1
|
Sharma D, Panchaksaram M, Muniyan R. Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management. Biochem Pharmacol 2025; 232:116743. [PMID: 39761875 DOI: 10.1016/j.bcp.2025.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Breast cancer (BC) is the most prevalent type of cancer in women worldwide and it is classified into a few distinct molecular subtypes based on the expression of growth factor and hormone receptors. Though significant progress has been achieved in the search for novel medications through traditional and advanced approaches, still we need more efficacious and reliable treatment options to treat different types and stages of BC. Sirtuins (SIRT1-7) a class III histone deacetylase play a major role in combating various cancers including BC. Studies reveal thateach sirtuin has a unique and well-balanced biology, indicating that it regulates a variety of biological processes that result in the initiation, progression,and metastasis of BC. SIRT also plays a major role in numerous vital biological functions, including apoptosis, axonal protection, transcriptional silencing, DNA recombination and repair, fat mobilization, and aging. As per the current demand, we wish to outline the structural insights into sirtuin's catalytic site, substantial variations among all SIRT types, and their mechanism in BC management. Additionally, this review will focus on the application of SIRT modulators along with their clinical significance, hurdles, and future perspective to develop successful SIRT-based drug candidates to conquer the BC problem.
Collapse
Affiliation(s)
- Deepak Sharma
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Muthukumaran Panchaksaram
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Rajiniraja Muniyan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Chen X, Xue B, Wahab S, Sultan A, Khalid M, Yang S. Structure-based molecular docking and molecular dynamics simulations study for the identification of dipeptidyl peptidase 4 inhibitors in type 2 diabetes. J Biomol Struct Dyn 2025; 43:1445-1458. [PMID: 38100564 DOI: 10.1080/07391102.2023.2291831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP4) activity has emerged as a promising therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM). Bioinformatics-driven approaches have emerged as crucial tools in drug discovery. Molecular docking and molecular dynamics (MD) simulations are effective tools in drug discovery, as they reduce the time and cost associated with experimental screening. In this study, we employed structure-assisted in-silico methods, including molecular docking and MD simulations, to identify SRT2183, a small molecule that may potentially inhibit the activity of DPP4 enzyme. The interaction between the small molecule "SRT2183" and DPP4 exhibited a binding affinity of -9.9 Kcal/Mol, leading to the formation of hydrogen bonds with the amino acid residues MET348, SER376, and THR351 of DPP4. The MD simulations over a period of 100 ns indicated stable protein-ligand interactions, with no significant conformational rearrangements observed within the simulated timeframe. In conclusion, our results suggest that the small molecule SRT2183 may have the potential to inhibit the DPP4 enzyme and pave the way for the therapeutics of T2DM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xi Chen
- School of Management, Guangzhou College of Technology and Business, Guangzhou, China
| | - Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Armiya Sultan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Song Yang
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
3
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Makvand M, Mirtorabi SD, Campbell A, Zali A, Ahangari G. Exploring neuroadaptive cellular pathways in chronic morphine exposure: An in-vitro analysis of cabergoline and Mdivi-1 co-treatment effects on the autophagy-apoptosis axis. J Cell Biochem 2024; 125:e30558. [PMID: 38577900 DOI: 10.1002/jcb.30558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
The complex impacts of prolonged morphine exposure continue to be a significant focus in the expanding area of addiction studies. This research investigates the effectiveness of a combined treatment using Cabergoline and Mdivi-1 to counteract the neuroadaptive changes caused by in vitro morphine treatment. The impact of Methadone, Cabergoline, and a combination of Cabergoline and Mdivi-1 on the cellular and molecular responses associated with Morphine-induced changes was studied in human Neuroblastoma (SK-N-MC) and Glioblastoma (U87-MG) cell lines that were exposed to prolong Morphine treatment. Cabergoline and Mdivi-1 combined treatment effectively influenced the molecular alterations associated with neuroadaptation in chronic morphine-exposed neural cells. This combination therapy normalized autophagy and reduced oxidative stress by enhancing total-antioxidant capacity, mitigating apoptosis, restoring BDNF expression, and balancing apoptotic elements. Our research outlines morphine's dual role in modulating mitochondrial dynamics via the dysregulation of the autophagy-apoptosis axis. This emphasizes the significant involvement of DRP1 activity in neurological adaptation processes, as well as disturbances in the dopaminergic pathway during in vitro chronic exposure to morphine in neural cells. This study proposes a novel approach by recommending the potential effectiveness of combining Cabergoline and Mdivi-1 to modulate the neuroadaptations caused by morphine. Additionally, we identified BDNF and PCNA in neural cells as potential neuroprotective markers for assessing the effectiveness of drugs against opioid toxicity, emphasizing the need for further validation. The study uncovers diverse effects observed in pretreated morphine glioblastoma cells under treatment with Cabergoline and methadone. This highlights the potential for new treatments in the DRD2 pathway and underscores the importance of investigating the interplay between autophagy and apoptosis to advance research in managing cancer-related pain. The study necessitates an in-depth investigation into the relationship between autophagy and apoptosis, with a specific emphasis on protein interactions and the dynamics of cell signaling.
Collapse
Affiliation(s)
- Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
6
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y, Piao M, Chi G, Ge P. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol 2024; 69:103030. [PMID: 38181705 PMCID: PMC10791567 DOI: 10.1016/j.redox.2024.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qi Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoxi Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Liu X, Zhang S, Dong Y, Xie Y, Li Q. SENP1-mediated SUMOylation of SIRT1 affects glioma development through the NF-κB pathway. Exp Cell Res 2023; 433:113822. [PMID: 37866458 DOI: 10.1016/j.yexcr.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Gliomas are the most common primary brain tumors in adults. Although they exist in different malignant stages, most gliomas are clinically challenging because of their infiltrative growth patterns and inherent relapse tendency with increased malignancy. Epigenetic alterations have been suggested to be an important factor for glioma genesis. Using mRNA probe hybridization, we identified SUMO-specific protease 1 (SENP1) as the most significantly upregulated SUMOylation regulator in glioma. Moreover, SENP1 was overexpressed in gliomas and predicted poor prognoses. Depletion of SENP1 reduced glioma cell activity, cycle arrest, and increased apoptotic activity. Mechanistically, SENP1 inhibited the protein expression of sirtuin 1 (SIRT1) through de-SUMOylation, and SIRT1 inhibited the activity of nuclear factor kappaB (NF-κB) by deacetylation. Rescue experiments revealed that downregulation of SIRT1 reversed the inhibitory effect of sh-SENP1 on glioma cell malignant phenotype, while downregulation of NF-κB reversed the activating effect of sh-SIRT1 on glioma cell malignant phenotype. Thus, SENP1-mediated de-SUMOylation of SIRT1 might be therapeutically important in gliomas.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China
| | - Shenglin Zhang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China
| | - Yi Dong
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China
| | - Yunpeng Xie
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China.
| | - Qingshan Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China.
| |
Collapse
|
8
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
9
|
Hu L, Shi J, Shen D, Zhai X, Liang D, Wang J, Xie C, Xia Z, Cui J, Liu F, Du S, Meng S, Piao H. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov 2023; 9:333. [PMID: 37669963 PMCID: PMC10480197 DOI: 10.1038/s41420-023-01632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
- Department of Laboratory Medicine, Affiliated Qingdao Central Hospital, Qingdao University, 266000, Qingdao, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Dachuan Shen
- Department of Oncology, Affliated Zhongshan Hospital of Dalian University, 116001, Dalian, China
| | - Xingyue Zhai
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Zhiyu Xia
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Cui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Feng Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
10
|
Nandave M, Acharjee R, Bhaduri K, Upadhyay J, Rupanagunta GP, Ansari MN. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: Call for further research. Int J Biol Macromol 2023; 242:124581. [PMID: 37105251 DOI: 10.1016/j.ijbiomac.2023.124581] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Sirtuins or Sir (Silent information regulator) are NAD+-dependent enzymes playing an important part in the pathogenesis and treatment of various disorders. They have ubiquitously expressed protein deacetylases. They are implicated in several cellular activities like DNA repair, cellular metabolism, mitochondrial function, and inflammation. Deletion of sirtuin protein, SIRT1 in the organs like brain, heart, liver and pancreas can cause inflammation and increases the level of free radical ions causing oxidative stress. Inflammation and oxidative stress are closely associated with pathophysiological events in many chronic diseases, like diabetes, cancer, cardiovascular, osteoporosis, and neurodegenerative diseases. Modulation of SIRT1 gene expression might help in preventing the progression of chronic diseases related to the brain, heart, liver, and pancreas. SIRT2 proteins play an essential role in tumorigenesis, including tumor-suppressing and tumor-promoting functions. Sirtuin activators are molecules that upregulate the activity of Sirtuins in the body. Their multifaceted uses have surprised the global scientific community. They are found to control obesity, lower cardiac risks, battle cancer, etc. This article provides an update on the pharmacological effect of SIRT1 and SIRT 2 proteins, their activators and inhibitors, and their molecular mechanism. It provides novel insights for future research in targeted therapy and drug development.
Collapse
Affiliation(s)
- Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rituparna Acharjee
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Kinkini Bhaduri
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Jyoti Upadhyay
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| | | | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
11
|
Ren L, Yang Y, Li W, Yang H, Zhang Y, Ge B, Zhang S, Du G, Wang J. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet 2023; 13:1085391. [PMID: 36685834 PMCID: PMC9845602 DOI: 10.3389/fgene.2022.1085391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor development is frequently accompanied by abnormal expression of multiple genomic genes, which can be broadly viewed as decreased expression of tumor suppressor genes and upregulated expression of oncogenes. In this process, epigenetic regulation plays an essential role in the regulation of gene expression without alteration of DNA or RNA sequence, including DNA methylation, RNA methylation, histone modifications and non-coding RNAs. Therefore, drugs developed for the above epigenetic modulation have entered clinical use or preclinical and clinical research stages, contributing to the development of antitumor drugs greatly. Despite the efficacy of epigenetic drugs in hematologic caners, their therapeutic effects in solid tumors have been less favorable. A growing body of research suggests that epigenetic drugs can be applied in combination with other therapies to increase efficacy and overcome tumor resistance. In this review, the progress of epigenetics in tumor progression and oncology drug development is systematically summarized, as well as its synergy with other oncology therapies. The future directions of epigenetic drug development are described in detail.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jinhua Wang,
| |
Collapse
|
12
|
Xuan F, Zhang Z, Liu K, Gong H, Liang S, Zhao Y, Li H. Constructing a signature based on the SIRT family to help the prognosis and treatment sensitivity in glioma patients. Front Genet 2022; 13:1035368. [PMID: 36568393 PMCID: PMC9780371 DOI: 10.3389/fgene.2022.1035368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Enzymes of the silent information regulator (SIRT) family exert crucial roles in basic cellular physiological processes including apoptosis, metabolism, ageing, and cell cycle progression. They critically contribute to promoting or inhibiting cancers such as glioma. In the present study, a new gene signature of this family was identified for use in risk assessment and stratification of glioma patients. To this end, the transcriptome and relevant clinical records of patients diagnosed with glioma were obtained from the Cancer Genomic Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LASSO regression and multivariate Cox analyses were used to establish the signature. Using Kaplan-Meier analyses, overall survival (OS) was assessed and compared between a training and an external test datasets which showed lower OS in patients with high risk of glioma compared to those with low risk. Further, ROC curve analyses indicated that the SIRT-based signature had the desired accuracy and universality for evaluating the prognosis of glioma patients. Using univariate and multivariate Cox regression analyses, the SIRT-based signature was confirmed as an independent prognostic factor applicable to subjects in the TCGA and CGGA databases. We also developed an OS nomogram including gender, age, risk score, pathological grade, and IDH status for clinical decision-making purposes. ssGSEA analysis showed a higher score for various immune subgroups (e.g., CD8+ T cells, DC, and TIL) in samples from high-risk patients, compared to those of low-risk ones. qPCR and western blotting confirmed the dysregulated expression of SIRTs in gliomas. Taken together, we developed a new signature on the basis of five SIRT family genes, which can help accurately predict OS of glioma patients. In addition, the findings of the present study suggest that this characteristic is associated with differences in immune status and infiltration levels of various immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Feiyue Xuan
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Zhiwei Zhang
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Kuili Liu
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Haidong Gong
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China,Heilongjiang Provincial Key Laboratory of Cancer Disease Prevention and Control, Mudanjiang Medical University, Mudanjiang, China
| | - Shaodong Liang
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Youzhi Zhao
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhe Li
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China,*Correspondence: Hongzhe Li,
| |
Collapse
|
13
|
Liu G, Guan Y, Liu Y, Wang Y, Zhang J, Liu Y, Liu X. Saikosaponin D Inducing Apoptosis and Autophagy through the Activation of Endoplasmic Reticulum Stress in Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-12. [PMID: 36467888 PMCID: PMC9715330 DOI: 10.1155/2022/5489553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Saikosaponin D (SSD), a saponin derivative, is extracted from Bupleurum falcatum. It exhibits an inhibitory effect on a number of tumor cells and is relatively safe when used at therapeutic doses. However, its effects on glioblastoma multiforme (GBM) have not been fully explored. This study is aimed at investigating the cytotoxic effects of SSD in GBM cell lines. SSD induces apoptosis and autophagy by activating endoplasmic reticulum (ER) stress in GBM cells. GBM cell proliferation activity and morphology were observed using the Cell Counting Kit-8 assay and hematoxylin and eosin staining. Hoechst 33258 fluorescence staining and flow cytometry were performed to assess apoptosis. Western blotting and immunocytochemical staining were used to detect protein expression and distribution. SSD significantly inhibited the proliferation of RG-2, U87-MG, and U251 cells in a dose-dependent manner, and the proportion of apoptotic cells increased significantly. Additionally, the expressions of ER-, apoptosis-, and autophagy-related proteins were significantly upregulated and distributed in the cytoplasm and nucleus. Therefore, SSD may be considered a novel treatment option for GBM. This study demonstrated the anti-GBM effect of SSD from the perspectives of cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Guimei Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yuehong Guan
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yongxian Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yaping Wang
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Jing Zhang
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yusi Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Xiaobin Liu
- Department of Medical Immunology, College of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
14
|
Liu B, Dong C, Chen Q, Fan Z, Zhang Y, Wu Y, Cui T, Liu F. Circ_0007534 as new emerging target in cancer: Biological functions and molecular interactions. Front Oncol 2022; 12:1031802. [PMID: 36505874 PMCID: PMC9730518 DOI: 10.3389/fonc.2022.1031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNA (circRNAs), an important member of the non-coding RNA (ncRNA) family, are widely expressed in a variety of biological cells. Owing to their stable structures, sequence conservations, and cell- or tissue-specific expressions, these RNA have become a popular subject of scientific research. With the development of sequencing methods, it has been revealed that circRNAs exert their biological function by sponging microRNAs (miRNAs), regulating transcription, or binding to proteins. Humans have historically been significantly impacted by various types of cancer. Studies have shown that circRNAs are abnormally expressed in various cancers and are involved in the occurrence and development of malignant tumors, such as tumor cell proliferation, migration, and invasion. As one of its star molecules, circ_0007534 is upregulated in colorectal, cervical, and pancreatic cancers; is closely related to the occurrence, development, and prognosis of tumors; and is expected to become a novel tumor marker and therapeutic target. This article briefly reviews the expression and mechanism of circ_0007534 in malignant tumors based on the domestic and foreign literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Rahimifard M, Haghi-Aminjan H, Hadjighassem M, Pourahmad Jaktaji R, Bagheri Z, Azami Movahed M, Zarghi A, Pourahmad J. Assessment of cytotoxic effects of new derivatives of pyrazino[1,2-a] benzimidazole on isolated human glioblastoma cells and mitochondria. Life Sci 2021; 286:120022. [PMID: 34626606 DOI: 10.1016/j.lfs.2021.120022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
AIMS Glioblastoma multiforme (GBM) is a highly devastating malignant brain tumor with poor pharmacotherapy. Based on COX-2 inhibitory effects in preventing cancer progression, new pyrazino[1,2-a]benzimidazole derivatives were assessed on isolated human GBM cells. MAIN METHODS In this study, firstly, primary culture of astrocytes from human GBM samples was prepared and exposed to 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) for finding their half-maximal inhibitory concentration (IC50). In the following, in two phases, cell apoptosis pathway and mitochondrial markers were investigated on GBM and also HEK293 cells (as non-cancerous normal cells). KEY FINDINGS The MTT results represented a remarkable selective cytotoxic effect of both L1 and L2 on GBM cells, and interestingly not on normal cells. After 48 h, IC50 of L1 and L2 were calculated as 13 μM and 85 μM, respectively. Annexin/PI staining showed that L1 and L2 induce apoptosis in GBM cells, and caspase measurement showed that apoptosis occurs through mitochondrial signaling. In the clonogenic assay, GBM cells formed more paraclones and fewer holoclones after treating with L1 and L2. L1 and L2 also selectively enhanced mitochondrial damaged markers, including reactive oxygen species (ROS) formation, and mitochondrial swelling, decreased mitochondrial membrane potential (MMP) and cytochrome c release in isolated cancerous GBM mitochondria. SIGNIFICANCE Our findings on human primary astrocyte cells illustrated that L1 and L2 compounds, with COX-2 inhibitory effect, through the intrinsic pathway of apoptosis concerning mitochondrial damage enhancement have therapeutic potentials on GBM.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Faculty of Pharmacy, Department of Pharmacology/Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Cell aging related genes can be used to characterize clinical prognoses and further stratify diffuse gliomas. Sci Rep 2021; 11:19493. [PMID: 34593910 PMCID: PMC8484278 DOI: 10.1038/s41598-021-98913-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence has indicated that senescent cells are associated with the glioma development. Thus, we aimed to explore the relationship between the cellular senescence gene profile and the clinical prognosis of diffuse glioma. In total, 699 gliomas from The Cancer Genome Atlas (TCGA) dataset were used as the training cohort and 693 gliomas from the Chinese Glioma Genome Atlas (CGGA) dataset were used as the validation cohort. Bioinformatics statistical methods are used to develop the risk signature and to study the prognostic value of the risk signature. We identified a 14-gene risk signature and its risk score was an independent prognostic factor (P < 0.001) in the validation dataset. The risk signature had better prognostic value than traditional factors for the 3- and 5-year survival rate. Importantly, the risk signature could further stratify gliomas in specific subgroups of World Health Organization (WHO) classification by the survival rate. Furthermore, the mRNA levels of genes involved in the cell cycle, cell division and other processes were significantly correlated with the risk score. Our study highlighted a 14-gene risk signature for further stratifying the outcomes of patients with gliomas with definite WHO subgroups. These results indicate the potential clinical implications of cell aging-related genes in gliomas.
Collapse
|
17
|
Zhao S, Yu L. Sirtuin 1 activated by SRT1460 protects against myocardial ischemia/reperfusion injury. Clin Hemorheol Microcirc 2021; 78:271-281. [PMID: 33682700 DOI: 10.3233/ch-201061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ischemia reperfusion usually results in certain degree of damage to the myocardium, which is called myocardial ischemia/reperfusion (I/R) injury. OBJECTIVE Previous studies have found that Sirt1 plays a critical role in I/R injury by protecting cardiac function. SRT1460 is the activator for Sirt1 that participates in the regulation of various diseases. However, whether SRT1460 has any effects on myocardial I/R injury needs further study. METHODS The I/R rat model and H/R H9C2 model were established to simulate myocardial I/R injury. The infarct area of the rat heart was examined through TTC staining. The EF and FS of rats were detected through echocardiography. The levels of CK-MB, LDH, MDA, SOD and CK in cardiac tissues, serum or H9C2 cells were measured using commercial kits. Cell viability was assessed through MTT assay. Apoptosis was determined through flow cytometry analysis. Sirt1 expression was measured through western blot. RESULTS Our work found that SRT1460 reduced the infarct area of the heart induced by myocardial I/R injury. In addition, SRT1460 was confirmed to ameliorate cardiac dysfunction induced by myocardial I/R injury. Further exploration discovered that SRT1460 weakened oxidative stress induced by myocardial I/R injury. Findings from in vitro assays demonstrated that SRT1460 relieved injury of H/R-treated H9C2 cells. Finally, rescue assays proved that Sirt1 knockdown reversed the protective effects of SRT1460 on the injury of H/R-treated H9C2 cells. CONCLUSION Sirt1 activated by SRT1460 protected against myocardial I/R injury. This discovery may offer new sights on the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Shanjun Zhao
- Department of Ward 1 of Cardiovascular Medicine, Panyu Central Hospital, Guangzhou, China
| | - Lei Yu
- Department of Cardiovascular Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China.,Department of Cardiovascular Medicine, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Chang CY, Pan PH, Wu CC, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributes to Gefitinib-Induced Apoptosis in Glioma. Int J Mol Sci 2021; 22:ijms22083934. [PMID: 33920356 PMCID: PMC8069544 DOI: 10.3390/ijms22083934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Adequate stress on the Endoplasmic Reticulum (ER) with the Unfolded Protein Response (UPR) could maintain glioma malignancy. Uncontrolled ER stress, on the other hand, predisposes an apoptosis-dominant UPR program. We studied here the proapoptotic actions of the Epidermal Growth Factor Receptor (EGFR) inhibitor gefitinib, with the focus on ER stress. The study models were human H4 and U87 glioma cell lines. We found that the glioma cell-killing effects of gefitinib involved caspase 3 apoptotic cascades. Three branches of ER stress, namely Activating Transcription Factor-6 (ATF6), Protein Kinase R (PKR)-Like ER Kinase (PERK), and Inositol-Requiring Enzyme 1 (IRE1), were activated by gefitinib, along with the elevation of intracellular free Ca2+, Reactive Oxygen Species (ROS), and NADPH Oxidase2/4 (NOX2/4). Specifically, elevated IRE1 phosphorylation, Tumor Necrosis Factor (TNF) Receptor-Associated Factor-2 (TRAF2) expression, Apoptosis Signal-Regulating Kinase-1 (Ask1) phosphorylation, c-Jun N-Terminal Kinase (JNK) phosphorylation, and Noxa expression appeared in gefitinib-treated glioma cells. Genetic, pharmacological, and biochemical studies further indicated an active ROS/ER stress/Ask1/JNK/Noxa axis causing the glioma apoptosis induced by gefitinib. The findings suggest that ER-stress-based therapeutic targeting could be a promising option in EGFR inhibitor glioma therapy, and may ultimately achieve a better patient response.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
| | - Ping-Ho Pan
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-423-592-525 (ext. 4022)
| |
Collapse
|
19
|
Sultan A, Ali R, Sultan T, Ali S, Khan NJ, Parganiha A. Circadian clock modulating small molecules repurposing as inhibitors of SARS-CoV-2 M pro for pharmacological interventions in COVID-19 pandemic. Chronobiol Int 2021; 38:971-985. [PMID: 33820462 PMCID: PMC8022342 DOI: 10.1080/07420528.2021.1903027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a global health emergency warranting the development of targeted treatment. The main protease Mpro is considered as a key drug target in coronavirus infections because of its vital role in the proteolytic processing of two essential polyproteins required for the replication and transcription of viral RNA. Targeting and inhibiting the Mpro activity represents a valid approach to prevent the SARS-CoV-2 replication and spread. Based on the structure-assisted drug designing, here we report a circadian clock-modulating small molecule “SRT2183” as a potent inhibitor of Mpro to block the replication of SARS-CoV-2. The findings are expected to pave the way for the development of therapeutics for COVID-19.
Collapse
Affiliation(s)
- Armiya Sultan
- Functional Genomics Laboratory, Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Chronobiology and Animal Behaviour Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Rafat Ali
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Tahira Sultan
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sher Ali
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Arti Parganiha
- Chronobiology and Animal Behaviour Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
20
|
Zhang Y, Zhao Q, Li X, Ji F. Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway. Mol Cell Biochem 2021; 476:2803-2812. [PMID: 33725228 DOI: 10.1007/s11010-021-04102-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023]
Abstract
We aimed to investigate the protective role and mechanism of dexmedetomidine (DEX) on H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R) injury. Six experimental groups were designed as follows: normal control group (group C), H/R group, H/R + DEX group, H/R + gastrodin group, H/R + Ex527 (SIRT1 inhibitor) group, and H/R + DEX + Ex527 group. Lactate dehydrogenase (LDH) activity and the levels of oxidative stress-related enzymes such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were measured using corresponding commercial kits. Cell counting kit (CCK)-8 assay was used to detect cell survival rate while flow cytometry and caspase 3/7 activity were used to determine cell apoptosis, respectively. Western blot was used to detect the expression of silent information regulator 1 (SIRT1), C/EBP homologous protein (CHOP), cleaved-caspase-12/3 and pro-caspase-12/3 in each group. From our findings, when compared with H/R, H/R + Ex527 and H/R + DEX + Ex527 groups, DEX pretreatment of cells in H/R + DEX group significantly increased cell survival rate, and simultaneously reduced LDH activity, oxidative stress and the apoptosis rate of H9c2 cells with H/R injury. Moreover, DEX up-regulated SIRT1 expression level and down-regulated the levels of endoplasmic reticulum (ER) stress-related markers such as CHOP, cleaved-caspase-12 and cleaved-caspase-3, respectively. Ex527 could completely block DEX-induced upregulated expression of SIRT1, and partially blocked the DEX-induced downregulated expression levels of CHOP, cleaved-caspase-12 and cleaved-caspase-3. These results proved that DEX reversed H/R injury-induced oxidative stress and ER stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.,Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Qihong Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
21
|
Zhang Q, Guan G, Cheng P, Cheng W, Yang L, Wu A. Characterization of an endoplasmic reticulum stress-related signature to evaluate immune features and predict prognosis in glioma. J Cell Mol Med 2021; 25:3870-3884. [PMID: 33611848 PMCID: PMC8051731 DOI: 10.1111/jcmm.16321] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has considerable impact on cell growth, proliferation, metastasis, invasion, angiogenesis and chemoradiotherapy resistance in various cancers. However, the effect of ER stress on the outcomes of glioma patients remains unclear. In this study, we established an ER stress risk model based on The Cancer Genome Atlas (TCGA) glioma data set to reflect immune characteristics and predict the prognosis of glioma patients. Survival analysis indicated that there were significant differences in the overall survival (OS) of glioma patients with different ER stress-related risk scores. Moreover, the ER stress-related risk signature, which was markedly associated with the clinicopathological properties of glioma patients, could serve as an independent prognostic indicator. Functional enrichment analysis revealed that the risk model correlated with immune and inflammation responses, as well as biosynthesis and degradation. In addition, the ER stress-related risk model indicated an immunosuppressive microenvironment. In conclusion, we present an ER stress risk model that is an independent prognostic factor and indicates the general immune characteristics in the glioma microenvironment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Lianhe Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Sun T, Hu Y, He W, Shang Y, Yang X, Gong L, Zhang X, Gong P, Yang G. SRT2183 impairs ovarian cancer by facilitating autophagy. Aging (Albany NY) 2020; 12:24208-24218. [PMID: 33223507 PMCID: PMC7762476 DOI: 10.18632/aging.104126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/04/2020] [Indexed: 05/13/2023]
Abstract
The 5-year survival rate of ovarian cancer patients is only 47%, and developing novel drugs for ovarian cancer is needed. Herein, we evaluated if and how SRT2183, a sirtuin-1 activator, impairs the ovarian cancer cells. OVCAR-3 and A2780 cells were treated with SRT2183. Cell viability was measured by cell counting kit-8 assay and clonogenic assay. Apoptosis was determined by flow cytometry with Annexin V and propidium iodide. The level of autophagy was evaluated by western blot and immunofluorescence. The activities of AKT/mTOR/70s6k and MAPK signaling pathway were measured by immunoblot. SRT2183 inhibited the growth of ovarian cancer cells, increased the accumulation of BAX, cleaved-caspase 3 and cleaved-PARP, and decreased the level of anti-apoptotic Bcl-2 and Mcl-1. SRT2183 increased the LC3II level, and enhanced the degradation of p62/SQSTM1. SRT2183 increased the formation of GFP-LC3 puncta and induced the maturation of autophagosome. Interestingly, knockdown of autophagy related 5 and 7 significantly impaired the anti-carcinoma activity of SRT2183, implying that SRT2183 impaired the ovarian cancer cells by inducing autophagy. SRT2183 decreased the accumulation of p-Akt, p-mTOR and p-70s6k, and activated the p38 MAPK signaling pathway. This indicated that Akt/mTOR/70s6k and p38 MAPK signaling pathway might be involved in the SRT2183-mediated autophagy and apoptosis.
Collapse
Affiliation(s)
- Tingting Sun
- Department of Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanfen Hu
- Discovery Department, Elpiscience Biopharma Ltd., Shanghai 201203, China
| | - Weipeng He
- Department of Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuru Shang
- Department of Plastic Surgery, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Liyun Gong
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xianbin Zhang
- Department of General Surgery and Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Gong
- Department of General Surgery and Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Guofen Yang
- Department of Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
23
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
24
|
Yan X, Qu X, Tian R, Xu L, Jin X, Yu S, Zhao Y, Ma J, Liu Y, Sun L, Su J. Hypoxia-induced NAD + interventions promote tumor survival and metastasis by regulating mitochondrial dynamics. Life Sci 2020; 259:118171. [PMID: 32738362 DOI: 10.1016/j.lfs.2020.118171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, an important feature of the tumor microenvironment, is responsible for the chemo-resistance and metastasis of malignant solid tumors. Recent studies indicated that mitochondria undergo morphological transitions as an adaptive response to maintain self-stability and connectivity under hypoxic conditions. NAD+ may not only provide reducing equivalents for biosynthetic reactions and in determining energy production, but also functions as a signaling molecule in mitochondrial dynamics regulation. In this review, we describe the upregulated KDAC deacetylase expression in the mitochondria and cytoplasm of tumor cells that results from sensing the changes in NAD+ to control mitochondrial dynamics and distribution, which is responsible for survival and metastasis in hypoxia.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Rui Tian
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xue Jin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Sihang Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
25
|
Chang CY, Pan PH, Li JR, Ou YC, Wang JD, Liao SL, Chen WY, Wang WY, Chen CJ. Aspirin Induced Glioma Apoptosis through Noxa Upregulation. Int J Mol Sci 2020; 21:ijms21124219. [PMID: 32545774 PMCID: PMC7352791 DOI: 10.3390/ijms21124219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Clinically, high cyclooxygenase-2 expression in malignant glioma correlates well with poor prognosis and the use of aspirin is associated with a reduced risk of glioma. To extend the current understanding of the apoptotic potential of aspirin in most cell types, this study provides evidence showing that aspirin induced glioma cell apoptosis and inhibited tumor growth, in vitro and in vivo. We found that the human H4 glioma cell-killing effects of aspirin involved mitochondria-mediated apoptosis accompanied by endoplasmic reticulum (ER) stress, Noxa upregulation, Mcl-1 downregulation, Bax mitochondrial distribution and oligomerization, and caspase 3/caspase 8/caspase 9 activation. Genetic silencing of Noxa or Bax attenuated aspirin-induced viability loss and apoptosis, while silencing Mcl-1 augmented the effects of aspirin. Data from genetic and pharmacological studies revealed that the axis of ER stress comprised an apoptotic cascade leading to Noxa upregulation and apoptosis. The apoptotic programs and mediators triggered by aspirin in H4 cells were duplicated in human U87 glioma cell line as well as in tumor-bearing BALB/c nude mice. The involvement of ER stress in indomethacin-induced Mcl-1 downregulation was reported in our previous study on glioma cells. Therefore, the aforementioned phenomena indicate that ER stress may be a valuable target for intervention in glioma apoptosis.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Ping-Ho Pan
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yen-Chuan Ou
- Department of Urology, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 4022)
| |
Collapse
|
26
|
Zhang Y, Liu Y, Liu H, Zhao Z, Wu F, Zeng F. Clinical and Biological Significances of a Methyltransferase-Related Signature in Diffuse Glioma. Front Oncol 2020; 10:508. [PMID: 32373523 PMCID: PMC7185060 DOI: 10.3389/fonc.2020.00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Methylation of DNA, RNA or protein is a reversible modification. The proteins and genes that regulate this modification can be a candidate target for tumor therapy. However, the characteristics of methyltransferase related genes in glioma remain obscure. In this study, we systematically analyzed the relationship between methyltransferase-related genes expression profiles and outcomes in glioma patients based on The Cancer Genome Atlas and Chinese Glioma Genome Atlas RNA sequencing datasets. Consensus clustering identified two robust groups with significantly different pathological features and prognosis. Then a methyltransferase-related risk signature was built by a Cox proportional hazards model with elastic net penalty. Moreover, the risk score is associated with patients' clinical and molecular features and can be used as an independent prognostic indicator for patients with glioma. Furthermore, genes associated with the high-risk group were involved in various aspects of the malignant progression of glioma via Gene Ontology analysis and Gene Set Enrichment Analysis. In summary, our study identified a methyltransferase-related risk signature for predicting the prognosis of gliomas.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Hanjie Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
27
|
Markouli M, Strepkos D, Papavassiliou AG, Piperi C. Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacol Res 2020; 157:104823. [PMID: 32305494 DOI: 10.1016/j.phrs.2020.104823] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Gliomas remain a group of malignant brain tumors with dismal prognosis and limited treatment options with molecular mechanisms being constantly investigated. The past decade, extracellular stress and intracellular DNA damage have been shown to disturb proteostasis leading to Endoplasmic Reticulum (ER) stress that is implicated in the regulation of gene expression and the pathogenesis of several tumor types, including gliomas. Upon ER stress induction, neoplastic cells activate the adaptive mechanism of unfolded protein response (UPR), an integrated signaling system that either restores ER homeostasis or induces cell apoptosis. Recently, the manipulation of the UPR has emerged as a new therapeutic target in glioma treatment. General UPR activators or selective GRP78, ATF6 and PERK inducers have been detected to modulate cell proliferation and induce apoptosis of glioma cells. At the same time, target-specific UPR inhibitors and small molecule proteostasis disruptors, work in reverse to increase misfolded proteins and cause a dysregulation in protein maturation and sorting, thus preventing the growth of neoplastic cells. Herein, we discuss the pathogenic implication of ER stress in gliomas onset and progression, providing an update on the current UPR modifying agents that can be potentially used in glioma treatment.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
28
|
Xu H, Liu P, Yan Y, Fang K, Liang D, Hou X, Zhang X, Wu S, Ma J, Wang R, Li T, Piao H, Meng S. FKBP9 promotes the malignant behavior of glioblastoma cells and confers resistance to endoplasmic reticulum stress inducers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:44. [PMID: 32111229 PMCID: PMC7048151 DOI: 10.1186/s13046-020-1541-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Background FK506-binding protein 9 (FKBP9) is amplified in high-grade gliomas (HGGs). However, the roles and mechanism(s) of FKBP9 in glioma are unknown. Methods The expression of FKBP9 in clinical glioma tissues was detected by immunohistochemistry (IHC). The correlation between FKBP9 expression levels and the clinical prognosis of glioma patients was examined by bioinformatic analysis. Glioblastoma (GBM) cell lines stably depleted of FKBP9 were established using lentiviruses expressing shRNAs against FKBP9. The effects of FKBP9 on GBM cells were determined by cell-based analyses, including anchorage-independent growth, spheroid formation, transwell invasion assay, confocal microscopy, immunoblot (IB) and coimmunoprecipitation assays. In vivo tumor growth was determined in both chick chorioallantoic membrane (CAM) and mouse xenograft models. Results High FKBP9 expression correlated with poor prognosis in glioma patients. Knockdown of FKBP9 markedly suppressed the malignant phenotype of GBM cells in vitro and inhibited tumor growth in vivo. Mechanistically, FKBP9 expression induced the activation of p38MAPK signaling via ASK1. Furthermore, ASK1-p38 signaling contributed to the FKBP9-mediated effects on GBM cell clonogenic growth. In addition, depletion of FKBP9 activated the IRE1α-XBP1 pathway, which played a role in the FKBP9-mediated oncogenic effects. Importantly, FKBP9 expression conferred GBM cell resistance to endoplasmic reticulum (ER) stress inducers that caused FKBP9 ubiquitination and degradation. Conclusions Our findings suggest an oncogenic role for FKBP9 in GBM and reveal FKBP9 as a novel mediator in the IRE1α-XBP1 pathway.
Collapse
Affiliation(s)
- Huizhe Xu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China
| | - Peng Liu
- Department of General Surgery, Shenzhen University General Hospital, No. 1098, Xueyuan avenue, Shenzhen, 518055, China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021, Liaoning Province, China
| | - Kun Fang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China
| | - Xiukun Hou
- The First Department of Ultrasound, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021, Liaoning Province, China
| | - Xiaohong Zhang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China
| | - Songyan Wu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China
| | - Jianmei Ma
- Department of Anatomy, Dalian Medical University, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Dalian, 116001, Liaoning Province, China.
| | - Tao Li
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
29
|
Cheng L, Yang Z, Sun Z, Zhang W, Ren Y, Wang M, Han X, Fei L, Zhao Y, Pan H, Xie J, Nie S. Schizandrin B Mitigates Rifampicin-Induced Liver Injury by Inhibiting Endoplasmic Reticulum Stress. Biol Pharm Bull 2020; 43:145-152. [DOI: 10.1248/bpb.b19-00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ling Cheng
- Nanjing University of Chinese Medicine
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Libo Fei
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Yang Zhao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Hui Pan
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Ji Xie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Shinan Nie
- Nanjing University of Chinese Medicine
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|
30
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
31
|
Liu JZ, Hu YL, Feng Y, Guo YB, Liu YF, Yang JL, Mao QS, Xue WJ. Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K /Akt/mTOR pathway. Exp Cell Res 2019; 385:111691. [PMID: 31678170 DOI: 10.1016/j.yexcr.2019.111691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Rafoxanide is commonly used as anti-helminthic medicine in veterinary medicine, a main compound of salicylanilide. Previous studies have reported that rafoxanide, as an inhibitor of BRAF V600E mutant protein, inhibits the growth of colorectal cancer, multiple myeloma, and skin cancer. However, its therapeutic effect on gastric cancer (GC) and the potential mechanism has not been investigated. Here, we have found that rafoxanide inhibited the proliferation of GC cells in vitro, arrested the cell cycle in the G0/G1 phase, and promoted apoptosis and autophagy in GC cells. Treatment with specific autophagy inhibitor 3-methyladenine drastically inhibited the apoptotic cell death effect by suppressing the switch from autophagy to apoptosis. Mechanistically, we found that rafoxanide inhibited the growth of GC cells in vitro by inhibiting the activity of the PI3K/Akt/mTOR signaling pathway. This process induced autophagy, which essentially resulted in the apoptosis of GC cells. Results from subcutaneous implanted tumor models in nude mice also indicated that rafoxanide inhibited the growth of GC cells in vivo. Taken together, our findings revealed that rafoxanide inhibited the growth of GC cells both in vitro and vivo, indicating a potential drug candidate for the treatment of GC.
Collapse
Affiliation(s)
- Jia-Zhou Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| |
Collapse
|