1567779966, BRCA2c.7436-1G>C rs81002830 and MSH3c.1897-1G>A rs1744149615 were identified as pathogenic, while the variants BLMc.4076+4T>G rs183176301, RB1c.2489+2T>C rs1555294636 and RB1c.1050-2A>G rs? were found to be benign from a splicing perspective. These findings highlight the importance of verifying the precise consequences of splice-site variants through experimental analysis, given their potential implications for genetic disorders and cancer predisposition. This research contributes to the understanding of splice-site variants in inherited cancer predisposition, particularly among Turkish cancer patients. It emphasizes the necessity for further exploration into the mechanisms and functional consequences of alternative splicing for potential therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Seda Kilic
- Cancer Genetics Department, Division of Basic Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Türkiye; (O.S.E.); (S.B.T.); (B.C.D.); (Z.Y.K.); (H.Y.)
| | - Ozge Sukruoglu Erdogan
- Cancer Genetics Department, Division of Basic Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Türkiye; (O.S.E.); (S.B.T.); (B.C.D.); (Z.Y.K.); (H.Y.)
| | - Seref Bugra Tuncer
- Cancer Genetics Department, Division of Basic Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Türkiye; (O.S.E.); (S.B.T.); (B.C.D.); (Z.Y.K.); (H.Y.)
| | - Betul Celik Demirbas
- Cancer Genetics Department, Division of Basic Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Türkiye; (O.S.E.); (S.B.T.); (B.C.D.); (Z.Y.K.); (H.Y.)
| | - Zubeyde Yalniz Kayim
- Cancer Genetics Department, Division of Basic Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Türkiye; (O.S.E.); (S.B.T.); (B.C.D.); (Z.Y.K.); (H.Y.)
| | - Hulya Yazici
- Cancer Genetics Department, Division of Basic Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Türkiye; (O.S.E.); (S.B.T.); (B.C.D.); (Z.Y.K.); (H.Y.)
- Medical Biology and Genetics Department, Medical Faculty, Istanbul Health and Technology University, 34275 Istanbul, Türkiye
| |
Collapse
|
8
|
Patócs A, Nagy P, Papp J, Bozsik A, Antal B, Grolmusz VK, Pócza T, Butz H. Cost-effectiveness of Genetic Testing of Endocrine Tumor Patients Using a Comprehensive Hereditary Cancer Gene Panel. J Clin Endocrinol Metab 2024; 109:3220-3233. [PMID: 38701358 PMCID: PMC11570362 DOI: 10.1210/clinem/dgae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Heterogenous clinical manifestations, overlapping phenotypes, and complex genetic backgrounds are common in patients with endocrine tumors. There are no comprehensive recommendations for genetic testing and counseling of these patients compared to other hereditary cancer syndromes. The application of multigene panel testing is common in clinical genetic laboratories, but their performance for patients with endocrine tumors has not been assessed. METHODS As a national reference center, we prospectively tested the diagnostic utility and cost-efficiency of a multigene panel covering 113 genes representing genetic susceptibility for solid tumors; 1279 patients (including 96 cases with endocrine tumors) were evaluated between October 2021 and December 2022 who were suspected to have hereditary tumor syndromes. RESULTS The analytical performance of the hereditary cancer panel was suitable for diagnostic testing. Clinical diagnosis was confirmed in 24% (23/96); incidental findings in genes not associated with the patient's phenotype were identified in 5% (5/96). A further 7% of pathogenic/likely pathogenic variants were detected in genes with potential genetic susceptibility roles but currently no clear clinical consequence. Cost-benefit analysis showed that the application of a more comprehensive gene panel in a diagnostic laboratory yielded a shorter turnaround time and provided additional genetic results with the same cost and workload. DISCUSSION Using comprehensive multigene panel results in faster turnaround time and cost-efficiently identifies genetic alterations in hereditary endocrine tumor syndromes. Incidentally identified variants in patients with poor prognoses may serve as a potential therapeutic target in tumors where therapeutic possibilities are limited.
Collapse
Affiliation(s)
- Attila Patócs
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - János Papp
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Anikó Bozsik
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Bálint Antal
- Semmelweis University, National Academy of Scientist Education, H-1085 Budapest, Hungary
| | - Vince Kornél Grolmusz
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Henriett Butz
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| |
Collapse
|
9
|
Rocca V, Lo Feudo E, Dinatolo F, Lavano SM, Bilotta A, Amato R, D’Antona L, Trapasso F, Baudi F, Colao E, Perrotti N, Paduano F, Iuliano R. Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Curr Issues Mol Biol 2024; 46:13003-13020. [PMID: 39590369 PMCID: PMC11592649 DOI: 10.3390/cimb46110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all cases, with pathogenic variants in BRCA1/2 and other susceptibility genes playing a crucial role. This study elucidates the prevalence and spectrum of germline variants in 13 cancer predisposition genes among high-risk hereditary breast cancer patients from Southern Italy. We employed next-generation sequencing (NGS) to analyze 254 individuals selected through genetic counseling. Pathogenic or likely pathogenic variants were identified in 13% (34/254) of patients, with 54% of these variants occurring in non-BRCA1/2 genes. Notably, we observed a recurrent BRCA1 c.4964_4982del founder mutation, underscoring the importance of population-specific genetic screening. The spectrum of variants extended beyond BRCA1/2 to include PALB2, ATM, TP53, CHEK2, and RAD51C, highlighting the genetic heterogeneity of breast cancer susceptibility. Variants of uncertain significance were detected in 20% of patients, emphasizing the ongoing challenge of variant interpretation in the era of multi-gene panel testing. These findings not only enhance our understanding of the genetic landscape of breast cancer in Southern Italy but also provide a foundation for developing more targeted, population-specific approaches to genetic testing and counseling, ultimately contributing to the advancement of precision medicine in oncology.
Collapse
Affiliation(s)
- Valentina Rocca
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Lo Feudo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Serena Marianna Lavano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Anna Bilotta
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Rosario Amato
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia D’Antona
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Emma Colao
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Nicola Perrotti
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
10
|
Yoshida R, Kaneyasu T, Ueki A, Yamauchi H, Ohsumi S, Ohno S, Aoki D, Baba S, Kawano J, Matsumoto N, Nagasaki M, Ueno T, Inari H, Kobayashi Y, Takei J, Gotoh O, Nishi M, Okamura M, Kaneko K, Okawa M, Suzuki M, Amino S, Inuzuka M, Noda T, Mori S, Nakamura S. High-risk pathogenic germline variants in blood relatives of BRCA1/2 negative probands. Breast Cancer 2024; 31:1028-1036. [PMID: 39003386 PMCID: PMC11489291 DOI: 10.1007/s12282-024-01615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Tailored, preventive cancer care requires the identification of pathogenic germline variants (PGVs) among potentially at-risk blood relatives (BRs). Cascade testing is carried out for BRs of probands who are positive for PGVs of an inherited cancer but not for negative probands. This study was conducted to examine the prevalence of PGVs for BRs of PGV-negative probands. METHODS PGV prevalence was assessed for 682 BRs of 281 probands with BRCA1/BRCA2 wild-type hereditary breast and ovarian cancer (HBOC) syndrome. RESULTS PGVs were discovered in 22 (45.8%) of the 48 BRs of the PGV-positive probands and in 14 (2.2%) of 634 BRs of the PGV-negative probands. Eleven PGVs on high-risk BRCA1, BRCA2, and TP53 genes were present only in BRs and not in the probands (probands vs BRs in Fisher exact test; p = 0.0104; odds ratio [OR] = 0.000 [0.000-0.5489 of 95% confidence interval]), partly due to the nature of the selection criteria. The enrichment of high-risk PGVs among BRs was also significant as compared with a non-cancer East Asian population (p = 0.0016; OR = 3.0791 [1.5521-5.6694]). PGV prevalence, risk class of gene, and genotype concordance were unaffected by the cancer history among BRs. CONCLUSION These findings imply the necessity to construct a novel testing scheme to complement cascade testing.
Collapse
Affiliation(s)
- Reiko Yoshida
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, Japan
- Institute for Clinical Genetics and Genomics, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Japan
| | - Tomoko Kaneyasu
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Arisa Ueki
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Shozo Ohsumi
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime, Japan
| | - Shinji Ohno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Shinichi Baba
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Junko Kawano
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Japan
| | - Masao Nagasaki
- Department of Biomedical Information Analysis, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takayuki Ueno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Hitoshi Inari
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Junko Takei
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Mitsuyo Nishi
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Miki Okamura
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime, Japan
| | - Keika Kaneko
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Megumi Okawa
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Misato Suzuki
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 10-1 Akashi-cho, Chuo-ku, Tokyo, Japan
| | - Sayuri Amino
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Mayuko Inuzuka
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
- Department of Genetic Diagnosis, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, Japan.
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
11
|
Demir O, Saglam KA, Yilmaz M, Apuhan T, Cebi AH, Turkyilmaz A. Secondary findings in genes related to cancer phenotypes in Turkish exome sequencing data from 2020 individuals. Am J Med Genet A 2024; 194:e63806. [PMID: 38940262 DOI: 10.1002/ajmg.a.63806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Big data generated from exome sequencing (ES) and genome sequencing (GS) analyses can be used to detect actionable and high-penetrance variants that are not directly associated with the primary diagnosis of patients but can guide their clinical follow-up and treatment. Variants that are classified as pathogenic/likely pathogenic and are clinically significant but not directly associated with the primary diagnosis of patients are defined as secondary findings (SF). The aim of this study was to examine the frequency and variant spectrum of cancer-related SF in 2020 Turkish ES data and to discuss the importance of the presence of cancer-related SF in at-risk family members in terms of genetic counseling and follow-up. A total of 2020 patients from 2020 different families were evaluated by ES. SF were detected in 28 unrelated cases (1.38%), and variants in BRCA2 (11 patients) and MLH1 (4 patients) genes were observed most frequently. A total of 21 different variants were identified, with 4 of them (c.9919_9932del and c.3653del in the BRCA2 gene, c.2002A>G in the MSH2 gene, c.26_29del in the TMEM127 gene) being novel variations. In three different families, c.1189C>T (p.Gln397*) variation in BRCA2 gene was detected, suggesting that this may be a common variant in the Turkish population. This study represents the largest cohort conducted in the Turkish population, examining the frequency and variant spectrum of cancer-related SF. With the identification of frequent variations and the detection of novel variations, the findings of this study have contributed to the variant spectrum. Genetic testing conducted in family members is presented as real-life data, showcasing the implications in terms of counseling, monitoring, and treatment through case examples.
Collapse
Affiliation(s)
- Oguzhan Demir
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tuna Apuhan
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
12
|
Golara A, Kozłowski M, Lubikowski J, Cymbaluk-Płoska A. Types of Breast Cancer Surgery and Breast Reconstruction. Cancers (Basel) 2024; 16:3212. [PMID: 39335183 PMCID: PMC11430615 DOI: 10.3390/cancers16183212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Breast cancer continues to be a significant diagnostic and therapeutic problem. Mastectomy is still a frequently used treatment method, but its form is changing with progress in medicine. Methods: We have described important types of surgical treatments for breast cancer, such as modified radical mastectomy, breast-conserving surgery, contralateral prophylactic mastectomy, and robotic mastectomy. Breast reconstruction is also a very important element of treatment because it directly affects the mental state of patients after the procedure. We have also described types of breast reconstruction, such as implants, acellular dermal matrices, autologous reconstruction, robotic breast reconstruction, and fat grafting. Results: The aim of our study was to compare available types of surgical treatment for breast cancer and breast reconstruction to help tailor personalized treatment to patients.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Jerzy Lubikowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
13
|
Tsoulos N, Agiannitopoulos K, Potska K, Katseli A, Ntogka C, Pepe G, Bouzarelou D, Papathanasiou A, Grigoriadis D, Tsaousis GN, Gogas H, Troupis T, Papazisis K, Natsiopoulos I, Venizelos V, Amarantidis K, Giassas S, Papadimitriou C, Fountzilas E, Stathoulopoulou M, Koumarianou A, Xepapadakis G, Blidaru A, Zob D, Voinea O, Özdoğan M, Ergören MÇ, Hegmane A, Papadopoulou E, Nasioulas G, Markopoulos C. The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory. Cancer Genomics Proteomics 2024; 21:448-463. [PMID: 39191493 PMCID: PMC11363926 DOI: 10.21873/cgp.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer. MATERIALS AND METHODS A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis. RESULTS 20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg). CONCLUSION Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Theodore Troupis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Clinic, Thessaloniki, Greece
| | | | - Anna Koumarianou
- Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Daniela Zob
- Oncology Department, "Prof. Dr. Al. Trestioreanu" Bucharest Oncology Institute, Bucharest, Romania
| | - Oana Voinea
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mustafa Özdoğan
- Division of Medical Oncology, Memorial Antalya Hospital, Antalya, Turkey
| | - Mahmut Çerkez Ergören
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Alinta Hegmane
- Riga East University Hospital, Oncology Center of Latvia, Riga, Latvia
| | | | | | - Christos Markopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Tsoulos N, Papadopoulou E, Agiannitopoulos K, Grigoriadis D, Tsaousis GN, Bouzarelou D, Gogas H, Troupis T, Venizelos V, Fountzilas E, Theochari M, Ziogas DC, Giassas S, Koumarianou A, Christopoulou A, Busby G, Nasioulas G, Markopoulos C. Polygenic Risk Score (PRS) Combined with NGS Panel Testing Increases Accuracy in Hereditary Breast Cancer Risk Estimation. Diagnostics (Basel) 2024; 14:1826. [PMID: 39202314 PMCID: PMC11353636 DOI: 10.3390/diagnostics14161826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is the most prominent tumor type among women, accounting for 32% of newly diagnosed cancer cases. BC risk factors include inherited germline pathogenic gene variants and family history of disease. However, the etiology of the disease remains occult in most cases. Therefore, in the absence of high-risk factors, a polygenic basis has been suggested to contribute to susceptibility. This information is utilized to calculate the Polygenic Risk Score (PRS) which is indicative of BC risk. This study aimed to evaluate retrospectively the clinical usefulness of PRS integration in BC risk calculation, utilizing a group of patients who have already been diagnosed with BC. The study comprised 105 breast cancer patients with hereditary genetic analysis results obtained by NGS. The selection included all testing results: high-risk gene-positive, intermediate/low-risk gene-positive, and negative. PRS results were obtained from an external laboratory (Allelica). PRS-based BC risk was computed both with and without considering additional risk factors, including gene status and family history. A significantly different PRS percentile distribution consistent with higher BC risk was observed in our cohort compared to the general population. Higher PRS-based BC risks were detected in younger patients and in those with FH of cancers. Among patients with a pathogenic germline variant detected, reduced PRS values were observed, while the BC risk was mainly determined by a monogenic etiology. Upon comprehensive analysis encompassing FH, gene status, and PRS, it was determined that 41.90% (44/105) of the patients demonstrated an elevated susceptibility for BC. Moreover, 63.63% of the patients with FH of BC and without an inherited pathogenic genetic variant detected showed increased BC risk by incorporating the PRS result. Our results indicate a major utility of PRS calculation in women with FH in the absence of a monogenic etiology detected by NGS. By combining high-risk strategies, such as inherited disease analysis, with low-risk screening strategies, such as FH and PRS, breast cancer risk stratification can be improved. This would facilitate the development of more effective preventive measures and optimize the allocation of healthcare resources.
Collapse
Affiliation(s)
- Nikolaos Tsoulos
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Eirini Papadopoulou
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | | | - Dimitrios Grigoriadis
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Georgios N. Tsaousis
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Dimitra Bouzarelou
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (D.C.Z.)
| | - Theodore Troupis
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.T.); (C.M.)
| | | | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic, 54645 Thessaloniki, Greece;
| | - Maria Theochari
- Oncology Unit, “Hippokrateion” General Hospital of Athens, 11527 Athens, Greece;
| | - Dimitrios C. Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (D.C.Z.)
| | - Stylianos Giassas
- Second Oncology Clinic IASO, General Maternity and Gynecology Clinic, 15123 Athens, Greece;
| | - Anna Koumarianou
- Hematology Oncology Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | | | - George Busby
- Allelica Inc., 447 Broadway, New York, NY 10013, USA;
| | - George Nasioulas
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Christos Markopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.T.); (C.M.)
| |
Collapse
|
15
|
Muhammad N, Afzal MS, Hamann U, Rashid MU. Marginal Contribution of Pathogenic RAD51D Germline Variants to Pakistani Early-Onset and Familial Breast/Ovarian Cancer Patients. JOURNAL OF CANCER & ALLIED SPECIALTIES 2024; 10:617. [PMID: 39156943 PMCID: PMC11326667 DOI: 10.37029/jcas.v10i2.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 08/20/2024]
Abstract
Introduction RAD51D has been reported as a breast cancer (BC) and ovarian cancer (OC) predisposition gene, particularly among Caucasian populations. We studied the prevalence of RAD51D variants in Pakistani BC/OC patients. Materials and Methods In total, 371 young or familial BC/OC patients were thoroughly analyzed for RAD51D sequence variants using denaturing high-performance liquid chromatography pursued by DNA sequencing of differentially eluted amplicons. We also assessed the pathogenic effects of novel variants using in-silico algorithms. All detected RAD51D variants were investigated in 400 unaffected controls. Results No pathogenic RAD51D variant was detected. However, we identified nine unique heterozygous variants. Of these, two missense variants (p.Pro10Leu and p.Ile311Asn) and one intronic variant (c.481-26_23delGTTC) were classified as in silico-predicted variants of uncertain significance, with a frequency of 0.8% (3/371). The p.Pro10Leu variant was detected in a 28-year-old female BC patient of Punjabi ethnic background, whose mother and maternal cousin had BCs at ages 53 and 40, respectively. This variant was also detected in 1/400 (0.25%) healthy controls, where the control subject's daughter had acute lymphoblastic leukemia. The p.Ile311Asn variant was identified in a female BC patient at age 29 of Punjabi ethnicity and in 1/400 (0.25%) healthy controls, where the control subject's daughter had Hodgkin's disease at age 14. A novel intronic variant, c.481-26_-23delGTTC, was found in a 30-year-old Punjabi female BC patient but not in 400 healthy controls. Conclusion No pathogenic RAD51D variant was identified in the current study. Our study data suggested a negligible association of RAD51D variants with BC/OC risk in Pakistani women.
Collapse
Affiliation(s)
- Noor Muhammad
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Muhammad Usman Rashid
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
16
|
Forte G, Buonadonna AL, Fasano C, Sanese P, Cariola F, Manghisi A, Guglielmi AF, Lepore Signorile M, De Marco K, Grossi V, Disciglio V, Simone C. Clinical and Molecular Characterization of SMAD4 Splicing Variants in Patients with Juvenile Polyposis Syndrome. Int J Mol Sci 2024; 25:7939. [PMID: 39063183 PMCID: PMC11276957 DOI: 10.3390/ijms25147939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Juvenile polyposis syndrome (JPS) is an inherited autosomal dominant condition that predisposes to the development of juvenile polyps throughout the gastrointestinal (GI) tract, and it poses an increased risk of GI malignancy. Germline causative variants were identified in the SMAD4 gene in a subset (20%) of JPS cases. Most SMAD4 germline genetic variants published to date are missense, nonsense, and frameshift mutations. SMAD4 germline alterations predicted to result in aberrant splicing have rarely been reported. Here, we report two unrelated Italian families harboring two different SMAD4 intronic variants, c.424+5G>A and c.425-9A>G, which are clinically associated with colorectal cancer and/or juvenile GI polyps. In silico prediction analysis, in vitro minigene assays, and RT-PCR showed that the identified variants lead to aberrant SMAD4 splicing via the exonization of intronic nucleotides, resulting in a premature stop codon. This is expected to cause the production of a truncated protein. This study expands the landscape of SMAD4 germline genetic variants associated with GI polyposis and/or cancer. Moreover, it emphasizes the importance of the functional characterization of SMAD4 splicing variants through RNA analysis, which can provide new insights into genetic disease variant interpretation, enabling tailored genetic counseling, management, and surveillance of patients with GI polyposis and/or cancer.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Anna Filomena Guglielmi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
17
|
Taheny A, McSwaney H, Meade J. A second hereditary cancer predisposition syndrome in a patient with lynch syndrome and three primary cancers. Hered Cancer Clin Pract 2024; 22:8. [PMID: 38867252 PMCID: PMC11167841 DOI: 10.1186/s13053-024-00281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Current National Comprehensive Cancer Network ® (NCCN ®) guidelines for Colorectal Genetic/Familial High-Risk Assessment provide limited guidance for genetic testing for individuals with already diagnosed hereditary cancer conditions. We are presenting the case of a 36-year-old woman who was diagnosed with Lynch Syndrome at age 23 after genetic testing for a familial variant (c.283del) in the MLH1 gene. The patient had a previous history of Hodgkin Lymphoma at the time of familial variant testing, and she would later develop stage IIIa cecal adenocarcinoma at age 33 and metastatic papillary thyroid carcinoma at age 35. The patient's family history included a first-degree relative who was diagnosed with colorectal cancer at age 39, multiple second-degree relatives with colorectal, endometrial, and stomach cancer, and third and fourth-degree relatives with breast cancer. In light of her personal and family history, a comprehensive cancer panel was recommended. This panel found a second hereditary cancer predisposition syndrome: a likely pathogenic variant (c. 349 A > G) in the CHEK2 gene. This specific CHEK2 variant was recently reported to confer a moderately increased risk for breast cancer. The discovery of this second cancer predisposition syndrome had important implications for the patient's screening and risk management. While uncommon, the possibility of an individual having multiple cancer predisposition syndromes is important to consider when evaluating patients and families for hereditary cancer, even when a familial variant has been identified.
Collapse
Affiliation(s)
- Annmarie Taheny
- Department of Medical Genetics & Genomics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Haylie McSwaney
- Department of Medical Genetics & Genomics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Meade
- Department of Medical Genetics & Genomics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Ustun Yilmaz S, Agaoglu NB, Manto K, Muftuoglu M, Özbek U. Cosmic Whirl: Navigating the Comet Trail in DNA: H2AX Phosphorylation and the Enigma of Uncertain Significance Variants. Genes (Basel) 2024; 15:724. [PMID: 38927659 PMCID: PMC11202575 DOI: 10.3390/genes15060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for effective diagnosis and treatment. We retrospectively analyzed the multi-gene cancer panel results of 922 individuals and performed in silico analysis following ClinVar classification. Then, we selected five breast cancer-diagnosed patients' missense BRCA2 VUSs (T1011R, T1104P/M1168K, R2027K, G2044A, and D2819) for reclassification. The effects of VUSs on BRCA2 function were analyzed using comet and H2AX phosphorylation (γH2AX) assays before and after the treatment of peripheral blood mononuclear cells (PBMCs) of subjects with the double-strand break (DSB) agent doxorubicin (Dox). Before and after Dox-induction, the amount of DNA in the comet tails was similar in VUS carriers; however, notable variations in γH2AX were observed, and according to combined computational and functional analyses, we reclassified T1001R as VUS-intermediate, T1104P/M1168K and D2819V as VUS (+), and R2027K and G2044A as likely benign. These findings highlight the importance of the variability of VUSs in response to DNA damage before and after Dox-induction and suggest that further investigation is needed to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Sevdican Ustun Yilmaz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye; (S.U.Y.); (M.M.)
| | - Nihat Bugra Agaoglu
- Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, 34764 Istanbul, Türkiye;
- IKF-The Frankfurt Institute of Clinical Cancer Research, 60488 Frankfurt am Main, Germany
| | - Karin Manto
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| | - Meltem Muftuoglu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye; (S.U.Y.); (M.M.)
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Ugur Özbek
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye; (S.U.Y.); (M.M.)
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye
| |
Collapse
|
20
|
Abedizadeh R, Majidi F, Khorasani HR, Abedi H, Sabour D. Colorectal cancer: a comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer Metastasis Rev 2024; 43:729-753. [PMID: 38112903 DOI: 10.1007/s10555-023-10158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Colorectal cancer is the third most common and the second deadliest cancer worldwide. To date, colorectal cancer becomes one of the most important challenges of the health system in many countries. Since the clinical symptoms of this cancer appear in the final stages of the disease and there is a significant golden time between the formation of polyps and the onset of cancer, early diagnosis can play a significant role in reducing mortality. Today, in addition to colonoscopy, minimally invasive methods such as liquid biopsy have received much attention. The treatment of this complex disease has been mostly based on traditional treatments including surgery, radiotherapy, and chemotherapy; the high mortality rate indicates a lack of success for current treatment methods. Moreover, disease recurrence is another problem of traditional treatments. Recently, new approaches such as targeted therapy, immunotherapy, and nanomedicine have opened new doors for cancer treatment, some of which have already entered the market, and many methods have shown promising results in clinical trials. The success of immunotherapy in the treatment of refractory disease, the introduction of these methods into neoadjuvant therapy, and the successful results in tumor shrinkage without surgery have made immunotherapy a tough competitor for conventional treatments. It seems that the combination of those methods with such targeted therapies will go through promising changes in the future of colorectal cancer treatment.
Collapse
Affiliation(s)
- Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran
| | - Fateme Majidi
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran
| | - Hassan Abedi
- Department of Internal Medicine, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran.
| |
Collapse
|
21
|
Grigore LG, Radoi VE, Serban A, Mihai AD, Stoica I. The Molecular Detection of Germline Mutations in the BRCA1 and BRCA2 Genes Associated with Breast and Ovarian Cancer in a Romanian Cohort of 616 Patients. Curr Issues Mol Biol 2024; 46:4630-4645. [PMID: 38785549 PMCID: PMC11119367 DOI: 10.3390/cimb46050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of this study was to identify and classify the spectrum of mutations found in the BRCA1 and BRCA2 genes associated with breast and ovarian cancer in female patients in Romania. Germline BRCA1 and BRCA2 mutations were investigated in a cohort of 616 female patients using NGS and/or MLPA methods followed by software-based data analysis and classification according to international guidelines. Out of the 616 female patients included in this study, we found that 482 patients (78.2%) did not have any mutation present in the two genes investigated; 69 patients (11.2%) had a BRCA1 mutation, 34 (5.5%) had a BRCA2 mutation, and 31 (5%) presented different type of mutations with uncertain clinical significance, moderate risk or a large mutation in the BRCA1 gene. Our investigation indicates the most common mutations in the BRCA1 and BRCA2 genes, associated with breast and ovarian cancer in the Romanian population. Our results also bring more data in support of the frequency of the c.5266 mutation in the BRCA1 gene, acknowledged in the literature as a founder mutation in Eastern Europe. We consider that the results of our study will provide necessary data regarding BRCA1 and BRCA2 mutations that would help to create a genetic database for the Romanian population.
Collapse
Affiliation(s)
- Liliana-Georgiana Grigore
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Personal Genetics, 010987 Bucharest, Romania
| | - Viorica-Elena Radoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | | | | | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
22
|
Papadopoulou E, Rigas G, Fountzilas E, Boutis A, Giassas S, Mitsimponas N, Daliani D, Ziogas DC, Liontos M, Ramfidis V, Christophilakis C, Matthaios D, Floros T, Florou-Chatzigiannidou C, Agiannitopoulos K, Meintani A, Tsantikidi A, Katseli A, Potska K, Tsaousis G, Metaxa-Mariatou V, Nasioulas G. Microsatellite Instability Is Insufficiently Used as a Biomarker for Lynch Syndrome Testing in Clinical Practice. JCO Precis Oncol 2024; 8:e2300332. [PMID: 38271656 PMCID: PMC10830089 DOI: 10.1200/po.23.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
PURPOSE The pan-cancer presence of microsatellite instability (MSI)-positive tumors demonstrates its clinical utility as an agnostic biomarker for identifying immunotherapy-eligible patients. Additionally, MSI is a hallmark of Lynch syndrome (LS), the most prevalent cancer susceptibility syndrome among patients with colorectal and endometrial cancer. Therefore, MSI-high results should inform germline genetic testing for cancer-predisposing genes. However, in clinical practice, such analysis is frequently disregarded. METHODS A next-generation sequencing (NGS)-based technique was used for MSI analysis in 4,553 patients with various tumor types. Upon request, somatic BRAF gene analysis was conducted. In addition, hereditary testing of cancer-associated genes was performed in MSI-high cases using a capture-based NGS protocol. MLH1 promoter methylation analysis was conducted retrospectively in patients with colorectal and endometrial cancer to further investigate the origin of MSI at the tumor level. RESULTS The MSI positivity rate for the entire cohort was 5.27%. Endometrial, gastric, colorectal, urinary tract, and prostate cancers showed the highest proportion of MSI-high cases (15.69%, 8.54%, 7.40%, 4.55%, and 3.19%, respectively). A minority of 45 patients (22.73%) among the MSI-high cases underwent germline testing to determine whether the mismatch repair pathway deficiency was inherited. 24.44% of those who performed the genetic test carried a pathogenic variant in an LS-associated gene. Three MSI-high individuals had non-LS gene alterations, including BRCA1, BRCA2, and CDKN2A pathogenic variants, indicating the presence of non-LS-associated gene alterations among MSI-high patients. CONCLUSION Although MSI analysis is routinely performed in clinical practice, as many as 77% of MSI-high patients do not undergo LS genetic testing, despite international guidelines strongly recommending it. BRAF and MLH1 methylation analysis could shed light on the somatic origin of MSI in 42.50% of the MSI-high patients; however, MLH1 analysis is barely ever requested in clinical practice.
Collapse
Affiliation(s)
| | - George Rigas
- Medical Oncology Unit, General Hospital of Volos, Volos, Greece
| | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
| | - Anastasios Boutis
- First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece
| | - Stylianos Giassas
- Second Oncology Clinic IASO, General Maternity and Gynecology Clinic, Athens, Greece
| | | | - Danai Daliani
- Department of Medical Oncology, Euroclinic, Athens, Greece
| | - Dimitrios C Ziogas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, “Alexandra” General Hospital of Athens, Athens, Greece
| | | | | | | | - Theofanis Floros
- Oncology Department, Athens Naval and Veterans Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bilyalov A, Danishevich A, Nikolaev S, Vorobyov N, Abramov I, Pismennaya E, Terehova S, Kosilova Y, Primak A, Stanoevich U, Lisica T, Shipulin G, Gamayunov S, Kolesnikova E, Khatkov I, Gusev O, Bodunova N. Novel Pathogenic Variants in Hereditary Cancer Syndromes in a Highly Heterogeneous Cohort of Patients: Insights from Multigene Analysis. Cancers (Basel) 2023; 16:85. [PMID: 38201513 PMCID: PMC10778304 DOI: 10.3390/cancers16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a major global public health challenge, affecting both quality of life and mortality. Recent advances in genetic research have uncovered hereditary cancer syndromes (HCS) that predispose individuals to malignant neoplasms. While traditional single-gene testing has focused on high-penetrance genes, the past decade has seen a shift toward multigene panels, which facilitate the analysis of multiple genes associated with specific HCS. This approach reveals variants in less-studied gene regions and improves our understanding of cancer predisposition. In a study composed of Russian patients with clinical signs of HCS, we used a multigene hereditary cancer panel and revealed 21.6% individuals with pathogenic or likely pathogenic genetic variants. BRCA1/BRCA2 mutations predominated, followed by the CHEK2 and ATM variants. Of note, 16 previously undescribed variants were identified in the MUTYH, GALNT12, MSH2, MLH1, MLH3, EPCAM, and POLE genes. The implications of the study extend to personalized cancer prevention and treatment strategies, especially in populations lacking extensive epidemiological data, such as Russia. Overall, our research provides valuable genetic insights that give the way for further investigation and advances in the understanding and management of hereditary cancer syndromes.
Collapse
Affiliation(s)
- Airat Bilyalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Nikita Vorobyov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Ivan Abramov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
- The Federal State Budgetary Scientific Institution “Izmerov Research Institute of Occupational Health”, 105275 Moscow, Russia
| | | | - Svetlana Terehova
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Yuliya Kosilova
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Anastasiia Primak
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Uglesha Stanoevich
- Kursk Regional Scientific and Clinical Center Named after G. Y. Ostroverkhov, 305524 Kursk, Russia; (S.T.); (Y.K.); (A.P.)
| | - Tatyana Lisica
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency, 119435 Moscow, Russia
| | - German Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency, 119435 Moscow, Russia
| | - Sergey Gamayunov
- Nizhny Novgorod Regional Oncologic Hospital, 603163 Nizhny Novgorod, Russia
| | - Elena Kolesnikova
- Nizhny Novgorod Regional Oncologic Hospital, 603163 Nizhny Novgorod, Russia
| | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (I.K.)
| |
Collapse
|
24
|
Di Rado S, Giansante R, Cicirelli M, Pilenzi L, Dell’Elice A, Anaclerio F, Rimoldi M, Grassadonia A, Grossi S, Canale N, Ballerini P, Stuppia L, Antonucci I. Detection of Germline Mutations in a Cohort of 250 Relatives of Mutation Carriers in Multigene Panel: Impact of Pathogenic Variants in Other Genes beyond BRCA1/2. Cancers (Basel) 2023; 15:5730. [PMID: 38136276 PMCID: PMC10741895 DOI: 10.3390/cancers15245730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Several hereditary-familial syndromes associated with various types of tumors have been identified to date, evidencing that hereditary cancers caused by germline mutations account for 5-10% of all tumors. Advances in genetic technology and the implementation of Next-Generation Sequencing (NGS) have accelerated the discovery of several susceptibility cancer genes, allowing for the detection of cancer-predisposing mutations in a larger number of cases. The aim of this study is to highlight how the application of an NGS-multigene panel to a group of oncological patients subsequently leads to improvement in the identification of carriers of healthy pathogenic variants/likely pathogenic variants (PVs/LPVs) and prevention of the disease in these cases. METHODS Starting from a total of 110 cancer patients carrying PVs/LPVs in genes involved in cancer susceptibility detected via a customized NGS panel of 27 cancer-associated genes, we enrolled 250 healthy collateral family members from January 2020 to July 2022. The specific PVs/LPVs identified in each proband were tested in healthy collateral family members via Sanger sequencing. RESULTS A total of 131 out of the 250 cases (52%) were not carriers of the mutation detected in the affected relative, while 119 were carriers. Of these, 81/250 patients carried PVs/LPVs on BRCA1/2 (33%), 35/250 harbored PVs/LPVs on other genes beyond BRCA1 and BRCA2 (14%), and 3/250 (1%) were PVs/LPVs carriers both on BRCA1/2 and on another susceptibility gene. CONCLUSION Our results show that the analysis of BRCA1/2 genes would have only resulted in a missed diagnosis in a number of cases and in the lack of prevention of the disease in a considerable percentage of healthy carriers with a genetic mutation (14%).
Collapse
Affiliation(s)
- Sara Di Rado
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| | - Roberta Giansante
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
- Department of Medical Genetics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Michela Cicirelli
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
- Department of Medical Genetics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucrezia Pilenzi
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| | - Martina Rimoldi
- SD Genetica Medica, IRCCS Fondazione Ca’Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Antonino Grassadonia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simona Grossi
- U.O.C. Chirurgia Generale ad Indirizzo Senologico, Eusoma Breast Center ASL2 Abruzzo, 66026 Ortona, Italy; (S.G.); (N.C.)
| | - Nicole Canale
- U.O.C. Chirurgia Generale ad Indirizzo Senologico, Eusoma Breast Center ASL2 Abruzzo, 66026 Ortona, Italy; (S.G.); (N.C.)
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.D.R.); (R.G.); (M.C.); (L.P.); (F.A.); (A.G.); (P.B.); (L.S.); (I.A.)
| |
Collapse
|
25
|
Ponti G, De Angelis C, Ponti R, Pongetti L, Losi L, Sticchi A, Tomasi A, Ozben T. Hereditary breast and ovarian cancer: from genes to molecular targeted therapies. Crit Rev Clin Lab Sci 2023; 60:640-650. [PMID: 37455374 DOI: 10.1080/10408363.2023.2234488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Hereditary familial tumors constitute 10-15% of all malignancies and present opportunities for the identification of therapeutic approaches against specific germline genetic defects. Hereditary breast and ovarian cancer (HBOC) syndrome, which is linked to the pathogenic mutations of the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes, is an important research model for personalized therapeutic approaches for specific germline mutations. HBOC is characterized by multiple cases of breast and ovarian carcinoma in association with other tumors (prostate, pancreas and stomach carcinoma) within the same family branch, a young age of onset (<36 years), bilaterality and an autosomal dominant pattern of inheritance. Counseling, evaluation of the clinical criteria for the diagnosis of HBOC, and the performance of genetic testing allow for the identification of subjects with BRCA1/2 mutations and provide crucial information for clinical and therapeutic management. The identification of a BRCA gene mutation has therapeutic implications for women with metastatic and non-metastatic breast cancer. In the therapeutic setting of BRCA+ breast cancer, treatment with poly (ADP-ribose) polymerase (PARP) inhibitors, which keep cancer cells from repairing their damaged DNA and cause cell death, is remarkable. This review summarizes the evidence demonstrating the value of BRCA1/2 status as a diagnostic and prognostic tool and as a predictive biomarker in the personalized approach to hereditary BRCA + cancers.
Collapse
Affiliation(s)
- Giovanni Ponti
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosamaria Ponti
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Linda Pongetti
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Sticchi
- Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Aldo Tomasi
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Tomris Ozben
- Specialist in Clinical Biochemistry Akdeniz University, Department of Clinical Biochemistry, Antalya Turkey University of Modena and Reggio Emilia, Clinical and Experimental Medicine, Modena, Italy
| |
Collapse
|
26
|
Fountzilas E, Papadopoulou K, Chatzikonstantinou T, Karakatsoulis G, Constantoulakis P, Tsantikidi A, Tsaousis G, Karageorgopoulou S, Koumarianou A, Mauri D, Ntavatzikos A, Saridaki Z, Petrakis G, Fostira F, Fountzilas G, Liontos M. Concordance between Three Homologous Recombination Deficiency (HRD) Assays in Patients with High-Grade Epithelial Ovarian Cancer. Cancers (Basel) 2023; 15:5525. [PMID: 38067228 PMCID: PMC10705222 DOI: 10.3390/cancers15235525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 10/16/2024] Open
Abstract
Our aim was to evaluate the concordance between the Myriad MyChoice and two alternative homologous recombination deficiency (HRD) assays (AmoyDx HRD Focus NGS Panel and OncoScan™) in patients with epithelial ovarian cancer (EOC). Tissue samples from 50 patients with newly diagnosed EOC and known Myriad MyChoice HRD status were included. DNA aliquots from tumor samples, previously evaluated with Myriad MyChoice and centrally reassessed, were distributed to laboratories to assess their HRD status using the two platforms, after being blinded for the Myriad MyChoice CDx HRD status. The primary endpoint was the concordance between Myriad MyChoice and each alternative assay. Tumor samples were evaluated with an AmoyDx® HRD Focus Panel (n = 50) and with OncoScan™ (n = 43). Both platforms provided results for all tumors. Analysis showed that correlation was high for the Myriad MyChoice GI score and AmoyDx® HRD Focus Panel (r = 0.79) or OncoScan™ (r = 0.87) (continuous variable). The overall percent agreement (OPA) between Myriad MyChoice GI status (categorical variable) and each alternative assay was 83.3% (68.6-93.3%) with AmoyDx and 77.5% (61.5-89.2%) with OncoScan™. The OPA in HRD status between Myriad MyChoice and AmoyDx was 88.6% (75.4-96.2). False-positive rates were 31.6% (6/19) for AmoyDx GI status and 31.9% (7/22) for OncoScan™, while false-negative rates were 0% (0/28, AmoyDx) and 11.1% (2/18, OncoScan™) compared with the Myriad MyChoice GI status. While substantial concordance between Myriad MyChoice and alternative assays was demonstrated, prospective validation of the analytical performance and clinical relevance of these assays is warranted.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes’s Hospital, 55236 Thessaloniki, Greece
- Medical Oncology, German Oncology Center, European University Cyprus, 1516 Nicosia, Cyprus
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece;
| | - Thomas Chatzikonstantinou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (T.C.); (G.K.)
| | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (T.C.); (G.K.)
| | | | | | | | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (A.N.)
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Anastasios Ntavatzikos
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (A.N.)
| | - Zacharenia Saridaki
- 1st Oncology Department, Metropolitan Hospital, 18547 Athens, Greece;
- Oncology Department, “Asklepios DIAGNOSIS”, 71303 Heraklion, Greece
| | - Georgios Petrakis
- Pathology Department, University General Hospital of Thessaloniki AHEPA, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Florentia Fostira
- InRASTES, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | - George Fountzilas
- Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Medical Oncology, German Oncology Center, 4108 Limassol, Cyprus
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
27
|
Tüysüz B, Kasap B, Uludağ Alkaya D, Alp Ünkar Z, Köseoğlu P, Geyik F, Özer E, Önal H, Gezdirici A, Ercan O. Investigation of (Epi)genetic causes in syndromic short children born small for gestational age. Eur J Med Genet 2023; 66:104854. [PMID: 37758162 DOI: 10.1016/j.ejmg.2023.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Intrauterine onset syndromic short stature constitutes a group of diseases that pose challenges in differential diagnosis due to their rarity and clinical as well as molecular heterogeneity. The aim of this study was to investigate the presence of (epi)genetic causes in children born small for gestational age (SGA) and manifesting clinically undiagnosed syndromic short stature. The study group comprised twenty-nine cases selected from the syndromic SGA cohort. Various analyses were performed, including chromosomal microarray (CMA), methylation-specific-multiple ligation probe amplification for chromosomes 6,14 and 20, and whole exome sequencing (WES). Pathogenic copy number variants (CNVs) on chromosomes 2q13, 22q11.3, Xp22.33, 17q21.31, 19p13.13 and 4p16.31 causing syndromic growth disturbance were detected in six patients. Maternal uniparental disomy 14 was identified in a patient. WES was performed in the remaining 22 patients, revealing pathogenic variants in nine cases; six were monoallelic (ACAN, ARID2, NIPBL, PIK3R1, SMAD4, BRIP1), two were biallelic (BRCA2, RFWD3) and one was hemizygous (HUWE1). Seven of these were novel. Craniofacial dysmorphism, which is an important clue for the diagnosis of syndromes, was very mild in all patients. This study unveiled, for the first time, that ARID2 mutatios can cause syndromic SGA. In conclusion, a high (55.2%) diagnosis rate was achieved through the utilization of CMA, epigenetic and WES analyzes; 15 rare syndromes were defined, who were born with SGA and had atypical and/or mild dysmorphic findings. This study not only drew attention to the association of some rare syndromes with SGA, but also introduced novel genes and CNVs as potential contributors to syndromic SGA.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey.
| | - Büşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Zeynep Alp Ünkar
- Department of Neonatology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Pınar Köseoğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Filiz Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Emre Özer
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Hasan Önal
- Department of Pediatric Endocrinology, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetic, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Oya Ercan
- Department of Pediatric Endocrinology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
28
|
Aretini P, Presciuttini S, Pastore A, Galli A, Panepinto S, Tancredi M, Ghilli M, Guglielmi C, Sidoti D, Congregati C, Caligo MA. The BRCA1 c.4096+1G>A Is a Founder Variant Which Originated in Ancient Times. Int J Mol Sci 2023; 24:15507. [PMID: 37958491 PMCID: PMC10648645 DOI: 10.3390/ijms242115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Approximately 30-50% of hereditary breast and ovarian cancer (HBOC) is due to the presence of germline pathogenic variants in the BRCA1 (OMIM 113705) and BRCA2 (OMIM 600185) onco-suppressor genes, which are involved in DNA damage response. Women who carry pathogenic BRCA1 variants are particularly likely to develop breast cancer (BC) and ovarian cancer (OC), with a 45-79 percent and 39-48 percent chance, respectively. The BRCA1 c.4096+1G>A variant has been frequently ascertained in Tuscany, Italy, and it has also been detected in other Italian regions and other countries. Its pathogenetic status has been repeatedly changed from a variant of uncertain significance, to pathogenic, to likely pathogenic. In our study, 48 subjects (38 of whom are carriers) from 27 families were genotyped with the Illumina OncoArray Infinium platform (533,531 SNPs); a 20 Mb region (24.6 cM) around BRCA1, including 4130 SNPs (21 inside BRCA1) was selected for haplotype analysis. We used a phylogenetic method to estimate the time to the most recent common ancestor (MRCA) of BRCA1 c.4096+1G>A founder pathogenic variant. This analysis suggests that the MRCA lived about 155 generations ago-around 3000 years ago.
Collapse
Affiliation(s)
- Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy;
| | - Silvano Presciuttini
- Dipartimento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy;
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy;
- Laboratorio NEST, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Alvaro Galli
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Sara Panepinto
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Mariella Tancredi
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Matteo Ghilli
- Breast Unit, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Chiara Guglielmi
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Diletta Sidoti
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Caterina Congregati
- Genetica Medica, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Maria Adelaide Caligo
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| |
Collapse
|
29
|
Özdemir Z, Çevik E, Öksüzoğlu ÖBÇ, Doğan M, Ateş Ö, Esin E, Bilgetekin İ, Demirci U, Köseoğlu Ç, Topal A, Karadurmuş N, Erdem HB, Bahsi T. Uncommon variants detected via hereditary cancer panel and suggestions for genetic counseling. Mutat Res 2023; 827:111831. [PMID: 37453313 DOI: 10.1016/j.mrfmmm.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Hereditary cancer syndromes constitute 5-10% of all cancers. The development of next-generation sequencing technologies has made it possible to examine many hereditary cancer syndrome-causing genes in a single panel. This study's goal was to describe the prevalence and the variant spectrum using NGS in individuals who were thought to have a hereditary predisposition for cancer. MATERIAL AND METHOD Analysis was performed for 1254 who were thought to have a familial predisposition for cancer. We excluded 46 patients who were carrying BRCA1/2 variants in this study, for focusing on the rare gene mutations. Sequencing was performed using the Sophia Hereditary Cancer Solution v1.1 Panel and the Qiagen Large Hereditary Cancer Panel. The Illumina MiSeq system was used for the sequencing procedure. The software used for the data analyses was Sophia DDM and QIAGEN Clinical Insight (QCITM) Analyze. The resulting genomic changes were classified according to the current guidelines of ACMG/AMP. RESULTS Pathogenic/likely pathogenic variants were detected in 172 (13.7%) of 1254 patients. After excluding the 46 BRCA1/2-positive patients, among the remaining 126 patients; there were 60 (4.8%) breast cancer, 33 (2.6%) colorectal cancer, 9 (0.7%) ovarian cancer, 5 (0.4%) endometrium cancer, 5 (0.4%) stomach cancer, 3 (0.2%) prostate cancer patients. The most altered genes were MUTYH in 27 (2.1%) patients, MMR genes (MLH1, MSH6, MSH, MSH2, PMS2 and EPCAM) in 26 (2%) patients, and ATM in 25 (2%) patients. We also examined the genotype-phenotype correlation in rare variants. Additionally, we identified 11 novel variations. CONCLUSION This study provided significant information regarding rare variants observed in the Turkish population because it was carried out with a large patient group. Personalized treatment options and genetic counseling for the patients are therefore made facilitated.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye.
| | - Ezgi Çevik
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| | | | - Mutlu Doğan
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Öztürk Ateş
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Ece Esin
- Bayındır Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - İrem Bilgetekin
- Lösante Hospital, Department of Medical Oncology, Ankara, Türkiye
| | - Umut Demirci
- Memorial Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Çağlar Köseoğlu
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Alper Topal
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Nuri Karadurmuş
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Haktan Bağış Erdem
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| | - Taha Bahsi
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| |
Collapse
|
30
|
Zakaria NH, Hashad D, Saied MH, Hegazy N, Elkayal A, Tayae E. Genetic mutations in HER2-positive breast cancer: possible association with response to trastuzumab therapy. Hum Genomics 2023; 17:43. [PMID: 37202799 DOI: 10.1186/s40246-023-00493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND HER2-positive breast cancer occurs in 15-20% of breast cancer patients and is characterized by poor prognosis. Trastuzumab is considered the key drug for treatment of HER2-positive breast cancer patients. It improves patient survival; however, resistance to trastuzumab remains a challenge in HER2-positive breast cancer patients. Therefore, the prediction of response to trastuzumab is crucial to choose optimal treatment regimens. The aim of the study was to identify genetic variants that could predict response to anti-HER2-targeted therapy (trastuzumab) using next-generation sequencing. METHOD Genetic variants in the hotspot regions of 17 genes were studied in 24 Formalin-Fixed Paraffin-Embedded (FFPE) samples using Ion S5 next-generation sequencing system. FFPE samples were collected from HER2‑positive breast cancer patients previously treated with anti‑HER2‑targeted treatment (Trastuzumab). Patients were divided into two groups; trastuzumab-sensitive group and trastuzumab-resistant group based on their response to targeted therapy. RESULTS We identified 29 genetic variants in nine genes that only occurred in trastuzumab-resistant patients and could be associated with resistance to targeted therapy including TP53, ATM, RB1, MLH1, SMARCB1, SMO, GNAS, CDH1, and VHL. Four variants out of these 29 variants were repeated in more than one patient; two variants in TP53, one variant in ATM gene, and the last variant in RB1 gene. In addition, three genes were found to be mutated only in resistant patients; MLH1, SMARCB1 and SMO genes. Moreover, one novel allele (c.407A > G, p. Gln136Arg) was detected within exon 4 of TP53 gene in one resistant patient. CONCLUSION NGS sequencing is a useful tool to detect genetic variants that could predict response to trastuzumab therapy.
Collapse
Affiliation(s)
- Nermine H Zakaria
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa Hashad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marwa H Saied
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Neamat Hegazy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Alyaa Elkayal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Tayae
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
31
|
Sachsenweger J, Jansche R, Merk T, Heitmeir B, Deniz M, Faust U, Roggia C, Tzschach A, Schroeder C, Riess A, Pospiech H, Peltoketo H, Pylkäs K, Winqvist R, Wiesmüller L. ABRAXAS1 orchestrates BRCA1 activities to counter genome destabilizing repair pathways-lessons from breast cancer patients. Cell Death Dis 2023; 14:328. [PMID: 37198153 DOI: 10.1038/s41419-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
It has been well-established that mutations in BRCA1 and BRCA2, compromising functions in DNA double-strand break repair (DSBR), confer hereditary breast and ovarian cancer risk. Importantly, mutations in these genes explain only a minor fraction of the hereditary risk and of the subset of DSBR deficient tumors. Our screening efforts identified two truncating germline mutations in the gene encoding the BRCA1 complex partner ABRAXAS1 in German early-onset breast cancer patients. To unravel the molecular mechanisms triggering carcinogenesis in these carriers of heterozygous mutations, we examined DSBR functions in patient-derived lymphoblastoid cells (LCLs) and in genetically manipulated mammary epithelial cells. By use of these strategies we were able to demonstrate that these truncating ABRAXAS1 mutations exerted dominant effects on BRCA1 functions. Interestingly, we did not observe haploinsufficiency regarding homologous recombination (HR) proficiency (reporter assay, RAD51-foci, PARP-inhibitor sensitivity) in mutation carriers. However, the balance was shifted to use of mutagenic DSBR-pathways. The dominant effect of truncated ABRAXAS1 devoid of the C-terminal BRCA1 binding site can be explained by retention of the N-terminal interaction sites for other BRCA1-A complex partners like RAP80. In this case BRCA1 was channeled from the BRCA1-A to the BRCA1-C complex, which induced single-strand annealing (SSA). Further truncation, additionally deleting the coiled-coil region of ABRAXAS1, unleashed excessive DNA damage responses (DDRs) de-repressing multiple DSBR-pathways including SSA and non-homologous end-joining (NHEJ). Our data reveal de-repression of low-fidelity repair activities as a common feature of cells from patients with heterozygous mutations in genes encoding BRCA1 and its complex partners.
Collapse
Affiliation(s)
- Juliane Sachsenweger
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rebecca Jansche
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Tatjana Merk
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Benedikt Heitmeir
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Helmut Pospiech
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany.
| |
Collapse
|
32
|
Cătană A, Trifa AP, Achimas-Cadariu PA, Bolba-Morar G, Lisencu C, Kutasi E, Chelaru VF, Muntean M, Martin DL, Antone NZ, Fetica B, Pop F, Militaru MS. Hereditary Breast Cancer in Romania-Molecular Particularities and Genetic Counseling Challenges in an Eastern European Country. Biomedicines 2023; 11:biomedicines11051386. [PMID: 37239058 DOI: 10.3390/biomedicines11051386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In Romania, breast cancer (BC) is the most common malignancy in women. However, there is limited data on the prevalence of predisposing germline mutations in the population in the era of precision medicine, where molecular testing has become an indispensable tool in cancer diagnosis, prognosis, and therapeutics. Therefore, we conducted a retrospective study to determine the prevalence, mutational spectrum, and histopathological prediction factors for hereditary breast cancer (HBC) in Romania. A cohort of 411 women diagnosed with BC selected upon NCCN v.1.2020 guidelines underwent an 84-gene NGS-based panel testing for breast cancer risk assessment during 2018-2022 in the Department of Oncogenetics of the Oncological Institute of Cluj-Napoca, Romania. A total of 135 (33%) patients presented pathogenic mutations in 19 genes. The prevalence of genetic variants was determined, and demographic and clinicopathological characteristics were analyzed. We observed differences among BRCA and non-BRCA carriers regarding family history of cancer, age of onset, and histopathological subtypes. Triple-negative (TN) tumors were more often BRCA1 positive, unlike BRCA2 positive tumors, which were more often the Luminal B subtype. The most frequent non-BRCA mutations were found in CHEK2, ATM, and PALB2, and several recurrent variants were identified for each gene. Unlike other European countries, germline testing for HBC is still limited due to the high costs and is not covered by the National Health System (NSH), thus leading to significant discrepancies related to the screening and prophylaxis of cancer.
Collapse
Affiliation(s)
- Andreea Cătană
- Department of Molecular Sciences, Discipline of Medical Genetics, University of Medicine and Pharmacy Iuliu Hațieganu, Victor Babeș 8, 400347 Cluj-Napoca, Romania
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Adrian P Trifa
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
- Discipline of Medical Genetics, University of Medicine and Pharmacy Victor Babeș, Eftimie Murgu 2, 300041 Timișoara, Romania
| | - Patriciu A Achimas-Cadariu
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
- Department of Oncology, Discipline of Surgery and Gynecological Oncology, University of Medicine and Pharmacy Iuliu Hațieganu, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Gabriela Bolba-Morar
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Carmen Lisencu
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Eniko Kutasi
- Department of Molecular Sciences, Discipline of Medical Genetics, University of Medicine and Pharmacy Iuliu Hațieganu, Victor Babeș 8, 400347 Cluj-Napoca, Romania
| | - Vlad F Chelaru
- Department of Molecular Sciences, Discipline of Medical Genetics, University of Medicine and Pharmacy Iuliu Hațieganu, Victor Babeș 8, 400347 Cluj-Napoca, Romania
| | - Maximilian Muntean
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
- Department of Oncology, Discipline of Surgery and Gynecological Oncology, University of Medicine and Pharmacy Iuliu Hațieganu, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Daniela L Martin
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Nicoleta Z Antone
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Bogdan Fetica
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Florina Pop
- Breast Cancer Tumour Center, Institute of Oncology I. Chiricuță, Republicii Nr. 34-36, 400015 Cluj-Napoca, Romania
| | - Mariela S Militaru
- Department of Molecular Sciences, Discipline of Medical Genetics, University of Medicine and Pharmacy Iuliu Hațieganu, Victor Babeș 8, 400347 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Sei S, Ahadova A, Keskin DB, Bohaumilitzky L, Gebert J, von Knebel Doeberitz M, Lipkin SM, Kloor M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front Oncol 2023; 13:1147590. [PMID: 37035178 PMCID: PMC10073468 DOI: 10.3389/fonc.2023.1147590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.
Collapse
Affiliation(s)
- Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Derin B. Keskin
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of The Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Steven M. Lipkin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Kim H, Suyama M. Genome-wide identification of copy neutral loss of heterozygosity reveals its possible association with spatial positioning of chromosomes. Hum Mol Genet 2023; 32:1175-1183. [PMID: 36349694 PMCID: PMC10026252 DOI: 10.1093/hmg/ddac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.
Collapse
Affiliation(s)
- Hyeonjeong Kim
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
35
|
Germline variants associated with breast cancer in Khakass women of North Asia. Mol Biol Rep 2023; 50:2335-2341. [PMID: 36577833 DOI: 10.1007/s11033-022-08215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Variants in the BRCA1/2 genes are responsible for familial breast cancer. Numerous studies showed a different spectrum of BRCA variants among breast cancer patients of different Ethnicity origin. In the available literature, no previous research has focused on breast cancer-associated variants among the Khakass people (the indigenous people of the Russian Federation). METHODS Twenty-six Khakass breast cancer patients were enrolled in the study. Genomic DNA was isolated from blood samples and used to prepare libraries using a Hereditary Cancer Solution kit. Next-generation sequencing (NGS) was performed using the MiSeq System (Illumina, USA). RESULTS In our study, 12% of patients (3/26) carried a single pathogenic variant; 54% of patients (14/26) carried variants of uncertain significance (VUS) or conflicting variants; and 35% of patients (9/26) did not carry any clinically significant variants. Germline pathogenic variant in the ATM gene (rs780619951, NC_000011.10:g.108259022C > T) was identified in two unrelated patients with a family history of cancer (7.6%, 2/26). The pathogenic truncating variant in the ATM gene (p. R805* or c.2413C > T) leads to the nonfunctional version of the protein. This variant has been earlier reported in individuals with a family history of breast cancer. CONCLUSIONS Our pilot study describes the germline variant in the ATM gene associated with breast cancer in Khakass women of North Asia.
Collapse
|
36
|
Alghanim HM, Eltawel M, Alhaidari AI, Alobaid MM, Moghairi AM, Sufiani F, Ahmad N. Multiple synchronous malignancies in an infant with concomitant homozygous BRCA2 and PMS2 mutations with Fanconi anemia phenotype. Pediatr Hematol Oncol 2023; 40:587-594. [PMID: 36731423 DOI: 10.1080/08880018.2022.2154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 02/04/2023]
Abstract
Hereditary cancer predisposition accounts for more than 10% of all cancers in pediatric age group and this is increasingly recognized as an important entity because of modern sequencing techniques. We report a rare association of two concurrent cancer predisposition syndromes, BRCA2 and PMS2, in a young child who presented with concurrent malignancies including Wilms tumor, myelodysplastic syndrome and an indeterminate brain lesion who succumbed to his disease. Multiple synchronous malignancies present difficult clinical and psycho-social challenges which need to be carefully addressed in the setting of a multi-disciplinary team approach.
Collapse
Affiliation(s)
- Hamad Mohammed Alghanim
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohamed Eltawel
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pediatric Hematology & Oncology, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulmajeed Ibrahim Alhaidari
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muhannad Mohammed Alobaid
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Areej Mofareh Moghairi
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad Sufiani
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naveed Ahmad
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pediatric Hematology & Oncology, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Anaclerio F, Pilenzi L, Dell’Elice A, Ferrante R, Grossi S, Ferlito LM, Marinelli C, Gildetti S, Calabrese G, Stuppia L, Antonucci I. Clinical usefulness of NGS multi-gene panel testing in hereditary cancer analysis. Front Genet 2023; 14:1060504. [PMID: 37065479 PMCID: PMC10104445 DOI: 10.3389/fgene.2023.1060504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction: A considerable number of families with pedigrees suggestive of a Mendelian form of Breast Cancer (BC), Ovarian Cancer (OC), or Pancreatic Cancer (PC) do not show detectable BRCA1/2 mutations after genetic testing. The use of multi-gene hereditary cancer panels increases the possibility to identify individuals with cancer predisposing gene variants. Our study was aimed to evaluate the increase in the detection rate of pathogenic mutations in BC, OC, and PC patients when using a multi-gene panel.Methods: 546 patients affected by BC (423), PC (64), or OC (59) entered the study from January 2020 to December 2021. For BC patients, inclusion criteria were i) positive cancer family background, ii) early onset, and iii) triple negative BC. PC patients were enrolled when affected by metastatic cancer, while OC patients were all submitted to genetic testing without selection. The patients were tested using a Next-Generation Sequencing (NGS) panel containing 25 genes in addition to BRCA1/2.Results: Forty-four out of 546 patients (8%) carried germline pathogenic/likely pathogenic variants (PV/LPV) on BRCA1/2 genes, and 46 (8%) presented PV or LPV in other susceptibility genes.Discussion: Our findings demonstrate the utility of expanded panel testing in patients with suspected hereditary cancer syndromes, since this approach increased the mutation detection rate of 15% in PC, 8% in BC and 5% in OC cases. In absence of multi-gene panel analysis, a considerable percentage of mutations would have been lost.
Collapse
Affiliation(s)
- Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lucrezia Pilenzi
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Rossella Ferrante
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Rossella Ferrante,
| | - Simona Grossi
- Eusoma Breast Centre, “G. Bernabeo” Hospital, Ortona, Italy
| | | | | | | | - Giuseppe Calabrese
- UOSD Genetica Oncoematologica, Dipartimento di Oncologico-Ematologico, Pescara, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), G.d’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
38
|
Identification of Germline Variants in Patients with Hereditary Cancer Syndromes in Northeast Mexico. Genes (Basel) 2023; 14:genes14020341. [PMID: 36833268 PMCID: PMC9957276 DOI: 10.3390/genes14020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Hereditary cancer syndromes (HCS) are genetic diseases with an increased risk of developing cancer. This research describes the implementation of a cancer prevention model, genetic counseling, and germline variants testing in an oncologic center in Mexico. A total of 315 patients received genetic counseling, genetic testing was offered, and 205 individuals were tested for HCS. In 6 years, 131 (63.90%) probands and 74 (36.09%) relatives were tested. Among the probands, we found that 85 (63.9%) had at least one germline variant. We identified founder mutations in BRCA1 and a novel variant in APC that led to the creation of an in-house detection process for the whole family. The most frequent syndrome was hereditary breast and ovarian cancer syndrome (HBOC) (41 cases with BRCA1 germline variants in most of the cases), followed by eight cases of hereditary non-polyposic cancer syndrome (HNPCC or Lynch syndrome) (with MLH1 as the primarily responsible gene), and other high cancer risk syndromes. Genetic counseling in HCS is still a global challenge. Multigene panels are an essential tool to detect the variants frequency. Our program has a high detection rate of probands with HCS and pathogenic variants (40%), compared with other reports that detect 10% in other populations.
Collapse
|
39
|
Shao Z, Yu J, Cheng Y, Ma W, Liu P, Lu H. MR imaging phenotypes and features associated with pathogenic mutation to predict recurrence or metastasis in breast cancer. BMC Cancer 2023; 23:97. [PMID: 36707770 PMCID: PMC9883861 DOI: 10.1186/s12885-023-10555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Distant metastasis remains the main cause of death in breast cancer. Breast cancer risk is strongly influenced by pathogenic mutation.This study was designed to develop a multiple-feature model using clinicopathological and imaging characteristics adding pathogenic mutations associated signs to predict recurrence or metastasis in breast cancers in high familial risk women. METHODS Genetic testing for breast-related gene mutations was performed in 54 patients with breast cancers. Breast MRI findings were retrospectively evaluated in 64 tumors of the 54 patients. The relationship between pathogenic mutation, clinicopathological and radiologic features was examined. The disease recurrence or metastasis were estimated. Multiple logistic regression analyses were performed to identify independent factors of pathogenic mutation and disease recurrence or metastasis. Based on significant factors from the regression models, a multivariate logistic regression was adopted to establish two models for predicting disease recurrence or metastasis in breast cancer using R software. RESULTS Of the 64 tumors in 54 patients, 17 tumors had pathogenic mutations and 47 tumors had no pathogenic mutations. The clinicopathogenic and imaging features associated with pathogenic mutation included six signs: biologic features (p = 0.000), nuclear grade (p = 0.045), breast density (p = 0.005), MRI lesion type (p = 0.000), internal enhancement pattern (p = 0.004), and spiculated margin (p = 0.049). Necrosis within the tumors was the only feature associated with increased disease recurrence or metastasis (p = 0.006). The developed modelIincluding clinico-pathologic and imaging factors showed good discrimination in predicting disease recurrence or metastasis. Comprehensive model II, which included parts of modelIand pathogenic mutations significantly associated signs, showed significantly more sensitivity and specificity for predicting disease recurrence or metastasis compared to Model I. CONCLUSIONS The incorporation of pathogenic mutations associated imaging and clinicopathological parameters significantly improved the sensitivity and specificity in predicting disease recurrence or metastasis. The constructed multi-feature fusion model may guide the implementation of prophylactic treatment for breast cancers at high familial risk women.
Collapse
Affiliation(s)
- Zhenzhen Shao
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Wenjuan Ma
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Peifang Liu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Hong Lu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| |
Collapse
|
40
|
Calıskan S, Akar OS, Gun S, Kefeli M. Malignant Perivascular Epithelioid Cell Tumor (PEComa) of the Uterus as Part of the Hereditary Cancer Syndrome: A Case Diagnosed with Multiple Malignancies. Turk Patoloji Derg 2023; 39:212-217. [PMID: 36367123 PMCID: PMC10521199 DOI: 10.5146/tjpath.2022.01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
A perivascular epithelioid cell tumor (PEComa) is an uncommon mesenchymal tumor composed of perivascular epithelioid cells. These tumor cells show variable immunoreactivity for both melanocytic and myogenic markers. Occurrence of PEComa has been reported at various anatomical sites, including the gynecological tract, uterus being the most common. Although most patients have sporadic PEComas, a subset may be associated with the inactivation of TSC1 or TSC2 genes and the occurrence of TFE3 gene fusions. However, a relationship between PEComas and other tumors is rare. We report a 41-year-old female patient with malignant PEComa who was admitted to the hospital with a complaint of vaginal bleeding. Because she had previously been diagnosed with colorectal and breast carcinomas at an early age, we performed a comprehensive genetic analysis to identify molecular alterations present in her background that unveiled multiple malignancy predispositions. Next-generation sequencing (NGS) analysis revealed two heterozygous germline pathogenic variants in the ATM and TP53 genes and a heterozygous variant of unknown significance (VUS) in the BRCA2 gene. The patient was diagnosed with the Li-Fraumeni Syndrome owing to the medical and family history and also the presentation of a pathogenic mutation of the TP53 gene. There are very few case reports in the literature describing PEComa in the Li-Fraumeni syndrome, and this is the first report of a uterine PEComa in a patient with Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Sultan Calıskan
- Department of Pathology, Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey
| | - Omer Salih Akar
- Department of Genetics, Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey
| | - Seda Gun
- Department of Pathology, Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey
| | - Mehmet Kefeli
- Department of Pathology, Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
41
|
Subaşıoğlu A, Güç ZG, Gür EÖ, Tekindal MA, Atahan MK. Genetic, Surgical and Oncological Approach to Breast Cancer, with BRCA1, BRCA2, CDH1, PALB2, PTEN and TP53 Variants. Eur J Breast Health 2023; 19:55-69. [PMID: 36605468 PMCID: PMC9806937 DOI: 10.4274/ejbh.galenos.2022.2022-7-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 12/28/2022]
Abstract
Objective The aim of this study was to determine the frequency of germline variants in BRCA1, BRCA2, CDH1, PALB2, PTEN and TP53 in patients admitted to a medical genetics clinic with breast cancer and to assess these identified variants according to published genetic, surgical and oncological perspectives. Materials and Methods Medical history, and cancer diagnosis information for 195 independent probands with operated breast cancer were collected from requisition forms and medical records. The exonic regions and exon-intron junctions in BRCA1, BRCA2, CDH1, PALB2, PTEN and TP53 genes were sequenced. Analysis of fastq files was performed on the Qiagen Clinical Insight-Analyse Universal with panel-specific pipeline and vcf files were interpreted clinically using Qiagen Clinical Insight-Interpret. Results Gene variants (pathogenic, likely pathogenic and variants of unknown significance) were detected in 53 (27.2%). Detailed information about the patients (age of diagnosis, family history, gender), cancer stage, tumour characteristics (ER, PR, human epidermal growth factor receptor 2 status) and all information related to the detected variants (gene, location, nucleotide and amino acid change, exon number, impact, mutation classification, dbSNP number and HGMD variant class) were assessed. In total, 58 mutations were identified including 14 novel, previously unreported variants. Conclusion Molecular characterization and identification of mutations have important implications for predictive, preventive, and personalized medicine, including genetic counseling and development of specific treatment protocols. We emphasize variants of unknown significance (VUS) as the clinical significance of VUS changes over time and variant classification is important for clinical molecular genetic testing and clinical guidance. This study may provide new insights into risk assessment for variants in CDH1, PALB2, PTEN and TP53, in addition to BRCA1 and BRCA2, which may prove useful for clinical management of breast cancer patients. Further studies are needed to identify the common gene variants in the Turkish population and evaluate the pathogenity of VUS.
Collapse
Affiliation(s)
- Aslı Subaşıoğlu
- Department of Medical Genetics, İzmir Katip Çelebi University Faculty of Medicine, İzmir, Turkey,* Address for Correspondence: E-mail:
| | - Zeynep Gülsüm Güç
- Department of Medical Oncology, İzmir Katip Çelebi University Faculty of Medicine, İzmir, Turkey
| | - Emine Özlem Gür
- Department of General Surgery, İzmir Katip Çelebi University Faculty of Medicine, İzmir, Turkey
| | - Mustafa Agah Tekindal
- Department of Biostatistics, İzmir Katip Çelebi University Faculty of Medicine, İzmir, Turkey
| | - Murat Kemal Atahan
- Department of General Surgery, İzmir Katip Çelebi University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
42
|
Management of men with high genetic risk of breast cancer. Is there a place for screening or risk-reducing surgery? Case report and review. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2023. [DOI: 10.1016/j.cpccr.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Güleç Ceylan G, Arslan Satılmış SB, Çavdarlı B, Semerci Gündüz CN. Contribution of Inherited Variants to Hereditary Cancer Syndrome Predisposition. TOHOKU J EXP MED 2022; 258:319-325. [PMID: 36288950 DOI: 10.1620/tjem.2022.j087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is a clonal disease that develops as a result of the changes on the genetic material by various factors in micro/macro environment. It has a multi-step development process. In some cancer types, genetic factors allow this multi-step process to proceed easily. These cancer types are also called hereditary cancer syndromes. Targeted gene panels are important diagnostic methods in hereditary cancer syndromes to detect the causative variants associated with these hereditary cancer syndromes. We reviewed the data of 94 patients who applied to Ankara City Hospital Genetic Diseases Evaluation Center from March 2019 to July 2021. Qiagen familial cancer susceptibility gene panel kit was used for next generation sequencing to detect the single nucleotide variants for the targeted genes. Sixty-one genes which are associated with increased cancer risk or well characterized hereditary cancer syndromes were included to this panel. Twenty five patients (27%), including 8 males and 17 females, had pathogenic/likely pathogenic variants in 13 of the 61 genes analyzed. Forty patients (43%) had variants which were assessed as variant of unknown significant. In our study, targeted multi-gene panel was diagnostic in nearly one third of the patients with personal/familial cancer syndromes. Molecular diagnosis in familial cancer syndromes is important in terms of predictive diagnosis and family screening, as well as patient follow-up and early prophylactic surgery. The predisposition for hereditary cancer syndromes can be determined according to pre-test evaluation, figuring out the inheritance type with pedigree analysis, cancer type and the genetic analysis for appropriate susceptibility genes.
Collapse
Affiliation(s)
- Gülay Güleç Ceylan
- Department of Medical Genetics, Ankara City Hospital.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University
| | | | | | - C Nur Semerci Gündüz
- Department of Medical Genetics, Ankara City Hospital.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University
| |
Collapse
|
44
|
Agaoglu NB, Ng OH, Unal B, Dogan OA, Amanvermez U, Yildiz J, Doganay L, Ghazani AA, Rana HQ. Concurrent Pathogenic Variants of BRCA1, MUTYH and CHEK2 in a Hereditary Cancer Family. Cancer Genet 2022; 268-269:128-136. [PMID: 36368126 DOI: 10.1016/j.cancergen.2022.10.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/04/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Concurrent pathogenic variants (PVs) in cancer predisposition genes have been reported in 0.1-2% of hereditary cancer (HC) patients. Determining concurrent PVs is crucial for the diagnosis, treatment, and risk assessment of unaffected family members. Next generation sequencing based diagnostic tests, which are widely used in HCs, enable the evaluation of multiple genes in parallel. We have screened the family members of a patient with bilateral breast cancer who was found to have concurrent PVs in BRCA1 (NM_007294.3;c.5102_5103del, p.Leu1701Glnfs*14) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu). Further analysis revealed concurrent PVs in CHEK2 (NM_007194.4;c.1427C>T, p.Thr476Met) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu) in the maternal uncle of the index case. Eight additional family members were found to have PVs in BRCA1 and MUTYH among 26 tested relatives. The sister and the brother of the index case who were diagnosed with breast and colon cancers, respectively, presented with the same genotype as the index case. Each family member was evaluated individually for clinical care and surveillance. This is the first report describing a family with BRCA1, MUTYH and CHEK2 concurrent PVs. Our findings provide valuable information for the assessment and management considerations for families with concurrent PVs.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey; Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Acibadem University Rare Diseases and Orphan Drugs Application and Research Center, Istanbul, Turkey
| | - Busra Unal
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ufuk Amanvermez
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Jale Yildiz
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Levent Doganay
- Department of Gastroenterology and Hepatology, Umraniye Training and Research Hospital, Umraniye, Istanbul, Turkey
| | - Arezou A Ghazani
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States; Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
45
|
McCarthy-Leo C, Darwiche F, Tainsky MA. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel) 2022; 14:5278. [PMID: 36358700 PMCID: PMC9656488 DOI: 10.3390/cancers14215278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Repair of a DNA double-strand break relies upon a pathway of proteins to identify damage, regulate cell cycle checkpoints, and repair the damage. This process is initiated by a sensor protein complex, the MRN complex, comprised of three proteins-MRE11, RAD50, and NBS1. After a double-stranded break, the MRN complex recruits and activates ATM, in-turn activating other proteins such as BRCA1/2, ATR, CHEK1/2, PALB2 and RAD51. These proteins have been the focus of many studies for their individual roles in hereditary cancer syndromes and are included on several genetic testing panels. These panels have enabled us to acquire large amounts of genetic data, much of which remains a challenge to interpret due to the presence of variants of uncertain significance (VUS). While the primary aim of clinical testing is to accurately and confidently classify variants in order to inform medical management, the presence of VUSs has led to ambiguity in genetic counseling. Pathogenic variants within MRN complex genes have been implicated in breast, ovarian, prostate, colon cancers and gliomas; however, the hundreds of VUSs within MRE11, RAD50, and NBS1 precludes the application of these data in genetic guidance of carriers. In this review, we discuss the MRN complex's role in DNA double-strand break repair, its interactions with other cancer predisposing genes, the variants that can be found within the three MRN complex genes, and the MRN complex's potential as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fatima Darwiche
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
46
|
Bilyalov A, Nikolaev S, Shigapova L, Khatkov I, Danishevich A, Zhukova L, Smolin S, Titova M, Lisica T, Bodunova N, Shagimardanova E, Gusev O. Application of Multigene Panels Testing for Hereditary Cancer Syndromes. BIOLOGY 2022; 11:biology11101461. [PMID: 36290365 PMCID: PMC9598138 DOI: 10.3390/biology11101461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Approximately 5-10% of all cancers are associated with hereditary cancer predisposition syndromes (HCPS). Early identification of HCPS is facilitated by widespread use of next-generation sequencing (NGS) and brings significant benefits to both the patient and their relatives. This study aims to evaluate the landscape of genetic variants in patients with personal and/or family history of cancer using NGS-based multigene panel testing. MATERIALS AND METHODS The study cohort included 1117 probands from Russia: 1060 (94.9%) patients with clinical signs of HCPS and 57 (5.1%) healthy individuals with family history of cancer. NGS analysis of 76 HCPS genes was performed using a custom Roche NimbleGen enrichment panel. RESULTS Pathogenic/likely pathogenic variants were identified in 378 of 1117 individuals (33.8%). The predominant number (59.8%) of genetic variants was identified in BRCA1/BRCA2 genes. CHEK2 was the second most commonly altered gene with a total of 28 (7.4%) variants, and 124 (32.8%) genetic variants were found in other 35 cancer-associated genes with variable penetrance. CONCLUSIONS Multigene panel testing allows for a differential diagnosis and identification of high-risk group for oncological diseases. Our results demonstrate that inclusion of non-coding gene regions into HCPS gene panels is highly important for the identification of rare spliceogenic variants with high penetrance.
Collapse
Affiliation(s)
- Airat Bilyalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- The Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
- Correspondence: ; Tel.: +7-9625-6038-02
| | - Sergey Nikolaev
- The Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Leila Shigapova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Igor Khatkov
- The Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | | | - Ludmila Zhukova
- The Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Sergei Smolin
- The Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Marina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Tatyana Lisica
- Centre for Strategic Planning of FMBA of Russia, 119121 Moscow, Russia
| | - Natalia Bodunova
- The Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Endocrinology Research Centre, 117036 Moscow, Russia
| |
Collapse
|
47
|
Abe A, Imoto I, Ueki A, Nomura H, Kanao H. Moderate-Risk Genes for Hereditary Ovarian Cancers Involved in the Homologous Recombination Repair Pathway. Int J Mol Sci 2022; 23:11790. [PMID: 36233090 PMCID: PMC9570179 DOI: 10.3390/ijms231911790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 20% of cases of epithelial ovarian cancer (EOC) are hereditary, sharing many causative genes with breast cancer. The lower frequency of EOC compared to breast cancer makes it challenging to estimate absolute or relative risk and verify the efficacy of risk-reducing surgery in individuals harboring germline pathogenic variants (GPV) in EOC predisposition genes, particularly those with relatively low penetrance. Here, we review the molecular features and hereditary tumor risk associated with several moderate-penetrance genes in EOC that are involved in the homologous recombination repair pathway, i.e., ATM, BRIP1, NBN, PALB2, and RAD51C/D. Understanding the molecular mechanisms underlying the expression and function of these genes may elucidate trends in the development and progression of hereditary tumors, including EOC. A fundamental understanding of the genes driving EOC can help us accurately estimate the genetic risk of developing EOC and select appropriate prevention and treatment strategies for hereditary EOC. Therefore, we summarize the functions of the candidate predisposition genes for EOC and discuss the clinical management of individuals carrying GPV in these genes.
Collapse
Affiliation(s)
- Akiko Abe
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Arisa Ueki
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hidetaka Nomura
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Hiroyuki Kanao
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| |
Collapse
|
48
|
Valenzuela-Palomo A, Sanoguera-Miralles L, Bueno-Martínez E, Esteban-Sánchez A, Llinares-Burguet I, García-Álvarez A, Pérez-Segura P, Gómez-Barrero S, de la Hoya M, Velasco-Sampedro EA. Splicing Analysis of 16 PALB2 ClinVar Variants by Minigene Assays: Identification of Six Likely Pathogenic Variants. Cancers (Basel) 2022; 14:cancers14184541. [PMID: 36139699 PMCID: PMC9496955 DOI: 10.3390/cancers14184541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
PALB2 loss-of-function variants are associated with significant increased risk of breast cancer as well as other types of tumors. Likewise, splicing disruptions are a common mechanism of disease susceptibility. Indeed, we previously showed, by minigene assays, that 35 out of 42 PALB2 variants impaired splicing. Taking advantage of one of these constructs (mgPALB2_ex1-3), we proceeded to analyze other variants at exons 1 to 3 reported at the ClinVar database. Thirty-one variants were bioinformatically analyzed with MaxEntScan and SpliceAI. Then, 16 variants were selected for subsequent RNA assays. We identified a total of 12 spliceogenic variants, 11 of which did not produce any trace of the expected minigene full-length transcript. Interestingly, variant c.49-1G > A mimicked previous outcomes in patient RNA (transcript ∆(E2p6)), supporting the reproducibility of the minigene approach. A total of eight variant-induced transcripts were characterized, three of which (∆(E1q17), ∆(E3p11), and ∆(E3)) were predicted to introduce a premature termination codon and to undergo nonsense-mediated decay, and five (▼(E1q9), ∆(E2p6), ∆(E2), ▼(E3q48)-a, and ▼(E3q48)-b) maintained the reading frame. According to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, which integrates mgPALB2 data, six PALB2 variants were classified as pathogenic/likely pathogenic, five as VUS, and five as likely benign. Furthermore, five ±1,2 variants were catalogued as VUS because they produced significant proportions of in-frame transcripts of unknown impact on protein function.
Collapse
Affiliation(s)
- Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Ada Esteban-Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Susana Gómez-Barrero
- Facultad de Ciencias de la Salud, Universidad Alfonso X “El Sabio”, Avda. de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Eladio A. Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
- Correspondence:
| |
Collapse
|
49
|
Leite ACR, Suzuki DA, Pereira AAL, Machado NP, Barroso-Sousa R, Correa TS, Moura FC, Morbeck IAP, Gumz BP, Faria LDBB, Fernandes GDS, Sandoval RL. What can we learn from more than 1,000 Brazilian patients at risk of hereditary cancer? Front Oncol 2022; 12:963910. [PMID: 36132150 PMCID: PMC9484549 DOI: 10.3389/fonc.2022.963910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Identifying individuals at a higher risk of developing cancer is a major concern for healthcare providers. Cancer predisposition syndromes are the underlying cause of cancer aggregation and young-onset tumors in many families. Germline genetic testing is underused due to lack of access, but Brazilian germline data associated with cancer predisposition syndromes are needed. Methods Medical records of patients referred for genetic counseling at the Oncogenetics Department at the Hospital Sírio-Libanês (Brasília, DF, Brazil) from July 2017 to January 2021 were reviewed. The clinical features and germline findings were described. Detection rates of germline pathogenic/likely pathogenic variant (P/LPV) carriers were compared between international and Brazilian guidelines for genetic testing. Results A total of 1,091 individuals from 985 families were included in this study. Most patients (93.5%) had a family history of cancer, including 64% with a family member under 50 with cancer. Sixty-six percent of patients (720/1091) had a personal history of cancer. Young-onset cancers (<50 years old) represented 62% of the patients affected by cancer and 17% had multiple primary cancers. The cohort included patients with 30 different cancer types. Breast cancer was the most prevalent type of cancer (52.6%). Germline testing included multigene panel (89.3%) and family variant testing (8.9%). Approximately 27% (236/879) of the tested patients harbored germline P/LPVs in cancer susceptibility genes. BRCA2, BRCA1, and TP53 were the most frequently reported genes, corresponding to 18.6%, 14.4%, and 13.5% of the positive results, respectively. Genetic testing criteria from international guidelines were more effective in identifying carriers than the Brazilian National Agency of Supplementary Health (ANS) criteria (92% vs. 72%, p<0.001). Forty-six percent of the cancer-unaffected patients who harbored a germline P/LPV (45/98) would not be eligible for genetic testing according to ANS because they did not have a family variant previously identified in a cancer-affected relative. Conclusion The high detection rate of P/LPVs in the present study is possibly related to the genetic testing approach with multigene panels and cohort's characteristics, represented mainly by individuals with a personal or family history of young-onset cancer. Testing asymptomatic individuals with suspicious family history may also have contributed to a higher detection rate. A significant number of carriers would not have been identified using ANS criteria for genetic testing.
Collapse
|
50
|
Rweyemamu LP, Gültaşlar BK, Akan G, Dharsee N, Namkinga LA, Lyantagaye SL, Yazıcı H, Atalar F. Breast cancer in East Africa: Prevalence and spectrum of germline SNV/indel and CNVs in BRCA1 and BRCA2 genes among breast cancer patients in Tanzania. Cancer Med 2022; 12:3395-3409. [PMID: 35908255 PMCID: PMC9939169 DOI: 10.1002/cam4.5091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Growing prevalence and aggressiveness of breast cancer (BC) among East African women strongly indicate that the genetic risk factor implicated in the etiology of the disease may have a key role. Germline pathogenic variants in BRCA1 and BRCA2 (BRCA1/2) are known to increase the lifetime risk of BC. This study investigated the prevalence and spectrum of germline single nucleotide variant/insertion and deletion (SNV/indel), and copy number variations (CNVs) in BRCA1/2 among Tanzanian BC patients, and evaluated the associations of identified variants with patient's socio-demographic and histopathological characteristics. METHODS One hundred BC patients were examined for BRCA1/2 variants using next-generation sequencing (NGS). Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) assay were performed for the confirmation of SNV/indel and CNVs, respectively. RESULTS Six germline SNV/indel pathogenic variants were detected from six unrelated patients. Five of these variants were identified in BRCA1, and one in BRCA2. We also identified, in one patient, one variant of uncertain clinical significance (VUS). CNV was not detected in any of the BC patients. Furthermore, we found that in our cohort, BRCA1/2 variant carriers were triple-negative BC patients (p = 0.019). CONCLUSIONS Our study provides first insight into BC genetic landscape by the use of NGS in the under-represented East African Tanzanian populations. Our findings support the importance of genetic risk factors in BC etiology in Tanzania and showed a relatively high overall prevalence (6%) of germline BRCA1/2 pathogenic variants in BC patients. Therefore, our results indicate that BRCA1/2 pathogenic variants may well contribute to BC incidence in Tanzania. Thus, the identification of frequent variants in BRCA1/2 genes will enable implementation of rapid, inexpensive population-specific BRCA1/2 genetic testing, particularly for triple-negative BC patients known for their high prevalence in Tanzania. This will, in turn, greatly contributes to provide effective therapeutic strategies.
Collapse
Affiliation(s)
- Linus P. Rweyemamu
- Department of Molecular Biology and BiotechnologyUniversity of Dar es SalaamDar es SalaamTanzania,Mbeya College of Health and Allied SciencesUniversity of Dar es SalaamMbeyaTanzania
| | - Büşra K. Gültaşlar
- Division of Cancer Genetics, Department of Basic Oncology, Institute of OncologyIstanbul UniversityIstanbulTurkiye
| | - Gokce Akan
- DESAM Research InstituteNear East UniversityNicosiaCyprus,MUHAS Genetic Laboratory, Department of BiochemistryMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
| | - Nazima Dharsee
- Academic, Research and Consultancy UnitOcean Road Cancer InstituteDar es SalaamTanzania
| | - Lucy A. Namkinga
- Department of Molecular Biology and BiotechnologyUniversity of Dar es SalaamDar es SalaamTanzania
| | - Sylvester L. Lyantagaye
- Department of Molecular Biology and BiotechnologyUniversity of Dar es SalaamDar es SalaamTanzania,Mbeya College of Health and Allied SciencesUniversity of Dar es SalaamMbeyaTanzania
| | - Hülya Yazıcı
- Division of Cancer Genetics, Department of Basic Oncology, Institute of OncologyIstanbul UniversityIstanbulTurkiye,Department of Medical Biology and Genetics, Faculty of MedicineIstanbul Arel UniversityIstanbulTurkiye
| | - Fatmahan Atalar
- MUHAS Genetic Laboratory, Department of BiochemistryMuhimbili University of Health and Allied SciencesDar es SalaamTanzania,Department of Rare Diseases, Child Health InstituteIstanbul UniversityIstanbulTurkiye
| |
Collapse
|