1
|
Kazemi F, Sadeghian F, Pirsadeghi A, Asadi F, Javdani H, Yousefi-Ahmadipour A. Adipose mesenchymal stem cell conditioned medium and extract: A promising therapeutic option for regenerative breast cancer therapy. SAGE Open Med 2024; 12:20503121241306606. [PMID: 39691866 PMCID: PMC11650577 DOI: 10.1177/20503121241306606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Breast cancer is the second most common cancer and a leading cause of cancer death in U.S. women. The tumor microenvironment, especially nearby adipocytes, plays a crucial role in its progression. Therefore, this study aimed to investigate the effects of human adipose mesenchymal stem cells-derived conditioned medium (SUP) and extract (CE) from on breast cancer cells. Methods Human adipose-derived mesenchymal stem cells were isolated and characterized by flow cytometry using Cluster of Differentiation (CD) markers (CD34, CD45, CD90, and CD105). The differentiation potential was confirmed via adipogenic and osteogenic induction. MCF-7 and MDA-MB-231 cells were treated with SUP and CE, and cell viability was assessed using the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay at 24, 48, and 72 h. Doubling time, colony formation, wound healing, and gene expression for key cancer-related genes (TIMP1, TIMP2, MMP2, PDL1, IDO, Bax, caspase 3, and caspase 9) were also evaluated. Results Both SUP and CE significantly inhibited the viability of MCF-7 and MDA-MB-231 cells, reduced their doubling time, and suppressed colony formation. In wound healing assays, cell migration was notably impaired in MDA-MB-231 cells but less so in MCF-7 cells. Real-time polymerase chain reaction revealed downregulation of TIMP1, MMP2, PDL1, and IDO in MDA-MB-231 cells after treatment, while CE increased certain gene expressions in MCF-7 cells. Bax, caspase 3, and caspase 9 expressions were significantly upregulated in MDA-MB-231 cells but not in MCF-7 cells after treatment. Conclusion Human adipose-derived mesenchymal stem cells-derived SUP and CE exhibit antitumor effects on breast cancer cells, suggesting a potential therapeutic strategy to suppress tumor progression. Mesenchymal stem cells-SUP and CE could be a safe and novel regenerative approach for breast reconstruction postmastectomy without tumor recurrence risk.
Collapse
Affiliation(s)
- Faezeh Kazemi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Sadeghian
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javdani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Ren B, Liang J, Liu Y, Zhang Y, Ma X, Lei P, Gao J, Ma W. Proguanil inhibits proliferation and migration in glioblastoma development through targeting CSF1R receptor. Cell Signal 2024; 127:111550. [PMID: 39662608 DOI: 10.1016/j.cellsig.2024.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant tumor of the central nervous system, characterized by high morbidity and invasive potential, necessitating urgent development of novel therapeutic strategies. Studies have shown that colony stimulating factor-1 receptor (CSF1R) is abnormally expressed in a variety of solid tumors, which is closely related to the development of tumor cells. In this study, the CSF1R/cell membrane Chromatographic model was successfully constructed, and was used to screen active compounds targeting CSF1R from more than 60 compounds. Among these, Proguanil exhibited the strongest affinity with retention time of 69 min, and a KD value of (6.73 ± 0.05) × 10-7 M. Proguanil effectively inhibited the growth of U87MG cells in vitro and in vivo by inducing G0/G1 phase cell cycle arrest and suppressing U87MG cells migration. More importantly, we found that Proguanil's inhibitory effect on U87MG cell growth and migration was positively correlated with CSF1R expression, and this effect diminished following CSF1R knockdown and Proguanil demonstrated synergistic effects with CSF1R-targeting positive drugs (BLZ945 and GW2580). Furthermore, Proguanil was found to inhibit CSF1R phosphorylation along with downstream signaling pathways such as PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2, thereby regulating cell cycle-related molecules (p21, CDK4, and CyclinD1) and cell migration-related molecule MMP3. Meanwhile, Proguanil targeted CSF1R to inhibit M2-type polarization of tumor-associated macrophages (TAMs) and their proliferation, thus altering the tumor microenvironment while indirectly suppressing the proliferation and migration of U87MG cells. Taken together, these findings suggest that Proguanil may serve as a promising CSF1R antagonist for GBM treatment.
Collapse
Affiliation(s)
- Bingxi Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| | - Jinna Liang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong university, Xi'an, 710061, China
| | - Yanhong Liu
- Department of Pharmacy, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - Yuxiu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| | - Xiaoyu Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| | - Panpan Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| | - Jiapan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| |
Collapse
|
3
|
Chrysostomou A, Furlan C, Saccenti E. Machine learning based analysis of single-cell data reveals evidence of subject-specific single-cell gene expression profiles in acute myeloid leukaemia patients and healthy controls. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195062. [PMID: 39366464 DOI: 10.1016/j.bbagrm.2024.195062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Acute Myeloid Leukaemia (AML) is characterized by uncontrolled growth of immature myeloid cells, disrupting normal blood production. Treatment typically involves chemotherapy, targeted therapy, and stem cell transplantation but many patients develop chemoresistance, leading to poor outcomes due to the disease's high heterogeneity. In this study, we used publicly available single-cell RNA sequencing data and machine learning to classify AML patients and healthy, monocytes, dendritic and progenitor cells population. We found that gene expression profiles of AML patients and healthy controls can be classified at the individual level with high accuracy (>70 %) when using progenitor cells, suggesting the existence of subject-specific single cell transcriptomics profiles. The analysis also revealed molecular determinants of patient heterogeneity (e.g. TPSD1, CT45A1, and GABRA4) which could support new strategies for patient stratification and personalized treatment in leukaemia.
Collapse
Affiliation(s)
- Andreas Chrysostomou
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Capelli L, Pedrini F, Di Pede AC, Chamorro-Garcia A, Bagheri N, Fortunati S, Giannetto M, Mattarozzi M, Corradini R, Porchetta A, Bertucci A. Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a. Anal Chem 2024; 96:18645-18654. [PMID: 39542433 PMCID: PMC11603406 DOI: 10.1021/acs.analchem.4c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 11/17/2024]
Abstract
We present a novel activity-based detection strategy for matrix metalloproteinase 2 (MMP2), a critical cancer protease biomarker, leveraging a mechanism responsive to the proteolytic activity of MMP2 and its integration with CRISPR-Cas12a-assisted signal amplification. We designed a chemical translator comprising two functional units─a peptide and a peptide nucleic acid (PNA), fused together. The peptide presents the substrate of MMP2, while the PNA serves as a nucleic acid output for subsequent processing. This chemical translator was immobilized on micrometer magnetic beads as a physical support for an activity-based assay. We incorporated into our design a single-stranded DNA partially hybridized with the PNA sequence and bearing a region complementary to the RNA guide of CRISPR-Cas12a. The target-induced nuclease activity of Cas12a results in the degradation of FRET-labeled DNA reporters and amplified fluorescence signal, enabling the detection of MMP2 in the low picomolar range, showing a limit of detection of 72 pg/mL. This study provides new design principles for a broader applicability of CRISPR-Cas-based biosensing.
Collapse
Affiliation(s)
- Luca Capelli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Federica Pedrini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea C. Di Pede
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Neda Bagheri
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Fortunati
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Marco Giannetto
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Porchetta
- Department
of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Bertucci
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
5
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Cheon J, Kim B, Park J, Shin J, Kim TH. Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78. Int J Mol Sci 2024; 25:12062. [PMID: 39596132 PMCID: PMC11594244 DOI: 10.3390/ijms252212062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common form of head and neck cancer, ranking sixth in global cancer incidence. Identifying molecular drivers of tumorigenesis and metastasis is essential for early detection and treatment. This study analyzed gene expression profiles from three datasets (GSE6791, GSE29330, and GSE58911) to identify differentially expressed genes (DEGs) in HNSCC. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were employed to functionally annotate these DEGs. A protein-protein interaction (PPI) network was constructed for selecting hub genes using the STRING database. Finally, hub gene and protein expression levels were evaluated in patients with HNSCC, along with their association with overall survival. Our analysis identified twenty-eight co-DEGs comprising eight up-regulated and twenty down-regulated genes, primarily involved in extracellular matrix (ECM) organization, proteolysis, ECM disassembly, and keratinization processes. Furthermore, the PPI network revealed eight hub genes based on their high degree of connectivity. Notably, SPP1 demonstrated up-regulation, while KRT78 was down-regulated in HNSCC. Remarkably, the expression levels of these hub genes correlated with tumor grade, clinical cancer stage, and poor prognosis in HNSCC. Our findings hold significant clinical potential for early diagnosis and the development of novel therapeutic targets for patients with HNSCC.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Science, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaemin Shin
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Cero C, House JS, Verdi V, Ferguson JL, Jima DD, Selmek AA, Patania OM, Dwyer JE, Wei BR, Lloyd DT, Shive HR. Profiling the cancer-prone microenvironment in a zebrafish model for MPNST. Oncogene 2024:10.1038/s41388-024-03210-1. [PMID: 39511408 DOI: 10.1038/s41388-024-03210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Microenvironmental contributions to soft tissue sarcoma progression are relatively undefined, particularly during sarcoma onset. Use of animal models to reveal these contributions is impeded by difficulties in discriminating between microenvironmental, precancerous, and cancer cells, and challenges in defining a precancerous microenvironment. We developed a zebrafish model that allows segregation of microenvironmental, precancerous, and cancerous cell populations by fluorescence-activated cell sorting. This model has high predilection for malignant peripheral nerve sheath tumor (MPNST), a type of soft tissue sarcoma that exhibits rapid, aggressive growth. Using RNA-seq, we profiled the transcriptomes of microenvironmental, precancerous, and cancer cells from our zebrafish MPNST model. We show broad activation of inflammation/immune-associated signaling networks, describe gene expression patterns that uniquely characterize the transition from precancerous to cancer ME, and identify macrophages as potential contributors to microenvironmental phenotypes. We identify conserved gene expression changes and candidate genes of interest by comparative genomics analysis of MPNST versus benign lesions in both humans and zebrafish. Finally, we functionally validate a candidate extracellular matrix protein, periostin (POSTN), in human MPNST. This work provides insight into how the microenvironment may regulate MPNST initiation and progression.
Collapse
Affiliation(s)
- Cheryl Cero
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Cancer Biology, Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John S House
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Vincenzo Verdi
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jordan L Ferguson
- State Laboratory of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Dereje D Jima
- Center of Human Health and the Environment and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon T Lloyd
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Heather R Shive
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Anderson MJM, Hayward AN, Smiley AT, Shi K, Pawlak MR, Aird EJ, Grant E, Greenberg L, Aihara H, Evans RL, Ulens C, Gordon WR. Molecular basis of proteolytic cleavage regulation by the extracellular matrix receptor dystroglycan. Structure 2024; 32:1984-1996.e5. [PMID: 39305901 PMCID: PMC11560575 DOI: 10.1016/j.str.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
The dystrophin-glycoprotein-complex (DGC), anchored by the transmembrane protein dystroglycan, functions to mechanically link the extracellular matrix and actin cytoskeleton. Breaking this connection is associated with diseases such as muscular dystrophy, yet cleavage of dystroglycan by matrix-metalloproteinases (MMPs) remains an understudied mechanism to disrupt the DGC. We determined the crystal structure of the membrane-adjacent domain (amino acids 491-722) of E. coli expressed human dystroglycan to understand MMP cleavage regulation. The structural model includes tandem immunoglobulin-like (IGL) and sperm/enterokinase/agrin-like (SEAL) domains, which support proteolysis in diverse receptors to facilitate mechanotransduction, membrane protection, and viral entry. The structure reveals a C-terminal extension that buries the MMP site by packing into a hydrophobic pocket, a unique mechanism of MMP cleavage regulation. We further demonstrate structure-guided and disease-associated mutations disrupt proteolytic regulation using a cell-surface proteolysis assay. Thus disrupted proteolysis is a potentially relevant mechanism for "breaking" the DGC link to contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Michael J M Anderson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Adam T Smiley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Matthew R Pawlak
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; Currently at Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Eva Grant
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Lauren Greenberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Robert L Evans
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Christopher Ulens
- Department of Cellular and Molecular Medicine, Karolinksa University Leuven, 3000 Leuven, Belgium
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Zhang Y, Wei Z, Xu H, Wang X, Gu T, Dong H, Chang H, Pang L. Identification of miR-451 target genes as prognostic markers in diffuse large B-cell lymphoma. Expert Rev Hematol 2024:1-12. [PMID: 39494860 DOI: 10.1080/17474086.2024.2422019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND B-cell lymphoma, a diverse malignancy, is intricately regulated by multiple factors. MicroRNAs (miRNAs) have been demonstrated to be important regulators of the initiation and progression of human B-cell lymphoma, but their functions need to be further explored. RESEARCH DESIGN AND METHODS Two B-cell lymphoma cell lines, Romas and HBL-1, were engineered to overexpress miR-451, with cell proliferation assessed via cell counting assays. Flow cytometry was used to study the effects of miR-451 on cell cycle and apoptosis. Bioinformatics analyses were performed using GEO datasets (GSE181063, GSE32918, GSE56315) to identify DEGs, and potential miR-451 target genes were predicted using tools like ENCORI, TargetScan, and R packages. A risk model for DLBCL prognosis was developed using Cox and LASSO regression. qRT-PCR validated the expression of these target genes. RESULTS This study revealed that miR-451 inhibited cell proliferation, arrested the cell cycle, and induced apoptosis in human DLBCL cell lines. Bioinformatics analysis identified 9 target genes (MMP9, AQP9, RIN2, EOMES, LCP2, SELPLG, MAL, SOCS5, S1PR3) significantly associated with DLBCL prognosis, suggesting a potential mechanism by which miR-451 suppresses DLBCL development. CONCLUSIONS Our study indicates that a specific set of miR-451 target genes may significantly influence DLBCL patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Clinical Pharmacy, The People's Hospital of Jiaozuo, Jiaozuo, Henan, China
| | - Zichen Wei
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Han Xu
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Ting Gu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Hongliang Dong
- Department of Clinical Pharmacy, The People's Hospital of Jiaozuo, Jiaozuo, Henan, China
| | - Hongzhuan Chang
- Department of Clinical Pharmacy, The People's Hospital of Jiaozuo, Jiaozuo, Henan, China
| | - Lei Pang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Zhang Z, Zhao M, Zhou Z, Ren X, He Y, Shen T, Zeng H, Li K, Zhang Y. Identification and validation of matrix metalloproteinase hub genes as potential biomarkers for Skin Cutaneous Melanoma. Front Oncol 2024; 14:1471267. [PMID: 39493455 PMCID: PMC11527786 DOI: 10.3389/fonc.2024.1471267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives The role of matrix metalloproteinases (MMPs) in Skin Cutaneous Melanoma (SKCM) development and progression is unclear so far. This comprehensive study delved into the intricate role of MMPs in SKCM development and progression. Methods RT-qPCR, bisulfite sequencing, and WES analyzed MMP gene expression, promoter methylation, and mutations in SKCM cell lines. TCGA datasets validated findings. DrugBank and molecular docking identified potential regulatory drugs, and cell line experiments confirmed the role of key MMP genes in tumorigenesis. Results Our findings unveiled significant up-regulation of MMP9, MMP12, MMP14, and MMP16, coupled with hypomethylation of their promoters in SKCM cell lines, implicating their involvement in disease progression. Mutational analysis highlighted a low frequency of mutations in these genes, indicating less involvement of mutations in the expression regulatory mechanisms. Prognostic assessments showcased a significant correlation between elevated expression of these genes and poor overall survival (OS) in SKCM patients. Additionally, functional experiments involving gene silencing revealed a potential impact on cellular proliferation, further emphasizing the significance of MMP9, MMP12, MMP14, and MMP16 in SKCM pathobiology. Conclusion This study identifies Estradiol and Calcitriol as potential drugs for modulating MMP expression in SKCM, highlighting MMP9, MMP12, MMP14, and MMP16 as key diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zhongyi Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei Zhao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodan Ren
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunliang He
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongping Zeng
- Department of Combined Chinese and Western Pulmonary Diseases, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Kai Li
- Sichuan Institute of Tourism College of Great Health Industry, Chengdu, Sichuan, China
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Rotenberg N, Feldman M, Shirian J, Hockla A, Radisky ES, Shifman JM. Engineered TIMP2 with narrow MMP-9 specificity is an effective inhibitor of invasion and proliferation of triple-negative breast cancer cells. J Biol Chem 2024; 300:107867. [PMID: 39419285 DOI: 10.1016/j.jbc.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade extracellular matrix proteins, functioning in various physiological processes such as tissue remodeling, embryogenesis, and morphogenesis. Dysregulation of these enzymes is linked to multiple diseases. Specific inhibition of particular MMPs is crucial for anti-MMP drug development as some MMPs have shown antidisease properties. In this study, we aimed to design a highly specific inhibitor of MMP-9, that plays a crucial role in cell invasion and metastasis, using tissue inhibitor of metalloproteinases 2 (TIMP2s), an endogenous broad-family MMP inhibitor, as a prototype. In our earlier work, we were able to narrow down the specificity of the N-terminal domain of TIMP2 (N-TIMP2) toward MMP-9, yet at the expense of lowering its affinity to MMP-9. In this study, a library of N-TIMP2 mutants based on previous design with randomized additional positions was sorted for binding to MMP-9 using yeast surface display. Two selected N-TIMP2 mutants were expressed, purified, and their inhibitory activity against a panel of MMPs was measured. The best engineered N-TIMP2 mutant (REY) exhibited a 2-fold higher affinity to MMP-9 than that of the WT N-TIMP2, and 6- to 1.1 x 104-fold increase in binding specificity toward MMP-9 compared to five alternative MMPs. Moreover, REY demonstrated a significant increase in inhibition of cell invasion and proliferation compared to the WT N-TIMP2 in MDA-MB-231 breast cancer cells. Therefore, our engineered N-TIMP2 mutant emerges as a promising candidate for future therapeutic development, offering precise targeting of MMP-9 in MMP-9-driven diseases.
Collapse
Affiliation(s)
- Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Feldman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Chatterjee A, Roy T, Kumar Mishra V, Swarnakar S. Shatavarin-IV, a steroidal saponin from Asparagus racemosus, inhibits cell cycle progression and epithelial-to-mesenchymal transition in AGS cells under hyperglycemic conditions. Steroids 2024; 210:109487. [PMID: 39106908 DOI: 10.1016/j.steroids.2024.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Gastric cancer (GC)-diabetes co-morbidity is nowadays growing into a rising concern. However, no separate treatment procedures have been outlined for such patients. Phytochemicals and their derivatives can therefore be used as therapeutics as they have greater effectiveness, reduced toxicity, and a reduced likelihood of developing multi-drug resistance in cancer treatments. The present study intended to assess the therapeutic efficacy of Shatavarin-IV - a major steroidal saponin from the roots of Asparagus racemosus, in human gastric adenocarcinoma cell line under hyperglycemic conditions and explore its mechanism of action in controlling GC progression. For the present study, AGS cells were incubated in high glucose-containing media and the effects of Shatavarin-IV therein have been evaluated. Cell proliferation, confocal microscopic imaging, flow-cytometric analysis for cell cycle and apoptosis, immunoblotting, zymography, reverse zymography, wound-healing, colony formation, and invasion assays were performed. Shatavarin-IV has a prominent effect on AGS cell proliferation; with IC50 of 2.463 µ M under hyperglycemic conditions. Shatavarin-IV induces cell cycle arrest at the G0/G1 phase, thereby preventing hyperglycemia-induced excessive cell proliferation that later on leads to apoptotic cell death at 36 h of incubation. Shatavarin-IV further inhibits the migratory and invasive potential of AGS cells by altering the expression patterns of different EMT markers. It also inhibits MMP-9 while promoting TIMP-1 activity and expression; thereby regulating ECM turnover. This is the first report demonstrating the therapeutic efficacy of Shatavarin-IV against AGS cells grown in hyperglycemic conditions, implicating new insights into the treatment paradigm of patients with GC-diabetes co-morbidity.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Tapasi Roy
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India.
| |
Collapse
|
13
|
Peng H, Jiang L, Yuan J, Wu X, Chen N, Liu D, Liang Y, Xie Y, Jia K, Li Y, Feng X, Li J, Zhang X, Shen L, Chen Y. Single-cell characterization of differentiation trajectories and drug resistance features in gastric cancer with peritoneal metastasis. Clin Transl Med 2024; 14:e70054. [PMID: 39422697 PMCID: PMC11488346 DOI: 10.1002/ctm2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Gastric cancer patients with peritoneal metastasis (GCPM) experience a rapidly deteriorating clinical trajectory characterized by therapeutic resistance and dismal survival, particularly following the development of malignant ascites. However, the intricate dynamics within the peritoneal microenvironment (PME) during the treatment process remain largely unknown. METHODS Matched samples from primary tumours (PT), peritoneal metastases (PM), and paired pre-treatment and post-chemo/immunotherapy (anti-PD-1/PD-L1) progression malignant ascites samples, were collected from 48 patients. These samples were subjected to single-cell RNA sequencing (n = 30), multiplex immunofluorescence (n = 30), and spatial transcriptomics (n = 3). Furthermore, post hoc analyses of a phase 1 clinical trial (n = 20, NCT03710265) and an in-house immunotherapy cohort (n = 499) were conducted to validate the findings. RESULTS Tracing the evolutionary trajectory of epithelial cells unveiled the terminally differentially MUC1+ cancer cells with a high epithelial-to-mesenchymal transition potential, and they demonstrated spatial proximity with fibroblasts and endothelial cells, correlating with poor prognosis. A significant expansion of macrophage infiltrates, which exhibited the highest proangiogenic activity, was observed in the ascites compared with PT and PM. Besides, higher C1Q+ macrophage infiltrates correlated with significantly lower GZMA+ T-lymphocyte infiltrates in therapeutic failure cases, potentially mediated by the LGALS9-CD45 and SPP1-CD44 ligand-receptor interactions. In the chemoresistant group, intimate interactions between C1Q+ macrophages and fibroblasts through the complement activation pathway were found. In the group demonstrating immunoresistance, heightened TGF-β production activity was detected in MUC1+ cancer cells, and they were skewed to interplay with C1Q+ macrophages through the GDF15-TGF-βR2 axis. Ultimately, post hoc analyses indicated that co-targeting TGF-β and PDL1 pathways may confer superior clinical benefits than sole anti-PD-1/PD-L1 therapy for patients presenting with GCPM at the time of diagnosis. CONCLUSIONS Our findings elucidated the cellular differentiation trajectories and crucial drug resistance features within PME, facilitating the exploration of effective targets for GCPM treatment. HIGHLIGHTS MUC1+ cancer cells with a high epithelial-to-mesenchymal transition potential and exhibiting spatial proximity to fibroblasts and endothelial cells constitute the driving force of gastric cancer peritoneal metastasis (GCPM). Higher C1Q+ macrophage infiltrates correlated with significantly lower GZMA+ T-lymphocyte infiltrates within the peritoneal microenvironment in therapeutic failure cases. Co-targeting TGF-β and PDL1 pathways may confer superior clinical benefits than sole anti-PD-1/PD-L1 therapy for patients presenting with GCPM at diagnosis.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Lei Jiang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Jiajia Yuan
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiangrong Wu
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Nan Chen
- Department of Gastrointestinal Surgery IIIKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and InstituteBeijingChina
| | - Dan Liu
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Yueting Liang
- Department of Radiation OncologyPeking University Cancer Hospital and InstituteBeijingChina
| | - Yi Xie
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Keren Jia
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Yanyan Li
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Xujiao Feng
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Jian Li
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiaotian Zhang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Lin Shen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Yang Chen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
- Department of Gastrointestinal CancerBeijing GoBroad HospitalBeijingChina
| |
Collapse
|
14
|
Li F, Chen L, Xia Q, Feng Z, Li N. Combined knockdown of CD151 and MMP9 may inhibit the malignant biological behaviours of triple-negative breast cancer through the GSK-3β/β-catenin-related pathway. Sci Rep 2024; 14:21786. [PMID: 39294214 PMCID: PMC11411119 DOI: 10.1038/s41598-024-71533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents a significant health concern for women worldwide, and the overproduction of MMP9 and CD151 is associated with various cancers, influencing tumour growth and progression. This study aimed to investigate how CD151 and MMP9 affect TNBC cell migration, apoptosis, proliferation, and invasion. Immunohistochemical experiments revealed that CD151 and MMP9 were positively expressed in triple-negative breast cancer, and lymph node metastasis, the histological grade, and CD151 and MMP9 expression were found to be independent prognostic factors for the survival of patients with triple-negative breast cancer. Cytological experiments indicated that the knockdown of CD151 or MMP9 slowed triple-negative breast cancer cell growth, migration, and invasion and increased the apoptosis rate. Compared with CD151 knockdown, double MMP9 and CD151 knockdown further promoted cell death and inhibited TNBC cell proliferation, migration, and invasion. Moreover, β-catenin and p-GSK-3β were significantly downregulated. In summary, simultaneously silencing CD151 and MMP9 further suppressed the proliferation, migration and invasion of TNBC cells and promoted their apoptosis. One possible strategy for inducing this effect is to block the GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Liucheng Chen
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Qing Xia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Zhenzhong Feng
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Nan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, Anhui, China.
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
15
|
Liang Y, Wu J, Yan Y, Wang Y, Zhao H, Wang X, Chang S, Li S. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Int J Mol Sci 2024; 25:9779. [PMID: 39337266 PMCID: PMC11432038 DOI: 10.3390/ijms25189779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms. This study elucidates how these systems undergo charge transitions in response to specific microenvironmental stimuli commonly found in tumor tissues. Furthermore, this review explores the pivotal role of CRNDDSs in tumor diagnosis and treatment, and their potential limitations. By leveraging the unique physiological characteristics of tumors, such as the acidic pH, specific redox potential, and specific enzyme activity, these systems demonstrate enhanced accumulation and penetration at tumor sites, resulting in improved therapeutic efficacy and diagnostic accuracy. The implications of this review highlight the potential of charge-reversal drug delivery systems as a novel and targeted strategy for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yizhu Liang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Yutong Yan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yunduan Wang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Hongtu Zhao
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
16
|
Cecchi R, Ikeda T, Camatti J, Nosaka M, Ishida Y, Kondo T. Expression of matrix metalloproteinase-9 (MMP-9) in human skin within 1 hour after injury through immunohistochemical staining: a pilot study. Int J Legal Med 2024; 138:1985-1990. [PMID: 38691159 DOI: 10.1007/s00414-024-03243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Matrix metalloproteinase-9 (MMP-9) is involved in tissue remodeling and in skin wound healing. The present study focuses on the MMP-9 expression in epidermal wound healing within 1 h after injury, to test whether MMP-9 can be used to estimate the time of injury in forensic practice.A sample consisting of 5 individuals undergoing surgery was analyzed. With the consent of the patients, sections of skin were removed from the surgical wound at predefined time intervals. For each subject, 8 sections were taken, one for each time interval defined at 0 '- 1' - 3 '- 5' - 10 '- 15' - 30 '- 60' minutes. The specimens were immunostained with MMP-9, and the number of positively stained cells was examined.The number of positively stained cells showed an increasing trend as a function of time. Less than 30 positively stained cells were found in all cases within 3 min. At the post-infliction time of 5 min, the number of positively stained cells exceeded 30 in 3 out of 5 cases. The number of MMP-positive cells exceeded 40 in all cases in over 10 min.In the light of these results, the count of MMP-9 positive cells might be a useful marker in the wound-age estimation within 1 h in forensic setting. More research is required to collect more samples and to compare samples from the hyperacute phase with those from several days after injury.
Collapse
Affiliation(s)
| | | | | | | | - Yuko Ishida
- Wakayama Medical University, Wakayama, Japan
| | | |
Collapse
|
17
|
Khurshid S, Usmani S, Ali R, Hamid S, Masoodi T, Sadida HQ, Ahmed I, Khan MS, Abeer I, Albalawi IA, Bedaiwi RI, Mir R, Al-Shabeeb Akil AS, Bhat AA, Macha MA. Integrating network analysis with differential expression to uncover therapeutic and prognostic biomarkers in esophageal squamous cell carcinoma. Front Mol Biosci 2024; 11:1425422. [PMID: 39234567 PMCID: PMC11371674 DOI: 10.3389/fmolb.2024.1425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction: Esophageal squamous cell carcinoma (ESCC) accounts for over 90% of all esophageal tumors. However, the molecular mechanism underlying ESCC development and prognosis remains unclear, and there are still no effective molecular biomarkers for diagnosing or predicting the clinical outcome of patients with ESCC. Here, we used bioinformatics analysis to identify potential biomarkers and therapeutic targets for ESCC. Methodology: Differentially expressed genes (DEGs) between ESCC and normal esophageal tissue samples were obtained by comprehensively analyzing publicly available RNA-seq datasets from the TCGA and GTEX. Gene Ontology (GO) annotation and Reactome pathway analysis identified the biological roles of the DEGs. Moreover, the Cytoscape 3.10.1 platform and subsidiary tools such as CytoHubba were used to visualize the DEGs' protein-protein interaction (PPI) network and identify hub genes, Furthermore our results are validated by using Single-cell RNA analysis. Results: Identification of 2524 genes exhibiting altered expression enriched in pathways including keratinization, epidermal cell differentiation, G alpha(s) signaling events, and biological process of cell proliferation and division, extracellular matrix (ECM) disassembly, and muscle function. Moreover, upregulation of hallmarks E2F targets, G2M checkpoints, and TNF signaling. CytoHubba revealed 20 hub genes that had a valuable influence on the progression of ESCC in these patients. Among these, the high expression levels of four genes, CDK1 MAD2L1, PLK1, and TOP2A, were associated with critical dependence for cell survival in ESCC cell lines, as indicated by CRISPR dependency scores, gene expression data, and cell line metadata. We also identify the molecules targeting these essential hub genes, among which GSK461364 is a promising inhibitor of PLK1, BMS265246, and Valrubicin inhibitors of CDK1 and TOP2A, respectively. Moreover, we identified that elevated expression of MMP9 is associated with worse overall survival in ESCC patients, which may serve as potential prognostic biomarker or therapeutic target for ESCC. The single-cell RNA analysis showed MMP9 is highly expressed in myeloid, fibroblast, and epithelial cells, but low in T cells, endothelial cells, and B cells. This suggests MMP9's role in tumor progression and matrix remodeling, highlighting its potential as a prognostic marker and therapeutic target. Discussion: Our study identified key hub genes in ESCC, assessing their potential as therapeutic targets and biomarkers through detailed expression and dependency analyses. Notably, MMP9 emerged as a significant prognostic marker with high expression correlating with poor survival, underscoring its potential for targeted therapy. These findings enhance our understanding of ESCC pathogenesis and highlight promising avenues for treatment.
Collapse
Affiliation(s)
- Sana Khurshid
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| | - Shahabuddin Usmani
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Raiyan Ali
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | - Saira Hamid
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Inara Abeer
- Department of Pathology, Sker-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | | | - Ruqaiah I Bedaiwi
- Faculty of Applied Medical Sciences, Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Faculty of Applied Medical Sciences, Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
18
|
Wang H, Li X, Zhou S, Guo W, Wang Z, Sun L, Zhao Z, Han Y, Zhang S, Lv J, Ping Y, Wang Z. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals MMP mediated expression patterns by distinct tumor microenvironment immune profiles in cervical cancer. J Cancer 2024; 15:5258-5276. [PMID: 39247608 PMCID: PMC11375545 DOI: 10.7150/jca.96429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Few studies have analyzed the effect of matrix metalloproteinase (MMP) expression patterns on the tumor microenvironment (TME) during development of cervical cancer (CC). Methods: We elucidated the landscape and score of MMP expression in CC using single-cell RNA sequencing (scRNA-seq) and RNA sequencing datasets. Further, we aimed the MMPscore to probe the infiltration of immune cells. Further, MMP expression was measured by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results: We found MMPs were cell-type specific expressed in diverse types of CC cells, regulating the relative pathways of CC progression. Two distinct MMP expression patterns that associated infiltrated tumor microenvironment (TME) were identified. We discovered MMP expression patterns can predict the stage of tumor, subtype, stromal activity in the TME, genetic variation, and patient outcome. Patients with high MMPscore benefited from significantly better treatment and clinical outcomes. Conclusion: These results indicate high MMPscore in diverse cell types may regulate immune response and improve the survival of patients with CC, which assist in developing more effective immunization strategies.
Collapse
Affiliation(s)
- He Wang
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Xinbo Li
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Siyu Zhou
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Wendi Guo
- Nankai University, The School of Medicine, Tianjin 300071, China
| | - Zhao Wang
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Linlin Sun
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Zhongyi Zhao
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Yanyan Han
- Department of Gynecology, Jiaocheng County People's Hospital, No. 25 Tianning Street, Jiaocheng County, Lüliang City, Shanxi Province, China
| | - Sanyuan Zhang
- First Hospital of Shanxi Medical University, Department of Gynecology, Taiyuan 030001, China
| | - Jieping Lv
- First Hospital of Shanxi Medical University, Department of Anesthesiology, Taiyuan 030001, China
| | - Yi Ping
- Second Hospital of Shanxi Medical University, Department of Obstetrics and Gynecology, Taiyuan 030001, China
| | - Zhe Wang
- First Hospital of Shanxi Medical University, Department of Gynecology, Taiyuan 030001, China
- Department of Gynecology, Jiaocheng County People's Hospital, No. 25 Tianning Street, Jiaocheng County, Lüliang City, Shanxi Province, China
| |
Collapse
|
19
|
Liu J, Jiang Y, Liu J, Tian C, Lin Y, Yang Y, Zhang Z, Fang Y, Huang B, Lin H. Fc receptor-like A promotes malignant behavior in renal cell carcinoma and correlates with tumor immune infiltration. Cancer Med 2024; 13:e70072. [PMID: 39108036 PMCID: PMC11303447 DOI: 10.1002/cam4.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.
Collapse
MESH Headings
- Female
- Humans
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Prognosis
- Protein Interaction Maps
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Jun‐peng Liu
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yi‐fan Jiang
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Jin‐wen Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chong‐jiang Tian
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yu‐zhao Lin
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yun‐zhi Yang
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ze‐ke Zhang
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yi‐liang Fang
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Hao Lin
- Department of UrologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
20
|
Zheng F, Wang Z, Li S, Xiong S, Yuan Y, Zeng J, Tan Y, Liu X, Xu S, Fu B. Development of a propionate metabolism-related gene-based molecular subtypes and scoring system for predicting prognosis in bladder cancer. Eur J Med Res 2024; 29:393. [PMID: 39075554 PMCID: PMC11285334 DOI: 10.1186/s40001-024-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE Bladder cancer (BLCA) is a prevalent malignancy. Dysregulated propionate metabolism, a key cancer factor, suggests a potential target for treating metastatic cancer. However, a complete understanding of the link between propionate metabolism-related genes (PMRGs) and bladder cancer is lacking. METHODS From the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we gathered BLCA patient data, which was classified into distinct subgroups using non-negative matrix factorization (NMF). Survival and pathway analyses were conducted between these clusters. The PMRGs model, created through univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses, was assessed for prognostic significance using Kaplan-Meier and receiver operating characteristic (ROC) curves. A comprehensive evaluation included clinical, tumor microenvironment (TME), drug sensitivity, and immunotherapy analyses. Finally, the expression of HSD17B1 essential genes was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR), with further validation through Transwell, wound healing, colony-formation, and EDU assays. RESULTS We discovered two distinct subcategories (CA and CB) within BLCA using NMF analysis, with CA demonstrating significantly better overall survival compared to CB. Additionally, six PMRGs emerged as critical factors associated with propionate metabolism and prognosis. Kaplan-Meier analysis revealed that high-risk PMRGs were correlated with a poorer prognosis in BLCA patients. Moreover, significant differences were observed between the two groups in terms of infiltrated immune cells, immune checkpoint expression, TME scores, and drug sensitivity. Notably, we found that suppressing HSD17B1 gene expression inhibited the invasion of bladder cancer cells. CONCLUSION Our study proposes molecular subtypes and a PMRG-based score as promising prognostic indicators in BLCA. Additionally, cellular experiments underscore the pivotal role of HSD17B1 in bladder cancer metastasis and invasion, suggesting its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Zhipeng Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yifan Tan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| |
Collapse
|
21
|
Wu Z, Yang Y, Chen M, Zha Y. Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images. Sci Rep 2024; 14:15065. [PMID: 38956384 PMCID: PMC11220146 DOI: 10.1038/s41598-024-66105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were randomly allocated to the training and test cohorts for pathomics modeling. The prognostic significance of MMP9 was assessed using Kaplan-Meier and Cox regression analyses. PyRadiomics was used to extract the features of H&E-stained whole slide images. Feature selection was performed using the maximum relevance and minimum redundancy (mRMR) and recursive feature elimination (RFE) algorithms. Prediction models were created using support vector machines (SVM) and logistic regression (LR). The performance was assessed using ROC analysis, calibration curve assessment, and decision curve analysis. MMP9 expression was elevated in patients with GBM. This was an independent prognostic factor for GBM. Six features were selected for the pathomics model. The area under the curves (AUCs) of the training and test subsets were 0.828 and 0.808, respectively, for the SVM model and 0.778 and 0.754, respectively, for the LR model. The C-index and calibration plots exhibited effective estimation abilities. The pathomics score calculated using the SVM model was highly correlated with overall survival time. These findings indicate that MMP9 plays a crucial role in GBM development and prognosis. Our pathomics model demonstrated high efficacy for predicting MMP9 expression levels and prognosis of patients with GBM.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Maojuan Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
22
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
23
|
孙 畅, 郑 士, 李 梅, 杨 铭, 秦 梦, 徐 媛, 梁 伟, 胡 建, 王 良, 李 锋, 周 虹, 杨 兰. [High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF-β signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1209-1216. [PMID: 38977352 PMCID: PMC11237290 DOI: 10.12122/j.issn.1673-4254.2024.06.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TβR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-β signaling pathway, and the expressions of MMP-2/MMP-9 and TβR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TβR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-β signaling pathway, and its high expression promotes migration of ESCC cells.
Collapse
|
24
|
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y, Zhang H. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 2024; 29:570-585. [PMID: 38127283 DOI: 10.1007/s10495-023-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Tong Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanqing Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Tiantian Gou
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Kangli Chen
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Li Wang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Huan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
25
|
Xie Y, Sang Q, Da Q, Niu G, Deng S, Feng H, Chen Y, Li YY, Liu B, Yang Y, Dai W. Improving diagnosis and outcome prediction of gastric cancer via multimodal learning using whole slide pathological images and gene expression. Artif Intell Med 2024; 152:102871. [PMID: 38685169 DOI: 10.1016/j.artmed.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
For the diagnosis and outcome prediction of gastric cancer (GC), machine learning methods based on whole slide pathological images (WSIs) have shown promising performance and reduced the cost of manual analysis. Nevertheless, accurate prediction of GC outcome may rely on multiple modalities with complementary information, particularly gene expression data. Thus, there is a need to develop multimodal learning methods to enhance prediction performance. In this paper, we collect a dataset from Ruijin Hospital and propose a multimodal learning method for GC diagnosis and outcome prediction, called GaCaMML, which is featured by a cross-modal attention mechanism and Per-Slide training scheme. Additionally, we perform feature attribution analysis via integrated gradient (IG) to identify important input features. The proposed method improves prediction accuracy over the single-modal learning method on three tasks, i.e., survival prediction (by 4.9% on C-index), pathological stage classification (by 11.6% on accuracy), and lymph node classification (by 12.0% on accuracy). Especially, the Per-Slide strategy addresses the issue of a high WSI-to-patient ratio and leads to much better results compared with the Per-Person training scheme. For the interpretable analysis, we find that although WSIs dominate the prediction for most samples, there is still a substantial portion of samples whose prediction highly relies on gene expression information. This study demonstrates the great potential of multimodal learning in GC-related prediction tasks and investigates the contribution of WSIs and gene expression, respectively, which not only shows how the model makes a decision but also provides insights into the association between macroscopic pathological phenotypes and microscopic molecular features.
Collapse
Affiliation(s)
- Yuzhang Xie
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingqing Sang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Da
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Guoshuai Niu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shijie Deng
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Haoran Feng
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunqin Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 201203, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 201203, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wentao Dai
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasm, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 201203, China.
| |
Collapse
|
26
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
27
|
Gui J, Zhou H, Li S, Chen A, Liu Q, Zhu L, Mi Y. Current evidence on the relationships among five polymorphisms in the matrix metalloproteinases genes and prostate cancer risk. Sci Rep 2024; 14:11355. [PMID: 38762659 PMCID: PMC11102503 DOI: 10.1038/s41598-024-62016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Matrix metalloproteinases (MMPs) had a variety of subtypes, which may be related to tumor invasion and angiogenesis, and the polymorphisms from MMPs have been also associated with the susceptibility to a variety of tumors, including prostate cancer (PCa). However, previous studies have not systematically analyzed the association between MMP and prostate cancer, so we conducted systematic data collection and analyzed to evaluate the relationship among polymorphisms in MMPs and PCa susceptibility. We searched PubMed, Web of Science, Embase and Google Scholar for all papers published up to Apr 3rd, 2023, and systematically analyzed the relationship among MMP1-1607 2G/1G, MMP2-1306 T/C, MMP2-735 T/C, MMP7-181 G/A, MMP9-1562 T/C and PCa susceptibility using multiple comparative models and subgroup analyses. We found that MMP2-1306 T/C polymorphism showed associations with PCa susceptibility, with the Ethnicity subgroup (Asian) being more pronounced. Similarly, MMP9-1562 T/C has also had associations with PCa susceptibility. Our current study found that the polymorphisms of, MMP2-1306 T/C, and MMP9-1562 T/C had strong associations with PCa risk.
Collapse
Affiliation(s)
- Jiandong Gui
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Sixin Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Anjie Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Qing Liu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Huadong Sanatorium, 67 Dajishan, Wuxi, 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
28
|
Liu S, Wen H, Li F, Xue X, Sun X, Li F, Hu R, Xi H, Boccellato F, Meyer TF, Mi Y, Zheng P. Revealing the pathogenesis of gastric intestinal metaplasia based on the mucosoid air-liquid interface. J Transl Med 2024; 22:468. [PMID: 38760813 PMCID: PMC11101349 DOI: 10.1186/s12967-024-05276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.
Collapse
Affiliation(s)
- Simeng Liu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Fuhao Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Ruoyu Hu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China
| | - Huayuan Xi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, 11743, UK
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin- Straße 12, 24105, Kiel, Germany
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China.
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China.
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China.
| |
Collapse
|
29
|
Wei H, Li Y, Zhang J, Xu C, Wei D, Quan C, Zhu S. MMPs-related risk model identification and SAA1 promotes clear cell renal cell carcinoma migration via ERK-AP1-MMPs axis. Sci Rep 2024; 14:9411. [PMID: 38658579 PMCID: PMC11043417 DOI: 10.1038/s41598-024-59112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Matrix Metalloproteinases (MMPs) have been demonstrated to be essential in facilitating the migration and metastasis of clear cell renal cell carcinoma (ccRCC). However, the ability of the MMP family to predict clinical outcomes and guide optimal therapeutic strategies for ccRCC patients remains incompletely understood. In this investigation, we initially conducted a thorough examination of the MMP family in pan-cancer. Notably, MMPs exhibited distinctive significance in ccRCC. Following this, we undertook an extensive analysis to evaluate the clinical value of MMPs and potential mechanisms by which MMPs contribute to the progression of ccRCC. A novel stratification method and prognostic model were developed based on MMPs in order to enhance the accuracy of prognosis prediction for ccRCC patients and facilitate personalized treatment. By conducting multi-omics analysis and transcriptional regulation analysis, it was hypothesized that SAA1 plays a crucial role in promoting ccRCC migration through MMPs. Subsequently, in vitro experiments confirmed that SAA1 regulates ccRCC cell migration via the ERK-AP1-MMPs axis. In conclusion, our study has explored the potential value of the MMP family as prognostic markers for ccRCC and as guides for medication regimens. Additionally, we have identified SAA1 as a crucial factor in the migration of ccRCC.
Collapse
Affiliation(s)
- Haotian Wei
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dadong Wei
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, China.
| | - Changyi Quan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
30
|
Li P, Wang D, Yang X, Liu C, Li X, Zhang X, Liu K, Zhang Y, Zhang M, Wang C, Wang R. Anti-Tumor Activity and Mechanism of Silibinin Based on Network Pharmacology and Experimental Verification. Molecules 2024; 29:1901. [PMID: 38675723 PMCID: PMC11054111 DOI: 10.3390/molecules29081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.
Collapse
Affiliation(s)
- Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Dexu Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Xueliang Yang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Changyu Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Yun Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| | - Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rongchun Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (P.L.); (D.W.)
| |
Collapse
|
31
|
Verma VM, Puri S, Puri V. Bioinformatics-driven identification of prognostic biomarkers in kidney renal clear cell carcinoma. FRONTIERS IN NEPHROLOGY 2024; 4:1349859. [PMID: 38638111 PMCID: PMC11024385 DOI: 10.3389/fneph.2024.1349859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024]
Abstract
Renal cell carcinoma (RCC), particularly the clear cell subtype (ccRCC), poses a significant global health concern due to its increasing prevalence and resistance to conventional therapies. Early detection of ccRCC remains challenging, resulting in poor patient survival rates. In this study, we employed a bioinformatic approach to identify potential prognostic biomarkers for kidney renal clear cell carcinoma (KIRC). By analyzing RNA sequencing data from the TCGA-KIRC project, differentially expressed genes (DEGs) associated with ccRCC were identified. Pathway analysis utilizing the Qiagen Ingenuity Pathway Analysis (IPA) tool elucidated key pathways and genes involved in ccRCC dysregulation. Prognostic value assessment was conducted through survival analysis, including Cox univariate proportional hazards (PH) modeling and Kaplan-Meier plotting. This analysis unveiled several promising biomarkers, such as MMP9, PIK3R6, IFNG, and PGF, exhibiting significant associations with overall survival and relapse-free survival in ccRCC patients. Cox multivariate PH analysis, considering gene expression and age at diagnosis, further confirmed the prognostic potential of MMP9, IFNG, and PGF genes. These findings enhance our understanding of ccRCC and provide valuable insights into potential prognostic biomarkers that can aid healthcare professionals in risk stratification and treatment decision-making. The study also establishes a foundation for future research, validation, and clinical translation of the identified prognostic biomarkers, paving the way for personalized approaches in the management of KIRC.
Collapse
Affiliation(s)
| | - Sanjeev Puri
- Biotechnology University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Shao L, Liu W, Zhang C, Ma W, Yu X, Han J, Wang X. The Role and Function of Secretory Protein Matrix Metalloproteinase-3 ( MMP3) in Cervical Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:855-866. [PMID: 39444485 PMCID: PMC11493579 DOI: 10.18502/ijph.v53i4.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 10/25/2024]
Abstract
Background We started with RNA-seq analysis and aimed to investigate the possibility of secretory protein matrix metalloproteinase-3(MMP3) as a new diagnosis and therapeutic target in cervical cancer. Methods The study was conducted on Nov 2021 at the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China. Through conjoint analysis of gene expression data as well as survival rate data, we explored the potential secretary proteins associated with cervical cancer carcinogenesis. One hundred patients aged 38-72 years with clinical stage I-IV cervical cancer, and 100 age-matched healthy women were included. The expression changes in serum of clinical patients was detected. We knockdown or overexpressed the secretory proteins then explored its influence on biological function of cervical cancer cells. Results By cross-analysis of The Cancer Genome Atlas (TCGA) database and MetazSecKB database, MMP3 gene was most significantly upregulated in cervical cancer patients (P < 0.05). Furthermore, MMP3 protein was remarkably increased in the serum of clinical cervical cancer patients and decreased after receiving treatment. Overexpression of MMP3 in HT-3 cells or culturing new cells using the supernatant of the medium after MMP3 overexpression could increase cell viability (P < 0.05) as well as proliferation (P < 0.05). Knockdown of MMP3 reduced the phosphorylation of PI3K as well as AKT proteins, while the PI3K phosphorylation inhibitors could suppress the impact of MMP3 on increasing cell proliferation as well as viability. Conclusion MMP3 could be an underlying target for early diagnosis and treat cervical cancer in the future.
Collapse
Affiliation(s)
- Lei Shao
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wanqiu Liu
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chunyan Zhang
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wei Ma
- Qiqihar City Hospital of Traditional Chinese Medicine South Department of Gynecology, Qiqihar, China
| | - Xiao Yu
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jing Han
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaojuan Wang
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
33
|
Thirumani L, Helan M, S V, Jamal Mohamed U, Vimal S, Madar IH. The Molecular Landscape of Lung Metastasis in Primary Head and Neck Squamous Cell Carcinomas. Cureus 2024; 16:e57497. [PMID: 38707175 PMCID: PMC11066729 DOI: 10.7759/cureus.57497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Lung metastasis in head and neck cancer (HNC) patients is a critical concern, often indicating an advanced disease stage and a poor prognosis. This study explores the molecular complexities of such metastases, identifying specific genes and pathways that may serve as valuable targets for diagnosis and treatment. The findings underscore the potential for significantly improved patient outcomes through targeted therapeutic strategies. Methodology In this research, we systematically collected raw gene expression data from head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma (LSCC). By comparing tumorous and normal gene expression profiles from paired patient samples, we identified differentially expressed genes (DEGs). Network analysis helped visualize protein interactions and pinpoint crucial hub genes. Through validation and comparison across several datasets, we identified common DEGs. Additionally, we employed Kaplan-Meier analysis and log-rank testing to examine the relationship between gene expression patterns and patient survival. Result The study identified 145 overlapping DEGs in both HNSCC and LSCC, which are crucial for cancer progression and linked to lung metastasis, offering vital targets for personalized therapy by identifying key genes affecting disease development and patient survival. Pathway analyses linked these to lung metastasis, while protein-protein interaction network construction and hub gene identification highlighted genes crucial for development and patient survival, offering targets for personalized therapy. Conclusion Identifying key genes and pathways in lung metastasis from HNC, this study highlights potential targets for enhanced diagnosis and therapy. It underscores the crucial role of molecular insights in driving forward personalized treatment approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Logalakshmi Thirumani
- Multiomics and Precision Medicine Laboratory, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Mizpha Helan
- Multiomics and Precision Medicine Laboratory, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Vijayaraghavan S
- Multiomics and Precision Medicine Laboratory, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Umargani Jamal Mohamed
- Multiomics and Precision Medicine Laboratory, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Sugumar Vimal
- Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Inamul Hasan Madar
- Multiomics and Precision Medicine Laboratory, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| |
Collapse
|
34
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
35
|
Li P, Ding H, Han S, Ding S, Yang Y. Long noncoding RNA LINC00858 aggravates the progression of esophageal squamous cell carcinoma via regulating the miR-425-5p/ABL2 axis. Heliyon 2024; 10:e27337. [PMID: 38496838 PMCID: PMC10944188 DOI: 10.1016/j.heliyon.2024.e27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers with high morbidity and mortality, which severely affects people's lives. Long intergenic non-protein coding RNA 858 (LINC00858) was confirmed to promote the progression of colorectal cancer and lung cancer. However, the role of lncRNA LINC00858 is still unknown in ESCC. Herein, the main purpose of research was to explore LINC00858 function and its impact on ESCC cell biological behaviors. RT-qPCR was used to test the expression of LINC00858, miR-425-5p and ABL proto-oncogene 2 (ABL2) in ESCC cells. Functional experiments such as EdU assay, CCK-8 assay, transwell assay and Western blot assay were conducted to investigate the biological behaviors of ESCC cells. Luciferase reporter assay and RIP assay were implemented to determine the binding situation among RNAs. LINC00858 expression was abnormally high in ESCC cells and down-regulation of LINC00858 could restrain the proliferation, invasion, migration and EMT process of ESCC cells. Furthermore, miR-425-5p was proved to be sponged by LINC00858 and was down-regulated in ESCC cells. Besides, we discovered that miR-425-5p could target ABL2. Moreover, knockdown of ABL2 reversed the promoting function of miR-425-5p inhibitor on ESCC progression. LINC00858 aggravated ESCC progression via regulating the miR-425-5p/ABL2 axis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Songze Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yuxiu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
36
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
37
|
Burlaka AP, Liubenko DL, Burlaka AA, Yevtushenko OI, Ganusevich II. CORONAVIRUS SARS-COV-2 MODIFIES ANTITUMOR REDOX STATUS OF BLOOD AND INTERCELLULAR MATRIX IN METASTATIC COLORECTAL CANCER PATIENTS (A PILOT STUDY). Exp Oncol 2024; 45:483-492. [PMID: 38328841 DOI: 10.15407/exp-oncology.2023.04.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The current studies demonstrate that SARS-CoV-2 infection results in increasing complications incidence and the total risk of death in cancer patients. SARS-CoV-2 infection triggers oxidative stress representing one of the major factors of the inflammation contributing to the complicated course of the diseases including cancer. AIM To assess the effect of hypoxia caused by SARS-CoV-2 infection on the redox status of blood in patients with metastatic colorectal cancer (mCRC). MATERIALS AND METHODS 10 patients with SARS-CoV-2, 11 mCRC patients with metachronous liver disease, and 14 mCRC patients with preceding SARS-CoV-2 infection were included in the study. The data on blood biochemistry (C-reactive protein, ferritin, transferrin, and free iron) were analyzed. The levels of superoxide radicals (ROS) in blood cells were determined by electron paramagnetic resonance (EPR) using the spin trap technique. The metalloproteinase activity was measured by polyacrylamide gel zymography with the addition of gelatin as a substrate. RESULTS In mCRC patients with prior SARS-CoV-2 infection, a 1.26-fold increase in ROS-generating activity of blood neutrophils was observed compared to mCRC patients with no history of SARS-CoV-2 infection. The blood content of C-reactive protein, transferrin, and free iron in mCRC patients with prior SARS-CoV-2 infection increased by 2, 6, and 1.4 times, respectively. The total activity of gelatinases in platelets and neutrophils in the blood of mCRC patients with prior SARS-CoV-2 infection was 1.4 and 1.2 times higher compared to mCRC patients with no history of SARS-CoV-2 infection. CONCLUSION mCRC patients with prior COVID-19 have a higher risk of exacerbation of inflammatory reactions. SARS-CoV-2 infection results in redox dіsbalance, which may contribute to the unfavorable course of the disease.
Collapse
Affiliation(s)
- A P Burlaka
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - D L Liubenko
- Bogomolets National Medical University, Kyiv, Ukraine
| | - A A Burlaka
- State Non-commercial Enterprise "National Cancer Institute", Kyiv, Ukraine
| | - O I Yevtushenko
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - I I Ganusevich
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
38
|
Jayaraman S, Veeraraghavan VP, Natarajan SR, Jasmine S. Exploring the therapeutic potential of curcumin in oral squamous cell carcinoma (HSC-3 cells): Molecular insights into hypoxia-mediated angiogenesis. Pathol Res Pract 2024; 254:155130. [PMID: 38277750 DOI: 10.1016/j.prp.2024.155130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Oral cancer represents a substantial global health burden, often associate with hypoxia-induced angiogenesis as a critical factor in its progression. Curcumin, a naturally occurring bioactive compounds, has gained increasing attention for its potential anticancer properties. OBJECTIVE To assess the impact of curcumin on oral cancer, particularly its role in modulating HIF-1α-mediated angiogenesis in HSC-3 cells. METHODS Our investigation involved multiple experimental approaches, including MTT assay, aerobic glycolysis by metabolic kit, cell cycle, and apoptosis assessment via flow cytometry. Furthermore, we employed molecular docking techniques to examine the interactions between curcumin and key angiogenesis related proteins, including HIF-1α, VEGF-B, MMP-3, and STAT3. RESULTS Our results demonstrate that curcumin exerts significant effects on the cell survivability, cell cycle regulation, and apoptosis induction in oral cancer cells. These effects were particularly pronounced under the conditions of HIF-1α mediated angiogenesis. Computational binding analysis revealed strong binding interactions with curcumin and the selected proteins, implying a plausible mechanism through which curcumin may modulate the angiogenic pathways in oral cancer. CONCLUSION Our research sheds light on the diverse effects of curcumin on oral cancer cells, emphasizing its potential as a promising therapeutic tool for addressing hypoxia-induced angiogenesis. However, further investigation is essential to comprehensively understand the molecular mechanisms underlying these effects in in vitro models. This deeper comprehension is crucial for translating these findings into clinical applications aimed at improving oral cancer treatment.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India
| | - Sharmila Jasmine
- Department of Oral Maxillofacial Surgery, Rajas Dental College and Hospital, Kavalkinaru, Tirunelveli 627105, Tamil Nadu, India
| |
Collapse
|
39
|
Kollet O, Das A, Karamanos N, Auf dem Keller U, Sagi I. Redefining metalloproteases specificity through network proteolysis. Trends Mol Med 2024; 30:147-163. [PMID: 38036391 PMCID: PMC11004056 DOI: 10.1016/j.molmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.
Collapse
Affiliation(s)
- Orit Kollet
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Alakesh Das
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Nikos Karamanos
- University of Patras, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, Patras, Greece
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, Denmark
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel.
| |
Collapse
|
40
|
Facchiano F, D’Arcangelo D, Facchiano A. Alpha-2-Macroglobulin Is a Novel Anticancer Agent. Oncology 2023; 102:641-645. [PMID: 38160662 PMCID: PMC11216352 DOI: 10.1159/000536033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Melanoma is the most aggressive skin cancer, with an increasing occurrence. Despite the recent important improvements due to novel immunotherapy approaches, when late diagnosed, melanoma prognosis is poor due to the metastatic progression and drug-resistance onset. Therefore, there is an urgent need to identify additional therapeutic targets. Melanoma invasive behavior is related to the activity of metalloproteases, able to degrade extracellular matrix leading to tumor dissemination. A recent study suggested that the most potent proteases inhibitor alpha-2-macroglobulin (A2MG) from plasma of hibernating fishes exerts potent antiproliferative effects. Our previous studies showed a significant reduction of A2MG in sera from mice/human melanoma models. METHODS Gene and protein expression studies have been performed by using platforms and databases available online containing expression data from thousands of patients and healthy controls. RESULTS We carried out an extensive bioinformatics analysis to evaluate the A2MG gene/protein expression on a large cohort of patients affected by many different cancer types, compared to healthy control subjects, and we found a highly significant difference of A2MG expression in 20 out of 31 cancer types (including melanoma) compared to healthy controls. Similar results were also confirmed at the proteomic level using another platform available online. Further, we found that higher A2MG expression is significantly related to overall survival in different cancers including melanoma. CONCLUSION Our results strongly suggest A2MG as a novel molecular target in melanoma therapy, as well as in other cancer types.
Collapse
Affiliation(s)
- Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
41
|
Yao K, Xiaojun Z, Tingxiao Z, Shiyao L, Lichen J, Wei Z, Yanlei L, Jinlong T, Xiaoyan D, Jun Z, Qing B, Jun L. Multidimensional analysis to elucidate the possible mechanism of bone metastasis in breast cancer. BMC Cancer 2023; 23:1213. [PMID: 38066539 PMCID: PMC10704724 DOI: 10.1186/s12885-023-11588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Breast cancer (BC) patients tend to suffer from distant metastasis, especially bone metastasis. METHODS All the analysis based on open-accessed data was performed in R software, dependent on multiple algorithms and packages. The RNA levels of specific genes were detected using quantitative Real-time PCR as a method of detecting the RNA levels. To assess the ability of BC cells to proliferate, we utilized the CCK8 test, colony formation, and the 5-Ethynyl-20-deoxyuridine assay. BC cells were evaluated for invasion and migration by using Transwell assays and wound healing assays. RESULTS In our study, we identified the molecules involved in BC bone metastasis based on the data from multiple BC cohorts. Then, we comprehensively investigated the effect pattern and underlying biological role of these molecules. We found that in the identified molecules, the EMP1, ACKR3, ITGA10, MMP13, COL11A1, and THY1 were significantly correlated with patient prognosis and mainly expressed in CAFs. Therefore, we explored the CAFs in the BC microenvironment. Results showed that CAFs could activate multiple carcinogenic pathways and most of these pathways play an important role in cancer metastasis. Meanwhile, we noticed the interaction between CAFs and malignant, endothelial, and M2 macrophage cells. Moreover, we found that CAFs could induce the remodeling of the BC microenvironment and promote the malignant behavior of BC cells. Then, we identified MMP13 for further analysis. It was found that MMP13 can enhance the malignant phenotype of BC cells. Meanwhile, biological enrichment and immune infiltration analysis were conducted to present the effect pattern of MMP13 in BC. CONCLUSIONS Our result can improve the understanding of researchers on the underlying mechanisms of BC bone metastasis.
Collapse
Affiliation(s)
- Kang Yao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhu Xiaojun
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- State Key laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liao Shiyao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji Lichen
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Wei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Yanlei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Jinlong
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Xiaoyan
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial People`s Hospital Bijie Hospital, Bijie, China.
| | - Bi Qing
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Llinàs-Arias P, Ensenyat-Mendez M, Íñiguez-Muñoz S, Orozco JIJ, Valdez B, Salomon MP, Matsuba C, Solivellas-Pieras M, Bedoya-López AF, Sesé B, Mezger A, Ormestad M, Unzueta F, Strand SH, Boiko AD, Hwang ES, Cortés J, DiNome ML, Esteller M, Lupien M, Marzese DM. Chromatin insulation orchestrates matrix metalloproteinase gene cluster expression reprogramming in aggressive breast cancer tumors. Mol Cancer 2023; 22:190. [PMID: 38017545 PMCID: PMC10683115 DOI: 10.1186/s12943-023-01906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype that exhibits a high incidence of distant metastases and lacks targeted therapeutic options. Here we explored how the epigenome contributes to matrix metalloprotease (MMP) dysregulation impacting tumor invasion, which is the first step of the metastatic process. METHODS We combined RNA expression and chromatin interaction data to identify insulator elements potentially associated with MMP gene expression and invasion. We employed CRISPR/Cas9 to disrupt the CCCTC-Binding Factor (CTCF) binding site on an insulator element downstream of the MMP8 gene (IE8) in two TNBC cellular models. We characterized these models by combining Hi-C, ATAC-seq, and RNA-seq with functional experiments to determine invasive ability. The potential of our findings to predict the progression of ductal carcinoma in situ (DCIS), was tested in data from clinical specimens. RESULTS We explored the clinical relevance of an insulator element located within the Chr11q22.2 locus, downstream of the MMP8 gene (IE8). This regulatory element resulted in a topologically associating domain (TAD) boundary that isolated nine MMP genes into two anti-correlated expression clusters. This expression pattern was associated with worse relapse-free (HR = 1.57 [1.06 - 2.33]; p = 0.023) and overall (HR = 2.65 [1.31 - 5.37], p = 0.005) survival of TNBC patients. After CRISPR/Cas9-mediated disruption of IE8, cancer cells showed a switch in the MMP expression signature, specifically downregulating the pro-invasive MMP1 gene and upregulating the antitumorigenic MMP8 gene, resulting in reduced invasive ability and collagen degradation. We observed that the MMP expression pattern predicts DCIS that eventually progresses into invasive ductal carcinomas (AUC = 0.77, p < 0.01). CONCLUSION Our study demonstrates how the activation of an IE near the MMP8 gene determines the regional transcriptional regulation of MMP genes with opposing functional activity, ultimately influencing the invasive properties of aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Pere Llinàs-Arias
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Betsy Valdez
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Keck School of Medicine, USC Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| | - Chikako Matsuba
- Keck School of Medicine, USC Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| | - Maria Solivellas-Pieras
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Borja Sesé
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Anja Mezger
- Science for Life Laboratory, Solna, 17665, Sweden
| | | | - Fernando Unzueta
- Advanced Optical Microscopy Facility Scientific and Technological Centres of University of Barcelona, Barcelona, Spain
| | - Siri H Strand
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander D Boiko
- Department of Medicine, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Javier Cortés
- Pangaea Oncology, Quiron Group, International Breast Cancer Center (IBCC), Barcelona, 08017, Spain
- Medica Scientia Innovation Research SL (MEDSIR), Barcelona, 08018, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, 28670, Spain
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, 28029, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Diego M Marzese
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
43
|
Kourie HR, Zouein J, Succar B, Mardirossian A, Ahmadieh N, Chouery E, Mehawej C, Jalkh N, kattan J, Nemr E. Genetic Polymorphisms Involved in Bladder Cancer: A Global Review. Oncol Rev 2023; 17:10603. [PMID: 38025894 PMCID: PMC10657888 DOI: 10.3389/or.2023.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Bahaa Succar
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Avedis Mardirossian
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nizar Ahmadieh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph kattan
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Urology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
44
|
Liu J, Deng L, Wang L, Qian D, He C, Ren Q, Zhang Q, Chen Y. Licochalcone A induces G2/M phase arrest and apoptosis via regulating p53 pathways in esophageal cancer: In-vitro and in-vivo study. Eur J Pharmacol 2023; 958:176080. [PMID: 37758012 DOI: 10.1016/j.ejphar.2023.176080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Licochalcone A (LCA) is a flavonoid isolated from Glycyrrhiza uralensis Fisch that has shown promising therapeutic effects in various cancers. This study attempted to analyze its therapeutic potential for esophageal cancer (EC). Combining multiple databases and network pharmacology, we found that the mechanism of LCA inhibiting EC may be closely related to p53 signaling pathway, cell cycle regulation and apoptosis. Molecular docking was then used to predict the affinity between LCA and key targets. Subsequently, we selected three common EC cell lines for in vitro validation. LCA treatment significantly inhibited EC cell proliferation and colony formation. Wound healing and transwell assay showed that LCA can reduce the migration and invasion of EC cells, and down-regulated the expression of matrix metalloproteinases (MMP). LCA promoted excessive ROS production, decreased mitochondrial membrane potential, and upregulated the expression of Bax, Caspase3 and Caspase-9, all of which are involved in apoptosis. LCA treatment blocked the cell cycle in G2/M phase and decreased the expression of cyclin D1, cyclin B1, and CDK1. LCA significantly up-regulated p53 protein and gene expression, thereby inducing apoptosis and cycle arrest. Finally, the xenograft tumor model was established by subcutaneous injection of Eca-109 cells. LCA administration inhibited tumor growth by activating p53 signaling pathways and apoptosis. Meanwhile, there was no significant weight loss and few major organotoxicity and hematotoxicity. In conclusion, LCA is an excellent candidate for EC treatment by regulating p53 pathway to induce G2/M phase arrest and apoptosis.
Collapse
Affiliation(s)
- Jia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lingyu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Die Qian
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chengxun He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiang Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Yunhui Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
45
|
Takarada K, Kinoshita J, Inoue YH. Ectopic expression of matrix metalloproteinases and filopodia extension via JNK activation are involved in the invasion of blood tumor cells in Drosophila mxc mutant. Genes Cells 2023; 28:709-726. [PMID: 37615261 PMCID: PMC11448368 DOI: 10.1111/gtc.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.
Collapse
Affiliation(s)
- Kazuki Takarada
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Juri Kinoshita
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Yoshihiro H. Inoue
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
46
|
Pazhani J, Chanthu K, Jayaraman S, Varun BR. Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. J Oral Maxillofac Pathol 2023; 27:649-654. [PMID: 38304520 PMCID: PMC10829443 DOI: 10.4103/jomfp.jomfp_426_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024] Open
Abstract
Background Cancer of the lip and the oral cavity is collectively the sixth most common malignancy worldwide, out of which 90% are oral squamous cell carcinomas (OSCCs). Oral cancer survival rates depend mainly upon the stage in which it is diagnosed. Successful early detection would eventually increase the survival rate. OSCCs may be preceded by potentially malignant disorders (PMDs) that are characterised by visible clinical changes in the oral mucosa. Correct diagnosis and timely treatment of PMDs may help prevent malignant transformation in oral lesions. Oral leukoplakia (OL) is the best known potentially malignant disorder of the oral mucosa with a malignant transformation rate of about 3% to 33%. Tumour markers in saliva have emerged as a new diagnostic tool in the early detection of oral cancer. Matrix metalloproteinase 9 (MMP-9) is a gelatinase which plays an important role in tumourogenisis. The present study was done to evaluate the salivary levels of MMP-9 in OSCC and oral leukoplakia patients using enzyme-linked immunosorbent assay (ELISA). Materials and Methods The study was conducted among 102 subjects, which included 34 OSCC patients (group I), 34 OL patients (group II), and 34 healthy subjects (group III). Unstimulated saliva was collected by the passive drooling method from all the study subjects during the study period, centrifuged, and stored at -80°C. The salivary MMP-9 was estimated in mg/ml using the sandwich ELISA technique. The data were analysed using a statistical software package, EZR. One-way analysis of variance was used for the comparison of salivary MMP-9 levels in OSCC, OL, and normal oral mucosa. Scheffe's multiple comparison was carried out to compare salivary MMP-9 levels among the different histological grades of OSCC and oral epithelial dysplasia. For all statistical interpretations, P ≤ 0.0 was considered the threshold for statistical significance. Results and Conclusion The mean salivary MMP-9 level in OSCC, OL, and normal oral mucosa was 50.9 ± 5.7 ng/ml, 31.6 ± 6 ng/ml, and 16.2 ± 4.8 ng/ml, respectively. Patients with OSCC had significantly higher levels of salivary MMP-9 when compared to OL and normal mucosa. Higher levels of salivary MMP-9 were observed in poorly differentiated OSCC when compared to well and moderately differentiated OSCCs. The salivary MMP-9 was higher in severe oral epithelial dysplasia when compared to mild and moderate oral epithelial dysplasias. As malignant transformation rates are higher in patients with severe oral epithelial dysplasia when compared to mild and moderate oral epithelial dysplasia, salivary MMP-9 could be considered as a surrogate marker of malignant transformation.
Collapse
Affiliation(s)
- Jayanthi Pazhani
- Department of Oral Pathology, Azeezia College of Dental Sciences and Research, Kollam, Kerala, India
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Krishnasree Chanthu
- Department of Oral Pathology, Azeezia College of Dental Sciences and Research, Kollam, Kerala, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - B. R. Varun
- Department of Oral Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| |
Collapse
|
47
|
YANG X, WANG J, CHENG L, ZHANG Y, HUANG J, LIU M. Active compounds of Caodoukou () inhibit the migration, invasion and metastasis of human pancreatic cancer cells by targeting phosphoinosmde-3-kinase/ protein kinase B/mammalian target of rapamycin pathway. J TRADIT CHIN MED 2023; 43:876-886. [PMID: 37679975 PMCID: PMC10465845 DOI: 10.19852/j.cnki.jtcm.20230802.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To detect the effects of active compounds of Caodoukou () (ACAK) on the proliferation, migration and invasion of pancreatic cancer, and explain the possible molecular mechanism of ACAK interacting with these processes. METHODS Cell counting kit-8 method, cell scratch repair experiment, Transwell migration and invasion experiment, immunohistochemistry, western blot assay and real-time polymerase chain reaction experiment were used to evaluate the effect of ACAK on the proliferation, migration and invasion of pancreatic cancer cells. The levels of active molecules involved in the phosphoinosmde-3-kinase (PI3K)/Akt/the mammalian target of rapamycin (mTOR) signal transduction were detected by Western blot assay. In addition, the function of ACAK was evaluated by xenotransplantation tumor model in nude mice. RESULTS The inhibitory effect of ACAK on the proliferation of pancreatic cancer cells showed certain time-dose dependence. The results of scratch repair test, Transwell test, Western blotting and real time polymerase chain reaction assay showed that ACAK could inhibit the migration and invasion of pancreatic cancer cells . In addition, the regulatory effect of ACAK on epithelial-mesenchymal transition (EMT) is partly attributed to PI3K/Akt/mTOR signaling pathway. The experimental results showed that ACAK regulated the development of pancreatic cancer. CONCLUSIONS ACAK can partly inhibit the activity of EMT and matrix metallopeptidases by down-regulating the downstream proteins of PI3K/Akt/mTOR signal pathway, thus inhibiting the ability of migration and invasion of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaohui YANG
- 1 Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jian WANG
- 1 Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li CHENG
- 1 Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuxi ZHANG
- 1 Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianlin HUANG
- 2 Department of Pharmacy, Luzhou Naxi District People's Hospital, Luzhou 646000, China
- 3 Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Minghua LIU
- 1 Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
48
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
49
|
Spangenberg SH, Palermo A, Gazaniga NR, Martínez-Peña F, Guijas C, Chin EN, Rinschen MM, Sander PN, Webb B, Pereira LE, Jia Y, Meitz L, Siuzdak G, Lairson LL. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem Biol 2023; 30:1115-1134.e10. [PMID: 37467751 PMCID: PMC11426993 DOI: 10.1016/j.chembiol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.
Collapse
Affiliation(s)
| | - Amelia Palermo
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathalia R Gazaniga
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Markus M Rinschen
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp N Sander
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Webb
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E Pereira
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Jia
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lance Meitz
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| | - Luke L Lairson
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Herzfeldt AK, Gamez MP, Martin E, Boryn LM, Baskaran P, Huber HJ, Schuler M, Park JE, Swee LK. Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen-specific tumor cell killing by cytotoxic T cells. eLife 2023; 12:e84314. [PMID: 37732732 PMCID: PMC10586807 DOI: 10.7554/elife.84314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/20/2023] [Indexed: 09/22/2023] Open
Abstract
Cytotoxic CD8 +T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits, respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon-γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2 C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.
Collapse
Affiliation(s)
- Ann-Kathrin Herzfeldt
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Marta Puig Gamez
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Eva Martin
- Department of Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | | | - Praveen Baskaran
- Department of Global Computational Biology and Digital Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - Heinrich J Huber
- Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - Michael Schuler
- Department of Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - John E Park
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Lee Kim Swee
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| |
Collapse
|